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ABSTRACT Humans can understand a novel sentence by parsing it into known components like phrases and

clauses. To achieve human-level artificial intelligence, compositional generalization tasks are suggested and

used to assess machine learning models. Among those tasks, the SCAN tasks are challenging for the standard

deep learning models, such as RNN sequence-to-sequence models and Transformers, that show great

success across many natural language processing tasks. Even though a long line of deep learning research

has developed memory augmented neural networks aimed at the SCAN tasks, their generalities remain

questionable for more complex and realistic applications where the standard seq2seq models dominate.

Hence, one needs to propose a method that helps the standard models to discover compositional rules. To

this end, we propose a data augmentation technique using paring trees. Our technique annotates targets by

inserting a new delimiter token in between them according to their parsing trees. For the training stage,

the technique needs prior knowledge about the targets’ semantic or syntactic compositionality. On the other

hand, for the test stage, the technique uses no such knowledge. Experiments show that our technique enables

the standard models to achieve compositional generalization on the SCAN tasks. Furthermore, we validate

our technique on a synthetic task and confirm the standard models’ strong performance gains without

using prior knowledge about semantic compositionality. As one way to infuse parsing tree information into

sequences, our technique can be used for tasks with structured targets like program code generation tasks.

INDEX TERMS Artificial intelligence, neural networks, natural language processing.

I. INTRODUCTION

Humans can understand natural language by its composition-

ality [1], [2]. That is, even if a human reads a sentence written

as novel combinations of known phrases or clauses, he or she

can parse it into semantic or syntactic components.

To achieve artificial intelligence that possesses such ability,

a large body of deep learning research [3]–[10] has been

carried out using the SCAN tasks [11], de facto standard

compositional generalization problems. The SCAN dataset

consists of finitely many commands, e.g., ‘‘run twice’’ and

‘‘walk right and run’’, and their corresponding target actions,

e.g., ‘‘RUN RUN’’ and ‘‘RTURN WALK RUN’’. In partic-

ular, the SCAN dataset is divided into the training and the

test set depending on specific compositionality of interest,

and yields tasks like the jump-split task, the length-split task,

and the MCD-split tasks. For example, in the training stage,

The associate editor coordinating the review of this manuscript and

approving it for publication was Longzhi Yang .

the jump-split task shows commands like ‘‘run’’, ‘‘run

twice’’, and ‘‘run after walk’’. However, it does not show

‘‘jump’’ with any context, such as ‘‘jump twice’’ or ‘‘jump

twice after walk’’, except for ‘‘jump’’ itself. In the test

stage, it asks those unobserved commands with ‘‘jump’’. As

another example, the length-split task’s test set suggests com-

mands requiring longer actions than those that appear in the

training set.

These SCAN tasks turn out to be extremely diffi-

cult to standard seq2seq deep learning models, such as

RNN sequence-to-sequence (seq2seq) models [12]–[14] and

self-attention based models [15]–[17]. This seems contra-

dictory to recent advances, which are up to par with the

level of human intelligence, in numerous natural language

tasks including machine translation, natural language infer-

ence (NLI), and question and answering (QA). Moreover,

studies about theoretical analysis of RNNs [18], [19] and

self-attention [20], [21] have shown that their expressive

powers are enough to capture the hierarchical structure of the
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SCAN tasks’ language whose grammar allows only finitely

many words.

Fortunately, it has been found that the standard models can

solve the jump-split SCAN task with the help of pretrain-

ing [22] or data augmentation [9], [23]. This is possible since

many additional examples apart from the given training ones

enable the standard models to experience enough composi-

tionality. However, none of these data-based approaches suc-

ceeds to make the standard models to resolve the other types

of the SCAN tasks like the length-split or the MCD-splits.1

To tackle those types of the SCAN tasks, there have been

attempts to design new architectures largely deviated from

the standard seq2seq architectures [6], [10]. These new archi-

tectures commonly exploit external memory allowing merg-

ing or concatenation operations aimed at the SCAN tasks’

compositional rules such as ‘‘twice’’ or ‘‘thrice’’. However,

such non-standard architectures with external memory for

imposing task-specific inductive bias are only applicable to

the SCAN or the SCAN-like tasks. Thus, they cannot be used

to solve more complex and realistic applications where the

standard models perform well.

In this work, to achieve compositional generalization

with the standard seq2seq models, we suggest a novel data

augmentation technique using parsing trees. The technique

annotates each original target sequence by inserting a new

delimiter token ‘‘<del>’’ in between the target for distinguish-

ing its parsed components, as shown in Figure 1. For the train-

ing stage, the annotated targets are used instead of the original

ones. Here, to obtain those parsed components, the tech-

nique uses prior knowledge about the original targets’ seman-

tic or syntactic compositionality. On the other hand, in the test

stage, the technique does not need any such knowledge.

FIGURE 1. An example of applying our annotation technique. Delimiter
tokens <del> indicate the beginnings of the parsed components obtained
from the parsing tree.

Empirically, we show that our technique enables the stan-

dard seq2seq models to achieve compositional generalization

on the MCD-splits and the length-split of the SCAN dataset.

We further validate our technique on a synthetic task and

confirm the standard models’ strong performance gains even

without using prior knowledge about semantic composition-

ality. This shows our technique’s applicability on more chal-

lenging compositional natural language tasks where syntactic

1The detailed description is deferred to Section II-A4

parsing trees are readily available, such as programming code

generation tasks [24].

II. BACKGROUND

In this section, we introduce the SCAN tasks by split methods

and previous studies to tackle them via architecture develop-

ments and data augmentations.

A. THE SCAN TASKS

The goal of the SCAN (Simplified version of the CommAI

Navigation) tasks [11] is to translate compositional naviga-

tion commands written in synthetic natural language into

a sequence of actions. The inputs are commands, a total

of 20,910, formed by a predefined grammar (Fig. 2) and the

targets are actions that are the translation results of commands

by the semantic interpretation mapping (Appx.). Depend-

ing on compositional generalization abilities to assess, split

methods that divide all command-action pairs into the train-

ing or the test set are determined. Accordingly, specific tasks

are defined as follows.

1) RANDOM-SPLIT

The training set is a random 80% subset of the total dataset

and the test set is the remaining subset. Thus, this task is

not for assessing compositional generalization ability but is

used to test the given models’ typical generalization abilities.

Unlike other splits, the standard seq2seq models generalize

well on the test set.

2) JUMP-SPLIT

The training set consists of all primitives, e.g., ‘‘jump’’,

‘‘walk’’, ‘‘run’’, and ‘‘look’’, and their composed commands,

e.g., ‘‘run twice’’, ‘‘walk opposite left and run twice’’, except

for composed commands of ‘‘jump’’. The test set contains

the remaining commands like ‘‘jump twice’’ and ‘‘jump after

run’’. Hence, to generalize on the test set, compositional

understanding of ‘‘jump’’ along with other commands is

necessary.

3) LENGTH-SPLIT

The training set has all 16,990 commands (81.3% of the total)

requiring actions, i.e., targets, of lengths less than 24 and

the test set has all remaining commands. Hence, the test

set assesses the compositional generalization abilities about

actions’ lengths.

4) MCD-SPLIT

As the composition of commands can be explained by their

grammar parsing trees, it is natural to consider a distribu-

tion over those trees’ subgraphs (compounds). To define the

compound distribution of the dataset, DBCA (distribution-

based compositionality assessment) method [24] captures the

extent of how interesting a subgraph is within a parsing

tree. Moreover, the method can serve as criteria to divide

the SCAN dataset into the training and the test set, yielding

three compositional generalization tasks, such as MCD1,
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FIGURE 2. A Grammar for commands.

MCD2, and MCD3. Whereas the training and test set of

each task have similar distributions over nodes (atoms) of

parsing trees, they have distinct distributions over subgraphs

(compounds).

B. SCAN-INSPIRED DEEP LEARNING ARCHITECTURES

The SCAN tasks inspire many deep learning architecture

designs for compositional generalization, which are thor-

oughly summarized in [22]. In particular, NeSS [10] and

LANE [6] achieve perfect accuracy on all splits of the

SCAN tasks. NeSS is a memory-augmented neural net-

work (MANN) using a neural stack machine controlled by

manually-defined instruction semantics. Among its instruc-

tions, CONCATM or CONCATS plays a crucial role to handle

commands requiring repetitions like ‘‘around’’ or ‘‘twice’’

(Refer to Appx.). Also, LANE is another MANN consisting

of the composer and the solver neural networks with memory.

After the composer merges repetitive adjacent commands and

yields analytic expression, the solver translates and records

it on the memory. To sum up, both architectures’ common

intuition is to capture repeating patterns of actions accord-

ing to commands. In this work, we annotate those repeat-

ing patterns by inserting delimiter tokens based on parsing

trees.

C. DATA-BASED APPROACH FOR THE SCAN TASKS

Exposing models to more examples is another way to teach

how to handle novel combinations. To solve the jump-split

SCAN task, GECA, a data augmentation method, [23], syn-

thesizes new training examples by mixing given training

examples’ components that have never been collocated. Also,

synthesizing more training examples about primitives usages

within contexts by introducing hundreds of new primitives

is possible [9]. Other than augmenting training examples

about the SCAN tasks, pretraining transformers, i.e., T5 [17],

on a wide range of other natural language tasks, such

as machine translation, question and answering tasks, and

natural language inference tasks, turns out to be effective

too [22]. However, all of these data-based approaches are

not enough for training the standard seq2seq models to

generalize on the other splits of the SCAN tasks like the

length-split or the MCD-split. In this work, we present a

data augmentation technique that works on those uncharted

tasks.

III. METHOD

In the next section, we point out that the SCAN dataset allows

abundant many-to-one cases. Then, we introduce our annota-

tion technique using parsing trees to handle them.

A. MANY-TO-ONE CASES OF THE SCAN DATASET

Learning the compositions in the SCAN tasks can be regarded

as discovering which part of the commands, e.g., the second

‘‘run’’ in the ‘‘run after run’’ or the first ‘‘run’’ in the ‘‘run and

run’’, corresponds to which part of the actions, e.g, the first

‘‘RUN’’ in the ‘‘RUN RUN’’. Hence, it is natural to assume

that the presence of multiple commands corresponding to the

same action sequence makes it harder to learn the composi-

tions, i.e. many-to-one. In fact, such cases are fairly common

in the SCAN dataset as its non-injective semantic interpreta-

tion function maps 20,910 commands to only 9,228 different

actions. In the extreme case, the action sequence ‘‘RTURN

RTURN RTURN RTURN RTURN RTURN’’ is the target

of 19 different commands such as ‘‘turn around right and

turn right twice’’, ‘‘turn opposite right thrice’’, and ‘‘turn right

twice and turn opposite right twice’’.

B. OUR ANNOTATION TECHNIQUE

We hypothesize that such abundant many-to-one cases con-

fuse the standard seq2seq models to learn the composition-

ality. To reduce many-to-one cases, we annotate targets by

inserting new delimiter tokens in between the actions accord-

ing to the commands.

Specifically, our annotation technique can be described

as follows. First, we induce a grammar for the target lan-

guage, possibly via human parser or grammar induction

heuristics [25], [26]. At this point, it is desirable to induce

the grammar that can capture the compositionality of the

target language with the minimum number of relations. Then,

we obtain the parsing tree for each target sequence. In some

cases, the induced grammar may allowmultiple parsing trees,

i.e., the grammar is ambiguous. To uniquely decide the pars-

ing tree, we refer to the input sequence and the semantic inter-

pretation function. Finally, we choose a non-terminal variable

where a new delimiter token like ‘‘<del>’’ to be attached. We

insert the token before every substring generated from the

variable. These annotated targets, instead of original ones, are

used for the training. See Section IV-B1, and Section IV-C2
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FIGURE 3. A Grammar for actions.

about specific implementations for the SCAN dataset and our

synthetic dataset, respectively.

IV. EXPERIMENTAL SETUPS

In this section, we describe the implementation details of the

standard seq2seq models. Then, we introduce experimental

details, such as specific implementations of our annotation

technique, for the SCAN tasks and the multiplicative exten-

sion tasks.

A. BENCHMARKS: STANDARD Seq2seq MODELS

We verified our technique with the standard seq2seq models:

an LSTM seq2seq model (LSTM), a GRU seq2seq model

(GRU), [12], and those with Bahdanau attention [13] (LSTM-

Atten, GRU-Atten), a Transformer [15], and a T5 [17]. All

the RNN seq2seq models had one layer with the hidden

size 50 and the dropout rate 0.5. The Transformer and the

T5 consisted of six layers with the hidden size 512 and eight

attention heads. We used the ADAM optimizer [27] with

a learning rate 1e−3 to train the RNN seq2seq models and

the T5. As for the Transformer, we varied learning rates along

the course of the training [15]. All models could fit in a single

NVIDIA GTX 1080ti GPU. Our implementations2 except for

the T5 based on the open source library tensor2tensor3 while

we used hugging face trasnformers4 for the T5.

B. SCAN

1) ANNOTATION IMPLEMENTATION

For the SCAN tasks, we used the ground-truth interpretation

function when (i) inducing grammar for the action language

and (ii) obtaining the unique parsing tree for each action

sequence.

We annotated the examples as follows. First, we manu-

ally induced a grammar for the action language, as shown

in Fig. 3, to be similar to the given grammar of the command

language. Then, we obtained the unique parsing tree for each

action sequence according to its command’s parsing tree and

the ground truth interpretation function [[ · ]]. For example,

the action sequence ‘‘RTURN RTURN RTURN RTURN’’

from ‘‘turn opposite right twice’’ and ‘‘turn around right’’

2https://github.com/segwangkim/annotation-of-targets-using-parsing-
trees

3https://github.com/tensorflow/tensor2tensor
4https://github.com/huggingface/transformers

FIGURE 4. Two possible parsing trees for ‘‘RTURN RTURN RTURN RTURN’’.
The left and right tree are come from commands ‘‘turn opposite right
twice’’ and ‘‘turn around right’’, respectively.

corresponded to the left and the right of Fig. 4, respectively.

Finally, we inserted a new delimiter token ‘‘<del>’’ before

every substring generated from the non-terminal variable V .

For the aforementioned example, the former action sequence

was annotated as ‘‘<del> RTURN RTURN <del> RTURN

RTURN’’ while the later one was annotated as ‘‘<del>

RTURNRTURNRTURNRTURN’’. This annotation process

is summarized as Alg. 1.

Algorithm 1 Annotation Process for the SCAN Dataset

Input: command sequence C .

def PTA(C): // stands for Parsing Tree Annotation
if ‘‘and’’ in C :

C1← the command before ‘‘and’’ within C

C2← the command after ‘‘and’’ within C

return PTA(C1) + PTA(C2)
if ‘‘after’’ in C :

C1← the command before ‘‘after’’ within C

C2← the command after ‘‘after’’ within C

return PTA(C2) + PTA(C1)
if ‘‘twice’’ in C :

C ← the command before ‘‘twice’’ within C

return PTA(C) + PTA(C)
if ‘‘thrice’’ in C :

C ← the command before ‘‘thrice’’ within C

return PTA(C) + PTA(C) + PTA(C)
return [‘‘<del>’’] + [[C]]

Output: annotated action sequence PTA(C).

2) TOKENIZATION FOR T5

Whereas we fed all sequences word-by-word for the RNN

seq2seq models and Transformer, we had no choice but to

use the pretrained tokenizer coupled with the T5. Using the
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pretrained tokenizer could be problematic as the tokenizer

took the raw actions and segmented them into components

that capture no semantics. For example, ‘‘I_TURN_LEFT’’5

was segmented into (‘‘I’’, ‘‘_’’, ‘‘TUR’’, ‘‘N’’, ‘‘_’’, ‘‘LE’’,

‘‘FT’’). Thus, compositional rules or linguistic semantics

learned from the pretraining corpus became useless for the

fine-tuning on the SCAN tasks. To resolve this issue, we pre-

processed actions with straightforward modifications, e.g.,

‘‘I_TURN_LEFT’’ to ‘‘lturn’’, before applying the tokenizer.

By doing so, the pretrained tokenizer segmented actions more

reasonably, e.g., ‘‘lturn’’ was segmented into (‘‘l’’, ‘‘turn’’).

We denoted a T5 with the above tokenization method as T5∗.

C. MULTIPLICATIVE EXTENSION TASKS

Observe that we used prior knowledge about the ground-truth

interpretation function and the input and the target sequences’

grammars for the SCAN tasks. To validate our technique’s

applicability under minimal prior knowledge, we further sug-

gest a simple synthetic task that requires neither the inter-

pretation function nor parsing trees of input sequences for

applying our technique.

1) TASK DEFINITION

The goal of multiplicative extension tasks is to translate a

sequence of alphabet-number alternating terms into alphabet

sequences. The input is given as:

a1d1a2d2 · · · akdk

where ai is an alphabet sampled from an alphabet

set 6 = {‘‘a’’, . . . , ‘‘g’’} without replacement and di is

one-digit integer. The target under the ground-truth interpre-

tation function f is given as:

f (a1d1a2d2 · · · akdk ) = a1 · · · a1
︸ ︷︷ ︸

d1

· · · ak · · · ak
︸ ︷︷ ︸

dk

Thus, this task tests multiplicative compositionality similar

to that of the SCAN tasks, i.e., ‘‘twice’’ and ‘‘thrice’’. We

define training and test sets according to the maximum length

of targets, n = d1 + · · · dk , as shown in Table 1.

TABLE 1. The training and test datasets of the multiplicative extension
tasks. The number of possible alphabets is fixed as 7 (‘‘a’’ to ‘‘g’’).

Note that this task shares no linguistic compositionality

with natural language corpus so that there is no advantages

from pretraining. Hence, we omit to test T5 at this task.

5The original SCAN datasets (https://github.com/brendenlake/SCAN.git)
represents actions as snake upper case with leading ‘‘I’’ such as
‘‘I_TURN_LEFT’’, ‘‘I_LOOK’’, and ‘‘I_JUMP’’ unlike Fig. 3.

2) ANNOTATION IMPLEMENTATION

We used straightforward parsing trees that explain the target

sequences. For given target a1 · · · a1 · · · ak · · · ak where each

ai repeats di times, we inserted a new delimiter token s /∈ 6,

e.g., s = ‘‘<del>’’, before the repetitions of the same ai’s,

yielding sa1 · · · a1 sa2 · · · a2 · · · sak · · · ak . This is natural as

a grammar of the target language can be defined as S →

V | VV | VVV · · · , V → T | TT | TTT | · · · where S is a

start symbol, V is a non-terminal symbol, and V ∈ 6 is a

terminal symbol. Note that this annotation was independent

of parsing trees of inputs and the interpretation function f .

V. RESULTS AND DISCUSSION

In this section, we empirically verify the effectiveness of our

annotation technique in various aspects. First, we point out

that our technique can reducemany-to-one cases in the SCAN

tasks. Then, we present the effects of our technique on the

compositional generalization tasks and analyze our technique

in the view of automata theory. Finally, we suggest that a

target tokenization method should be carefully chosen for the

compositional generalization of the standard models.

A. REDUCED MANY-TO-ONE CASES

First, we analyze how much our technique reduces many-

to-one cases of the SCAN dataset. To do so, let us formally

describe the dataset as follows. LetLC be the set of command

sequences. Let LA and L
†
A be the sets of action sequences

before and after applying our annotation technique, respec-

tively. Accordingly, we also define [[ · ]] : LC → LA and

[[ · ]]† : LC → L
†
A, i.e. PTA in Alg. 1, as corresponding

ground-truth interpretation functions.

To count many-to-one cases, for each interpretation func-

tion f = [[ · ]] or [[ · ]]†, we first partitioned the domain

LC = ∪
k
i=1Ci by disjoint cells where each cell Ci is the

set of commands that are mapped to the identical actions,

i.e., f (x) = f (y) ∀x, y ∈ Ci. Then, according to the sizes of

those cells, i.e., |Ci|, we counted the frequency and visualized

it as a histogram as shown in Fig. 5.

While the total areas of all histograms under functions

f = [[ · ]] and [[ · ]]† are identical as 20,910, the shapes of

FIGURE 5. Histograms of many-to-one cases for [[·]] and [[·]]∗. Each n of
x-axis is the number of commands that are mapped to the same actions
while its height is the frequency of such n-to-one cases.
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TABLE 2. The sequence-level accuracy before and after applying our annotation technique (PTA) on SCAN tasks results (for 5 runs). T5∗ is a T5 with our
tokenization method (refer to IV-B2).

TABLE 3. The sequence-level accuracy on the multiplicative extension task (for 5 runs).

them are different. Note that the histogram for [[ · ]] has a

long tail whereas that for [[ · ]]† has a short tail, indicating

that one-to-many cases are significantly reduced by our anno-

tation. From this result, we can conclude that our technique

helps the standard models discover the training examples’

compositionality significantly easier.

B. EFFECTS ON COMPOSITIONAL GENERALIZATION

After applying our annotation technique, the SCAN

length-split task is almost perfectly solved by the attentional

RNN seq2seq models (GRU+Atten, LSTM+Atten) and the

T5 with the manual tokenization (T5∗) as shown in Table 2.

Moreover, we also obtain huge performance gains at the mul-

tiplicative extension tasks using the attentional RNN seq2seq

models as shown in Table 3. These imply that the models

have sufficient expressive powers to handle test commands

requiring longer target sequences. In other words, the stan-

dard seq2seq models fail on the length generalization tasks

as they learn incorrect compositionality during the training

stage.

Rather than the length generalization, our technique also

induces huge performance gains for the SCAN MCD-split

tasks as shown in Table 2. One may argue that the compound

distribution discrepancy between the training and test set can

be changed as our technique inserts delimiter tokens for the

actions. Thus, our comparison between the results on the

MCD-splits before and after applying our technique seems

unfair. However, our comparison is still valid since the way

of measuring the discrepancy only depends on parsing trees

for commands, not actions.

Unfortunately, the Transformers still fail to generalize in

all tasks regardless of our annotation. In other words, our

technique is effective only for self-attention basedmodels that

have experienced sufficient linguistic compositionality from

pretraining in advance.

C. AUTOMATA-THEORETIC VIEW

One might think that all aforementioned results are achieved

since the tasks become much easier after the ground-truth

interpretation functions are modified as shown in Alg. 1.

However, in the view of automata theory, our technique

makes no difference in the level of difficulty. Indeed, both

tasks before and after applying our annotation can be imple-

mented by a Finite State Transducer (FST). To see this, note

that FST can implement a rational relation between two reg-

ular languages. The source language, e.g., LC , and the target

language, e.g., LA or L
†
A, have finitely many words, hence

they are all regular languages. Moreover, the interpretation

function, e.g., [[ · ]] or [[ · ]]† is a rational relation as the graph of

the function is finite. Therefore, the difficulties of both tasks

cannot be distinguished.

D. TOKENIZATION MATTERS FOR LEARNING

COMPOSITIONALITY

The performance discrepancies between the T5 and the T5∗

for the SCAN length-split and MCD-split tasks with our

annotation are notable. In particular, as for the length-split,

our annotation cannot induce any performance gain at all

when the actions are naively tokenized without considering

their semantics (T5).

Note that we can think of inserting delimiter tokens to

the target sentences in the multiplicative extension tasks as

another tokenization for the targets. This is because tokeniza-

tion is transforming a string into a sequencewhile considering

adjacent characters that co-occur frequently.

Henceforth, we can conclude that a tokenization method

can significantly influence the compositionality that the stan-

dard models learn. To go further, at compositional gen-

eralization task whose targets follow strict grammar, it is

beneficial to use tokenization based on the grammar. For

example, code generation tasks have targets that can be
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represented as abstract syntax trees (AST). Since our tech-

nique annotates the target sequences with delimiters indicat-

ing specific non-terminal nodes of the targets’ parsing trees,

trees’ compositionality can be infused into the sequences.

Thus, we expect that our technique can promote the standard

seq2seq model to achieve compositional generalization on

those tasks.

VI. CONCLUSION AND OUTLOOK

We propose a new data augmentation technique using pars-

ing trees to help the standard seq2seq model discover com-

positions of sequences. We empirically show that training

with targets annotated by our technique enables standard

seq2seq models, such as RNN seq2seq models or Trans-

formers, to generalize well on the length and MCD splits

of the SCAN tasks. Moreover, we validate our technique in

a synthetic task that requires no knowledge about semantic

compositional rules for the annotation.

In this work, we obtain parsing trees using prior knowl-

edge about compositionality, which may be impossible for

general cases. Fortunately, studies about obtaining parsing

trees in data-driven ways have been carried out [28], [29].

As our technique can be easily incorporated with such meth-

ods, we hope that ours motivates deep learning approaches

based on the standard models for compositional generaliza-

tion without using prior knowledge.

APPENDIX

THE GROUND-TRUTH INTERPRETATION FUNCTIONS OF

THE SCAN DATASETS

The semantic interpretation function of the SCAN dataset is

defined as follows.

[[walk]] =WALK

[[run]] = RUN

[[look]] = LOOK

[[jump]] = JUMP

[[turn left]] = LTURN

[[turn right]] = RTURN

[[u left]] = LTURN [[u]]

[[u right]] = RTURN [[u]]

[[turn opposite left]] = LTURN LTURN

[[turn opposite right]] = RTURN RTURN

[[u opposite left]] = LTURN LTURN [[u]]

[[u opposite right]] = RTURN RTURN [[u]]

[[turn around left]] = LTURN LTURN LTURN LTURN

[[turn around right]] = RTURN RTURN RTURN RTURN

[[u around right]]=LTURN [[u]] LTURN [[u]] LTURN [[u]]

LTURN [[u]]

[[u around right]]=RTURN [[u]] RTURN [[u]] RTURN [[u]]

RTURN [[u]]

[[x twice]] = [[x]][[x]]

[[x thrice]] = [[x]][[x]][[x]]

[[x1 and x2]] = [[x1]][[x2]]

[[x1 after x2]] = [[x2]][[x1]]

Here, double brackets ([[ · ]]) denote the mappings from com-

mands to actions (denoted by uppercase strings). Symbols

x and u denote variables which are limited to primitives like

‘‘walk’’, ‘‘look’’, ‘‘run’’, and ‘‘jump’’. The linear order of

movements denotes their temporal sequence.
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