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Machine Transliteration is an important problem in an increasingly multilingual world, as it plays

a critical role in many downstream applications, such as machine translation or crosslingual in-
formation retrieval systems. In this paper, we propose compositional machine transliteration
systems, where multiple transliteration components may be composed either to improve existing

transliteration quality, or to enable transliteration functionality between languages even when no
direct parallel names corpora exist between them. Specifically, we propose two distinct forms of
composition – Serial and Parallel. Serial compositional system chains individual transliteration
components, say, X → Y and Y → Z systems, to provide transliteration functionality, X → Z. In

parallel composition evidence from multiple transliteration paths between X → Z are aggregated
for improving the quality of a direct system. We demonstrate the functionality and performance
benefits of the compositional methodology using a state of the art machine transliteration frame-
work in English and a set of Indian languages, namely, Hindi, Marathi and Kannada. Finally,

we underscore the utility and practicality of our compositional approach by showing that a CLIR
system integrated with compositional transliteration systems performs consistently on par with
and some time better than that integrated with a direct transliteration system.
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1. INTRODUCTION

Machine Transliteration is an important problem in an increasingly multilingual
world, for its critical role in many downstream application systems, such as Ma-
chine Translation (MT) and Crosslingual Information Retrieval (CLIR) systems.
Proper names form an open set in any language, and they are shown to grow with
the size of the corpora2. Names form a significant fraction of the user query terms,
and handling them correctly correlates highly with the retrieval performance of the
IR engine [Mandl and Womser-Hacker 2004]. In standard crosslingual evaluation
datasets names are very prominent3 and they affect the retrieval quality signif-
icantly[Mandl and Womser-Hacker 2005; Xu and Weischedel 2005; Udupa et al.
2009]. More importantly, the standard resources (such as, bilingual dictionaries)
do not include name transliterations except for a small set of popular names, and
keeping them updated continually is, in general, not an economically viable option.
The statistical dictionaries, on the other hand, may not contain the transliterations
as names are not frequent enough to provide sufficient statistical evidence during
alignment4. Hence, the transliteration systems to rewrite the names in the tar-
get language are critically important in crosslingual scenarios. The importance of
the transliteration problem is recognized well by the research community over the
last couple of decades as evidenced by the increasing prominence for this topic in
the research scope and publications of many Machine Translation, Information Re-
trieval, Natural Language Processing and Computational Linguistics conferences.
The standard pair-wise transliteration systems are thoroughly researched and the
approaches and performances are well published in research literature.
In this paper, we introduce the concept of Compositional Transliteration Sys-

tems as a composition of multiple transliteration systems to achieve transliteration
functionality or to enhance the transliteration quality between a given pair of lan-
guages. We propose two distinct forms of composition – serial and parallel. In serial
compositional systems, the transliteration systems are combined serially; that is,
transliteration functionality between two languages X & Z may be created by com-
bining transliteration engine X → Y and Y → Z. Such compositions may be useful
for situations where no parallel data exists between two languages X & Z, but suf-
ficient parallel names data may exist between X & Y, and Y & Z. Such partial
availability of pair-wise data is common in many situations, where one central lan-
guage dominates many languages of a country or a region. For example, there are
22 constitutionally recognized languages in India, but it is more likely that parallel
names data might exist between Hindi and a foreign language, say, Russian, than
between any other Indian language and Russian. In such situations, a translitera-
tion system between Kannada, an Indian language, and Russian may be created by
composing two transliteration modules, one between Kannada and Hindi, and the

2New names are introduced to the vocabulary of a language every day. On an average, 260 and
452 new names appeared on a daily basis in the XIE and AFE segments of the LDC English

Gigaword corpora, respectively.
3Our own study of the topics from the 2004-07 CLEF [CLEF 2007] campaign revealed that 60%
of the topics had at least one named entity, 39% had two or more, and 18% had three or more.
4Our analysis of The Indian Express news corpus over two years indicated that nearly 80% of the
names occur less than 5 times in the entire corpus.
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other between Hindi and Russian. Such compositions, if successful quality-wise,
may alleviate the need for developing and maintaining parallel names corpora be-
tween many language pairs, and leverage the existing resources whenever possible,
indicating a less resource intensive approach to develop transliteration functionality
among a group of languages.
In parallel compositional systems, we explore combining transliteration evidence

from multiple transliteration paths in parallel, in order to develop a good quality
transliteration system between a pair of languages. While it is generally accepted
that the transliteration quality of data-driven approaches grows with more data,
typically the quality plateaus accruing only marginal benefit after certain size of the
training corpora. In parallel compositional systems, we explore if transliteration
quality between X & Z could be improved by leveraging evidences from multiple
transliteration paths between X & Z. Such systems could be very useful when
data is available between many different pairs among a set of n languages. Again,
such situations naturally exist in many multicultural and multilingual societies,
such as, India and the European Union. For example, parallel names data exists
between many language pairs of the Indian subcontinent as most states enforce a
3-language policy, where all government records, such as census data, telephone
directories, railway database, etc., exist in English, Hindi and one of the regional
languages. Similarly, many countries publish their parliamentary proceedings in
multiple languages as mandated by legislative processes.
In our research we explore compositional transliteration functionality among a

group of languages, and in this paper, our specific contributions are:

(1) Proposing the idea of compositionality of transliteration functionality, in two
different methodologies: serial and parallel.

(2) Composing serially two transliteration systems – namely, X → Y and Y → Z –
to provide a practical transliteration functionality between two languages X &
Z with no direct parallel data between them.

(3) Improving the quality of an existing X → Z transliteration system through a
parallel compositional methodology.

(4) Finally, demonstrating the effectiveness of different compositional translitera-
tion systems – both serial and parallel – in an important downstream applica-
tion domain of Crosslingual Information Retrieval.

We conduct a full set of experiments with a group of 4 languages of the Indian
sub-continent, specifically, English, Hindi, Kannada and Marathi, between which
parallel names corpora are available. We believe that such compositional translit-
eration functionality may be useful for many regions of the world, where common
information access is necessary for political, social, cultural or economic reasons.

1.1 Related work

Current models for transliteration can be classified as grapheme-based, phoneme-
based and hybrid models. Grapheme-based models, such as, Source Channel Model
[Lee and Choi 1998], Maximum Entropy Model [Goto et al. 2003], Conditional
Random Fields [Veeravalli et al. 2008] and Decision Trees [Kang and Choi 2000]
treat transliteration as an orthographic process and try to map the source language
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graphemes directly to the target language graphemes. Phoneme based models,
such as, the ones based on Weighted Finite State Transducers [Knight and Graehl
1997] and extended Markov window [Jung et al. 2000] treat transliteration as a
phonetic process rather than an orthographic process. Under such frameworks,
transliteration is treated as a conversion from source grapheme to source phoneme
followed by a conversion from source phoneme to target grapheme. Hybrid models
either use a combination of a grapheme based model and a phoneme based model
[Stalls and Knight 1998] or capture the correspondence between source graphemes
and source phonemes to produce target language graphemes [Oh and Choi 2002].

Even though a wide range of algorithms have been developed for a variety of lan-
guages, there existed no consistent way of comparing these algorithms as the results
were mostly reported on different datasets using different metrics. In this context,
the shared task on Machine Transliteration in the recently concluded NEWS 2009
workshop [Li et al. 2009] was a successful attempt at calibrating different machine
transliteration systems using common datasets and common metrics for a variety
of language pairs. A study of various systems submitted to the workshop shows
that grapheme based approaches performs better than or at par with phoneme
based approaches, while requiring no specialized linguistic resources. In fact some
of the best performing systems in the workshop were primarily grapheme based
systems [Jiampojamarn et al. 2009; Jansche and Sproat 2009; Oh et al. 2009]. Fur-
ther, combining any of the grapheme based engines with pre-processing modules
like word-origin detection were shown to enhance the performance of the system
[Oh and Choi 2002]. While previous research addressed combining evidence from
multiple systems [Oh et al. 2009], to the best of our knowledge, ours is the first
attempt at combining transliteration evidence from multiple languages.

However, a significant shortcoming of all the previous works was that none of
them addressed the issue of performing transliteration in a resource scarce sce-
nario, as there was an implicit assumption of availability of data between a pair
of languages. In particular, we address a methodology to develop transliteration
functionality between a pair of languages when no direct data exists between them.
Some work on similar lines has been done in Machine Translation [Wu and Wang
2007] wherein an intermediate bridge language (say, Y) is used to fill the data void
that exists between a given language pair (say, X and Z). In fact, recently it has been
shown that the accuracy of a X→Z Machine Translation system can be improved
by using additional X → Y data provided Z and Y share some common vocabulary
and cognates [Nakov and Ng 2009]. Similar work has also been done for transitive
CLIR [Lehtokangas et al. 2008; Ballesteros 2000] where it was shown that employ-
ing a third language as an interlingua between the source and target languages, is
a viable means of performing CLR between languages for which no bilingual dic-
tionary is available. Specifically, Lehtokangas et al. [2008] automatically translated
source language queries into a target language using an intermediate (or pivot)
language and showed that such transitive translations were able to achieve 85-93%
of the direct translation performance. Similarly, Gollins and Sanderson [Gollins
and Sanderson 2001] proposed an approach called triangulated transitive transla-
tion which assumed the presence of two pivot languages for transitive CLIR. They
showed that taking an intersection of the translations produced through two pivot
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Table I. Language codes used for
representing different languages

Language Language Code

English En

Hindi Hi

Kannada Ka

Marathi Ma

Russian Ru

languages can help to eliminate the noise introduced by each pivot language inde-
pendently. The serial compositional approach described in this paper can be seen
as an application of the transitive CLIR idea to the domain of machine translit-
eration. Similarly, the parallel compositional approach can be seen as a means of
eliminating noise by taking multiple transliteration paths (as in the case of the
triangulated transitive translation approach [Gollins and Sanderson 2001])

1.2 Organization

This paper is organized in the following manner. This section introduces the con-
cept of compositional transliteration. This section also outlines the state of the art
in transliteration systems research, and related work in machine translation sce-
narios. Section 2 outlines a language-independent orthography-based state of the
art transliteration system that is used for all our experiments subsequently in this
paper. Section 3 defines a measure that correlates well with the ease of transliter-
ation between a given pair of languages. Section 4 introduces serial composition of
transliteration systems and shows how a practical transliteration functionality may
be developed between two languages. Section 5 introduces parallel composition of
transliteration systems for combining evidence from multiple transliteration paths
to improve the quality of the transliteration between a given pair of languages.
Section 6 demonstrate effectiveness of such compositional systems in a typical us-
age scenario – Crosslingual Information Retrieval. Finally, Section 7 concludes the
paper, outlining our future work.

1.3 Notation Used

Throughout the paper, we represent each language by its language code as described
in Table I, and use the following convention to refer to a specific language or a
transliteration system between a pair of languages: L1-L2 means a system for
transliterating words from language L1 to language L2. For example, by En-Hi we
mean a transliteration system from English to Hindi.

2. A GENERIC TRANSLITERATION SYSTEM

In this section, we outline the development of a language-neutral transliteration
system that is to be used for all subsequent transliteration experiments.

2.1 A Generic Transliteration Engine between English and Indian Languages

First we set out to design a generic transliteration engine, so as to have a common
system that can be used for establishing the baseline performance and the relative
performance of various compositional transliteration alternatives. In addition we
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Fig. 1. Transliteration Engine Design

imposed a quality requirement that such a system work well across a wide variety
of language pairs.
Systematic analysis of the various systems that participated in the NEWS 2009

shared task revealed that while the systems using phonetic information require
additional linguistic resources, they perform only marginally better than purely
orthographic systems. Further, amongst various machine learning techniques used
for transliteration (using orthography or phonology), Conditional Random Fields
based approach was the most popular among those participants in the first quar-
tile. Hence, we decided to adopt a Conditional Random Fields based approach
using purely orthographic features. In addition, since the Indian languages share
many characteristics among them, such as distinct orthographic representation for
different variations – aspirated or unaspirated, voiced or voiceless, etc. – of many
consonants, we introduced a word origin detection module to identify specifically
Indian origin names. Use of such classifier allowed us to train a specific CRF based
transliteration engine for Indian origin names, and thus scoring a better quality
transliteration. All other names are transliterated through an engine that is trained
on non-Indian origin names.
We developed a generic Conditional Random Fields based transliteration engine,

with a name origin detection module as a pre-processor (see Figure 1). The details
of the subsystems are provided below.

2.1.1 CRF-based Model for Transliteration. Conditional Random Fields [Laf-
ferty et al. 2001] are undirected graphical models used for labeling sequential data.
Under this model, the conditional probability distribution of the target word given
the source word is given by,

P (Y |X;λ) =
1

Z(X)
· e

∑T
t=1

∑K
k=1 λkfk(Yt−1,Yt,X,t) (1)

where,

X = source word

Y = target word

T = length of source word

K = number of features

λk = feature weight

Z(X) = normalization constant

ACM Journal Name, Vol. V, No. N, Month 20YY.
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CRF++5, an open source implementation of CRF was used for training and
further transliterating the names. GIZA++6 [Och and Ney 2003], a freely available
implementation of the IBM alignment models [Brown et al. 1993] was used to
get character level alignments for the name pairs in the parallel names training
corpora. Under this alignment, each character in the source word is aligned to
zero or more characters in the corresponding target word. The following features
are then generated using this character-aligned data (here ei and hi form the i-th
aligned pair of characters form the source word and target word respectively):

—hi and ej such that i− 2 ≤ j ≤ i+ 2

—hi and source character bigrams ( {ei−1, ei} or {ei, ei+1})
—hi and source character trigrams ( {ei−2, ei−1, ei} or {ei−1, ei, ei+1} or {ei, ei+1,
ei+2})

—hi, hi−1 and ej such that i− 2 ≤ j ≤ i+ 2

—hi, hi−1 and source character bigrams

—hi, hi−1 and source character trigrams

The CRF model lends itself for fine-tuning to achieve optimal performance by
experimenting with various configurations and yet applicable for a wide variety of
language pairs. Further, this model may be trained only based on a training set of
name pairs from the respective languages, without relying on any special linguistic
tools or resources. While our experiments and analyses are confined to English and
a set of Indian languages, it would be interesting to explore how it may scale for
handling ideographic languages (such as, Chinese) or Semitic languages (such as,
Arabic and Hebrew).

2.1.2 Word Origin Detection. Word origin detection is important for translit-
eration between English and Indian languages, specifically due to the difference in
phonology between English and languages in the Indian subcontinent. While this
is true in most transliteration systems, they play a crucial role in Indic names, as
many variations for consonants typically exist in Indic language phonology.
To emphasize the importance of Word Origin Detection we consider the example

of letter d. When d appears in a name of Western origin (e.g. Daniel, Hudson,
Alfred) and is not followed by the letter h, it invariably gets transliterated as Hindi
letter X, whereas, if it appears in a name of Indic origin (e.g. Devendra, Indore,
Jharkhand) then it is equally likely to be transliterated as d or X. This shows that
the decision is influenced by the origin of the word. Since the datasets (namely,
Hindi, Kannada, Russian and Tamil) for the NEWS 2009 shared task consisted of a
mix of Indic and Western names, it made sense to train separate models for words
of Indic origin and words of Western origin.
For word origin detection, the words in the training data needed to be separated

based on their origin. We first manually classified a random subset of the training
set into of Indic origin names and Others. Two n-gram language models were
built, for each of the already classified names of Indic origin and another for others.
Each of the remaining names in the training corpora were split into a sequence of

5http://crfpp.sourceforge.net/
6http://sourceforge.net/projects/giza/
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characters and the probability of such sequences using the two language models
were constructed. Based on the computed probability, we classify all the name
pairs in the training set as Indic names or others.

2.2 NEWS 2009 Transliteration Shared Task: Data & Systems

In the transliteration shared task conducted as a part of the ACL NEWS 2009
workshop [Li et al. 2009], 28 academic and industry groups from around the world
participated in 8 diverse language pairs. The shared task published between 6K and
30K name pairs in various languages as training corpus, and the performances of
systems on a common test corpora of about 1000 names in each language pair were
published, highlighting the effect of various transliteration approaches on quality in
different language pairs. For all our experiments in this section, we used only the
training data published by the NEWS 2009 workshop (namely, approximately 6K
name pairs in En-Ru, 8K name pairs in each of En-Ta and En-Ka, and 10K name
pairs in En-Hi), and the test data for producing our results.
For word origin detection, 3K names were randomly chosen from the training

corpus, and were manually annotated as Indian or Other. These 3K names were
then divided into 4 non-overlapping folds. A 4-fold validation was performed using
this data. In each case, we used 3 folds (i.e., 2250 names) as training data for
deriving language models and the remaining 4-th fold as test data. The average
accuracy over the 4 folds was 97% i.e., the test words were classified into Indic and
Other origin names with an accuracy of approximately 97% . The above classifier
was then again trained using the entire 3K names and was then applied on the
entire data to yield reasonably well classified data that is used for training two
distinct CRF-based modules for transliterating Indic and other names.

2.3 Transliteration Quality and Comparison with NEWS 2009 Participants

In this section we compare our experimental results on 4 language pairs (specifically,
En-Hi, En-Ka, En-Ta and En-Ru) with that of the participating systems of the
NEWS 2009 transliteration task. We used only the same training and test data
that were released for NEWS 2009 Machine Transliteration Shared Task [Li et al.
2009], and hence the output were for standard runs, in NEWS 2009 parlance (that
is, no extra data other than what was released for NEWS 2009 shared task, or no
other linguistic tools or resources, were used). The top-10 transliteration candidates
for each word were generated, and evaluated. The performance of our system is
shown with the 3 standard measures as defined in [Li et al. 2009]: Specifically,
the Word Accuracy in Top-1 (ACC-1), Fuzziness in Top-1 (F-score) and Mean
Reciprocal Rank (MRR). As can be seen in Table II, our system was comparable
to the best of the systems in the NEWS shared task, and would have been in the
top quarter, in terms of ranking. We also want to highlight that the best system
in NEWS 2009 [Jiampojamarn et al. 2009] used an online discriminative training
sequence prediction algorithm using many-to-many alignments between the target
and source. The Margin Infused Relaxed Algorithm (MIRA) [Crammer and Singer
2001] was used for learning the weights of the discriminative model. The second
best system [Oh et al. 2009] in NEWS 2009 used a multi-engine approach wherein
the outputs of multiple engines (Maximum Entropy Model, Conditional Random
Fields and MIRA) were combined using different re-ranking functions.

ACM Journal Name, Vol. V, No. N, Month 20YY.



Compositional Machine Transliteration · 9

Table II. Comparison of our System with the Best Systems of NEWS 2009

Language
Pair

Our system Best system in NEWS 2009 Rank of
our sys-
tem in
NEWS

2009
ACC-1 F-score MRR ACC-1 F-score MRR

En-Ru 0.604 0.927 0.693 0.613 0.928 0.696 3/13

En-Hi 0.417 0.877 0.546 0.498 0.890 0.603 7/21

En-Ta 0.420 0.898 0.549 0.474 0.910 0.608 4/14

En-Ka 0.354 0.869 0.476 0.398 0.880 0.526 5/14

Fig. 2. The closeness of languages and transliterability

3. TRANSLITERABILITY AND TRANSLITERATION PERFORMANCE

In this section, we explore quantification of the ease of transliteration between a
given language pair and using such knowledge for appropriate selection of language
pairs for the composition of transliteration functionalities, and the selection of
appropriate intermediate language for composition.

3.1 Language, Phonology, Orthography and Ease of Transliteration

In general, transliteration between a pair of languages is a non-trivial task, as the
phonemic set of the two languages are rarely the same, and the mapping between
phonemes and graphemes in respective languages are rarely one-to-one. However,
many languages share a largely overlapping phoneme set (perhaps due to the ge-
ographic proximity or due to common evolution), and share many orthographic
and/or phonological phenomenon. On one extreme, specific languages pairs have
near-equal phonemes and an almost one-to-one mapping between their character
sets, such as Hindi and Urdu [Malik et al. 2008], two languages from Indian sub-
continent. Other language pairs, share similar, but unequal phoneme sets, but sim-
ilar orthography possibly due to common evolution, such as Hindi and Kannada,
two languages from the Indian sub-continent, with many phonological features bor-
rowed from Sanskrit. This suggests that if we were to arrange language pairs on
an axis according to the ease of transliterability between them then we would get a
spectrum as shown in Figure 2. At one end of the spectrum would be language-pairs
like Hindi-Urdu, and at the other end would be a hypothetical pair of languages
where every character of one could map to every character of the other, with most
language pairs somewhere in between the two extremes.
Below, we formulate a measure for transliterability that could correlate well with

the transliteration performance of a generic system for a given language pair, which
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in some sense would capture the ease of transliterability between them. First, we
enumerate desirable qualities for such a measure:

(1) Rely purely on orthographic features of the languages only (and hence, easily
calculated based on parallel names corpora)

(2) Capture and weigh the inherent ambiguity in transliteration at the character
level. (i.e., the average number of target – or source – characters that each
source – or target – character can map to)

(3) Weigh the ambiguous transitions for a given character, according to the tran-
sition frequencies. Perhaps highly ambiguous mappings occur only rarely.

Based on the above, we propose a orthography based Transliterability measure
that we call Weighted AVerage Entropy (WAV E), as given in Equation 2. Note
that WAV E will depend upon the n-gram that is being used as the unit of source
and target language names, specifically, unigram, bigram or trigrams. Hence, we
term the measures as WAV E1, WAV E2 or WAV E3, depending on whether uni-,
bi- or tri-grams were used for computing the measure.

WAV En-gram =
∑

i∈alphabet

( frequency(i)∑
j∈alphabet frequency(j)

· Entropy(i)
)

(2)

where,

alphabet = Set of uni-, bi- or tri-grams

Entropy(i) = −
∑

k∈Mappings(i)

P (k|j) · log(P (k|j))

i, j = Source Language Unit (uni-, bi- or tri-grams)

k = Target Language Unit (uni-, bi- or tri-grams)

Mappings(i) = Set of target language uni-, bi- or tri-grams that i can map to

To motivate the above proposed measure, we show in Table III, the source char-
acters unigram frequencies computed based on the parallel names corpora outlined
in Section 4.2, indicating that the unigram a is nearly 150 times more frequent
than the unigram x in English names. Clearly, capturing the ambiguities of a will
be more beneficial than capturing the ambiguities of x. The frequency(i) term
in Equation 2 captures this and ensures that the unigram a is weighed more than
unigram x. In Table IV, some sample unigrams of the source language and the tar-
get unigrams that they map on to are shown; the numbers in brackets indicate the
number of times a particular mapping was observed in the parallel names corpora
detailed in Section 4.2. While both c and p have the same fanout of 2, the unigram
c has higher entropy than the unigram p as the distribution of the fanout is much
more dispersed than that of the unigram c. The Entropy(i) term in Equation 2
captures this information and ensures that c is weighed more than p. Hence, we
maintain that the measure captures the importance of handling specific characters
in the source language and the inherent ambiguity in character mappings between
the languages.

ACM Journal Name, Vol. V, No. N, Month 20YY.
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Table III. Character frequencies in English names

Source Character Occurrence Frequency

a 18952

n 7161

q 236

x 137

Table IV. Characters: fanouts and ambiguities

Source Character Mappings (Frequency)

c s (200), k (200)

p p (395), null (5)

 0.4
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 1.1

 1.2

 0.6  0.8  1  1.2  1.4  1.6

W
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V
E

1 
(2

K
)

WAVE1 (15K)

WAVE1 (15K) v/s WAVE1 (2K)

Fig. 3. Correlation between
WAV E1 measure calculated

from 15K data and WAV E1

measure calculated from 2K
data for En-Hi, En-Ka, En-Ma,
Hi-En, Ka-En, Ma-En, Hi-Ka,

Ma-Ka

Next, we observed that WAV En-gram can be computed fairly accurately, even
with a small corpus. In Figure 3, we plot the WAV E1 measures computed with 10
different samples of a 2K parallel names corpus (a randomly selected subset of the
15K corpus) and the entire 15K parallel names corpus, for various language pairs.
The x-axis represents the WAV E1 measure calculated from the 15K corpus and
the y-axis represents a box and whisker plot based on the quartiles calculated from
the 10 different samples of the 2K data. As can be seen the measures are highly
correlated, suggesting that even a small corpus may be sufficient to capture the
WAV En-gram measures.
Finally, in Figure 4, we report the WAV E1 measure, along with the maximum

achieved quality of transliteration (for approximately 15K of training corpus) for
the language pairs listed earlier. The x-axis plots the logarithm of the WAVE mea-
sure, and the y-axis the transliteration quality. We observe that as the WAVE
measure increases the transliteration accuracy drops nearly linearly with logarithm
of WAVE measure. In Figure 4, we present only the correlation between the WAVE
measures and the transliteration quality achieved with a 15K training corpora. The
two points in the top left corner in each of the plots represent transliteration be-
tween Hindi and Marathi languages that share the same orthography and have large
one-to-one character mappings between them. Significantly (as shown in Figure 4),
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we observe that different WAV En-gram measures have similar effect on the translit-
eration quality, suggesting that even the uni-gram based WAVE measure captures
the transliterability fairly accurately. Hence, for all subsequent experimentation,
we used WAV E1, as the uni-gram measure captures any correlation as accurately
as other WAV En-gram measures.
Based on the above observations, we term two languages with small WAV E1

measure as more easily transliterable, and hence can be a candidate for either the
first or the second component of any compositional transliteration systems involving
one of these languages. Specific compositional transliteration experiments through
an intermediate language and their performances are explored in the next section.

4. SERIAL COMPOSITIONAL TRANSLITERATION SYSTEMS

In this section, we address one of the configurations of the compositional transliter-
ation systems – serial transliterations systems. Specifically, we explore the question
“Is it possible to develop a practical machine transliteration system between X and
Z, by composing two intermediate X → Y and Y → Z machine transliteration
systems?” The utility of the compositional methodology is indicated by how close
the performance of such a compositional transliteration system is to that of a direct
transliteration system between X and Z.

4.1 Serial Compositional Methodology

It is a well known fact that transliteration is lossy, and hence it is expected that the
composition of the two transliteration systems is only bound to have lower quality
than that of each of the individual systems X → Y and Y → Z, as well as that of
a direct system X → Z. We carry out a series of compositional experiments among
a set of languages, to measure and quantify the expected drop in the accuracy
of such compositional transliteration systems, with respect to the baseline direct
system. We train two baseline CRF based transliteration systems (as outlined in
Section 2), between the languages X and Y, and between the languages Y and Z,
using appropriate parallel names corpora between them. For testing, each name
in language X was provided as an input into X → Y transliteration system, and
the top-10 candidate strings in language Y produced by the system were further
given as an input into system Y → Z. The outputs of this system were merged and
re-ranked by their probability scores. Finally, the top-10 of the merged outputs
were output as the compositional system output.
To establish a baseline, the same CRF based transliteration system (outlined in

Section 2) was trained with a 15K name pairs corpora between the languages X →
Z. The performance of this system provides a baseline for a direct system between
X & Z. The same test set used in the previous compositional systems testing was
used for the baseline performance measurement in the direct system. As before, to
avoid any bias, we made sure that there is no overlap between this test set and the
training set for the direct system as well. The top-10 outputs were produced as the
direct system output for comparison.
Additionally, we used the WAV E1 measure, to effectively select the transition

language between a given pair of languages. Given two languages X and Z, we chose
a language that is easily transliterable to one of X or Z. The following experiments
include both positive and negative examples for such transitions.
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Fig. 4. Correlation of WAVE with Transliteration Accuracy
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Fig. 5. Accuracy v/s size
of training data
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4.2 Data for Compositional Transliteration Systems

In this section, we detail the parallel names corpus that were used between English
and a set of Indian languages for deriving correlation between WAV En-gram met-
ric and the transliteration performance between them. First, our transliteration
experiments with the generic engine indicated that the quality of the transliter-
ation increases continuously with data, but becomes asymptotic as the data size
approaches 15K (see Figure 5) in all language pairs. Hence, we decided to use
approximately 15K of parallel names corpora between English and the Indic lan-
guages (namely, Hindi, Kannada and Marathi), in all our subsequent experiments.
While the NEWS 2009 training corpus ranged from 6K to 10K parallel names, we
enhanced this training corpus in each language pair of interest (specifically, En-Hi,
En-Ta and En-Ka) to 15K by adding more data of similar characteristics (such as,
name origin, domain, length of the name strings, etc.), taken from the same source
as the original NEWS 2009 data7. For other language pairs (such as, En-Ma) that
were not part of the NEWS shared task, we created 15K parallel names corpora.
We kept the test set in each of the languages the same as the standard NEWS 2009
test set. To avoid any bias, it was made sure that there is no overlap between the
test set with the training sets of each of the X → Y and Y → Z systems.

4.3 Transliteration Performance of the Serial Compositional Systems

Table V details the experiments and the results of both the baseline direct sys-
tems and the compositional transliteration systems, in several sets of languages.
All experiments list the three quality measures, namely, Accuracy (ACC-1), Mean
Reciprocal Rank (MRR) and the Mean F-Score (F-Score) of both the direct and
the compositional systems. For every experiment, a baseline system between the
two languages (marked as X-Z) and the serial compositional system through an
intermediate language (marked as X-Y-Z) are provided. Finally, the change in

7Since Microsoft Research India contributed the training and testing data to NEWS2009, we had
access to larger parallel names corpus from which the NEWS 2009 data were derived.
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Table V. Performance of Serial Compositional Transliteration Systems

Language
Pair

ACC-1 ∆
ACC-1

MRR ∆
MRR

F-score ∆ F-
score

En-Ka (Baseline) 0.368 0.499 0.874
En-Ma-Ka (Compositional) 0.347 -5.4% 0.460 -7.9% 0.862 -1.45%

En-Ma (Baseline) 0.416 0.547 0.879
En-Hi-Ma (Compositional) 0.394 -5.3% 0.519 -5.3% 0.872 -0.74%

En-Ka (Baseline) 0.368 0.499 0.874
En-Hi-Ka (Compositional) 0.334 -9.2% 0.440 -11.9% 0.852 -2.53%

Ka-En (Baseline) 0.391 0.492 0.878

Ka-Hi-En (Compositional) 0.352 -9.9% 0.453 -7.8% 0.871 -1.14%

Ka-Hi (Baseline) 0.464 0.558 0.883
Ka-En-Hi (Compositional) 0.267 -42.3% 0.366 -34.32% 0.819 -7.24%

the quality metric between the baseline direct and the compositional system, with
respect to the quality of the baseline system, is also provided for every experiment.
Intuitively, one would expect that the errors of the first stage transliteration

system (i.e., X → Y) will propagate to the second stage (i.e., Y→Z), leading to a
considerable loss in the overall accuracy of the compositional system (i.e., X → Y
→ Z). However, as we observe in Table V, the relative drop in the accuracy is less
than 10%. For example, the baseline accuracy (ACC-1) of En-Ka baseline system
is 0.368, where as the accuracy of the compositional En-Ma-Ka system is 0.347,
a drop of a little more than 5%. The drop in mean reciprocal rank is under 12%
and the drop in F-score is under 3%. The last system, namely the Ka-En-Hi, was
chosen to illustrate the impact of a wrong choice of the intermediate language and
is discussed specifically in Section 4.5.

4.4 Error Analysis in Serial Compositional Systems

The results shown in Table V contradict our basic intuition of massive degradation,
and perhaps indicate that the two systems are not independent. To identify the
reasons for the better than expected performance, we performed an error analysis
of the output of each of the components of the serial compositional transliteration
systems, to isolate the errors introduced at each stage.
Note that the first stage transliteration system (i.e., X → Y) is expected to

produce results according to the benchmarked quality (with respect to the gener-
ation of correct and incorrect transliterated strings in language Y). If the output
of the stage 1 is correct, then we expect the stage 2 to produce results according
to the benchmarked quality of the stage 2 (i.e., Y → Z) system. On the other
hand, when stage 1 produces incorrect transliterations, we expect stage 2 system
to produce completely erroneous output, as input itself was incorrect. Contrary
to our intuition, we find that many of the erroneous strings in language Y were
actually getting corrected in Y → Z transliteration system, as shown by many ex-
amples in Table VI. For example, in the fourth example in Table VI, the Kannada
string (sumitomo) gets incorrectly transliterated as s� EmVomo (sumitomo) instead

of s� Emtomo (sumithomo); however, for the second stage transliteration even this
erroneous representation generates the correct English string (sumitomo). This
interesting observation suggests that even though the input to the Y → Z system
is an erroneous input in language Y from X → Y system, it still contains enough
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Table VI. Examples of Errors in Ka→Hi→En Serial Transliteration System

Input
Kannada
string

(Roman-
ized)

Erroneous
Hindi by
Ka → Hi

(Stage 1)
system

Correct
Hindi
(refer-

ence)

Correct
English
by Hi

→ En
(Stage 2)
system

gularbhoj g� lArBoj {gulaarbhoj} g� lrBoj {gularbhoj} gularbhoj

edana eXAnA {edaana} eXnA {edana} edana

pakur pk� r {pakur} pAk� r {paakur} pakur

sumitomo s� EmVomo {sumitomo} s� Emtomo {sumithomo} sumitomo

information for the Y → Z system to generate the correct output in language Z.
However, note that this is possible only if the bridge language has richer ortho-
graphic inventory than the target language. For example, if we use a language such
as Arabic, which drops all vowels, as the intermediate language, then we will not
be able to recover the correct transliteration in the target language. In each of
the successful bridge systems (that is, those with a relative performance drop of
less than 10%), presented in Table V, the bridge language has, in general, richer
orthographic inventory than the target language.

To isolate how many of such Stage 1 errors are getting corrected in the Stage 2, we
performed an exhaustive error analysis in 5 different compositional transliteration
systems. In each of the systems, we hand created a set of approximately 1,000 3-
way parallel test names to calibrate the quality at every stage of the compositional
X → Y and Y → Z transliteration systems. In this 3-way parallel set, for a given
name in X, we created the correct equivalent names in languages Y and Z, so we
could verify the correctness of the transliterations at each stage of the compositional
transliteration system. The results are provided in the tables VII through XI, where
the rows represent the performance of the stage 1 system, and the columns represent
the performance of the stage 2 system. In each row, we segregated the correct and
incorrect transliteration outputs from the X → Y system (in the rows) and verified
for each of the input (correct or incorrect) whether the Y → Z produced correct
output or not. Hence, in Table VII, for example, the X → Y system produced 41%
correct transliterations (i.e., 21.5% + 19.5%) and 59% incorrect transliterations
(i.e., 11.8% + 47.1%). This is in line with the expected quality of the X → Y
system. The first row corresponds to the correct and incorrect transliteration by
the Y → Z system, in line with the transliteration quality of the Y → Z system, as
the inputs were correct strings in language Y. While we expected the second row
to produce incorrect transliterations nearly for all inputs (as the input itself was an
incorrect transliteration in language Y), we find upto 25% of the erroneous strings
in language Y were getting transliterated correctly in language Z (for example,
about 11.8% among the wrong 59% input strings were getting corrected in Table
VII).

We see the same phenomenon in each of the tables VII through XI, indicating
that some amount of information is captured even in the wrong transliterations in
stage 1 to result in the correct transliteration output by the stage 2.
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Table VII. Error Analysis for En→Hi→Ka

En→Hi→Ka
Hi → Ka

(Stage-2)

Correct Error

En→Hi Correct (41%) 21.5% 19.5%
(Stage-1)Error (59%) 11.8% 47.2%

Table VIII. Error Analysis for Ka→Hi→En

Ka→Hi→En
Hi → En
(Stage-2)

Correct Error

Ka→Hi Correct (46%) 21.9% 24.1%
(Stage-1)Error (54%) 13.5% 40.5%

Table IX. Error Analysis for En→Ma→Ka

En→Ma→Ka
Ma → Ka
(Stage-2)

Correct Error

En→Ma Correct (41.6%) 23% 18.6%

(Stage-1)Error (58.4%) 11.8% 46.6%

4.5 Impact of WAVE Measure on Transliteration Quality

In all these experiments (except the last Ka-En-Hi system) the intermediate lan-
guage in the serial compositional transliteration system was chosen to be one that
is easily transliterable from the source language or to the target language (i.e.,
low WAV E1 scores). Table XII reports the WAVE scores of the two stages of the
compositional system as well as the the WAVE score of the direct system. For
example, the first row of Table XII discusses the case when Hindi was used as the
intermediate language for English to Kannada transliteration. The first stage of
this compositional system was an English to Hindi transliteration system and the
second stage was a Hindi to Kannada transliteration system. The WAV E1 score
of the direct system (i.e. English to Kannada) was 1.52 whereas the WAV E1

scores for the first and second stages (i.e., English to Hindi and Hindi to Kannada
respectively) were 1.34 and 0.93 respectively.
We note in Table V that in the first 4 compositional systems, the WAV E1

scores of the intermediate systems were generally smaller than that of the direct
system, and the drop in accuracy of each of these compositional systems was under
10% when compared to the direct system8. The last row of Table XII shows that
the WAV E1 score of the direct system (0.78) was much less than the WAV E1

8The only exception is the third system where the WAV E1 score (1.34) of stage 1 (English-
Hindi) was slightly greater than the WAV E1 score (1.29) of the direct system (English-Marathi).

However, this was compensated by the nearly zero WAV E1 score of the second stage (Marathi-
Hindi) of this compositional system.
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Table X. Error Analysis for En→Hi→Ma

En→Hi→Ma
Hi → Ma

(Stage-2)

Correct Error

En→Hi Correct (41.2%) 37.2% 4%
(Stage-1)Error (58.8%) 2% 56.8%

Table XI. Error Analysis for Ka→En→Hi

Ka→En→Hi
En → Hi
(Stage-2)

Correct Error

Ka→En Correct (39.1%) 16.6% 22.5%
(Stage-1)Error (60.9% 10% 50.9%

Table XII. WAV E1 scores for the different stages of the serial compositional systems

Language
Pair

Intermediate
Language

Stage-1 of
Serial

Composi-
tional

system

Stage-2 of
Serial

Composi-
tional

system

WAV E1

for the
direct
system

WAV E1

for
Stage-1 of

Serial
Composi-
tional

system

WAV E1

for
Stage-2 of

Serial
Composi-
tional

system

En-Ka Hi En-Hi Hi-Ka 1.52 1.34 0.93

En-Ka Ma En-Ma Ma-Ka 1.52 1.29 0.90

En-Ma Hi En-Hi Hi-Ma 1.29 1.34 0.06

Ka-En Hi Ka-Hi Hi-En 1.11 0.78 0.92

Ka-Hi En Ka-En En-Hi 0.78 1.11 1.34

scores of the intermediate systems (1.11 and 1.34). Correspondingly, Table V shows
that in this case the drop in accuracy was much higher (42.3%). An empirical
conclusion that we draw is that the constituent WAV E1 measures, surrogates for
transliterability, may suggest successful candidate pairs and may flag inappropriate
candidate pairs, for compositional systems.

4.6 Effect of Vowels in the Transliteration

A closer error analysis revealed that vowels play a crucial role in the transliteration
experiments as in nearly all the transliteration systems, approximately 60% of the
errors were due to the incorrectly transliterated vowels. We thus performed some
oracle experiments to quantify the impact of correct transliteration of vowels on
overall transliteration quality. First, using a given X→Y transliteration system,
we generated transliterations in language Y for about 1,000 names in language X.
The resulting quality of transliteration (indicated as ACC-1 without vowel Oracle
in Table XIII) was in line with the expected quality of the X→Y system. Next,
we compared the output strings and the gold set, after ignoring all the vowel and
combining matras from the generated transliteration strings in language Y and the
gold reference set, presented as ACC-1 with vowel Oracle in Table XIII). Equiva-
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Table XIII. Impact of vowels on accuracy

Language
Pair

ACC-1
(with
vowel

Oracle)

ACC-1
(without
vowel

Oracle)

∆ ACC-1

En-Hi 0.748 0.410 +82.4%

En-Ka 0.642 0.368 +74.5%

En-Ma 0.754 0.416 +81.3%

Hi-En 0.721 0.422 +70.9%

Ka-En 0.711 0.415 +71.3%

Ma-En 0.650 0.422 +54.02%

Hi-Ka 0.742 0.464 +59.9%

Ka-Ma 0.764 0.469 +62.9%

Ma-Ka 0.647 0.417 +55.2%

Hi-Ma 0.939 0.928 +1.2%

Ma-Hi 0.909 0.892 +1.9%

lently, we can say, that the consonants are provided by the X→Y system, and the
vowels are inserted by an oracle.
The results presented in Table XIII clearly indicate that substantial improve-

ment in transliteration quality may be achieved by handling vowels correctly in the
transliteration between English and Indian languages, and among Indian languages.
This opens up a significant future research opportunity.

5. PARALLEL COMPOSITIONAL TRANSLITERATION SYSTEMS

In this section, we address the parallel compositional transliterations systems,
specifically, combining transliteration evidence from multiple transliteration paths.
Our objective here is to explore the question “Is it possible to combine evidence
from multiple transliteration paths to enhance the quality of a direct translitera-
tion system between X and Z?”. The usefulness of such a compositional system is
indicated by how much above the performance of such a system is to that of a di-
rect transliteration system between X and Z. Any improvement in transliteration
quality may be very useful in going beyond the plateau for a given language pair.

5.1 Parallel Compositional Methodology

In this section, we explore if data is available between X and multiple languages,
then is it possible to improve the accuracy of the X→Z system by capturing translit-
eration evidence from multiple languages. Specifically, we explore whether the infor-
mation captured by a direct X→Z system may be enhanced with a serial X→Y→Z
system, if we have data between all the languages. We evaluate this hypothesis by
employing the following methodology, assuming that we have sufficient (∼15K, as
detailed in Section 4.2) pair-wise parallel names corpora between X, Y & Z. First we
train a X→Z system, using the direct parallel names corpora between X & Z. This
system is called Direct System. Next, we build a serially composed transliteration
system using the following two components: First, a X→Y transliteration system,
using the 15K data available between X & Y, and, second a fuzzy transliteration
system Y→Z that is trained using a training set that pairs the top-k outputs of the
above trained X→Y system in language Y for a given string in language X, with
the reference string in language Z corresponding to the string in language X. We
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Table XIV. Performance of Parallel Compositional Transliteration Systems

Language
Pair

ACC-1 ∆ ACC-1 MRR ∆ MRR F-score ∆ F-
score

Hi-En (Direct) 0.422 0.539 0.884

Hi-Ma-En (Fuzzy) 0.430 0.557 0.893
Compositional 0.456 +8.1% 0.566 +4.9% 0.900 +1.8%

Ma-En (Direct) 0.415 0.534 0.880
Ma-Hi-En (Fuzzy) 0.431 0.557 0.896

Compositional 0.444 +7.2% 0.558 +4.7% 0.897 +2.0%

Ka-En (Direct) 0.391 0.492 0.878
Ka-Hi-En (Fuzzy) 0.355 0.464 0.870

Compositional 0.401 +2.6% 0.509 +3.5% 0.887 +1.0%

En-Ma (Direct) 0.416 0.547 0.879
En-Hi-Ma (Fuzzy) 0.401 0.491 0.868
Compositional 0.426 +2.2% 0.555 +1.31% 0.879 +0.03%

call this system as Fuzzy System, as it utilizes top-k (possibly incorrect) output in
the intermediate language Y. We believe that even an incorrect output may contain
sufficient information not captured in the direct system as evidenced by the error
analysis in Section 4.4. We combine the evidence from these two systems – direct
and fuzzy – for a given transliteration task between X and Z as follows: we merge
the top-k outputs from the direct system, with the top-k outputs from the fuzzy
system, using the following weighted average measure,

Score(T ) = λ ∗ Scoredirect(T ) + (1− λ) ∗ Scorefuzzy(T ) (3)

0 < λ < 1

and re-rank the results based on the above calculated scores. Note that the above
formulation of combining the output of two systems is similar to that used by [Al-
Onaizan and Knight 2001] for combining the output of a grapheme based system
with a phoneme based system. A similar strategy was also used by [Zhou et al.
2008] to re-rank the candidate transliterations by taking a weighted sum of the
score assigned by a transliteration engine and the normalized hit-count obtained
for a candidate transliteration using a web search engine.

5.2 Results of Parallel Compositional Methodology

We employed the above strategy and tested parallel compositional methodology for
combining transliteration for four language pairs and the quality of the results using
the previously mentioned metrics – namely, Accuracy (ACC-1), Mean Reciprocal
Rank (MRR) and Mean F-Score (F-Score) – are shown in Table XIV. In each of
the experiments, the metrics for 4 systems are reported – the direct (line 1) and
fuzzy (line 2) components of the parallel compositional systems, and the overall
quality once combined (line 3). The quality of the direct system (line 1) provides
the baseline for the corresponding parallel compositional transliteration system.
The λ parameter is set to 0.4 for the first two systems and to 0.6 for the last two
systems (as explained in Section 5.3).
It is surprising that there is an increase in the ACC-1, up to 8%, from the direct
X→Z system, by combining evidence from fuzzy X→Y→Z system. Such improve-
ment in transliteration quality suggests that combining evidence using parallel com-
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system

position of transliteration engine may be productive, and may help go above the
quality plateau achieved in direct systems.

5.3 Effect of varying λ

To study the effect of lambda on the quality of the composite system, we varied it
from 0 to 1. A value of zero means only the fuzzy system’s output was used and a
value of 1 means only the direct system’s output was used. Figure 6 shows a plot
of the accuracies obtained for different values of λ. We observe that in each case,
the best performance was obtained when λ was between 0.4 and 0.6. Further, the
optimum value of λ depended on the quality of the direct system and the fuzzy
system. Typically, if the quality of the direct system was better than the quality
of the fuzzy system then the best results were obtained for λ = 0.6 (i.e., when
more weight was given to the output of the direct system). An example of this
is the compositional system obtained by combining the Ka-En direct system with
the Ka-Hi-En compositional system. On the other hand, if the quality of the fuzzy
system was better than the quality of the direct system then the best results were
obtained for λ = 0.4 (i.e., when more weight was given to the output of the fuzzy
system). An example of this is the compositional system obtained by combining
the Hi-En direct system with the Hi-Ma-En compositional system.

6. EFFECTIVENESS OF COMPOSITIONAL TRANSLITERATION IN CLIR SYS-
TEM

In this section, we demonstrate the effectiveness of our compositional transliteration
system on a downstream application, namely, a Crosslingual Information Retrieval
system. We outline a standard state-of-the-art CLIR system for crosslingual doc-
ument retrieval from a standard test collection. We specify the experimental set
up and report the performance of the CLIR system integrated with compositional
transliteration system, compared with a baseline integrated with a direct translit-
eration system.
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6.1 CLIR System

We used a CLIR system that has been fielded for FIRE9 2008 shared task [FIRE
2008] for the CLIR experiments. Briefly, this CLIR system translates a given Hindi
query (qs) into English (qt) using a probabilistic translation lexicon:

P (wt|qs) =
∑
ws

P (ws|qs)P (wt|ws) (4)

where,

ws = source word

wt = target word

qs = source query

Similarity of the translated query and a target document is measured using a
Kullback-Leibler divergence based approach for scoring and ranking the documents,
as follows:

Score(qs, dt) =
∑
wt,ws

P (ws|qs)P (wt|ws)log(P (wt|dt)) (5)

where,

dt = target document

Details of our CLIR system are available in [Udupa et al. 2008]. This system was
the best performing CLIR system between Hindi and English, with a MAP score
of 0.4526, among a field of 8 participants in FIRE 2008.

6.2 Training and Test Document Sets for CLIR Experiments

The standard document collection used for FIRE 2008 shared task [FIRE 2008]
was used for all our CLIR experiments. While the FIRE 2008 collection included
documents in both English and multiple Indian languages, we used only Hindi
to English portion of the FIRE 2008 CLIR experiments. The target document
collection consists of 125,638 news articles in Indian English, from The Telegraph
(Calcutta edition), gathered over a period of four years between 2004 and 2007. We
used Hindi as the language of the query, specifically the topics 26-75 from the FIRE
2008 collection. All the three fields (title, description and narration) of the topics
were used for the retrieval, as this setting would include all names in the query;
note that names are the ones that are handled poorly by CLIR systems, and best
helped by transliteration modules. Since the collection and topics are from previous
years, their relevance judgements were also available as a reference for automatic
evaluation. We used only the textual content of the documents for indexing and
indexed only non-empty documents. The stop words are removed from the text
while indexing and the words were stemmed using Porter Stemmer [Porter 1980].

9http://www.isical.ac.in/∼fire/
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6.3 Linguistic Resources used for CLIR System

We used primarily the statistical dictionaries generated by training statistical word
alignment models on an existing Hindi-English parallel corpora (∼100K parallel
sentences between English and Hindi, consisting of about 70K words in English
vocabulary and about 50K words in Hindi vocabulary), using the GIZA++ [Och
and Ney 2003] tool. We used 5 iterations of IBM Model 1 and 5 iterations of
HMM, retaining only the top 4 translations of every source word, along with their
probability measures.

6.4 Integrating Machine Transliteration Systems in CLIR

As with any CLIR system that uses translation lexicon, we faced the problem of
out-of-vocabulary (OOV) query terms that need to be transliterated, as they are
typically proper names in the target language. First, for comparison, we used the
above mentioned CLIR system with no transliteration engine, and measured the
crosslingual retrieval performance. Clearly, the OOV terms would not be converted
into target language, and hence contribute nothing to the retrieval performance.
Second, we integrated a direct machine transliteration system between Hindi and
English, which is expected to provide the correct transliterated strings in English,
only in line with its transliteration performance. We report this performance as
the baseline direct transliteration system performance. Third, we integrate, instead
of a direct system, a set of serial compositional transliteration systems between
Hindi and English, transitioning through different intermediate languages, namely
Marathi and Kannada, and reported the CLIR performance for each of the compo-
sitional path. Finally, we integrate, a parallel compositional transliteration system,
through Marathi as an intermediate language, where the results are combined with
λ = 0.4, the best value as outlined in Section 5.3 for Hi-Ma-En system, and the
CLIR performance measured and reported.

6.5 CLIR with Transliteration Systems Evaluation

The results of the above experiments are given in Table XV. The current focus of
these experiments is to answer the question of whether the compositional machine
transliteration systems used to transliterate the OOV words in Hindi queries to
English (by stepping through an intermediate language – Marathi or Kannada)
performs at par with a direct transliteration system.
We outline a series of experiments, in which the CLIR system integrated with

different transliteration engines – both direct and compositional – perform on the
standard FIRE 2008 data set. For these experiments, we used top-n (n = 1, 5 and
10) output of the integrated transliteration engine, and the results are reported
separately. The following guide specifies the systems reported:

(1) Baseline: the baseline CLIR system with no transliteration engine integrated.
This system performance is provided as the basis for quantifying the effect of
transliteration on CLIR system performance.

(2) D-Hi-En: the baseline CLIR system, integrated with a direct machine translit-
eration system for transliterating OOV words between Hindi and English. This
system provides a baseline for our compositional transliteration experiments.
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Table XV. CLIR performance with differently configured transliteration systems

CLIR System Description Top-n MAP
∆ MAP change
from Baseline

Baseline No Transliteration - 0.4361 -

D-Hi-En Direct 1 0.4546 +4.24%

S-Hi-Ka-En
Serial Compositional

(via Kannada)
1 0.4617 +5.87%

S-Hi-Ma-En
Serial Compositional

(via Marathi)
1 0.4664 +6.94%

P-Hi-Ma-En
Parallel Compositional

(via Marathi)
1 0.4470 +2.49%

D-Hi-En Direct 5 0.4549 +4.31% **

S-Hi-Ka-En
Serial Compositional

(via Kannada)
5 0.4612 +5.75%

S-Hi-Ma-En
Serial Compositional
(through Marathi)

5 0.4550 +4.33% **

P-Hi-Ma-En
Parallel Compositional
(through Marathi)

5 0.4555 +4.44% **

D-Hi-En Direct 10 0.4471 +2.52% **

S-Hi-Ka-En
Serial Compositional
(through Kannada)

10 0.4621 +5.96%

S-Hi-Ma-En
Serial Compositional
(through Marathi)

10 0.4543 +4.17% **

P-Hi-Ma-En
Parallel Compositional
(through Marathi)

10 0.4470 +2.49% **

(3) S-Hi-Ka-En: the baseline CLIR system, integrated with a serial composi-
tional machine transliteration system between Hindi and English transitioning
through Kannada.

(4) S-Hi-Ma-En: the baseline CLIR system, integrated with a serial composi-
tional machine transliteration system between Hindi and English transitioning
through Marathi.

(5) P-Hi-Ma-En: the baseline CLIR system, integrated with a parallel composi-
tional machine transliteration system between Hindi and English transitioning
through Marathi.

As expected, enhancing the baseline CLIR system with a direct machine translit-
eration system (D-Hi-En) gives better results over a CLIR system with no translit-
eration functionality. Significantly, we observe that most of the compositional
transliteration system perform on par or better than the direct system, at each
output level. While the choice of the transition language and the compositional
methodology has an influence on CLIR system between a given pair of languages,
the on par results indicate that the compositional transliteration systems can be ef-
fectively employed in practical downstream applications. Two-tailed paired t-tests
were performed to check whether the improvements in the MAP scores obtained
by using the Direct, Serial and Parallel transliteration systems were statistically
significant. The results marked with stars (**) in the 5th column of Table XV were
found to be statistically significant with a confidence of 95% (p = 0.05). We observe
that the improvements obtained by using the top-5 and top-10 transliterations were
statistically significant. Also, the statistically significant results suggest that top-5
output produces the best improvement in the MAP scores, as expected in CLIR
type applications.
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Table XVI. Comparison of transliterations produced by different systems

Hindi query D-Hi-En S-Hi-Ka-En S-Hi-Ma-En P-Hi-Ma-En English query

g~�g c{pl aOr
sOrv gA\g� lF k�
bFc sf\k
virAmsE\D

ghanguli

(Incorrect)
ganguli

(Incorrect)
ganguly

(Correct)
ganguly

(Correct)

Uneasy

truce

between

Greg

Chapell

and Sourav

Ganguly

A detailed analysis of the query translations produced by the above systems
showed that in some cases the compositional system does produce a better translit-
eration thereby leading to a better MAP. As an illustration, consider the query
containing the OOV name gA\g� lF {Ganguly} and the corresponding translitera-
tions generated by the different systems as presented in Table XVI. The direct
D-Hi-En system generated was unable to generate the correct transliteration in the
top-5 results whereas the serial S-Hi-Ma-En system and the parallel & P-Hi-Ma-En
system were able to produce the correct transliteration in the top-5 results thereby
resulting in an improvement in MAP for this sample query. We also observe that
as more number of top-n transliterations are added, the resulting MAP scores de-
creases slightly, perhaps due to the noise added by the wrong transliterations during
query translation.

7. CONCLUSIONS & FUTURE RESEARCH DIRECTIONS

In this paper, we introduced the idea of compositional transliteration systems,
where multiple transliteration components were composed, either to provide new
transliteration functionality, or to enhance the existing transliteration quality, be-
tween a given pair of languages. Specifically, we proposed two distinct configura-
tions – serial and parallel – for compositional systems. The serial compositional
transliteration systems chained individual transliteration components in a serial
manner, to enable creation of transliteration functionality for a given pair of lan-
guages with no parallel names corpora between them. Specifically, a transliteration
system X → Z may be created, by composing X → Y and Y → Z transliteration
components serially. Next, we explored the parallel compositional transliteration
systems, which aggregated the transliteration evidence from multiple translitera-
tion paths to improve the quality of a given transliteration system. Specifically,
the quality of transliteration of X → Z system may be improved, by combining
evidence from X → Y → Z systems.
We formulated a measure – WAV En-gram – to measure the ease of translitera-

tion (which we termed as transliterability between a given ordered language pair.
We show how such a measure may help in designing serial compositional systems
with minimal loss of quality. Further, such measure might help identifying appro-
priate languages between which parallel corpora needs to be developed, there by
paving way for a less resource intensive approaches for providing transliteration
functionality among a set of n languages.
To validate the utility of the compositional systems, we conducted a compre-

hensive set of experiments among English and 3 Indian languages, namely, Hindi,
Marathi and Kannada. We conducted an extensive set of experiments to quantify
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any change in the transliteration accuracy between a given pair of languages. First,
we showed empirically that, quality-wise, the serial compositional systems do not
degrade drastically, compared with baseline direct transliteration systems: The rel-
ative drop in accuracy of appropriately designed compositional systems is less than
∼10% of that of the corresponding direct systems, in general. Second, we performed
an extensive stage-wise error analysis of the compositional systems, and identified
that significant fraction of errors (∼25%) caused by the first stage transliteration
system of the composition is getting corrected by the second stage translitera-
tion system, providing an insight into the benefits of composition of transliteration
components. Based on this insight, we designed parallel compositional translit-
eration systems, that combined evidence from a serial compositional system to a
direct system, to improve the quality of the direct system. Empirically, we showed
that there is a improvement of up to ∼8% in transliteration accuracy achieved by
this methodology, over the direct transliteration systems. While the compositional
methodology uses multiple datasets, each component may participate in many com-
positional systems thereby amortizing the development cost. In addition they may
enable transliteration functionalities that may not be possible with the existing
datasets, or improve transliteration quality above and beyond direct systems.
Finally, we showed that such compositional transliteration systems – both serial

and parallel – may be used in practical situations effectively. We showed that
a CLIR system working on the standard FIRE 2008 test collection between Hindi
and English is helped by the integration of the compositional transliteration systems
significantly, showing up to ∼8% improvement in MAP scores over the same CLIR
system with no transliteration component. More significantly, these improvements
are in-par with, and sometimes better than, the same CLIR system that had been
integrated with a direct transliteration system between Hindi and English, thus
establishing the practicality of using compositional transliteration systems.

7.1 Future Research Avenues

Transliteration is an important research area for downstream applications like CLIR
or MT. However, there are many situations in which transliteration functionality
needs to be developed among a set of languages, for political, social or economic
reasons. Compositional systems provide a viable and practical solution in resource-
scarce situations.
We plan to pursue the compositional transliteration functionality in several di-

rections: First, we plan to expand the set of languages to explore the scalability of
the compositional approaches for a diverse set of languages. Second, given a set of
n languages, we would like to explore a principled way of selecting language pairs
among the n languages, between which the transliteration corpus may be developed
in order to balance the resource requirement and the transliteration accuracy. Fi-
nally, we would like to explore complex compositional approaches, involving more
transliteration components arranged in more complex topologies.
Compositional systems may provide an effective way of enabling transliteration

functionality among a group of languages, by reducing the need for developing re-
sources in all combinations of languages, or using more effectively the available
parallel corpora between languages. Ultimately, such approaches may help in re-
ducing the digital divide that exist in many resource-poor parts of the world.
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