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Abstract Multi-label classification aims to assign a set of
proper labels for each instance, where distance metric learning
can help improve the generalization ability of instance-based
multi-label classification models. Existing multi-label metric
learning techniques work by utilizing pairwise constraints to
enforce that examples with similar label assignments should
have close distance in the embedded feature space. In this pa-
per, a novel distance metric learning approach for multi-label
classification is proposed by modeling structural interactions
between instance space and label space. On one hand, composi-
tional distance metric is employed which adopts the representa-
tion of a weighted sum of rank-1 PSD matrices based on com-
ponent bases. On the other hand, compositional weights are op-
timized by exploiting triplet similarity constraints derived from
both instance and label spaces. Due to the compositional na-
ture of employed distance metric, the resulting problem admits
quadratic programming formulation with linear optimization
complexity w.r.t. the number of training examples. We also de-
rive the generalization bound for the proposed approach based
on algorithmic robustness analysis of the compositional metric.
Extensive experiments on sixteen benchmark data sets clearly
validate the usefulness of compositional metric in yielding ef-
fective distance metric for multi-label classification.

Keywords machine learning, multi-label learning, metric
learning, compositional metric, positive semidefinite matrix de-
composition

1 Introduction
In multi-label classification, each instance is associated with
multiple class labels simultaneously and the task is to learn a
predictive model mapping from instance to the set of proper la-
bels [1, 2]. In recent years, multi-label classification techniques
have been widely applied to learn from real-world objects with
rich semantics [3–7].

Distance metric learning serves as a popular strategy to
facilitate supervised learning, where a positive semi-definite
(PSD) matrix M � 0 is usually learned to parameterize the dis-
tance in embedded feature space [8, 9]. Some recent attempts
show promising results of learning distance metric to build
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multi-label classification models with stronger generalization
performance [10, 11]. Specifically, given training examples
(xi, yi) and (x j, y j), their distance in the embedded feature space
dM(xi, x j) =

√
(xi − x j)TM(xi − x j) should move closer if yi is

similar to y j in the label space. This strategy can be instantiated
in different ways such as large margin output coding [10,12,13]
or pairwise similarity preservation [11, 14, 15].

In this paper, a novel multi-label distance metric learn-
ing approach named Commu, i.e., COmpositional Metric for
MUlti-label classification, is proposed. Compared to existing
approaches for multi-label metric learning, Commu considers
a more advanced strategy by modeling structural interactions
between instance space and label space. In Fig. 1, the gen-
eral framework of Commu for multi-label distance metric learn-
ing is illustrated. Specifically, the multi-label distance metric
is assumed to adopt the compositional representation with a
weighted sum of rank-1 PSD matrices. Here, the rank-1 PSD
matrix corresponds to the outer product of component bases
generated by encoding discriminative information of class la-
bels. Furthermore, the weights forming the compositional dis-
tance metric are optimized by exploiting triplet constraints de-
rived from similarity relationships in both instance and label
spaces. Experimental studies across sixteen benchmark multi-
label data sets show that Commu is capable of significantly
improving the generalization performance of instance-based
multi-label classification models with the learned composi-
tional distance metric.

The rest of this paper is organized as follows. Section 2
presents technical details of the proposed approach. Section 3
provides the corresponding theoretical analysis. Section 4 re-
ports experimental results of comparative studies. Section 5
briefly discusses related works. Finally, Section 6 concludes
this paper.

2 The Commu approach
Formally, let X = R

d be the instance space and Y =

{λ1, λ2, . . . , λq} be the label space with q class labels. Multi-
label classification aims to learn a predictive function h : X �→
2Y from the training set D = {(xi, yi) | 1 � i � m}, where
yi = (yi1, yi2, . . . , yiq)T is the labeling vector associated with xi

such that yil = 1 if λl is a relevant label for xi and yil = 0 other-
wise.
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Fig. 1 The multi-label distance metric learning framework of Commu. The original feature space is mapped into the distance metric feature
space based on the compositional distance metric, based on which the prediction on multi-label output space will be made. Specifically, each
component of the distance metric is generated by employing triplet constraints derived from similarity relationships in both instance and label
spaces

To model the distance metric M with enriched structural
information, Commu chooses to adopt the compositional rep-
resentation with a weighted sum of K rank-1 PSD matrices
[16, 17]:

M =
K∑

l=1

wl · blbT
l . (1)

Here, bl ∈ Rd is the d-dimensional component base and
wl � 0 is the corresponding nonnegative compositional weight.
In this way, one can simplify the parameterization complex-
ity of the distance metric from O(d2) to O(K) with w =

[w1,w2, . . . ,wK]T. More importantly, the compositional decom-
position naturally enables the encoding of discriminative infor-
mation into the distance metric. Specifically, Commu generates
one component base for each class label in the label space (i.e.,
K = q).

For the lth class label λl ∈ Y (1 � l � q), Commu consid-
ers the difference between the mean of positive examples and
negative examples w.r.t. λl:

bl =

∑
u∈Pl

u

|Pl| −
∑

v∈Nl
v

|Nl| . (2)

Here, Pl = {xi | yil = 1, (xi, yi) ∈ D} and Nl = {xi |
yil = 0, (xi, yi) ∈ D} correspond to the set of positive examples
and negative examples w.r.t. λl respectively. Conceptually, the
statistic in Eq.(2) is used to reflect holistic labeling distribution
of class label, which has shown to be beneficial for encoding
discriminative information in the feature space [18–20].

To optimize the parameters w for distance metric M, a set of
constraints are specified to characterize the properties which M
are expected to possess. Given the multi-label training example
(xi, yi) and other two reference examples {(x j, y j), (xk, yk)}, it
is desirable that dM(xi, x j) should be smaller that dM(xi, xk) if
xi is semantically more similar to x j than xk. Under traditional
single-label scenario, the semantic similarity can be easily mea-
sured by considering whether two examples have the same class

label [8,21]. However, under multi-label scenario, it is impracti-
cal to measure semantic similarity by considering exact labeling
equivalence due to the combinatorial nature of multiple class la-
bels. For Commu, the semantic similarity matrix S = [si j]m×m is
calculated by synergizing discriminative information from both
input space and label space:

si j = yT
i Gy j, (3)

where G = (αA + (1 − α)C) ,

A = [alh]q×q with alh =

∑m
i=1 yil · yih∑m

i=1 yil
,

C = [clh]q×q with clh =
bT

l bh

‖bl‖ · ‖bh‖ .

Here, alh corresponds to the fraction of examples with la-
bel yl which also have label yh. It is noteworthy that alh = ahl

does not necessarily hold here to reflect the fact that correla-
tions among class labels are usually asymmetric [22, 23]. Fur-
thermore, clh corresponds to the cosine similarity between com-
positional bases. The coefficient α balances relative contribu-
tions from label space (i.e., A) and instance space (i.e., C) in
calculating the semantic similarity.

Thereafter, the set of “similar” and “dissimilar” examples for
training instance xi are determined as:

Zi = {x j | si j � θ, j � i, 1 � j � m}, (4)

Z̃i = {xk | sik < θ, k � i, 1 � k � m}.
Here, θ is used as the thresholding parameter for measuring

semantic similarity. Accordingly, the following set of triplets
are generated by utilizing subset Ki ⊆ Zi (K̃i ⊆ Z̃i) which
consists of top k (k̃) instances with highest semantic similarity
inZi (Z̃i):

R = {(xi, x j, xk) | 1 � i � m, x j ∈ Ki, xk ∈ K̃i}. (5)

Here, R contains a total of m · k · k̃ triplets. Based on Eq.(5),
Commu learns the compositional distance metric by solving the
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following optimization problem with triplet constraints:

minw ‖w‖1 + C
m

m∑

i=1

ξ2i , s.t. : (6)

d2
M(xi, xk) − d2

M(xi, x j) � Δ(y j, yk) − ξi,
(∀ (xi, x j, xk) ∈ R),

ξi � 0, wi � 0 (1 � i � m).

Here, d2
M(x, x′) =

∑q
l=1 wl · (x− x′)TblbT

l (x− x′) corresponds
to the distance between two instances in the embedded feature
space and Δ(y j, yk) = yT

j

(
1q×q −G

)
yk corresponds to the dis-

similarity between two labeling vectors. Accordingly, the slack
variable ξi corresponds to:

ξi= max

(
0, max

(xi ,x j,xk)∈R

(
Δ(y j, yk) −

(
d2

M(xi,k) − d2
M(xi, j

)))
. (7)

Therefore, the solution to Eq.(6) can be obtained by optimiz-
ing the following equivalent problem:

minw F(w) ≡ f (w) + g(w). (8)

Here, f (w) = C
m

∑m
i=1 ξ

2
i whose gradient ∇ f is Lipschitz con-

tinuous w.r.t. w [10, 24] and g(w) = ||w||1 is convex. For
optimization problem admitting such decomposition, its solu-
tion can be obtained by employing the FISTA (Fast Iterative
Shrinkage-Thresholding Algorithm) procedure [25,26]. Specif-
ically, given the current solution w, the solution at next iteration
is solved by minimizing the following quadratic programming
problem:

QL(a,w) = f (w) + 〈∇ f (w), a − w〉 (9)

+
L
2
||a − w||2 + g(a),

where L > 0 is the Lipschitz constant for f (w). By setting
the gradient of Eq.(9) to zero, one can obtain the minimizer
a∗ = w − 1

L (∇ f (w) + 1q×1). To ensure nonnegativity of compo-
sitional weights for the distance metric M, the iterative solution
a∗ will be mapped to Π+(a∗) by setting negative elements in a∗
to zero.

Table 1 summarizes the complete procedure of Commu.
Firstly, a set of compositional bases are generated by discrim-
inative information encoding (Steps 1–3). After that, the set of
triplet constraints are specified by considering semantic simi-
larity among training examples (Steps 4–5). Thirdly, the com-
positional weights are learned by invoking the FISTA iterative
optimization procedure (Steps 6–24).1)

3 Theoretical analysis
In this section, we provide a theoretical analysis of our ap-
proach in the form of a generalization bound based on algo-
rithmic robustness analysis for metric learning [27].

Given a multi-label dataset S = {z = (xi, yi)}ni=1 drawn i.i.d.
from a distribution P over the labelled spaceZ = X×Y, where
the label vector yi simultaneously contains multiple labels. As-
sume that ‖x‖ � R (for some convenient norm), ∀x ∈ X. Differ-
ent from the single-label setting, Commu defines the multi-label,

Table 1 The pseudo-code of Commu

Inputs:
D: multi-label training set {(xi , yi) | 1 � i � m}
α: balancing parameter in Eq.(3) with α ∈ (0, 1)
C: cost parameter in Eq.(6) with C > 0
θ: thresholding parameter in Eq.(4)

Outputs:
w: compositional weight vector for the distance metric

Process:
1: for l = 1 to q do
2: Generate component base bl according to Eq.(1);
3: end for
4: Calculate the similarity matrix S according to Eq.(3);
5: Form the set of triplets R according to Eq.(5);
6: Initialize FISTA procedure with w0 = w1 =

1
q · 1q×1, τ0 = τ1 =

0.01mC, η = 0.4, and t0 = t1 = 1;
7: Set r = 1 and w̃1 = w1;
8: repeat
9: Set L = η · τr ;

10: repeat
11: Calculate a∗ = w̃r − 1

L (∇ f (w̃r) + 1q×1);
12: if F (Π+(a∗)) � QL (Π+(a∗), w̃r) then
13: τr+1 = L;
14: go to step 19;
15: else
16: L = 1

η L;

17: end if
18: until false
19: wr+1 = Π+(a∗);

20: tr+1 =
1+
√

1+4t2r
2 ;

21: r = r + 1;

22: w̃r = wr−1 +
ti−1−1

ti
· (wr−1 − wr−2);

23: until convergence
24: Return w = wr ;

semantic similarity matrix to construct the triplet (z, z′, z′′)
where y is similar to y′ and dissimilar to y′′. Let SR be the
set of all admissible triplets built from S and L(w, z, z′, z′′) =
[Δ(y′, y′′)+ dw(x, x′)− dw(x, x′′)]+ denote the multi-label triple
loss function in Eq.(6), which is uniformly upper-bounded by a
constant U.

The empirical loss RSR
emp(w) of w on SR is defined as

RSR
emp(w) =

1
|SR|

∑

(z,z′ ,z′′)∈SR

L(w, z, z′, z′′),

and its expected loss R(w) over distribution P as

R(w) = Ez,z′,z′′∼PL(w, z, z′, z′′).

The goal of the theoretical analysis is to bound the deviation
between R(w) and RSR

emp(w), where w is the metric coefficient to
learn.

Theorem 1 Let w∗ be the optimal solution to Commu with
K basis elements, C > 0 and the triplet SR constructed from
S = {z = (xi, yi)}ni=1. Let K∗ � K be the number of nonzero en-
tries in w∗. Assume the norm of any instance bounded by some
constant R and the loss L uniformly upper-bounded by some

1) The FISTA procedure terminates when the value of the objective function in Eq.(8) does not significantly decrease for two consecutive solutions wr and wr+1,
i.e., F(wr) − F(wr+1) � ε · F(wr) with ε = 0.001
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constant U. Then for any δ > 0, with probability at least 1 − δ
we have:

∣∣∣R(w∗) − RSR
emp(w∗)

∣∣∣ � 16γRK∗Δ0C + θ +

3U

√
2q+1N(γ,X, ‖·‖1) ln 2 + 2 ln 1

δ

n
,

where 2qN(γ,X, ‖·‖1) is the size of an γ-cover of Z, Δ0 is the
maximum distance of the dissimialrity set and θ is the theshold
of the triplet construction in Eq.(4). This bound has a standard
O(1/

√
n) asymptotic convergence rate.2) The detailed proofs

can be found in the Appendix.

4 Experiments
4.1 Experimental setup
4.1.1 Data sets
To comprehensively evaluate the effectiveness of Commu, six-
teen benchmark multi-label data sets are collected for ex-
perimental studies, which are publicly available at http://
mulan.sourceforge.net/datasets.html, http://waikato.github.io/
meka/datasets/ and http://manikvarma.org/downloads/XC/XM-
LRepository. Given a multi-label data set S, we use |S|, dim(S)
and L(S) to represent its number of examples, number of fea-
tures and number of class labels respectively. In addition, prop-
erties of S are further characterized by several useful multi-
label statistics [28], including label cardinality LCard(S), la-
bel density LDen(S), distinct labelsets DL(S) and proportion
of distinct label sets PDL(S).

Table 2 summarizes characteristics of the benchmark multi-
label data sets, which are roughly ordered according to |S|. As
shown in Table 2, these data sets serve as a solid basis for com-
parative studies which exhibit diversified properties in terms of
different multi-label statistics.

4.1.2 Comparing algorithms
Based on the learned distance metric, it is desirable to show
whether the performance of instance-based multi-label classi-

fication models can be improved along with the distance mea-
sure in embedded feature space. Accordingly, the vanilla kNN
method and the Mlknn method [29] are utilized as two natural
choices for instance-based multi-label classification models. In
this paper, the effectiveness of Commu is compared against two
state-of-the-art multi-label metric learning approaches:

• Lm [10]: Based on the maximum margin output coding
formulation [12], Lm learns the distance metric by maxi-
mizing the margin of embedded feature vectors and label-
ing vectors.
• Nje [11]: Based on the Jaccard distance between label-

ing vectors, Nje learns the distance metric by preserving
the similarity of instances in the embedded feature space
w.r.t. the labeling Jaccard distance.

Given the multi-label classification model A (A ∈{kNN,
Mlknn}), its improved version by incorporating the learned dis-
tance metric is denoted asA-Commu,A-Lm andA-Nje respec-
tively.

Parameters suggested in the literatures are used to instan-
tiate Lm and Nje. As shown in Table 1, the balancing pa-
rameter α, cost parameter C and thresholding parameter θ for
Commu are chosen among {0.1, 0.2, . . . , 1} , {1, 2, . . . , 10} and
{0.1, 0.2, . . . , 1} with cross-validation on the training set. In
addition, the number of nearest neighbors used by kNN and
Mlknn are set to be 10.

4.2 Experimental results
In this paper, the classification performance is evaluated in
terms of five popular multi-label evaluation criteria includ-
ing ranking loss, coverage, average precision, micro-F1 and
macro-F1 [1,2]. For ranking loss and coverage, the smaller the
criterion value the better the performance. For average preci-
sion, micro-F1 and macro-F1, the greater the criterion value the
better the performance. Tables 3–7 report the detailed experi-
mental results of each comparing approach in terms of ranking

Table 2 Characteristics of the benchmark multi-label data sets

Data set |S| dim(S) L(S) LCard(S) LDen(S) DL(S) PDL(S) Domain

genbase 662 1186 27 1.252 0.046 32 0.048 biology
Society 2000 636 27 1.692 0.063 329 0.165 text
Social 2000 1047 39 1.283 0.033 137 0.069 text
Reference 2000 793 33 1.169 0.035 132 0.066 text
Health 2000 612 32 1.662 0.052 164 0.082 text
Education 2000 550 33 1.461 0.044 200 0.1 text
Computers 2000 681 33 1.508 0.046 148 0.074 text
Business 2000 438 30 1.588 0.053 96 0.048 text
Arts 2000 462 26 1.636 0.063 254 0.127 text
yeast 2417 103 14 4.237 0.303 198 0.082 biology
corel5k 5000 499 374 3.522 0.009 3175 0.635 images
rcv1-subset1 6000 944 101 2.88 0.029 1028 0.171 text
corel16k001 13766 500 153 2.859 0.019 4937 0.359 images
eurlex-dc 19348 100 412 1.292 0.003 1615 0.083 text
eurlex-sm 19348 100 201 2.213 0.011 2504 0.129 text
eurlex 19314 1854 815 4.273 0.0052 14763 0.764 text

2) In robustness bounds, the cover radius γ can be made arbitrarily close to zero at the expense of increasing N(γ,Z, ρ). Since N(γ,Z, ρ) = 2qN(γ,X, ‖·‖1)
appears in the second term, the right hand side of the bound indeed goes to zero when n→∞. This is in accordance with other similar learning bounds
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Table 3 Predictive performance (mean ± std. deviation) of each distance metric learning approach in terms of ranking loss

kNN- Mlknn-
Data set

Commu Lm Nje Original Commu Lm Nje Original

genbase 0.008±0.008 0.146±0.071 0.006±0.007 0.007±0.008 0.006±0.007 0.009±0.007 0.008±0.009 0.007±0.007
Society 0.261±0.017 0.306±0.019 0.215±0.021 0.263±0.02 0.142±0.007 0.164±0.013 0.202±0.016 0.138±0.006
Social 0.165±0.016 0.260±0.023 0.137±0.023 0.160±0.02 0.065±0.008 0.084±0.007 0.099±0.013 0.065±0.007
Reference 0.182±0.032 0.303±0.034 0.143±0.017 0.246±0.032 0.063±0.009 0.103±0.010 0.093±0.010 0.083±0.011
Health 0.154±0.031 0.184±0.036 0.115±0.015 0.199±0.03 0.057±0.010 0.062±0.010 0.075±0.010 0.063±0.009
Education 0.210±0.023 0.299±0.02 0.168±0.020 0.209±0.024 0.087±0.006 0.105±0.011 0.131±0.014 0.087±0.006
Computers 0.186±0.029 0.285±0.017 0.132±0.013 0.192±0.041 0.082±0.008 0.093±0.011 0.114±0.011 0.082±0.006
Business 0.090±0.012 0.122±0.015 0.089±0.015 0.092±0.012 0.037±0.005 0.043±0.007 0.075±0.013 0.038±0.006
Arts 0.270±0.028 0.315±0.026 0.202±0.025 0.302±0.031 0.149±0.013 0.168±0.012 0.181±0.023 0.153±0.015
yeast 0.197±0.006 0.322±0.015 0.188±0.014 0.195±0.009 0.176±0.008 0.182±0.009 0.197±0.016 0.175±0.008
corel5k 0.456±0.016 0.675±0.011 - 0.578±0.027 0.120±0.006 0.129±0.006 - 0.132±0.006
rcv1-subset1 0.191±0.030 0.307±0.013 - 0.226±0.010 0.073±0.008 0.098±0.007 - 0.080±0.004
corel16k 0.495±0.008 0.680±0.004 - 0.537±0.017 0.169±0.002 0.173±0.002 - 0.175±0.001
eurlex-dc 0.376±0.034 0.637±0.023 - 0.376±0.035 0.094±0.009 0.125±0.008 - 0.094±0.009
eurlex-sm 0.191±0.003 0.402±0.006 - 0.191±0.003 0.051±0.001 0.073±0.001 - 0.051±0.001
eurlex 0.923±0.000 0.922±0.000 - 0.985±0.000 0.320±0.000 0.326±0.000 - 0.316±0.000

Table 4 Predictive performance (mean ± std. deviation) of each distance metric learning approach in terms of coverage

kNN- Mlknn-
Data set

Commu Lm Nje Original Commu Lm Nje Original

genbase 0.019±0.011 0.106±0.053 0.020±0.017 0.014±0.005 0.021±0.012 0.025±0.011 0.230±0.019 0.021±0.013
Society 0.272±0.025 0.284±0.008 0.307±0.030 0.277±0.001 0.208±0.015 0.228±0.017 0.289±0.029 0.203±0.001
Social 0.120±0.015 0.144±0.053 0.175±0.029 0.120±0.001 0.087±0.013 0.107±0.012 0.129±0.017 0.088±0.001
Reference 0.153±0.014 0.138±0.011 0.165±0.017 0.150±0.001 0.104±0.011 0.117±0.012 0.108±0.009 0.097±0.001
Health 0.142±0.018 0.138±0.011 0.198±0.022 0.169±0.001 0.098±0.013 0.106±0.012 0.131±0.015 0.104±0.001
Education 0.167±0.011 0.192±0.016 0.228±0.026 0.168±0.001 0.116±0.009 0.135±0.013 0.173±0.013 0.116±0.001
Computers 0.153±0.019 0.167±0.003 0.182±0.021 0.160±0.001 0.118±0.013 0.131±0.016 0.156±0.017 0.118±0.001
Business 0.090±0.012 0.098±0.013 0.149±0.016 0.095±0.001 0.071±0.007 0.080±0.010 0.130±0.020 0.073±0.001
Arts 0.281±0.028 0.295±0.004 0.287±0.031 0.304±0.001 0.209±0.020 0.226±0.016 0.253±0.032 0.213±0.001
yeast 0.462±0.010 0.560±0.011 0.470±0.020 0.473±0.011 0.456±0.010 0.469±0.007 0.483±0.022 0.454±0.012
corel5k 0.359±0.017 0.792±0.011 - 0.739±0.019 0.280±0.013 0.294±0.012 - 0.302±0.014
rcv1-subset1 0.244±0.023 0.290±0.016 - 0.267±0.011 0.165±0.016 0.202±0.012 - 0.178±0.010
corel16k 0.511±0.006 0.586±0.003 - 0.548±0.009 0.328±0.003 0.335±0.003 - 0.339±0.002
eurlex-dc 0.276±0.026 0.449±0.013 - 0.276±0.026 0.114±0.010 0.150±0.009 - 0.114±0.010
eurlex-sm 0.233±0.003 0.429±0.004 - 0.233±0.004 0.092±0.001 0.126±0.002 - 0.092±0.001
eurlex 0.642±0.000 0.640±0.000 - 0.640±0.000 0.600±0.000 0.609±0.000 - 0.600±0.000

ing loss,coverage, average precision, micro-F1 and macro-F1
when the learned distance metric is incorporated with kNN and
Mlknn for multi-label prediction. On each data set, ten-fold
cross-validation is performed where the mean criterion value
as well as the standard deviation are recorded.3)

Given the experimental data set and evaluation criterion,
pairwise t-test at 0.05 significance level is conducted to show
whether the performance of Commu is significantly different to
the comparing approaches. Table 8 summarizes the win/tie/loss
counts between Commu and the comparing approaches in terms
of each evaluation criterion.

Overall, the following observations can be made based on the
reported experimental results:

• Across all evaluation metrics, kNN-Commu ranks 1st in
53.8% cases and ranks 2nd in 28.8% cases while Mlknn-
Commu ranks 1st in 52.5% cases and ranks 2nd in 31.3%

cases. It is impressive that whenever kNN or Mlknn are
utilized to make multi-label prediction, their counterpart
versions (kNN-Commu or Mlknn-Commu) always achieve
significantly better or at least comparable performance af-
ter employing the learned distance metric (Table 8).
• As shown in Table 8, compared to Lm, Commu can lead

to superior performance in 64.0% cases for kNN (kNN-
Commu against kNN-Lm) and 49.3% cases for Mlknn
(Mlknn-Commu against Mlknn-Lm). Compared to Nje,
Commu can lead to superior performance in 58.0% cases
for kNN (kNN-Commu against kNN-Nje) and 76.0% cases
for Mlknn (Mlknn-Commu against Mlknn-Nje).
• As shown in Tables 3–7, the performance advantage

of Commu is more pronounced than the comparing ap-
proaches on data sets with larger number of class la-
bels (i.e., corel5k, rcv1-subset1, corel16k,
eurlex-dc and eurlex-sm). This desirable merit

3) One exception is the eurlex dataset from extreme multi-label classification repository, where the predefined training and testing split are used for performance
evaluation
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Table 5 Predictive performance (mean ± std. deviation) of each distance metric learning approach in terms of average precision

kNN- Mlknn-
Data set

Commu Lm Nje Original Commu Lm Nje Original

genbase 0.991±0.007 0.841±0.067 0.921±0.015 0.986±0.010 0.988±0.011 0.983±0.008 0.933±0.016 0.984±0.012
Society 0.544±0.016 0.555±0.026 0.131±0.013 0.539±0.018 0.584±0.011 0.527±0.031 0.148±0.020 0.586±0.014
Social 0.120±0.015 0.662±0.025 0.068±0.005 0.664±0.027 0.705±0.018 0.674±0.017 0.139±0.117 0.706±0.021
Reference 0.579±0.032 0.592±0.024 0.078±0.012 0.435±0.025 0.659±0.040 0.585±0.020 0.087±0.028 0.627±0.031
Health 0.588±0.066 0.703±0.041 0.106±0.010 0.474±0.031 0.690±0.046 0.726±0.036 0.090±0.013 0.659±0.040
Education 0.516±0.022 0.514±0.020 0.124±0.009 0.520±0.027 0.571±0.015 0.534±0.034 0.126±0.013 0.572±0.019
Computers 0.625±0.030 0.600±0.027 0.092±0.006 0.613±0.024 0.653±0.020 0.643±0.022 0.102±0.035 0.652±0.017
Business 0.872±0.016 0.846±0.019 0.088±0.005 0.864±0.018 0.882±0.015 0.870±0.017 0.077±0.008 0.878±0.019
Arts 0.473±0.033 0.526±0.028 0.173±0.016 0.422±0.029 0.533±0.018 0.494±0.026 0.157±0.017 0.513±0.029
yeast 0.752±0.009 0.659±0.011 0.381±0.012 0.746±0.011 0.754±0.010 0.746±0.010 0.457±0.051 0.753±0.009
corel5k 0.251±0.011 0.191±0.012 - 0.154±0.013 0.303±0.013 0.288±0.009 - 0.252±0.013
rcv1-subset1 0.522±0.028 0.527±0.017 - 0.488±0.014 0.554±0.017 0.449±0.011 - 0.539±0.013
corel16k 0.212±0.004 0.185±0.002 - 0.184±0.006 0.293±0.004 0.303±0.002 - 0.279±0.002
eurlex-dc 0.440±0.027 0.310±0.018 - 0.440±0.027 0.464±0.027 0.371±0.018 - 0.464±0.027
eurlex-sm 0.609±0.004 0.510±0.006 - 0.609±0.004 0.652±0.004 0.560±0.003 - 0.652±0.004
eurlex 0.023±0.000 0.030±0.000 - 0.011±0.000 0.032±0.000 0.040±0.000 - 0.033±0.000

Table 6 Predictive performance (mean ± std. deviation) of each distance metric learning approach in terms of micro-F1

kNN- Mlknn-
Data set

Commu Lm Nje Original Commu Lm Nje Original

genbase 0.957±0.020 0.848±0.066 0.806±0.245 0.950±0.025 0.942±0.029 0.951±0.030 0.843±0.125 0.945±0.031
Society 0.377±0.011 0.404±0.032 0.415±0.028 0.381±0.019 0.318±0.020 0.345±0.020 0.410±0.020 0.312±0.020
Social 0.506±0.035 0.556±0.032 0.587±0.026 0.507±0.031 0.517±0.020 0.502±0.019 0.583±0.135 0.519±0.018
Reference 0.373±0.041 0.493±0.028 0.530±0.033 0.295±0.032 0.388±0.021 0.441±0.015 0.514±0.015 0.385±0.011
Health 0.451±0.058 0.588±0.043 0.625±0.029 0.367±0.033 0.439±0.004 0.562±0.011 0.618±0.020 0.388±0.004
Education 0.367±0.025 0.384±0.027 0.430±0.027 0.376±0.031 0.252±0.016 0.355±0.008 0.426±0.135 0.243±0.010
Computers 0.470±0.020 0.475±0.032 0.471±0.026 0.453±0.020 0.406±0.002 0.474±0.005 0.478±0.015 0.376±0.001
Business 0.715±0.018 0.726±0.021 0.339±0.307 0.674±0.017 0.696±0.029 0.718±0.024 0.603±0.135 0.693±0.029
Arts 0.322±0.031 0.376±0.027 0.413±0.040 0.273±0.032 0.195±0.004 0.304±0.008 0.404±0.015 0.143±0.004
yeast 0.610±0.013 0.572±0.016 0.408±0.176 0.641±0.012 0.634±0.011 0.623±0.015 0.417±0.174 0.635±0.011
corel5k 0.229±0.008 0.193±0.020 - 0.122±0.015 0.067±0.012 0.113±0.011 - 0.030±0.007
rcv1-subset1 0.434±0.024 0.446±0.016 - 0.398±0.009 0.301±0.018 0.321±0.011 - 0.285±0.012
corel16k 0.168±0.005 0.047±0.002 - 0.021±0.006 0.015±0.003 0.046±0.007 - 0.009±0.002
eurlex-dc 0.363±0.027 0.287±0.023 - 0.363±0.027 0.324±0.032 0.254±0.030 - 0.324±0.032
eurlex-sm 0.537±0.004 0.476±0.005 - 0.506±0.003 0.554±0.004 0.475±0.007 - 0.554±0.004
eurlex 0.009±0.000 0.002±0.000 - 0.002±0.000 0.002±0.000 0.013±0.000 - 0.002±0.000

Table 7 Predictive performance (mean ± std. deviation) of each distance metric learning approach in terms of macro-F1

kNN- Mlknn-
Data set

Commu Lm Nje Original Commu Lm Nje Original

genbase 0.896±0.055 0.848±0.069 0.439±0.156 0.864±0.062 0.820±0.081 0.836±0.078 0.485±0.123 0.836±0.083
Society 0.255±0.040 0.150±0.024 0.131±0.014 0.268±0.031 0.200±0.085 0.266±0.033 0.110±0.012 0.203±0.034
Social 0.403±0.066 0.127±0.028 0.089±0.014 0.401±0.068 0.384±0.085 0.365±0.056 0.082±0.017 0.382±0.061
Reference 0.538±0.052 0.133±0.020 0.134±0.017 0.475±0.061 0.486±0.038 0.500±0.058 0.122±0.017 0.466±0.067
Health 0.546±0.049 0.209±0.039 0.216±0.026 0.536±0.042 0.520±0.014 0.565±0.048 0.201±0.025 0.486±0.038
Education 0.454±0.052 0.108±0.013 0.133±0.018 0.461±0.052 0.408±0.030 0.448±0.062 0.118±0.015 0.409±0.067
Computers 0.347±0.052 0.137±0.022 0.095±0.015 0.327±0.051 0.291±0.002 0.339±0.044 0.095±0.011 0.294±0.043
Business 0.376±0.042 0.167±0.023 0.094±0.027 0.398±0.044 0.374±0.025 0.402±0.050 0.135±0.018 0.364±0.051
Arts 0.255±0.038 0.150±0.018 0.157±0.021 0.240±0.035 0.187±0.013 0.233±0.039 0.146±0.020 0.173±0.045
yeast 0.473±0.014 0.394±0.022 0.438±0.024 0.468±0.017 0.381±0.024 0.355±0.031 0.429±0.019 0.381±0.023
corel5k 0.237±0.009 0.339±0.014 - 0.325±0.013 0.328±0.014 0.329±0.014 - 0.321±0.013
rcv1-subset1 0.307±0.030 0.324±0.032 - 0.286±0.020 0.213±0.028 0.223±0.020 - 0.205±0.022
corel16k 0.055±0.003 0.017±0.002 - 0.005±0.001 0.011±0.002 0.022±0.002 - 0.008±0.002
eurlex-dc 0.325±0.025 0.278±0.027 - 0.325±0.025 0.296±0.025 0.268±0.023 - 0.296±0.025
eurlex-sm 0.252±0.012 0.205±0.011 - 0.182±0.009 0.224±0.013 0.145±0.009 - 0.224±0.013
eurlex 8.784e-4±0.000 2.993e4±0.000 - 2.914e-4±0.000 3.400e-4±0.000 0.002±0.000 - 1.831e-4±0.000
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Table 8 Win/tie/loss counts (pairwise t-test at 0.05 significance level) between Commu and the comparing approaches

kNN-Commu against Mlknn-Commu against
kNN-Lm kNN-Nje kNN-Original Mlknn-Lm Mlknn-Nje Mlknn-Original

ranking loss 14/1/0 1/2/7 5/10/0 12/3/0 8/2/0 3/12/0
coverage 9/6/0 7/3/0 11/4/0 12/3/0 8/2/0 11/4/0
average precision 7/5/3 10/0/0 6/9/0 9/5/1 10/0/0 3/12/0
micro-F1 6/4/5 2/2/6 7/8/0 2/4/9 3/7/0 5/10/0
macro-F1 12/3/0 9/1/0 2/13/0 2/9/4 9/1/0 1/14/0

In Total 48/19/8 29/8/13 31/44/0 37/24/14 38/12/0 23/52/0

might be attributed to the compositional nature of the dis-
tance metric employed by Commu, where the L1 regular-
ization term ||w||1 in Eq.(6) can help identify component
bases whose corresponding class labels do bring benefi-
cial information for distance metric learning.
• As shown in Tables 3–7, the performance of kNN-Nje

and Mlknn-Nje are not reported on data sets at large
scale (S| � 5, 000) due to its quadratic training complex-
ity w.r.t. the number of training examples. Specifically,
let m, q and d denote the number of training examples,
number of class labels and number of features, the train-
ing complexities for Commu, Lm and Nje correspond to
O((d + q2)m), O(q3 + mdq2) and O(m2q + qdm log(m))
respectively. For Lm, the main computation is the SVD
operation of the PSD matrix in each iteration. For Nje,
firstly the target vectors are solved at O(m2t) (t is the di-
mension of the target vector which is unfixed) and then
the embedder is learned at O(tdmlog(m)). For Commu, to
achieve an ε-solution, the number of iterations needed by
FISTA update is O( 1√

ε
). At each iteration, projections onto

the positive semi-definite cone are performed to solve the
coefficient vector w. Therefore, the training stage com-
plexity for each iteration is O((d+q2)mkk̃) with k, k̃ being
the values specified in Eq.(5).

4.3 Further analysis
4.3.1 Effectiveness of component bases generation
We further investigate the effectiveness of Commu’s strategy in
generating component bases by encoding discriminative infor-
mation in label space (Eq.(2)). Specifically, we derive a vari-
ant of Commu (Commu-Pca) by setting the component bases
to the principal components yielded with top q eigenvalues by
conducting Pca over the training instances. Figure 2 compares
the performance of Commu and Commu-Pca based on kNN and
Mlknn in terms of ranking loss, coverage, average precision,
macro-F1 and micro-F1 on five data sets, which clearly show
the benefits of exploiting discriminative information in gener-
ating component bases for Commu.

4.3.2 Parameter sensitivity
The parameter α in Eq.(3) represents the relative contributions
from label space and instance space in calculating the semantic
similarity. In Fig. 3, the performance of Commu (in terms of av-
erage precision) on three data sets are illustrated as the parame-
ter α increases from 0 to 1 with stepsize 0.1 (left column: kNN;
right column: Mlknn). It is obvious that the parameter setting
of α has significant influence on classification performance of
the Commu approach. Therefore, the value of α is chosen among
{0.1, 0.2, . . . , 1} with cross-validation on the training set in the
experimental studies.

4.3.3 Training time
Table 9 reports the training time of comparing algorithms on
five data sets. For Commu, the cost of training time is generally
higher than Original and comparable to Lm and Nje.

5 Related works
In Section 4, the performance of Commu is compared against
Lm and Njewhich to the best of our knowledge are the only two
available works on multi-label metric learning. Lm [10] adapts
the maximum margin output coding formulation [12] for dis-
tance metric learning, where the encoding projections are opti-
mized by maximizing the margin of embedded feature vectors
and labeling vectors. Nje [11] learns the distance metric by pre-
serving pairwise similarity of labeling vectors in the embedded
feature space, where the Jaccard distance is utilized for simi-
larity measurement. Other than the single instance representa-
tion, there have been some works on distance metric learning
for multi-instance multi-label data [18, 30, 31].

Exploitation of label correlations plays a key role for the suc-
cess of multi-label classification, where numerous multi-label
learning techniques have been proposed by considering differ-
ent orders of label correlations [1, 2, 32]. Full-order label cor-
relations are considered by Lm via linear projection of the la-
beling vector, while first-order label correlations are considered
by Nje via bitwise Jaccard distance measurement. For the pro-
posed Commu approach, label correlations are brought into the
compositional structure of distance metric with label-dependent

Table 9 Training time of comparing algorithms on five data sets (in seconds)

kNN- Mlknn-
Training time

Commu Lm Nje Original Commu Lm Nje Original

Arts 960.583 106.042 383.512 18.069 1005.790 176.966 347.050 84.309
Business 650.475 123.689 377.070 17.122 690.933 188.033 378.474 76.942
Computers 2699.429 211.573 435.263 36.847 2872.315 478.411 646.539 298.919
yeast 93.605 50.947 364.206 5.519 102.203 71.077 365.362 18.366
genbase 409.308 16.15 182.503 9.158 484.188 130.709 295.765 122.345
corel16k 25341.622 23128.438 - 18585.445 16032.433 8695.786 - 4111.488
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Fig. 2 Performance of Commu and Commu-Pca based on kNN and Mlknn in terms of ranking loss, coverage, average precision, macro-F1 and
micro-F1 (top to bottom) on five data sets. (a) Performance of Commu (blue bar) and Commu-Pca (brown bar) based on kNN; (b) performance
of Commu (blue bar) and Commu-Pca (brown bar) based on Mlknn

component bases.
Distance metric learning plays an important role in real-

world applications (such as Person Re-ID [33]) in measuring
similarity between objects. Generally, distance metric learning
can be viewed as feature manipulation techniques where the
embedded feature vector VTx naturally follows from the map-
ping induced by the learned PSD matrix M = VVT. Corre-
spondingly, dimensionality reduction serves as the most pop-
ular techniques for manipulating multi-label features [34, 35].
There are some other strategies to manipulate the feature
space for multi-label learning such as label-specific features
[19,20,36,37], meta-level features [38,39] and multi-view fea-
tures [40–43].

6 Conclusion
In this paper, the problem of distance metric learning for multi-

label classification is studied. A novel multi-label metric learn-
ing approach named Commu is proposed, which assumes com-
positional representation for distance metric. Specifically, com-
ponent bases as well as triplet constraints are generated by ex-
ploiting semantic similarity in label space, and the resulting op-
timization problem is iteratively solved with linear complexity
w.r.t. the number of training examples. Theoretical analysis as
well as extensive experiments clearly validate the effectiveness
of the proposed compositional distance metric for multi-label
classification.

In the future, it is interesting to leverage auxiliary informa-
tion such as domain knowledge [44] to facilitate multi-label
distance metric learning. Furthermore, it is worthwhile to in-
vestigate strategies of combining distance metric learning with
other popular mechanisms such as feature selection [45–47] for
multi-label classification.
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Fig. 3 Performance of Commu (in terms of average precision) changes with varying value of parameter α based on kNN (left column) and
Mlknn (right column) on three data sets
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Appendix
Given a multi-label dataset S = {z = (xi, yi)}ni=1 drawn i.i.d.
from a distribution P over the labelled spaceZ = X×Y, where
the label vector yi simultaneously contains multiple labels. As-
sume that ‖x‖ � R (for some convenient norm), ∀x ∈ X. Differ-
ent from the single-label setting, Commu defines the multi-label
semantic similarity matrix to construct the triplet (z, z′, z′′),
where y is similar to y′ and dissimilar to y′′. Let SR be the
set of all admissible triplets built from instances in S.

Let L(h, z, z′, z′′) be the loss suffered by some hypothesis h
on triplet (z, z′, z′′) with the convention that L returns 0 for non-
admissible triplets. Assume L to be uniformly upper-bounded
by a constant U. The empirical loss RSR

emp(h) of h on SR is de-
fined as

RSR
emp(h) =

1
|SR|

∑

(z,z′,z′′)∈SR

L(h, z, z′, z′′), (9)

and its expected loss R(h) over distribution P as

R(h) = Ez,z′,z′′∼PL(h, z, z′, z′′). (9)

The goal of the theoretical analysis is to bound the deviation
between R(ASR) and RSR

emp(ASR ), where ASR is the hypothesis
learned by algorithmA on SR.
Theoretical basis
To derive the generalization bounds of Commu, we use the re-
cent framework of algorithmic robustness in metric learning
[16, 27]. Algorithmic robustness is the ability of an algorithm
to perform “similarly” on a training example and on a test ex-
ample that are “close”. The proximity of points is based on a
partitioning of the space Z: two examples are close to each
other if they lie in the same region. The partition is based on
the notion of covering number.

Definition 1 (Covering number) For a metric space (M, ρ)
and ν ⊂ M, we say that ν̂ ⊂ ν is a γ-cover of ν if ∀t ∈ ν, ∃ t̂ ∈ ν̂

such that ρ(t, t̂) � γ. The γ-covering number of ν is

N(γ,X, ρ) = min {|ν̂| : ν̂ is a γ − cover o f ν} .
In particular, when X is compact, N(γ,X, ρ)is finite, leading
to a finite cover. Then,Z can be partitioned into |Y|N(γ,X, ρ)
subsets such that if two examples z = (x, y) and z′ = (x′, y′)
belong to the same subset, then y = y′ and ρ(x, x′) � γ. The
definition of robustness for tripletwise loss functions is as fol-
lows.

Definition 2 (Robustness for metric learning) [27] An algo-
rithmA is (N, ε(·)) robust for N ∈ N and ε(·) : (Z ×Z)n → R
ifZ can be partitioned into N disjoints sets, denoted by {Qi}Ni=1,
such that the following holds for all S ∈ Zn: ∀(z1, z2, z3) ∈
SR,∀z, z′, z′′ ∈ Z,∀i, j, k ∈ [N] : i f z1, z ∈ Qi, z2, z′ ∈
Qi, z3, z′′ ∈ Qi then

∣∣∣L(ASR , z1, z2, z3) − L(ASR , z, z
′, z′′)

∣∣∣ � ε(SR),

whereASR is the hypothesis learned byA on SR.
N and ε(·) quantify the robustness of the algorithm and de-

pend on the training data. The work [27] showed that a metric
learning algorithm that satisfies Definition 2 has the following
generalization guarantees.

Theorem 2 If a learning algorithm A is (N, ε(·))–robust
and the training data consists of the triplets SR obtained from a
sample S generated by n i.i.d draws from P, then for any δ > 0,
with probability at least 1 − δ we have:

∣∣∣L(ASR , z1, z2, z3) − L(ASR , z, z
′, z′′)

∣∣∣ � ε(SR) +

3U

√
2N ln 2 + 2 ln 1

δ

n
.

Additionally, as shown in [27], the following theorem, which
basically says that if a metric learning algorithm has approxi-
mately the same loss for triplets that are close to each other and
then it is robust, can be used to determine the robustness of the
algorithm more conveniently.

Theorem 3 Fix γ > 0 and a metric ρ of Z. Suppose that
∀z1, z2, z3, z, z′, z′′ : (z1, z2, z3) ∈ SR, ρ(z1, z) � γ, ρ(z2, z′) �
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γ, ρ(z3, z′′) � γ,A satisfies
∣∣∣L(ASR , z1, z2, z3) − L(ASR , z, z

′, z′′)
∣∣∣ � ε(SR),

and N( γ2 ,Z, ρ) < ∞. Then the algorithm A is
(N( γ2 ,Z, ρ), ε(SR))-robust.
Generalization bounds for Commu
To derive the generalization bound of Commu, the main work is
to prove its robustness, which contains the computation for N
and ε(SR).

The loss function of Commu is defined as:

L(w, z, z′, z′′) =
[
Δ(y′, y′′) + dw(x, x′) − dw(x, x′′)

]
+ .

Let w∗ be the optimal solution to Commu. By optimality of
w∗ we have:

L(w∗, z, z′, z′′) +
1
C
‖w∗‖1 � L(0, z, z′, z′′) +

1
C
‖0‖1 =

Δ(y′, y′′) = y′Ty′′ − y′TGy′′,

where the second item y′TGy′′ � θ because of the dissimilarity
between y′ and y′′. Let Δ0 = y′Ty′′, thusΔ0−θ � Δ(y′, y′′) � Δ0

and ‖w∗‖1 � Δ0C.

M∗ =
∑K

i=1 w∗i bibT
i is the corresponding metric. The norm

of the basis element bi is bounded by 1. Based on Holder’s
inequality and the bound on w∗ and b’s, the bound for M∗ is
derived.

‖M∗‖1 =
∥∥∥∥∥∥∥

K∑

i=1

w∗i bibT
i

∥∥∥∥∥∥∥
1

=

∥∥∥∥∥∥∥

K∑

i:wi�0

w∗i bibT
i

∥∥∥∥∥∥∥
1

�

‖w∗‖1
∑

i:wi�0

‖bi‖∞ ‖bi‖∞ � K∗Δ0C,

where K∗ � K is the number of nonzero entries in w∗.
According to Definition 1, Z can be partitioned into

2qN(γ,X, ρ) subsets, where q is the size of label vector. Commu
constructs the triplet (z, z′, z′′) by the multi-label semantic sim-
ilarity matrix. For z1, z2, z3, z′1, z

′
2, z
′′
3 ∈ Z, if y1 is similar to y′1,∥∥∥x1 − x′1

∥∥∥
1
� γ, y2 is similar to y′2,

∥∥∥x2 − x′2
∥∥∥

1
� γ, y3 is similar

to y′3,
∥∥∥x3 − x′3

∥∥∥
1
� γ, then (z1, z2, z3) and (z′1, z

′
2, z
′′
3 ) are either

both admissible or non-admissible triplets.
In the non-admissible case, it can be seen from definition

that their respective loss is 0 and so is the deviation between
the losses. In the admissible case we have the above result,

∣∣∣
[
Δ(y2, y3) + d∗w(x1, x2) − d∗w(x1, x3)

]
+ −
[
Δ(y′2, y

′
3) + d∗w(x′1, x

′
2) − d∗w(x′1, x

′
3)
]
+

∣∣∣

�
∣∣∣Δ(y2, y3) − Δ(y′2, y

′
3) + d∗w(x1, x2) − d∗w(x′1, x

′
2) + d∗w(x′1, x

′
3) − d∗w(x1, x3)

∣∣∣

�
∣∣∣Δ(y2, y3) − Δ(y′2, y

′
3)
∣∣∣+

∣∣∣(x1 − x2)TM∗(x1 − x2) + (x1 − x2)TM∗(x′1 − x′2) − (x1 − x2)TM∗(x′1 − x′2) − (x′1 − x′2)TM∗(x′1 − x′2)
∣∣∣+

∣∣∣(x′1 − x′3)TM∗(x′1 − x′3) − (x′1 − x′3)TM∗(x1 − x3) + (x′1 − x′3)TM∗(x1 − x3) − (x1 − x3)TM∗(x1 − x3)
∣∣∣

=
∣∣∣Δ(y2, y3) − Δ(y′2, y

′
3)
∣∣∣ +
∣∣∣(x1 − x2)TM∗(x1 − x2 − (x′1 − x′2)) + (x1 − x2 − (x′1 − x′2))TM∗(x′1 − x′2)

∣∣∣+
∣∣∣(x′1 − x′3)TM∗(x′1 − x′3 − (x1 − x3)) + (x′1 − x′3 − (x1 − x3))TM∗(x1 − x3)

∣∣∣

�
∣∣∣Δ(y2, y3) − Δ(y′2, y

′
3)
∣∣∣ +
∣∣∣(x1 − x2)TM∗(x1 − x′1)

∣∣∣ +
∣∣∣(x1 − x2)TM∗(x′2 − x2)

∣∣∣+
∣∣∣(x1 − x′1)TM∗(x′1 − x′2)

∣∣∣ +
∣∣∣(x′2 − x2)TM∗(x′1 − x′2)

∣∣∣ +
∣∣∣(x′1 − x′3)TM∗(x′1 − x1)

∣∣∣+
∣∣∣(x′1 − x′3)TM∗(x3 − x′3)

∣∣∣ +
∣∣∣(x′1 − x1)TM∗(x1 − x3)

∣∣∣ +
∣∣∣(x3 − x′3)TM∗(x1 − x3)

∣∣∣

�
∣∣∣Δ(y2, y3) − Δ(y′2, y

′
3)
∣∣∣ +
∥∥∥x1 − x2

∥∥∥∞
∥∥∥M∗
∥∥∥

1

∥∥∥x1 − x′1
∥∥∥

1
+
∥∥∥x1 − x2

∥∥∥∞
∥∥∥M∗
∥∥∥

1

∥∥∥x′2 − x2

∥∥∥
1
+

∥∥∥x1 − x′1
∥∥∥

1

∥∥∥M∗
∥∥∥

1

∥∥∥x′1 − x′2
∥∥∥∞ +

∥∥∥x′2 − x2

∥∥∥
1

∥∥∥M∗
∥∥∥

1

∥∥∥x′1 − x′2
∥∥∥∞ +

∥∥∥x′1 − x′3
∥∥∥∞
∥∥∥M∗
∥∥∥

1

∥∥∥x′1 − x1

∥∥∥
1
+

∥∥∥x′1 − x′3
∥∥∥∞
∥∥∥M∗
∥∥∥

1

∥∥∥x3 − x′3
∥∥∥

1
+
∥∥∥x3 − x′3

∥∥∥
1

∥∥∥M∗
∥∥∥

1

∥∥∥x1 − x3

∥∥∥∞ +
∥∥∥x′1 − x1

∥∥∥
1

∥∥∥M∗
∥∥∥

1

∥∥∥x1 − x3

∥∥∥∞
�16γRK∗Δ0C + θ

by the property that the hinge loss is 1-Lipschitz (the first �),
Holder’s inequality(the 2nd–4th �) and

∥∥∥xi − x j

∥∥∥∞ � 2R (‖x‖ �
R,∀x ∈ X) ,

∣∣∣Δ(y2, y3) − Δ(y′2, y
′
3)
∣∣∣ � θ (Δ0−θ � Δ(y′, y′′) � Δ0)

in the last �. Thus Commu is (2qN(γ,X, ‖·‖1), 16γRK∗Δ0C+θ)-
robust and the generalization bound follows.

∣∣∣R(ASR) − RSR
emp(ASR )

∣∣∣ � 16γRK∗Δ0C + θ +

3U

√
2q+1N(γ,X, ‖·‖1) ln 2 + 2 ln 1

δ

n
.
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