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The effect of strain on the compositional and optical properties of a set of epitaxial single layers of
In,Ga, N was studied. Indium content was measured free from the effects of strain by Rutherford
backscattering spectrometry. Accurate knowledge of the In mole fraction, combined with x-ray
diffraction measurements, allows perpendicular strajy) (to be evaluated. Optical band gaps were
determined by absorption spectroscopy and corrected for strain. Following this approach, the strain
free dependence of the optical band gap igGa N alloys was determined fax<0.25. Our
results indicate an “anomalous,” linear, dependence of the energy gap on the In content, at room
temperature:E4(x) =3.39-3.5% eV. Extension of this behavior to higher concentrations is
discussed on the basis of reported results. 2@1 American Institute of Physics.
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Light emitting devices based on the ternary alloy In this letter, Rutherford backscatterifigB9) is used to
In,Ga _«N have been developing at an impressively fast rateaccurately determine the alloy composition independent of
over the last decadeThe emission wavelength in these de- the effects of strain. Subsequent XRD measurements permit
vices is tuned by adjusting the indium content in the activethe evaluation of strain in all samples and also the magnitude
layer. Despite such technological developments, the sembf the band gap correction due to strain.
conductor alloy at the core of these light emitters is, from a  The samples studied are nominally undoped wurtzite
fundamental point of view, a poorly understood material.In,Ga N layers, grown by metalorganic chemical vapor
Most of their properties are simply estimated from the twodeposition on GaN/AD; substrates. Thiti<75 nm), fairly
binary compounds, GaN and InN, in particular the band gaghick (~200 nm), and thick(>500 nn) samples with a rea-
energy is expected to vary between 3.42 and 1.89 eV at roosonable range of compositiong<€0.25) were considered.
temperaturéRT). However, the tendency for phase segrega-RBS measurements were performed on a standard geometry
tion and ordering can greatly influence an alloy’s optical with a 1 mmcollimated beam of 2 MeV Heions. XRD was
properties. Actually some authdfsargue that phase segre- done in a high-resolution double-crystal diffractometer, us-
gation, on a nanometer scalean account for the extraordi- ing the CuK a4 line.
nary light emission properties in J6a _,N, despite the Random and aligned RBS spectra from an
huge dislocation density in the devices’ active regions. In,Ga, _\N/GaN/AL,O; heterostructure are shown in Fig. 1.

The bandgap variation for JGa, N has not yet been The full curve is a computer simulation of the random spec-
established, independently of state of strain. A deviatiortra usingrump.*® High statistics and a good simulation pro-
from a linear dependence of the fundamental gap has beeafide an accurate value for the In mole fraction. For this
postulated, with a wide range of bowing parameters, in th&ample B), x=0.099+ 0.005, a thickness of 505 nm and
literature®~* Several sources of error hamper the establisha Xmin Of 2.4% along/0001) were also determined. Measured
ment of a consensual relation. In some studies the measurgdiues ofyi, a crystal quality factor, are good compared to
quantity is the luminescence peak energy, with ignores thether reported values for samples with similar In contént.
Stokes’ shifted'® of emission with respect to the band  Composition values determined by RBS are not sensitive
edge. When the gap is derived from optical absorption oko the state of strain in the sampfeHowever, XRD mea-
photoluminescence excitation experiments, a difficulty arisegures an averaged value for the lattice constants of layers,
from the spectral broadening, which hinders a clear identifiwhich may or may not be strained. Figure 2 shows-&260
cation of the band edge energy. On the other hand, accuragap of the GaN and k&a,_,N(00.2) diffraction peaks. The
determination of In content is difficult in &a, N layers. |attice constantxg,y and ¢,y are directly given byc
Frequently, this quantity is derived from x-ray diffraction :|*)\CuKal/(2 sinég), for any allowed (00) reflection. For
(XRD) using Vegard's la# directly, without properly con- sample B,Cgan=0.5187 nm anc;,gay=0.5252 nm.

sidering the state of strain in the samples. In order to calculate the In content from XRD results,
using only the lattice constant,g,y tWO extreme assump-

dElectronic mail: spereira@fis.ua.pt tions are usually considered for the state of strain.
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100 200 300 400 500 €00 700 800 FIG. 3. Indium content determined by RBS correlated with the values of
Channel lattice constant measured by XRD. The composition determined by RBS is
compared with the values that would be obtained under the two assumptions
FIG. 1. Random, aligned, and simulated RBS spectra from andiscussed in the text. The parameters used weyg=0.51850, agay
INg 0odGa sdN/GaN/ALO;(000) sample. Vertical arrows indicate the scat- =0.31892 nm(Ref. 24 andc,y=0.57033a,,,=0.35378 nmRef. 25, c43
tering energies of the different chemical elements. Horizontal arrows indi-and cs; of 103, 405, and 92, 224 GR&ef. 26 for GaN and InN respec-
cate the depth location in the sample. tively.

In,Ga,_«N grows pseudomorphicallyc(,gan=Ccan) tO the
GaN buffer’'322 |n this case measuring onlg;,g,y and
solving Eq.(1), x can be calculatetf
Both situations,(i) and (i), are represented in Fig. 3
together with the value of determined by RBS. One can see
éhat for thick samples direct application of Vegard’s law us-
iNg Chcan Provides a good agreement with RBS data, indi-
ating that these layers are almost fully relaxed. For
n,Ga, _,N layers with thickness below, say 300 nm, the
state of strain is not easy to predict on thickness consider-
ations alone. For example, sample B is partially relaxed
while a thinner onéA) is almost fully relaxed, and a thicker
C1a(X)Co(X) one(G) is pseudomorphic. Critical thicknesses can, for some
13 0 :
———— [ajean—a0(X)]=0, (1)  samples, be well above the values calculated using the relax-
Cay(X)a0(x) ation model$/?® as pointed out in Ref. 22. The partial re-
. laxation observed in thin samples is an important point, since
wherec, anda, are the relaxed parameters given by Veg'if the pseudomorphic assumption were generally made for

ard St Ia\t/v fandctihi()g. are the ]mezrly;ntersolatet?] TlaSt'(.:t these layersx values would be underestimat®dnd incon-
constants from the binary semiconductors. Nevertneless, tiggiant gyer-corrections in the band gap value due to strain
often assumed that for thin layers, say below 100 nm

would be performed. From this discussion, it is evident that
strain should be evaluated for each sample.

Once the strain-free composition of theGg, _,N lay-
ers is known by RBS, perpendicular straig,,= (Cincan
_Q —Cp)/cq, can be determined. In the absence of better knowl-
edge regarding deformation potentials for,Ga N,
dEy/de,,=15.4eV, obtained experimentally from the de-
pendence of GaN band gap on the stidimas used to cor-
rect the band gaps. Therefore, the alloy’s relaxed energy gap
is given as

(i) The layer is fully relaxed. Vegard’s law assumes that
the lattice constants of aelaxed ternary compound
A,B;_«N will scale linearly withx between AN and BN
lattice parameters.

(i) Pseudomorphic growth. In the case of biaxially
strained hexagonal wurtzite structures, such a
In,Ga _N/GaN, distortion of the unit cell must be consid-
ered. In order to separate the influence of strain and comp
sition effects onc,gan, bOth lattice parametera,g,n and
Cncan, have to be measuréd Therefore applying Hooke'’s
law, x can be determined solving:

[CInGaN_ CO(X)] +2
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|sL-3sL-28L-1 The absorption curves for several concentrations were
T v & ¢t & v o "t v T % T T i i i i = abs
. o5 - o =3 fitted to a S|gm9|QaI expres&om(E) 'ao({l+exp:(Eg '
o —E)/AE]}, providing a reproducible criterion to determine
20 (°) the band gap in Ga ,N layers. This procedure, rather
FIG. 2. w—26 map of the InGa, _,N and GaN(00.2 reflections. Satellite than using an unclear threshold, was used to deterE@Pﬁa

peak SL;) separation yields an JGa,_,N layer thickness of about 55 nm, the “effective band gap,” and the broadening parameter

in agreement with the RBS determined value. (AE), equivalent to an Urbach taff.
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strain, may also lead to a variety Bf,(x) curves.
In order to open the way to an understanding of the
physical reason behind this unusual behavior of the band gap

9= 8V AE=0.143 ¢V
¢ AE=0.109 ¢V
¢ AE= 005 eV
; AE=0017 eV
Sigmoidal Fit

Absorbance (a.u.)

S 321 with composition, “electronic,’®? chemical clustering or
o any other, the alloy’s pro_pert!es should preferentl.ally be re-
23 50 ferred to a comparable situation of relaxed material.
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