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Abstract

We present a compositional model for video event detec-

tion. A video is modeled using a collection of both global

and segment-level features and kernel functions are em-

ployed for similarity comparisons. The locations of salient,

discriminative video segments are treated as a latent vari-

able, allowing the model to explicitly ignore portions of the

video that are unimportant for classification. A novel, mul-

tiple kernel learning (MKL) latent support vector machine

(SVM) is defined, that is used to combine and re-weight

multiple feature types in a principled fashion while simul-

taneously operating within the latent variable framework.

The compositional nature of the proposed model allows it

to respond directly to the challenges of temporal clutter and

intra-class variation, which are prevalent in unconstrained

internet videos. Experimental results on the TRECVID Mul-

timedia Event Detection 2011 (MED11) dataset demon-

strate the efficacy of the method.

1. Introduction

Multimedia event detection in unconstrained video col-

lections is a challenging problem. Event categories are di-

verse and exhibit large intra-class variation. Additionally,

videos may be composed of a small number of important

segments, while the remaining portions of the video are in-

effective for classification.

Consider the example video from the board trick cate-

gory in Fig. 1. This video contains segments focusing on

the snowboard, the person jumping, is shot in an outdoor,

ski-resort scene, and has fast-paced theme music. Together,

all of these pieces of evidence can lead an algorithm to de-

clare that this video is from the relevant category.
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Figure 1: A test video can be described using pieces of

similar training videos. Similarity might be defined from

different perspectives. In this example, parts of the test

video from the board trick event are similar to three dif-

ferent videos in terms of motion and sound (green), pure

motion (purple) or motion and texture (yellow).

Building a model that can correctly categorize this type

of video is challenging. Arguably, such a model must rea-

son about which temporal segments within the video con-

tain relevant evidence. Additionally, grouping these seg-

ments into different mid-level categories, or “scene types”

may be beneficial. For the board trick event, a particular

video may involve a surfboard, skateboard, or snowboard

trick, but is unlikely to include all three. Grouping segments

into their relevant scene types can improve recognition. Fi-

nally, the model must utilize a variety of different low-level

features in order to make such a decision.

In this paper we present a novel, compositional model

for video event detection. Our model uses a latent variable

framework to localize the discriminative temporal segments

of a video. These temporal segments are matched to training

segments of the same scene type via kernels that combine

information from several feature modalities. The test video

is explained as a composition of related training videos.

The main contribution of this paper is the theoretical de-

velopment of a formulation and learning algorithm for this
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type of model. The proposed compositional method has two

key novel aspects: (1) a weakly supervised method for lo-

calizing only the most salient evidence for classification in

a video sequence. This method does not require manual

marking of the salient segments – they are automatically

extracted and labeled by scene type. (2) A novel multiple

kernel learning algorithm with structured latent variables

that permits the principled combination of multiple differ-

ent low-level features in a single integrated framework.

2. Previous Work

Event detection in unconstrained internet videos is an ac-

tive area of research. We consider the TRECVID MED11

dataset – a large, diverse, and challenging video collec-

tion. Among the top ranking methods on this dataset is

the work of Natarajan et al. [7], which performs a princi-

pled combination of many low-level features using a global,

video-level representation. It is arguable that engineering

a combination of many complementary low-level features

is necessary for excellent performance on this dataset, and

the method we propose can be used with a multitude of

features in this manner. Furthermore, our multiple kernel

learning algorithm offers an extension that allows for such

feature combination in conjunction with latent SVMs. With

this novel approach, more detailed comparisons between la-

tently selected video segments can be considered.

Other video classification work includes Niebles et

al. [8], who developed a related model for human action

recognition, but used a fixed, single temporal ordering of

key poses around anchor points – which may break down

in internet videos due to temporal clutter. Tang et al. [12]

extended this line of work to consider temporal segmenta-

tion via a variant of an HMM. Cao et al. [1] considered a

“scene aligned pooling” feature representation to capture

the different scenes present in a single video. In contrast

to the above, our method focuses on intra-class variation

and temporal scatter of an event by using latent variables

to compose a test video in a kernelized framework. In di-

rect comparisons, we show empirically that our approach

outperforms these previous methods.

The approach we take to modeling internet videos is

weakly supervised – only a video-level category label is

provided during training. Segments and their associated

scene types that compose a video are learned in an unsu-

pervised fashion. Izadinia and Shah [4] developed a sim-

ilar method, but with manual annotations on the training

data – extending the image-attribute method of Wang and

Mori [17] to the video domain.

Technically, the proposed approach is most closely re-

lated to [18, 20, 3], but differentiates itself by presenting

a novel multiple kernel learning approach that accommo-

dates structured latent variables. In comparison, Wu and

Jia [18] and Yang et al. [20] developed kernelized variants

of the latent support vector machine [2, 21]. However, the

algorithms for learning kernelized latent SVMs in these pa-

pers have two drawbacks: they are limited to cases where

one can enumerate the set of latent variables and they are

restricted to a single kernel or a set of summed kernels.

Finally, Gu et al.[3] consider low level concept detection

(e.g. flag, car, building) using a bag-instance relationship

whereas ours examines high-level event recognition.

Kernelized classifiers often offer superior performance.

A body of work has aimed at providing efficient training

and evaluation with kernelized classifiers via algorithmic

optimizations or additive linear approximations [15, 6, 10].

This line of work is promising, but has yet to be extended

to latent variable models, as is done here.

3. Compositional Models for Video Retrieval

We are interested in the classification of high-level com-

plex events in unconstrained internet videos. Two signif-

icant challenges in this domain are temporal clutter (i.e.,

the evidence of a complex event can occur in small, iso-

lated video segments) and intra-class variation. In this pa-

per, we target both the intra-class variation and temporal

clutter challenges by leveraging a compositional model.

Early successes on the TRECVID MED11 dataset have

often deferred to an approach where the output of an array

of simple classifiers operating on a range of low-level fea-

tures are combined [7]. These approaches have tended to

employ simple, bag of words (BoW) representations with

kernelized SVM classifiers. In such systems, the standard

kernelized SVM can be thought of as a form of intelligent

template matching, whereby a test video is compared di-

rectly against the set of support vectors. Such approaches

can perform effective matching on global video-level repre-

sentations, but are not well-suited for segment-level analy-

sis. By introducing latent variables in our proposed method,

kernelized latent SVMs are constructed that select particu-

larly salient video segments. Thus, this intelligent template

matching can now be completed not only at the video level,

but also at the segment level. This approach provides our

compositional model with the additional flexibility to mix

and match segments from the pool of training videos when

evaluating a test video, directly addressing the challenges of

clutter and intra-class variation.

Additionally, to attain state-of-the-art performance on

TRECVID MED11, it appears that multiple feature types

must be combined. We further extend our model to combine

multiple kernel learning with the kernelized latent SVM

framework, adding the ability to weight feature types based

on their relative importance.

3.1. Linear Model

To begin the exposition we describe the linear version

of our model, which consists of two parts. The first

part is a global model that captures the overall theme or

“subcategory” of the video. It is assumed that each event

category contains several subcategories (e.g., a wedding
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Figure 2: Depiction of our proposed model. The global

model captures the subcategories of an event, and the scene

model represents the different scene types observed in the

category. The presence of a subcategory or scene type is

represented using binary variables (bc, zs). The temporal

position of scene types in a video is denoted by ts.

ceremony at a church, house, or park). Further, it is assumed

that a particular video corresponds to only one subcategory.

The second part of our formulation is a “scene type model”

that represents an event by a set of segment-level features.

This part of the model is included to identify and localize

discriminative segments of interest in a video. The model is

depicted graphically in Fig. 2.

We consider eight second segments that correspond to

scenes observed within the event category (e.g., for wed-

ding ceremony videos, outdoor park scenes or people danc-

ing, cutting a cake, or kissing). A weakly supervised setting

is considered, meaning that we are only given a binary event

label for each video that indicates the presence of a complex

event in the sequence; the subcategory labels, scene type la-

bels, and temporal locations of scene types are not provided.

These are modeled as hidden variables and we employ a la-

tent max-margin approach [2] to infer them during training.

Concretely, assume we are given a video sequence x, and

want to classify it into an event category. The variables C

and S denote the number of subcategories and scene types

for an event, respectively. The presence of a subcategory

c ∈ {1, 2, . . . , C} is defined using the binary variable bc;

similarly, the presence of a scene type s ∈ {1, 2, . . . , S} is

denoted using the binary variable zs.

We define φg(x), a global feature extracted from the

whole sequence, and φl(x, t) a segment-level feature ex-

tracted from a temporal window of fixed size centered at

time t in x. Multiple features are incorporated to improve

accuracy: G global and L local (segment-level) features.

Together, the linear version of our model is defined as:

fw(x,b,h) =

C
∑

c=1

G
∑

g=1

w
T
cgφg(x)bc +

S
∑

s=1

L
∑

l=1

w
T
slφl(x, ts)zs (1)

where wcg is the learned weight vector for the cth subcat-

egory model on the global feature φg(·), and wsl is the

weight vector for the sth scene type model defined on the

segment-level feature φl(·). Use of the same set of feature

types in the global and segment-level scales can be achieved

by setting G = L. However, more generally, our model sup-

ports the added flexibility of using different sets of features

for the two parts. For notational compactness, we represent

the pair (ts, zs) using hs for s ∈ {1, 2, ..., S}, and group

them in vector h = {h1, h2, ..., hS}. We similarly group

subcategory binary variables in b = {b1, b2, ..., bC}.

Note that the model in Eq. 1 assumes the temporal loca-

tion for the sth scene type is shared among all segment-level

features types – they are all extracted from the same tempo-

ral window in the sequence.

It is assumed that a sequence can belong to only one

global subcategory, but multiple scene types might be ob-

served in a sequence, corresponding to the various seg-

ments. Therefore, two hard constraints are imposed on the

selecting binary variables:
∑C

c=1
bc = 1, and

∑S

s=1
zs =

K, where K is a constant parameter.

The subcategory variables, bc, and scene model configu-

rations, hs, are latent variables, unobserved on both training

and testing data. Next, we develop a novel multiple kernel

learning approach for learning with these latent variables.

3.2. Multiple Kernel Latent SVM

Latent SVMs have been successfully used in many com-

puter vision tasks. They were originally proposed for linear

models [21, 2], where the similarity of two samples is mea-

sured using a simple dot product. Recently, LSVMs were

extended to kernelized versions [20, 18] resulting in signifi-

cant boosts in recognition accuracy. However, both [20, 18]

assumed simple models with few latent variables that could

be enumerated during inference. In our proposed model,

latent variables are defined in a structured framework such

that enumeration is not tractable.

The use of multiple complementary features can lead to

improved recognition accuracy. With multiple features, fu-

sion is a challenge because the importance of feature types

is variable. Multiple kernel learning is a standard approach

to address this challenge. A linear MKL SVM framework

(e.g., [16]) typically performs such fusion by linearly com-

bining a set of kernels K =
∑

i diKi, which corresponds

to re-scaling feature maps of the kernel, Ψi, by
√
di.

The linear model in Eq. 1 is also defined with respect to

multiple features. We require a training framework that can

accommodate both latent variables and feature re-scaling si-

multaneously. We propose a novel multiple kernel latent

SVM framework that extends standard MKL and can be

used to train models of the form proposed in this paper.
Consider a set {(x1, y1), (x2, y2), . . . , (xN , yN )} of

training videos where xi ∈ X is the ith video and yi ∈
{−1, 1} its label. Our goal is to learn a scoring func-
tion F : X → R that can be used to classify a video.
Similar to the standard latent SVM, the proposed multi-
ple kernel latent SVM (MKL-KLSVM1) operates upon a
set of base feature maps, Ψi(x,v), defined on a sample x
and its latent variables v ∈ V , where V is the set of all

1We use MKL-KLSVM for Multiple Kernel Latent SVM to prevent

confusion with Multiple Kernel Learning SVM (MKL SVM)
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possible latent variables. We define the scoring function

F (x) = maxv
∑I

i=1

√
diw

T
i Ψi(x,v) where di is the nor-

malizing factor for the ith base feature map. Training of the
MKL-KLSVM is then formulated as:

min
w,b,ξ≥0,d≥0

1

2

∑

i

w
T
i wi + ρ

∑

n

ξn +
λ

2

∑

i

d
2
i (2)

s.t. yn(max
v∈Vn

∑

i

√
diw

T
i Ψi(xn,v) + b) ≥ 1− ξn ∀n,

where λ is a regularizer on the kernel weights, di to prevent

them from diverging to infinity, and ρ is a trade-off param-

eter to penalize error on the training data. Note that our

multiple kernel latent SVM framework becomes a standard

latent SVM [2] if the kernel coefficients, di, are set to one

and will become a standard MKL classifier if the hidden

variables vn are observed.
The objective function in Eq. 2 is not convex; however,

convexity is attained if the latent variables for positive sam-
ples are available (semi-convexity of latent SVM [2]) and

if wi is replaced with
√
diwi. Here we limit the possible

latent variables of positive samples to a single configuration
Vn = {v∗

n
} ∀n : yn = 1, but allow negative samples to

consider all possible latent variables, Vn ∀n : yn = −1.
Given that the latent variable configuration has been speci-
fied, the max operator can be omitted from Eq. 2, yielding,

min
w,b,ξ≥0,d≥0

1

2

∑

i

wT
i wi

di
+ ρ

∑

n

ξn +
λ

2

∑

i

d
2
i (3)

s.t. yn(
∑

i

w
T
i Ψi(xn,v) + b) ≥ 1− ξn ∀n, ∀v ∈ Vn

The objective function in Eq. 3 addresses the problem of

learning parameters of a structural SVM with multiple ker-

nels. It has N−|V|+N+ constraints, where N− and N+ are

the number of negative and positive samples respectively. If

the latent variables are structured, |V| will be exponential.

The same problem of exponential constraints is confronted

with linear latent SVMs as well. Yu and Joachims [21] use

the cutting plane algorithm [13] to ameliorate this challenge

by mining hard constraints and iteratively optimizing with

and updating the current constraints.

We use the cutting plane algorithm to extract the set of

most violated constraints for negative samples during train-

ing, while the latent variables of positive videos remain

fixed. Here, Ṽn denotes the set of current active constraints

(instead of Vn, which represents all the constraints defined

over all possible latent variables). The set of active con-

straints, Ṽn, contains just a single constraint per positive

sample, but can have multiple constraints for negative sam-

ples, extracted using the cutting plane algorithm.

Given a current set of constraints, a method is required

for optimizing Eq. 3. By forming the Lagrangian of Eq. 3

and minimizing the objective function with respect to wi, ξ

and b, we obtain

wi = di
∑

n,v∈Ṽn

αn,vynΨi(xn,v) (4)

where αn,v is the Lagrangian variable for the nth sample
and the latent variables, v. Substituting wi in Eq. 3 yields

min
d≥0

max
α

L(α, d) =
∑

n,v

αn,v +
λ

2

∑

i

d
2
i (5)

−1

2

∑

i

di

⎡

⎣

∑

n,v′

∑

m,v′

αn,vαm,v′ynymΨi(xn,v)
TΨi(xm,v

′)

⎤

⎦

s.t. 0 ≤
∑

n,v

αn,v ≤ ρ,
∑

n,v

ynαn,v = 0,

which is an instance of the saddle point problem. In

Eq. 5, Ψi(xn,v)
TΨi(xm,v′) can be replaced with a ker-

nel k(xn,v, xm,v′) that measures the similarity of xn and

xm, given their latent configurations. If the kernel weights,

d, are fixed in Eq. 5, the inner maximization will be-

come the Quadratic Program (QP) of a kernelized struc-

tural SVM [13]. We solve the saddle point problem by it-

eratively updating d and subsequently performing QP op-

timization for α with a fixed d. The kernel weights can be

updated using a Newton descent step or the cutting plane ap-

proach [5]. Alternatively, the Lagrangian of Eq. 5 can be de-

rived to form the dual problem, which is differentiable and

can be optimized using the sequential minimal optimization

(SMO) algorithm [11], similar to [16].

Here, we elect to use the simple Newton descent ap-

proach. Given the optimum, α∗, from iteration τ , in itera-

tion τ+1 an update is computed as dτ+1 = dτ−μH−1∇L,

where μ = 1

τ
is the step size. Additionally, H = λI is the

Hessian matrix of L(α∗, d) (I is the identity matrix), and

∇Li(α
∗, d) = λdτi − 1

2
‖∑n,v ynα

∗
n,vΨi(xn,vn)‖2 is the

the derivative of L with respect to dτ . If a Newton descent

update results in a negative kernel weight, it is back pro-

jected using dτ+1

i = 0 if dτ+1

i < 0.

After updating the kernel weights, the inner quadratic

program in Eq. 5 is solved by assuming d is fixed. We it-

erate between these two steps until the optimization con-

verges and the objective function does not change. Given

the final α∗ and d∗ (which together represent w), we infer

the latent variables on the positive examples using v
∗
n =

argmaxv
∑

i w
T
i Ψi(xn,v). It has been shown for stan-

dard linear latent SVMs that iteratively updating the latent

variables of positive samples and learning the latent SVM

model parameters will minimize the objective function to a

local optimum [21, 2]. The same argument holds for multi-

ple kernel latent SVM. Algorithm 1 provides a summary of

our proposed training algorithm.

3.3. Kernelized Model

We use multiple kernel latent SVM to train the parame-
ters of our model defined in Eq. 1. However, we still must
define Ψi(x,v), the base features, and their corresponding
kernels that have an associated re-scaling coefficient di as in
Eq. 2. For the linear model defined in Eq. 1 global models
were defined on G global features while scene type models
employed L segment-level feature types. Specifically, the
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Algorithm 1 Training a multiple kernel latent SVM

Input : {(x1, y1), (x2, y2) . . . , (xN , yN )}
Output : α∗, d∗

Ṽn = {v0
n} ∀n : yn = 1, Ṽn = {} ∀n : yn = −1

repeat

repeat

Optimize Eq. 3 using iterative Newton descent and

QP given the current Ṽn

∀n : yn = -1 add the most violated constraint to Ṽn

until no change in objective function of Eq. 3

∀n : yn = 1 update Ṽn = argmaxv
∑

i w
T
i Ψi(xn,v)

until no change in Ṽn∀n : yn = 1

base features in Eq. 2, Ψi, are defined as
∑C

c=1
φg(x)bc for

the global features and
∑S

s=1
φl(x, ts)zs for the segment-

level features, which are derived from Eq. 1. Thus, G + L
kernels are defined as

Kg(x,b, x
′
,b

′) =

C
∑

c=1

bckg(x, x
′)b′c,

Kl(x,h, x
′
,h

′) =

S
∑

s=1

zskl(x, ts, x
′
, t

′
s)z

′
s. (6)

Given two videos, x and x′, Kg measures the kernelized

similarity of their global feature if they belong to the same

subcategory; otherwise, it assigns zero similarity. Analo-

gously, Kl measures the kernelized similarity of segment-

level feature l for sequences x and x′ at times ts and t′s for

the scene models that are present in both x and x′.
Given the kernels defined in Eq. 6, Alg. 1 is used to

learn α∗ and d∗, the parameters of the proposed kernel-
ized model. We can substitute these parameters in Eq. 1
to rewrite our scoring function for the kernelized model:

F (x) = max
b,h

[

∑

n,(hn,bn)

G
∑

g=1

α
∗
n,(hn,bn)ynd

∗
gKg(xn,bn, x,b)

+
∑

n,(hn,bn)

L
∑

l=1

α
∗
n,(hn,bn)ynd

∗
l Kl(xn,hn, x,h)

]

, (7)

where (hn,bn) ∈ Ṽn are latent variables defined for the

nth training sample.

The completed model in Eq. 7 is the full, proposed com-

positional model. Given the sequence, x, maximization

matches the sequence to the training videos by choosing

segment locations, h, and the subcategory model, b, that

are well-explained by the training videos. A test video, x,

is assigned a high score for an event category if it is similar

to its associated positive training videos using two criteria.

First, the global features from the test video should be sim-

ilar to the global features from training videos. Second, the

test video should contain segments that are similar to those

in the training set. Under this framework, the test video

can be composed using components from numerous train-

ing videos at both the global and segment scale. The learned

kernel coefficients, d, allow for the re-scaling of the similar-

ity measures on different parts of model. This rescaling can

give higher weights to important feature types while allow-

ing for the extraction of the most discriminative evidence

from the training set, using (hn,bn).

3.4. Implementation Details

Simple heuristics are used to initialize the latent vari-

ables for the positive samples. For the subcategory labels,

we cluster the concatenated global features of the positive

videos into C clusters. Subsequently, we assign a video to

the closest cluster. For the scene models, we similarly clus-

ter the concatenated segment-level features of all segments

from the positive training videos. Then, we choose the K

closest clusters to the video segments, and set the temporal

location of each, ts, to the closest segment.

Inference: For inferring latent variables, we first need

to compute the global and scene model scores for each sub-

category and scene type. For a general kernel type, there

is no explicit form of wi and direct comparison to support

vectors is necessary to compute the scores. Kernel compar-

ison can significantly slow down the inference. Given Ns

support vectors, considering Eq. 7, Eq. 6 and sparsity of bn
and z in hn, O(NsG + NsKLT ) kernel comparisons will

be required to compute the scores for a sequence. How-

ever, with additive kernels we can approximate the embed-

ding feature [14], and form an approximated wi using Eq. 4.

Thus, the number of linear kernel computations becomes

O(CG+ SLT ).
Consider the model in Fig 1. Now, given global and

scene type model scores, we need to infer the subcategory

variables bc and temporal locations ts of the K best scene

type models. The subcategory can be found in O(C). For

a video with T segments, the best location for each scene

type is found in O(T ), and then the K best scenes are se-

lected in O(S log(K)) using a min heap. So, the complexity

of inference is O(C + ST + S log(K)) in addition to the

score computation. In our experiments, this inference takes

0.05 seconds for a 120-second video on an Intel CPU E7450

@2.40GHz.

4. Experiments

We evaluate our model on the challenging TRECVID

MED11 dataset [9], following a standard evaluation pro-

tocol used in previous work [12]. The TRECVID MED11

dataset contains 15 events that are divided across two col-

lections, DEV-T and DEV-O. The DEV-T dataset consists

of 10,723 videos including videos from five event cate-

gories: board trick (E1), feeding animal (E2), landing fish

(E3), wedding ceremony (E4), and woodworking project

(E5). The DEV-O collection is significantly larger, 32,061

videos, and includes ten categories: birthday party (E6),

changing a tire (E7), flash mob (E8), getting a vehicle

unstuck (E9), grooming animal (E10), making sandwich
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Table 1: Performance variation on the DEV-T dataset as a

function of model parameters: the number of subcategories

(C), number of scene types (S), and number of selected

scenes (K). Selection is done for each parameter in turn

and is fixed for subsequent parameters, as shown in red.

Model Settings E1 E2 E3 E4 E5 mAP

C = 1, S = 0 14.2 3.8 16.7 34.4 8.4 15.5

C = 2, S = 0 14.1 3.9 17.6 35.8 8.5 16.0

C = 4, S = 0 14.3 3.7 16.8 34.3 13.7 16.6

C = 8, S = 0 13.8 3.8 18.3 40.7 16.6 18.6

C = 16, S = 0 12.1 3.9 17.3 38.8 15.1 17.4

C = 8, S = K = 4 12.3 2.8 24.0 44.4 13.3 19.4

C = 8, S = K = 8 11.1 2.6 25.3 44.6 12.8 19.2

C = 8, S = K = 16 13.3 2.3 26.8 43.9 14.8 20.2

C = 8, S = K = 32 13.1 2.1 27.2 44.6 14.3 20.2

C = 8, S = 16,K = 1 15.3 3.3 20.1 42.3 16.6 19.5

C = 8, S = 16,K = 2 14.8 3.4 24.1 46.1 18.4 21.4

C = 8, S = 16,K = 4 17.4 3.2 26.3 46.3 17.5 22.1

C = 8, S = 16,K = 8 12.8 2.9 29.0 48.5 17.9 22.2

C = 8, S = 16,K = 16 13.3 2.3 26.8 43.9 14.8 20.2

(E11), parade (E12), parkour (E13), repairing appliance

(E14), and sewing project (E15). Both DEV-T and DEV-

O are dominated by videos of the null category (i.e., back-

ground videos that do not contain the events of interest). For

training, an Event-Kit data collection, containing roughly

150 positive videos per category, is also provided. A classi-

fier is trained for each event category versus all other cate-

gories, similar to [12].

For TRECVID MED11, DEV-T is used for development,

whereas DEV-O is utilized for testing. Thus, we performed

cross validation of all system parameters and hyper param-

eters on DEV-T and held them constant when considering

DEV-O. We use mean average precision (mAP) as the per-

formance metric to remain comparable with recently pub-

lished works [1, 12].

4.1. Comparisons using HOG3D Features

First, we evaluated our proposed method against several

baselines. This evaluation uses HOG3D features, k-means

quantized into a 1,000 word codebook for all methods.

For this experiment, we use the following set of baselines:

Linear-SVM, a linear SVM using HOG3D BoW features;

KSVM, same video-level features with histogram intersec-

tion kernel (HIK) SVM; Niebles [8]; Tang [12]; Linear-

SAP, the scene-aligned pooling method [1] using a linear

SVM; and K-SAP, the same method using a HIK-SVM. Re-

sults for Niebles and Tang are reproduced from [12] and we

obtained exactly the same quantized features to be directly

comparable. Also, note that we re-implemented the scene

aligned pooling method [1] using parameters suggested by

the authors to permit direct comparisons.

Two variants of our proposed model were considered:

Linear-LSVM, using a linear latent SVM, and KLSVM,

using a HIK latent SVM. For the proposed models, selec-

tion of appropriate parameters is required, including the

number of subcategories (C), number of scene types (S),

and number of selected scenes (K). We used the kernel-

ized version of our model with a HIK kernel to choose the

best parameters on DEV-T (E1 to E5) and fixed them for

all subsequent experiments using our model in this paper.

Parameters were selected based on the criteria of mAP per-

formance and model complexity. Interestingly, as Table 1

shows, as the various components of our model are added,

mAP is improved. In particular, our latent model with se-

lected parameters (C = 8, S = 16,K = 4) outperforms the

standard kernelized SVM (C = 1, S = 0) by 6.6% in mAP.

In this section, our novel multiple kernel learning formu-

lation is not employed, since the number of kernels used is

very small. Section 4.2 considers experiments with the full

model, using MKL for multi-feature fusion.

Results for the six baselines and two variants of the pro-

posed method on DEV-O are shown in Table 2. When

considering only models that employ linear SVMs (i.e.,

Linear-SVM, Niebles, Tang, Linear-SAP, and Linear-

LSVM), the recently proposed scene aligned pooling

method provides highest performance with a mean AP of

6.28%. The linear variant of the proposed model offers mid-

range performance. However, the simple KSVM baseline

significantly outperforms all variants that use a linear SVM

classifier, including Niebles and Tang, which model com-

plex structure. It appears that use of a kernelized SVM is

critical for the task of accurate event detection.

A second performance trend can be identified from con-

sidering the models that use kernelized SVMs (i.e., KSVM,

K-SAP, and KLSVM). Specifically, the proposed model,

KLSVM, outperforms all other baselines, including K-SAP

by 3.72% and KSVM by 4.22%. Further, KLSVM attains

best performance on eight out of ten event categories, often

by a significant margin (e.g., 11.43% gap for E14). These

results emphasize the importance of using a compositional

framework. Note that a kernelized version of Tang was not

considered because it is not clear how the computationally

expensive inference could be done for an extension to ker-

nel SVMs, especially for a large data collection.

4.2. Comparisons using Multiple Features

In this section, we demonstrate the effectiveness of the

full, multiple kernel learning-based model by extending

from a single feature modality to six features.

To demonstrate the full MKL-KLSVM model, HOG3D

was supplemented with five additional features from the

Sun09 set [19]. The additional features were: sparse SIFT,

dense SIFT, HOG2x2, self-similarity descriptors (SSIM),

and color histograms. Here, the same set of features was

used for both the global and scene type parts of our model

(i.e., G = L = 6). These particular features were se-

lected because we empirically found them to offer best

performance on TRECVID MED11. Features were ex-

tracted at four second time increments, synchronized with
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Table 2: Performance comparison against several baselines using HOG3D features on DEV-O for E6-E15. Numbers denote

the average precision, in %. Best results for a particular event category are shown in bold.

Event Chance Linear-SVM Niebles [8] Tang [12] Linear-SAP [1] Linear-LSVM KSVM K-SAP [1] KLSVM

E6 0.54 1.97 2.25 4.38 2.77 2.34 6.08 4.73 5.73

E7 0.35 1.25 0.76 0.92 2.11 1.33 2.87 2.26 4.81

E8 0.42 6.48 8.30 15.29 25.48 10.30 20.75 22.99 35.82

E9 0.26 2.15 1.95 2.04 4.14 1.79 6.25 7.61 8.38

E10 0.25 0.81 0.74 0.74 1.03 0.76 1.43 1.34 2.12

E11 0.43 1.10 1.48 0.84 1.93 1.41 2.29 2.65 4.65

E12 0.58 5.83 2.65 4.03 7.06 5.71 8.44 8.70 10.99

E13 0.32 2.58 2.05 3.04 10.38 2.57 9.44 10.43 13.11

E14 0.27 1.18 4.39 10.88 6.69 4.58 10.00 11.89 23.32

E15 0.26 0.92 0.61 5.48 1.21 1.09 2.49 2.4 3.29

mAP 0.37 2.43 2.52 4.77 6.28 3.19 7.00 7.50 11.22

the HOG3D features. The two coarser scales of a three level

spatial pyramid were retained for dense SIFT, HOG2x2, and

SSIM. Sparse SIFT and color histograms were extracted

on the whole frame. Global and segment-level features are

formed by averaging the histograms.

Three baselines are compared against the full MKL-

KLSVM, all systems using the identical set of six features.

The first baseline, KSVM, is trained on a summation of

six χ2 kernels on the global features. The second baseline,

MKL-SVM, is similar to KSVM, but the weights on the

kernels are trained. KLSVM and MKL-KLSVM are vari-

ants of our model that consider both the global and segment-

level features. Global models and scene type models are

formed using χ2 and HIK, respectively. In the KLSVM, the

weights of all kernels are fixed to one, while in the MKL-

KLSVM, the kernel weights are learned.

Table 3 presents the results of these systems for DEV-O.

A progression in the mAP performance is demonstrated as

the different components of our model are added. By al-

lowing the model to learn the kernel weights for the var-

ious feature modalities, MKL-SVM shows slight perfor-

mance gains over KSVM. KLSVM improves performance

by incorporating our proposed compositional model that

performs latent segment selection. Finally, when consider-

ing the full model, MKL-KLSVM, which allows the vari-

ous kernel weights to be adapted for the global and segment

components across multiple features, highest overall accu-

racy is attained.

4.3. Results Visualizations

Figure 3 shows qualitative results for our model on four

test videos, where eight second segments are visualized us-

ing their center frames. The frames that are latently selected

tend to be discriminative and ignore temporal clutter inher-

ent in many test videos. For example, in the sewing project

video, the latter frames where the individual is walking in an

outdoor environment are not selected because such scenes

are not typically associated with a video of a sewing project.

Latently selected frames of the same scene type model

also often have similar overall appearance characteristics.

Table 3: Performance comparison against several baselines

using multiple features on DEV-O for E6-E15. Numbers

denote the average precision, in %.

Event KSVM MKL-SVM KLSVM MKL-KLSVM

E6 6.36 6.77 5.36 6.24

E7 22.04 22.22 23.47 24.62

E8 31.23 31.40 31.99 37.46

E9 18.13 17.49 16.18 15.72

E10 2.48 2.55 2.36 2.09

E11 3.88 4.03 7.98 7.65

E12 10.90 11.00 10.77 12.01

E13 13.31 14.54 13.70 10.96

E14 12.97 12.34 31.22 32.67

E15 3.98 3.81 7.47 7.49

mAP 12.53 12.62 15.05 15.69

For instance, in the grooming animal test video, the frame in

the green box shows a view of a dog’s backside with human

hands moving its tail. A support vector containing a frame

for this scene type showing a comparable view of a dog with

extended human arms is also selected.

The visualizations also demonstrate the compositional

approach. For example, in the changing a tire test se-

quence, two of the top three support vector videos offer

good matches for three of the latently selected frames in the

test sequence (corresponding to the test frames highlighted

with red, yellow, and blue boxes). However, for the fourth

test frame that was selected (green box), only one of the top

three support vectors provides a particularly discriminative

match. The proposed model is able to accumulate evidence

for classification from different video segments in the pool

of training videos.

5. Conclusion

We presented a novel, compositional model for video

event detection that leverages a novel multiple kernel learn-

ing algorithm that incorporates structured latent variables.

The kernelized latent variable framework allows the model

to select and match test video segments with those that are

extracted from the pool of training of videos. The composi-

tional nature of the model allows it to respond to the chal-

lenges of intra-class variation and temporal clutter, which
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Figure 3: Qualitative visualization of results. Individual images denote the center frame from an eight second window. Each

subfigure shows frames from a testing video along with frames from the three support vectors that produce the overall best

match to that test video (i.e., frames from only three support vector videos are shown for each test sequence). For a test

video, the K = 4 frames that were latently selected are highlighted with colored boxes, where color denotes the particular

scene type model. Latently selected frames from the the top three support vectors are grouped using colored boxes, where

color corresponds to the same scene types selected for the test video. From top-to-bottom, left-to-right, the testing videos

correspond to changing tire (E7), grooming animal (E10), repairing appliance (E14), and sewing project (E15). Faces have

been obscured for privacy considerations. Best viewed magnified and in color.

are inherent in unconstrained internet videos. Additionally,

since multiple feature types are required to attain state-of-

the-art performance on TRECVID MED11, a principled ap-

proach to feature fusion via multiple kernel learning with

structured latent variables is proposed. Experimental re-

sults showed that this approach outperforms state-of-the-art

baselines on the challenging TRECVID MED11 dataset.
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