
 Open access Journal Article DOI:10.1007/S11241-013-9199-8

Compositional multiprocessor scheduling: the GMPR interface — Source link

Artem Burmyakov, Enrico Bini, Eduardo Tovar

Institutions: Polytechnic Institute of Porto, Lund University

Published on: 16 Jan 2014 - Real-time Systems (Springer US)

Topics: Multiprocessor scheduling, Interface (Java) and Degree of parallelism

Related papers:

A Framework for Hierarchical Scheduling on Multiprocessors: From Application Requirements to Run-Time
Allocation

 Periodic resource model for compositional real-time guarantees

 The Generalized Multiprocessor Periodic Resource Interface Model for Hierarchical Multiprocessor Scheduling

 Optimal virtual cluster-based multiprocessor scheduling

 Real-time multi-core virtual machine scheduling in xen

Share this paper:

View more about this paper here: https://typeset.io/papers/compositional-multiprocessor-scheduling-the-gmpr-interface-
2b6cga55w6

https://typeset.io/
https://www.doi.org/10.1007/S11241-013-9199-8
https://typeset.io/papers/compositional-multiprocessor-scheduling-the-gmpr-interface-2b6cga55w6
https://typeset.io/authors/artem-burmyakov-4kgq3jpkx4
https://typeset.io/authors/enrico-bini-2onxjyyth9
https://typeset.io/authors/eduardo-tovar-rygz6esuan
https://typeset.io/institutions/polytechnic-institute-of-porto-12s7suc4
https://typeset.io/institutions/lund-university-1sy7t175
https://typeset.io/journals/real-time-systems-hhbx1y7q
https://typeset.io/topics/multiprocessor-scheduling-dsx66ted
https://typeset.io/topics/interface-java-2fb1ffvd
https://typeset.io/topics/degree-of-parallelism-3aqkzc6m
https://typeset.io/papers/a-framework-for-hierarchical-scheduling-on-multiprocessors-2wtluxognx
https://typeset.io/papers/periodic-resource-model-for-compositional-real-time-4dea60yund
https://typeset.io/papers/the-generalized-multiprocessor-periodic-resource-interface-42zsn3xhqy
https://typeset.io/papers/optimal-virtual-cluster-based-multiprocessor-scheduling-tuha6on715
https://typeset.io/papers/real-time-multi-core-virtual-machine-scheduling-in-xen-4rxombe407
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/compositional-multiprocessor-scheduling-the-gmpr-interface-2b6cga55w6
https://twitter.com/intent/tweet?text=Compositional%20multiprocessor%20scheduling:%20the%20GMPR%20interface&url=https://typeset.io/papers/compositional-multiprocessor-scheduling-the-gmpr-interface-2b6cga55w6
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/compositional-multiprocessor-scheduling-the-gmpr-interface-2b6cga55w6
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/compositional-multiprocessor-scheduling-the-gmpr-interface-2b6cga55w6
https://typeset.io/papers/compositional-multiprocessor-scheduling-the-gmpr-interface-2b6cga55w6

Compositional multiprocessor scheduling:

the GMPR interface

Artem Burmyakov · Enrico Bini · Eduardo Tovar

Abstract Composition is a practice of key importance in software engineering. When

real-time applications are composed, it is necessary that their timing properties (such

as meeting the deadlines) are guaranteed. The composition is performed by establish-

ing an interface between the application and the physical platform. Such an interface

typically contains information about the amount of computing capacity needed by the

application. For multiprocessor platforms, the interface should also present informa-

tion about the degree of parallelism. Several interface proposals have recently been put

forward in various research works. However, those interfaces are either too complex to

be handled or too pessimistic. In this paper we propose the generalized multiprocessor

periodic resource model (GMPR) that is strictly superior to the MPR model without

requiring a too detailed description. We then derive a method to compute the inter-

face from the application specification. This method has been implemented in Matlab

routines that are publicly available.

Keywords Real-time scheduling · Compositional scheduling · Multiprocessors ·
Real-time interfaces

1 Introduction

Reusing application code is driven by the need to shorten the overall design time, and

typically software components are developed in isolation, possibly by different devel-

opers. During the integration phase, all components are bound to the same hardware

platform. Clearly, the integration must be performed in such a way that the properties

of components are preserved even after the composition is made.

In real-time systems, the key property that has to be preserved during the integration

phase is time predictability: a real-time application (or component) that meets all

its deadlines when designed in isolation should also meet all deadlines when it is

integrated with other applications on the same hardware platform. This property is

often guaranteed by introducing an interface between the application and the hardware

platform. Then the application is guaranteed over the interface, and the hardware

platform must provide a virtual platform that conforms with the interface—a compliant

virtual platform. The scheduling problem over a virtual platform is often called a

hierarchical scheduling problem. In fact, each application task itself may contain

another entire application in a hierarchical fashion.

The benefit of using an interface-based approach is significant. During the design

phase the interface of an application is computed such that all timing requirements

of the application are met. Then, during the integration phase the interfaces of all

applications are bound to the same hardware platform. As a result, the interface allows

to hide an internal complexity of an individual application, and this property is essential

in the development of large-scale real-time systems.

Typically, interfaces, allowing the composition of real-time applications, specify

details about the amount of resource that has to be provided by a compliant virtual

platform. This information can be described with a varying degree of detail. For

example, a very simple interface for a virtual processor can be just a fraction of the

allocated time.

With the broad diffusion of multiprocessors, hierarchical scheduling problems have

recently started to be considered over hardware platforms that provide a concurrent

resource supply. The formulation of interface models for multiprocessors, however,

requires the introduction of a new dimension: the degree of concurrency. This addi-

tional characteristic of the interface makes the problem to be addressed more chal-

lenging.

The problem in selecting the appropriate interface model is to find the best trade-off

between accuracy and simplicity of the interface. A simple interface is intuitive and

easy to use, but it tends to cause a significant pessimism in the resource abstraction. On

the other hand, an accurate interface minimizes the pessimism, but is more complex

in use, and it can be very difficult to compute. In this paper we propose a simple

interface that is a generalization of the one previously proposed by Shin et al. (2008).

Our novel approach keeps the simplicity of that interface while reducing significantly

the pessimism in terms of the needed resource.

1.1 Related works

The problem of composing real-time applications is certainly not new. There actually

have been numerous contributions in this area. Being fully aware of the impossibility

to provide a full coverage of the topic, we describe in this section the works that, to

our best knowledge, are more related to ours.

One of the first contributions to address the isolation of applications using resource

reservations was published in Parekh and Gallager (1993). In that paper the authors

introduced the generalized processor sharing (GPS) algorithm to share a fluid resource

according to a set of weights. Mercer et al. (1994) proposed a more realistic approach

where a resource can be allocated based on a required budget and period. Later on,

Stoica et al. (1996) introduced the earliest eligible virtual deadline first (EEVDF)

for sharing the computing resource, and Deng and Liu (1997) achieved the same

goal by introducing a two-level scheduler (using EDF as a global scheduler) in the

context of multi-application systems. Kuo and Li (1999) extended the approach to a

fixed priority global scheduler. Kuo et al. (2000) extended their own work (Kuo and

Li 1999) to multiprocessors. However, in those approaches the authors made very

stringent assumptions such as not considering task migration and restricting to period

harmonicity. Those assumptions restrict the applicability of the proposed solution.

Moir and Ramamurthy (1999) proposed a hierarchical approach, where a set of

P-fair tasks can be scheduled within a time partition provided by another P-fair task

(called “supertask”) acting as a server. However, the solution often requires the weight

of the supertask to be higher than the sum of the weights of the served tasks (Holman

and Anderson 2006).

Many independent works proposed to model the service provided by a uni-processor

through a supply function. Feng and Mok (2002) introduced the bounded-delay

resource partition model. Almeida et al. (2002) provided timing guarantees for both

synchronous and asynchronous traffic over the FTT-CAN protocol by using hierarchi-

cal scheduling. Lipari and Bini (2003) derived the set of virtual processors that can

feasibly schedule a given application. Shin and Lee (2003) introduced the periodic

resource model also deriving a utilization bound. Easwaran et al. (2007) extended

this model allowing the server deadline to be different from its period. Fisher and

Dewan (2009) proposed an approximation algorithm to test the schedulability of a

task set over a periodic resource.

More recently, some authors have addressed the problem of specifying an interface

for applications executed upon multiprocessor systems, providing appropriate tests to

verify schedulability of applications over that interface.

One of such works is described in Leontyev and Anderson (2008), where the authors

proposed to use only the overall bandwidth requirement ω as interface for soft real-

time applications. The authors proposed to allocate a bandwidth requirement of w onto

Lw∗ dedicated processors, plus an amount of w − Lw∗ provided by a periodic server
globally scheduled onto the remaining processors. An upper bound of the tardiness of
tasks scheduled on such an interface was provided.

Shin et al. (2008) proposed the multiprocessor periodic resource model (MPR)

that specifies a period, a budget and maximum level of parallelism of the resource

provisioning. Khalilzad et al. (2012) later extended the MPR model, relaxing the

assumption of fully synchronized virtual processors. Since our work is a generalization

of the MPR, in Sect. 2.2 we describe the MPR in greater details.

Chang et al. (2008) proposed to partition the resource available from a multi-

processor by a static periodic scheme. The amount of resource is then provided to the

application through a contract specification.

Bini et al. (2009) proposed the parallel supply function (PSF) interface of a virtual

multiprocessor. This interface is designed to tightly capture the amount of resource

provided by a virtual platform for very general supply mechanisms, which are not

necessarily periodic. In their approach the authors do not reason on how to compute

the interface parameters that guarantee the schedulability of a real-time application.

Lipari and Bini (2010) described an entire framework for composing real-time

applications running over a multiprocessor. However, their proposed interface was

extremely trivial.

Burmyakov et al. (2012) extended the multiprocessor periodic resource model

(MPR) by specifying the minimal budgets for each level of parallelism. However,

the assumption of integer budget values made the problem to compute an interface

hardly tractable, even for a task set with a low utilization.

1.2 Contributions of the paper

The MPR model is one of the simplest interface models for the multiprocessor systems.

In this paper we propose its extension, the GMPR model, which generalizes the

MPR, reducing its pessimism while keeping its simplicity. To analyze schedulability

over GMPR, we reuse the schedulability test proposed by Bini et al. (2009). We first

improve this test by minimizing its run-time, and then, based on it, we derive several

methods to compute the minimal GMPR which can guarantee a given set of tasks. We

implement the algorithms to compute the GMPR in the Matlab environment. Then, we

evaluate the GMPR against the MPR model to confirm a reduced resource utilization

of GMPR, and therefore a significant reduction in the level of pessimism.

The remainder of the paper is organized as follows. In Sect. 2 we briefly review the

concepts and notations related to our research. In particular, we illustrate the drawbacks

of the existing interface models by the examples of the PSF and the MPR models. In

Sect. 3 we propose a new interface model called GMPR. Then, in Sect. 4 we adapt

the schedulability test by Bini et al. (2009) over a virtual resource abstracted by a

GMPR interface. In Sect. 5 we develop an algorithm to compute a feasible GMPR for

a given task set. Later, in Sect. 6, we propose a technique to schedule GMPR interfaces.

Finally, in Sect. 7 we evaluate the pessimism of GMPR against the MPR model.

2 Background on multiprocessor interfaces

In the past, there have been some proposals for multiprocessor interfaces. This section

illustrates three of them (Leontyev and Anderson 2008; Shin et al. 2008; Bini et al.

2009). The interfaces are ordered by their increasing complexity and, consequently, by

increasing accuracy of the guarantee test for applications running over the interface.

2.1 The multiprocessor bandwidth interface

Leontyev and Anderson (2008) proposed to use only the overall bandwidth require-

ment w (using their original notation) as an interface for soft real-time tasks. Being

Π

Fig. 1 The resource allocation over MBI with the bandwidth w

a multiprocessor interface, it is well acceptable to have w > 1. To schedule a task

set, the authors proposed to allocate a bandwidth requirement of w onto Lw∗ fully

dedicated processors, plus the bandwidth of w − Lw∗ provided by a periodic server
globally scheduled onto the remaining processors (see Fig. 1).

We refer the interface model of Leontyev and Anderson (2008) as the multiprocessor

bandwidth interface (MBI) and denote it as

where w is the interface bandwidth and Π is the server period. Initially designed for

soft real-time tasks, the MBI model can easily be extended for hard real-time systems.

The advantage of the MBI is its simplicity and the reduced pessimism in the resource

abstraction compared to many other existing models.

At the same time, there is a strong limitation of the MBI model as it requires Lw∗
fully dedicated processors. In a general case of the compositional scheduling, such a

requirement cannot be always guaranteed by a virtual execution platform, for extended

periods of time. To overcome this limitation, other different interface models have been

introduced, as described in the next sections.

2.2 The multiprocessor periodic resource model (MPR)

The MPR model (Shin et al. 2008) is another simple resource abstraction. Its definition

is given below.

Definition 1 A MPR model is modeled by a triplet

where Π is the time period and Θ is the minimal resource supply provided within each

time interval [kΠ, (k + 1)Π), with k ∈ N0, by at most m processors at a time. Often
we also say that m is the concurrency (or the degree of parallelism) of the interface.

The utilization of a MPR interface is the ratio Θ .

Since a MPR interface fixes only the aggregated parameters Π , Θ and m of the

supply pattern, any feasible allocation of Θ resource units per time period Π with a

parallelism m should preserve the schedulability of the underlying task set. It is then

necessary to find the worst-case resource allocation for the MPR. Generalizing the

result of Shin et al. (2008), derived for a case of integer Θ, the worst-case scenario for

Fig. 2 The worst-case resource allocation over the MPR (Π, Θ, m). Instant 0 denotes the beginning of the
worst-case interval

Table 1 An example of a task

set

an arbitrary Θ is the one depicted in Fig. 2, where time instant 0 denotes the beginning

of the worst-case interval. Note that in the MPR case the contribution of each processor

to the interface is Θ/m every period Π .

2.3 Comparison of the MBI and MPR models

The MBI model dominates MPR in terms of overall resource required to schedule an

application: over the same time interval, MBI requires at most as much resource as

MPR. However, unlike MBI, an MPR interface can be also provided over a platform

in which the processors are not fully available (possibly due to the coexistence with

other applications already consuming resource). In fact, by increasing the interface

parallelism m, the requirement Θ/m on each processor decreases, making it possible

to fit an interface on partially available platforms.

We illustrate this by an example. Consider a task set with the parameters reported
in Table 1, to be scheduled by global EDF (GEDF) over a virtual platform. To com-
pute interfaces, we apply the schedulability test of Lipari and Bini (2010), which is

described in details later in Sect. 4. By setting the server period to Π = 20, we deter-
mine that the minimal MBI interface, guaranteeing the schedulability of the task set,

requires 26 resource units every Π , while the MPR of the same concurrency m = 2
requires at least 30.8 units (see Fig. 3).

Let us now increase the MPR concurrency to m = 3. We immediately observe a
reduction of resource to be provided by each virtual processor, from 15.4 to 11.4 units.

For m = 5, the resource fraction decreases further to 10.4. Notice, however, that the
overall resource Θ increases with m.

2.4 The parallel supply function (PSF)

The PSF was proposed by Bini et al. (2009) to characterize the resource allocation

in hierarchical systems executed upon a multiprocessor platform. This interface is

i Ci Ti Di

1 1 30 30

2 4 40 40

3 11 50 50

4 15 60 60

{ k }

Fig. 3 Comparison of MBI and MPR

0 1 2 3 4 5 6 7 8 9 10 11

Fig. 4 From a resource schedule to the PSF interface

designed to tightly capture the amount of resource provided by a virtual platform for

very general supply mechanisms, which are not necessarily periodic. As a drawback

it is certainly quite complicated to be handled. Without entering into all the details of

the definition (that can indeed be found in Bini et al. (2009)), we recall here the basic

concepts.

Definition 2 The PSF interface of a multiprocessor resource is composed by the set
of functions Y m

k=1 , where m is the number of virtual processors and Yk(t) is the

minimum amount of resource provided in any interval of length t with a parallelism

of at most k. The function Yk(t) is called the level-k parallel supply function.

To clarify this definition we propose an example. Consider that in the interval [0, 11]
the resource is provided by three processors according to the schedule drawn in gray
in Fig. 4.

In this case Y1(11) = 10 because there is always at least one processor available in

[0,11] except in [8,9]. Then Y2(11) = 16; that is found by summing up all the resources

except one with parallelism 3 (provided only in [4,5]). Finally, Y3(11) = 17; that is
achieved by summing all the resources provided in [0,11]. In general, the parallel

supply functions are also computed by sliding the time window of length t and by

searching for the most pessimistic scenario of resource allocation. This minimization

is somehow equivalent to the one performed on uni-processor hierarchical schedul-

ing (Feng and Mok 2002; Lipari and Bini 2003; Shin and Lee 2003) for computing

the supply function of a virtual resource.

{ k }

15

Table 2 An example of a task

set

Since the PSF can be computed for any possible resource allocation scheme, it

is possible to compute it also for the MPR interface. The computation of the PSF
interface Y m

k=1 of a MPR enables the adaptation of schedulability tests developed

over a PSF interface to a MPR interface. More details about the schedulability test

will be provided in Sect. 4.

3 The generalized multiprocessor periodic resource (GMPR) model

The main drawback of the MPR interface is that it may require more computational

capacity than needed, and therefore it has an undesirable level of pessimism in terms

of resource allocation. Consider the task set with the parameters as depicted in Table 2,

to be scheduled by global EDF (GEDF) over the MPR interface. In that table, for each

task we provide its execution time, Ci , its period, Ti , and its deadline, Di .

After setting the period of the interface Π = 15, we compute a MPR interface

(Π, Θ, m) that can guarantee the task set. To check the schedulability, we reuse the
PSF-based test proposed by Bini et al. (2009) (see Sect. 4 for details). Based on this

test, we determine that the minimum feasible value of resource units to guarantee the

schedulability is Θ = 39. Notice that there is quite a significant gap between the
utilization of the interface Θ = 2.6 and the utilization of the task set

y
 Ci = 1.28.

Π i Ti

As we will show in greater detail in the next sections, our proposed interface requires

only 34 resource units per period, meaning that it has a utilization of 34 = 2.267 for
the given example.

3.1 Model description

The main reason for the pessimism of the MPR is that the worst-case of the supply

(Fig. 2) must be very conservative, if the only information in the interface is that an

overall budget Θ is provided every Π . We propose to rectify this problem, as described

below.

Definition 3 We define the GMPR interface model as

where Π is the time period and Θk is the minimal resource supply provided within

each time interval [ΠΠ, (Π + 1)Π), Π ∈ N0, with a degree of parallelism of at most

k. The values of Θk must satisfy the following constraints for any k = 1 , . . . , m (for

i Ci Ti Di

1 6 40 40

2 13 50 50

3 29 60 60

4 27 70 70

Fig. 5 Illustration of the constraints in the GMPR definition

We assume that the interface parameters Π and Θ 1 , . . . , Θm belong to R.

The “degree of parallelism” of a resource supply at time instant t, is the number of
processors providing the resource at that instant. For example, an application which

may have at most Π threads in parallel will not ever benefit from having a resource

provided by Π + 1 processors simultaneously. Hence, for such an application, it does
not make sense to have ΘΠ+1 strictly larger than ΘΠ, since the extra amount of resource

ΘΠ+1 − ΘΠ is provided at a too high parallelism that the application never exhibits.
The motivation for the constraints in Definition 3 is the following:

– Θk ≥ Θk−1, because the overall supply at higher parallelism cannot decrease;

– Θk − Θk−1 ≤ Π , because the increment of supply at parallelism k (that is Θk −
Θk−1) cannot exceed the length of the period;

– Θk+1 − Θk ≤ Θk − Θk−1, because the increment of supply at parallelism k + 1

(that is Θk+1 − Θk) should not exceed the increment of supply at parallelism k

(that is Θk − Θk−1). Otherwise some of the supply provided at parallelism k + 1
must instead be available at parallelism k.

Figure 5 illustrates an example of a resource supply over a GMPR interface with

Π = 6, Θ1 = 5, Θ2 = 9, and Θ3 = 12.
A valid GMPR interface should guarantee the schedulability of a task set: any

resource allocation compliant with the GMPR specification has to guarantee that all

task deadlines are met.

The proposed GMPR interface model generalizes both MPR and MBI. In fact, a

MPR interface (Π, Θ, m) is equivalent to a GMPR (Π, {Θ1 ,..., Θm }) with

and a MBI interface (w, Π) is equivalent to a GMPR with

Fig. 6 The worst-case resource allocation over GMPR (Π, {Θ1,..., Θm }) (top) and the definition of the

supplyk (t) function (bottom) proposed by Burmyakov et al. (2012)

3.2 Parallel supply functions of GMPR

To borrow the schedulability tests developed over the PSF interface (Bini et al.

2009), we compute the parallel supply functions {Yk(t)}k=1,...,m for the GMPR
specification.

Burmyakov et al. (2012) proposed to compute the PSF using a classical approach

in hierarchical scheduling. In that work the authors considered the worst-case scenario

of the resource supply (depicted in Fig. 6) and defined supplyk (t) as the amount of

resource available in [0, t] by at most k concurrent processors (see Fig. 6). Then, the
PSF Yk(t) was computed as

with T = {Θi − Θi −1| i = 1 , . . . , k} being the set of time instants at which the supply
by some processor ends.

Instead of the above mentioned approach, we now propose a significantly more

efficient method to compute the Parallel Supply Functions Yk(t). We stress that this

method is also applicable to the classical problems of hierarchical scheduling over a

single processor (Lipari and Bini 2003; Shin and Lee 2003), as PSF is a generalization

of the uni-processor supply function.

To compute the PSF Yk(t), let us first introduce an auxiliary function sk(t) over

t ∈ [0,Π]. We define sk(t) as the overall amount of resource provided over the pattern

of Fig. 7, in a time interval [0, t]. The function sk(t) has the property, formulated in
the next lemma.

2

2
t1 +t2

Fig. 7 Properties of the sk(t)
function

Lemma 1 Let sk : [0,Π]→ R be defined as

Then, for any values t1, t2 ∈ [0,Π], we have

Proof Consider the resource allocation over the time interval [t1, t2] of Fig. 7. Time

instant t = t1 +t2 is the middle of this interval. Due to the alignment of the resource

blocks to the right side, the resource in [t1,
t1 +t2] does not exceed the resource in

[2 ; t2]. It follows that

what leads us to (3).

The next theorem determines the worst-case scenarios of the resource supply which

are then used to compute Yk(t).

Theorem 1 The worst-case amount of resource provided over a GMPR interface

(Π, {Θ1 ,..., Θm }) in an arbitrary time interval of length t is the minimum among
the resources provided in [− t , t] by any of the two patterns Seven and Sodd depicted

2 2

in Fig. 8.

Proof Let supplyk (S, t) denote the resource provided by an arbitrary scenario S in the time interval
r
 t , t (of length t) at concurrency k. We next consider two cases l −

2 2

depending on the interval length t : t ≤ Π and otherwise.

We recall that, from Definition 3 of GMPR, there always exists a time instant t ∗ such

that the resource provided at concurrency k over each interval [t ∗+(p−1)Π, t ∗+ pΠ],

p ∈ Z, equals to Θk . We refer t ∗ as the replenishment instant of a GMPR interface,

and the time intervals [t ∗ + (p − 1)Π, t ∗ + pΠ] are its replenishment cycles.

2
Π ,

Fig. 8 The worst-case resource allocation patterns Seven and Sodd over GMPR (Π, {Θ1,..., Θm })

Fig. 9 Scenario S, for case 1a: 0 ≤ t ∗ ≤ t ≤ Π

2 2

l −

2 2

Case 1 t ≤ Π . There always exists a replenishment instant t ∗ ∈
r
 Π , Π such that

the resource provided in both intervals [t ∗ − Π, t ∗] and [t ∗, t ∗ + Π] is Θk each. Let
us assume that t ∗ ≥ 0; the proof for t ∗ < 0 is done by analogy.

As t ∗ ∈ [0, Π] and t
 ∈ [0, Π], the following two cases are possible:

2 2 2

Each of these cases is considered below.

Case 1a 0 ≤ t ∗ ≤ t
 ≤ 2 . Let us transform the scenario S into S by moving left

any resource provided before t ∗ and by moving right any resource provided after t ∗,
as depicted in Fig. 9. Since t ∗ ∈ [− t , t], such a transformation can only move the

2 2
resource out of the time interval [− t , t], so that

2 2

To analyze the resource supply over S,, we now employ the auxiliary function sk(t)

introduced in Lemma 1. From Fig. 9, it follows that

2 2

2

2

Fig. 10 Scenario S, for Case
1b: 0 ≤ t ≤ t ∗ ≤ Π

2 2

Applying condition (3) to the RHS of the equation above, we get that

where Seven is the resource pattern depicted in Fig. 8.

Case 1b 0 ≤ t
 ≤ t ∗ ≤ Π . Let us transform the scenario S into S, by moving out of

the time interval [− t , t] as much resource as possible (see Fig. 10), so that
2 2

From Fig. 10, it follows that

where the inequality holds due to Lemma 1.

The proof for t ∗ ≤ 0 is done by analogy to Cases 1a, 1b. Thus, Seven is the worst-

case scenario for any t ≤ Π .

Case 2 t > Π . From any scenario S of resource supply, let us transform it into S,

by moving left any resource provided before time instant 0 and by moving right any

resource provided after 0. Since such a transformation can only move the resource out

of the interval, it must again be that

For S,, let us decompose the interval [− t , t] into the three sub-intervals [− t , t ∗],
2 2 2

[t ∗, t ∗ + pΠ], and [t ∗ + pΠ, t] as shown in Fig. 11, where t ∗ denotes the first

replenishment instant after − t , and p ∈ N is the number of full replenishment cycles
in [− t , t].

2 2

It follows that

Fig. 11 Scenario S, for Case 2: t >Π

Fig. 12 Comparison of p, peven, podd

which can also be written as p ∈ { peven, podd} (see Fig. 12 for a graphical interpre-
tation), with

The resource supplyk (S,, t) in the interval [− t , t] is the sum of resource available
2 2

over the three considered sub-intervals (see Fig. 11), so that

where the inequality holds due to Lemma 1. In case p = peven, then the equation
above turns into

Thus, we conclude that no other scenario S exists providing less resource than Seven

and Sodd. nu
Theorem 1 determines that the worst-case pattern for the resource supply of a GMPR

interface is either Sodd or Seven. The next corollary uses such a result to compute the

PSF of a GMPR interface.

Corollary 1 The PSF function Yk(t) for GMPR is computed as

where Y even and Y odd denote the resource provided by the patterns Seven and Sodd
k k

depicted in Fig. 8, computed as

and

As an example, in Fig. 13 we illustrate the 4 parallel supply functions {Y1(t), . . . ,

Y4(t)} of the GMPR interface (7, {6, 11, 15, 17}). At the bottom of the figure we also
represent the worst-case resource patterns that originate the parallel supply functions.

3.3 The lower and the upper bounds for Yk(t)

We now propose a lower and an upper bound to Yk(t). These bounds will be later

exploited in Sect. 5.3 to reduce the time required to compute a GMPR interface for a

given task set.

k

Fig. 13 The PSF (top) and the worst-case supply patterns (bottom) of the GMPR interface

(7, {6, 11, 15, 17}). The bold points indicate the slope change of the PSF functions

The supply functions Y even(t), Y odd(t) defined by Eqs. (5), (8) can be equally

expressed as
k

k

with sk(t) defined by (2), and peven, r even, podd, r odd defined by (6), (7), (9), and (10),

respectively.

We now observe that the function sk(t) can be lower bounded by the function sk(t)
defined as (see also Fig. 14)

Substituting (12) into (11), we derive the following lower bounds for Y even(t),
Y odd even odd

k (t) denoted as Y k (t), Y k (t):

Fig. 14 The lower and upper bounds sk(t), sk(t) for the supply function sk(t). The overall supply allocated

over [0; Π] is Θk

Fig. 15 The lower bound for Yk(t)

The bounds Y odd(t), Y even(t) are plotted in Fig. 15. Considering Eq. (4) and Fig. 15,
k k

we conclude that a valid lower bound for Yk(t) is Y k(t) defined as

k

Y
odd

The upper bound Y k(t) for Yk(t) is derived in a similar way. First, we observe that

the function sk(t) is upper bounded by the function sk(t) depicted in Fig. 14. Then,

substituting the expression for sk(t) into (11), we derive the upper bounds Y
even

(t),

k (t) for Y even(t), Y odd(t), and in the end we determine that
k k

4 Schedulability over the GMPR interface

The GMPR interface describes the amount of computing resources provided to an

application. We can then formulate a schedulability test over the GMPR.

As schedulability test for the application, we choose the extension of the test

by Bertogna et al. (2009) to the PSF interface developed by Bini et al. (2009). We

choose this condition because it applies to several different application schedulers

such as global EDF or global FP, although it assumes constrained deadline tasks, i.e.

for all tasks τi , Di ≤ Ti . While choosing other tests like the one derived in Baruah et
al. (2010) would be possible, the proposed formulation has the advantage of highlight-

ing the constraint on the interface. Thanks to the lossless transformation of a GMPR

interface into a PSF (see Sect. 3.2), we can apply directly the schedulability condition

developed over PSF. Below we report, for completeness, the schedulability condition

in the simpler expression proposed in Lipari and Bini (2010).

Theorem 2 (Theorem 1 in Lipari and Bini 2010) A set of sporadic tasks T =

{τ1,..., τn } is schedulable on a resource modeled by the PSF functions Y1(t), . . . ,

Ym(t), if

where Wi is the maximum interfering workload that can be experienced by task τi in

the interval [0, Di], defined as

if the application tasks are scheduled by global EDF. Instead if the application tasks

are scheduled by global FP

(a) (b) (c)

Fig. 16 Graphical interpretation of the PSF-based schedulability test

where hp(i) denotes the set of indices of tasks with higher priority than i , and Wj i is

the amount of interfering workload caused by τ j on τi , that is

To better understand the schedulability test over PSF of Theorem 2, we illustrate it

graphically in Fig. 16. In this example we consider a task set T composed by n = 3
tasks. Each task τi has an amount of interference Wi , properly determined according
to the local scheduling algorithm. For each task τi , we draw a dashed vertical line

at t = Di . Along this line we represent the quantity Wi denoted as a white dot,

and the quantities Wi + ki Ci , with ki ∈ {1, 2, 3}, denoted as black dots. These dots
represent the LHS of (17). Then we draw the PSF functions Y1(t), Y2(t), Y3(t) as bold
continuous lines. In accordance to condition (17), task τi is schedulable if the kth dot
is not above the Yk , for some k.

Now consider the case depicted in Fig. 16. In that case T is schedulable as the

condition (17) turns valid for k1 ∈ {3}, k2 ∈ {2, 3}, and k3 ∈ {1}. In Fig. 16, instead,
we show a case when τ1 cannot be guaranteed by the test of Theorem 2.

Later we exploit such a schedulability condition to compute the GMPR parameters

Θ 1 , . . . , Θm for a given task set.

4.1 Simplification of the schedulability condition

The schedulability condition of Theorem 2 has the complexity of O(nm) since it

requires to check if for each task τi ∈ T exists any value ki ∈ {1 ,.. ., m} satisfying

the inequality (17). However, we can shrink the set of values of ki to be tested without

making any pessimistic assumption, by exploiting by the linear upper bounds of the
PSF functions.

The PSF function Yk(t) can be bounded from above by

Substituting Eq. (21) into the condition (17), we get ki Ci + Wi ≤ ki Di and thus

Considering that ki is integer and by defining ki as

the schedulability condition (17) turns into

5 Determining the GMPR interface of an application

When an application T = {τ1 ,..., τn } is given, it is of key importance to select
an interface that can guarantee the timing constraints of the application and, at the

same time, requires the minimal amount of resource. In Burmyakov et al. (2012) we

proposed an algorithm to generate a GMPR interface for T assuming integer resource

parameters. However, this assumption made the problem hardly tractable even for a

task set with a low utilization. If instead, the interface parameters are assumed real-

valued, the problem can be attacked and solved more efficiently.

Consider a set of sporadic tasks T = {τ1,..., τn } locally scheduled by the global
EDF or the global FP scheduler. In this section we describe a method to compute

a GMPR interface for T : For a specified period Π and a parallelism m we find the
minimal real-valued resources Θ 1 , . . . , Θm such that T is schedulable over the GMPR

(Π, {Θ1 ,..., Θm }), according to Theorem 2.
Below, in Sect. 5.1 we compute the minimal necessary parallelism for a GMPR

for a given application. Then, in Sect. 5.2 we compute the GMPR resource Θm , and

in Sect. 5.3 we derive a set of techniques to reduce the computation time for Θm .

Finally, in Sects. 5.4 and 5.5 we generalize our approach by iteratively computing the

resources Θ 1 , . . . , Θm for all levels of parallelism.

5.1 Minimal necessary parallelism for GMPR

No valid GMPR interface may exist for an arbitrary small parallelism. Hence, in

Theorem 3 we propose a necessary and sufficient condition for the parallelism of a

GMPR, assuming Theorem 2 as schedulability test.

Theorem 3 Consider a set of sporadic tasks T = {τ1,..., τn } locally scheduled by
the global EDF or the global FP. Then there always exists a feasible GMPR interface

for T with a parallelism m ≥ max(k1,..., kn), with ki as in (23). However, no GMPR

can satisfy the schedulability condition (17) ifm < max(k1,..., kn).

Proof To prove the existence of a GMPR with a parallelism at least m =

max(k1,..., kn), we show that μ = (Π, {Π, 2Π, . . . , mΠ }) is a valid GMPR inter-
face for T . According to Eq. (4), the PSF functions for μ are

The schedulability condition (24) over μ turns into

For each τi we set ki = ki , and check that the schedulability of T over μ holds:

Thus, μ = (Π, {Π, 2Π,.. . , mΠ }) is a valid GMPR for T .
To prove the other direction of the implication, let us denote, without loss of gen-

erality, by k = max(k1,..., kn) and by Π the task index such that k = kΠ. If m < k,

then the task τΠ can never be guaranteed by (24). nu

According to Theorem 3, we can only compute a GMPR interface for T with a

parallelism m ≥ max(k1,..., kn).

5.2 Minimization of the overall resource

When designing an interface of a given application, our primary target is the mini-

mization of the overall resource consumption Θm . Before formulating the interface

design as an optimization problem, let us denote DΘ all feasible resources Θ 1 , . . . , Θm

satisfying the constraints in Definition (3) of GMPR, so that:

Then we compute Θm subject to the schedulability test (24):

minimize Θm

subject to

To solve the optimization problem (26), we first have to exclude the ∃-quantifiers
from it. Therefore, we propose to solve (26) for each possible combination

(k1 ,..., kn), with ki ∈ {ki , . . . , m}, and then to choose the minimal Θm over all
cases. Below we provide a detailed description of this approach.

Let us denote possible combinations (k 1 ,..., kn) as Km so that

For a specific choice of (k1 ,..., kn) ∈ Km the optimization problem (26) turns into

minimize Θm

subject to

To solve (27), we employ the Matlab optimization toolbox. Let us denote the solu-

tion of (27) as Θm (k 1 ,..., kn), if any exists. Then we choose the minimal Θm over

Km as

For some combination (k 1 ,..., kn) the optimization problem (27) may have no fea-

sible solution. However, from Theorem 3, there exists at least one case (k 1 ,..., kn) ∈
Km such that (26) becomes feasible. Hence, the minimum of (28) is well defined.

Next, in Sect. 5.3 we propose a method to reduce the run-time of the optimization

problem (28) by reducing the search space for the resources Θ 1 , . . . , Θm and shrinking

the enumeration space Km .

5.3 Search space for the GMPR resources

To reduce the search space for the GMPR resources Θ 1 , . . . , Θm , we first formulate a

set of preliminary constraints in Lemma 2.

Lemma 2 All feasible GMPR resources (Θ1,..., Θm) ∈ DΘ defined by (25) satisfy
the following constraints:

i

i

Proof Let us decompose Θk as

From (25), each feasible case (Θ1,..., Θm) ∈ DΘ satisfies the constraint

Substituting (31) into (30) gives us

Applying mathematical induction to the expression above, we get (29):

with i = 1 , . . . , k − 1. nu

Let T be a schedulable task set over a GMPR interface (Π, {Θ 1 ,..., Θm }) accord-

ing to condition (24). For each task τi , let us denote by k∗ the smallest ki , in {ki , . . . , m},
for which the condition (24) is true. Below, we compute a reduced search space for

the GMPR resources Θ 1 , . . . , Θm by exploiting the lower and the upper bounds for

Yk(t) derived in Sect. 3.3:

Consider a task τi . The test (24) is false for any ki < k∗:

Substituting the lower bound (34) for Yk(t) into the condition above, we get the

quadratic inequality

i

i

with a solution

By applying Lemma 2, the constraint above yields the following upper bound for

the resource Θk denoted as Θk :

i

with Θk
∗

defined by (36).

The test (24) is true for k = k∗. Applying the upper bound (35) for Yk(t) in (24),
we get

that, together with Lemma 2, yields the following lower bound for the resource Θk

denoted as Θk :

Let us denote the search space for task τi as SΘ (τi , k∗) so that

where Θk , Θk are computed according to (39), (37). The resulting search space for a
task set T is then defined as

where DΘ denotes all feasible GMPR resources Θ 1 , . . . , Θm satisfying the con-

straint (25).

Consequently, a case (k 1 ,..., kn) ∈ Km is feasible if it results in a non-empty
search space

Θ

otherwise it can be excluded from Km . According to our experiments, this approach

drastically reduces the size of Km : the reduction is by more than 99,99 % in an average

case.

5.4 Iterative computation of the supply at lower parallelism

In Sect. 5.2 we computed the GMPR overall resource Θm , only. To complete the GMPR

specification, we now need to compute the remaining resources Θm−1,..., Θ1, which

should be provided at lower concurrencies.

We propose to compute the resource Θk recursively, after computing the resources

Θm , . . . , Θk+1. To do so, we simply update the optimization problem (26) by setting
the objective function to minimize Θk , and by placing the previously found values for

Θm , . . . , Θk+1 into the optimization constraints.
In this case, rather than repeating the enumeration of Km to solve the optimiza-

tion problem (26) for Θk , we can further shrink the enumeration space by consider-

ing among the feasible cases (k 1 ,..., kn) only those ones, which yield the minimal

value for Θk+1. Hence the reduced enumeration space Kk for Θk is given by the
equation

where ∗
k+1

denotes the found minimal value for Θk+1.

The computation time for Θk is significantly lower compared to Θk+1, what is due
to a shrunk enumeration space Kk , and a lower number of optimization variables.

5.5 Algorithm to compute GMPR

Finally, we conclude by proposing an algorithm that assigns the minimal GMPR

resources Θ 1 , . . . , Θm such that a given task set T is schedulable over an interface.

As a schedulability condition, we choose the one in (24). We recall that the period Π

and the parallelism m for a searching GMPR are given.

Step 1: For each task τi compute ki as defined in (23).

Step 2: Check whether the necessary condition for m (Theorem 3) is met:

If the condition above is violated, report the nonexistence of a valid GMPR interface

for T with a specified m, and terminate the algorithm.

Step 3: Generate the enumeration space Km such that

satisfying the condition (41).

k=1 k

Step 4: Compute Θm : for each case (k 1 ,..., kn) ∈ Km determine the search space
according to (40), solve the optimization problem (26), and then choose the minimal

Θm over Km .

Step 5: Compute Θk recursively after computing Θm , . . . , Θk+1:

(a) Define Kk from Eq. (42) so that any (k 1 ,..., kn) ∈ Kk+1 resulted in the optimal

Θk+1 is included into Kk .

(b) Substitute the computed values for Θm , . . . , Θk+1 into the optimization con-
straints of (26), and minimize Θk subject to these constraints. Solve the resulting
optimization problem over Kk , and then choose the minimal Θk .

Step 6: Follow the Step 5 to compute all the resources Θm−1,..., Θ1. In the end,

(Π, {Θ1 ,..., Θm }) is the sought-for interface for T having the minimized resources
Θ 1 , . . . , Θm .

Algorithm complexity. The complexity of the algorithm to compute a GMPR inter-

face depends on the complexity of the optimization problem (27). Due to the presence

of the PSF function Yk(t), which is non-convex, the optimization problem (27) is non-

convex. Although the complexity of such problems remains to be an open problem

in the literature, it is generally considered as exponential, until the opposite is proved

(Ausiello et al. 2008). Thus, the resulting complexity of the proposed algorithm is

exponential.

Customized computation of GMPR. We proposed an algorithm to compute a GMPR

interface having the minimized resources Θ 1 , . . . , Θm . At the same time, our approach

is easily extendable for computing a customized GMPR interface, which meets specific

user requirements (e.g. a constraint on the maximum resource fraction to be provided

at each concurrency), rather than simply having the minimized consumed resources.

In this case the custom constraints should be incorporated in the optimization prob-

lem (27).

6 Scheduling GMPR interfaces

Once the resource demand of each component is abstracted by an interface, these inter-
faces should be scheduled upon a hardware platform. To schedule GMPR interfaces,
we now introduce a notion of interface tasks. A set of interface tasks for a GMPR

interface (Π, {Θ1 ,..., Θm }) is comprised of m implicit-deadline (D = T) periodic

tasks such that:

where the execution time equals to

 (We set Θ0 = 0 for convenience).

The interface tasks in T , have an identical period T equal to the period of a GMPR

interface Π . Clearly, the overall resource demand of T , over a period Π is
ym

 C, =

Θm .

To schedule GMPR interfaces, we first transform each one into interface tasks

following (43), and then we employ any suitable policy to schedule the resulting

periodic tasks.

The notion of interface tasks supports another important property for hierarchi-

cal systems, which is called composability: by the given GMPR interfaces of child

components we can compute a GMPR interface of a parent component.

7 Evaluation of GMPR

In this section, we compare the amount of resource used by GMPR and MPR to feasibly

schedule randomly generated task sets. For each experiment setting, we compute the

minimal GMPR and MPR interfaces by employing the algorithm described in Sect. 5.5.

The algorithm to compute interfaces and the scenarios of the experiments have

been implemented in Matlab, and they are publicly available at https://sites.google.

com/site/artemburmyakov/home/papers.

7.1 Task set generation

Synthetic task sets T = {τi = (Ci , Ti)} are randomly generated by specifying the total
task set utilization UT , the maximum individual task utilization Umax, and the ratio

between the maximum and the minimum periods Tmax /Tmin. In our random generation

method, the number of tasks in T is not fixed. Instead, it is implicitly determined as
the total utilization of T reaches the specified value UT .

The minimum period Tmin is set to 20 and all task periods are randomly generated

so that the specified ratio Tmax/Tmin is not violated.

7.2 Experiments: the resource gain

We evaluate the resource gain of GMPR over MPR for the parameters listed in Table 3.

In each experiment, we compare the interfaces utilization as one parameter varies,

while the rest are left equal to the default values reported in Table 3.

Table 3 Key parameters: default values

Parameter Default value

Task set utilization, UT 2.5

Maximum individual task utilization, Umax 0.3

Minimum task period, Tmin 20

Ratio between the maximum and the minimum task periods, Tmax /Tmin 10

Interface period, Π 20

Parallelism increment, �m 3

https://sites.google.com/site/artemburmyakov/home/papers
https://sites.google.com/site/artemburmyakov/home/papers

Π

m
 /

G
a
in

 o
f

G
M

P
R

 o
v
e
r

M
P

R
,

%

11.5 20

15
11

10

10.5
5

10

0 1 3 5 7 9 11 13 15 17 19 21

0

0.01 1 3 5

7 9 11 13 15 17 19 21

Interface period, Interface period,

(a) Interface utilizations (b) GMPR gain over MPR

In each experiment, we randomly generate at least 200 task sets, and then we plot

the average interface utilizations
Θm

 among these task sets, as well as the relative

GMPR gain.

For each generated task set, the interface parallelism is set to

where mmin is the minimal parallelism defined by Theorem 3, and the increment �m

is varied through the experiments.

The gain of GMPR over MPR is computed as

where UMPR denotes the MPR utilization Θ , and UGMPR is the GMPR utilization
Θm .

Π Π

7.2.1 Varying interface period Π

First, we analyze the GMPR gain for a varying interface period Π . The resulting

utilizations of both GMPR and MPR interfaces are plotted in Fig. 17a. For such

settings the average GMPR gain is in the order of 5–10 %, and it increases for the

increasing Π .
The observed trend for gain increase is justified by an expanding search space for

the GMPR resources together with Π , which results in a higher degree of freedom for

GMPR over MPR.

In Fig. 17b we also illustrate the gain variability using a boxplot diagram (McGill

et al. 1979). In this diagram, the central horizontal mark on each box is the median for

the observed gain, the horizontal edges of the box are the 25th and the 75th percentiles,

the dashed lines extend to the most extreme gains covering 99.3 % observed cases,

and the outliers are depicted individually as crosses.

In
te

rf
a
c
e
 u

ti
liz

a
ti
o
n
,

GMPR

MPR

T

G
a

in
 o

f
G

M
P

R
 o

v
e

r
M

P
R

,
%

15

14

13

12

11

10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

35

30

25

20

15

10

5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Maximum task utilization, U
max

 Maximum task utilization, U
max

(a) Interface utilizations (b) GMPR gain over MPR

13 40

12

11 30

10

9 GMPR

8 MPR

7

6

2 5 10 15 20

20

10

0

2 4 6

8 10 12 14

16 18 20

Ratio, T /T Ratio T /T
max min max min

(a) Interface utilizations (b) GMPR gain over MPR

7.2.2 Varying maximum task utilization Umax

In the next experiment, we explore the dependency of the interface utilization on the

weight of individual tasks, by varying the maximum task utilization Umax. The results

are reported in Fig. 18. The interface utilization is minimal for Umax closer to 0.5–0.6,

and it drastically increases for Umax tending to 0 or 1. We believe that this behavior is

influenced by our choice of schedulability test (Lipari and Bini 2010) used to compute

interfaces.

The GMPR gain itself is maximized for lower Umax, reaching up to 10–15 %, and

the gain vanishes as Umax tends to one.

7.2.3 Varying ratio

Tmax

min

In Fig. 19 we provide the experimental results for a varying ratio Tmax/Tmin. The

interface utilization significantly increases together with the ratio Tmax/Tmin, but the

GMPR gain is maximized for lower Tmax/Tmin, reaching up to 15–25 %.

The observed utilization increase for both GMPR and MPR interfaces with respect

to Tmax is justified by the nature of the chosen schedulability test, described in

In
te

rf
a
c
e

 u
ti
liz

a
ti
o

n
,

m
 /

In
te

rf
a

c
e
 u

ti
liz

a
ti
o

n
,

m
 /

G
a

in
 o

f
G

M
P

R
 o

v
e

r
M

P
R

,
%

 GMPR

MPR

mΠ

R
e

la
ti
v
e
 i
n
c
re

m
e

n
t,

 m

 /
 m

 m
in

G
a
in

 o
f

G
M

P
R

 o
v
e

r
M

P
R

,
%

25

Ratio, m/m
min

0.8 50

20 GMPR utilization

MPR utilization

15

10

5

0
1.5 2 2.5 3 3.5 4 4.5 5

0.6

0.4

0.2

0

40

30

20

10

0

1.5

2 2.5

3 3.5

4 4.5 5

Task set utilization, U Task set utilization, U

(a) Interface utilizations (b) GMPR gain over MPR

0.95

0.9

0.85

0.8

0.75

GMPR

MPR

0 1 2 3 4 5

35

30

25

20

15

10

5

0

0 1 2

3 4 5

Parallelism increment,
m

Parallelism increment,
m

(a) Average utilization of a virtual processor (b) GMPR gain over MPR

Theorem 2. In fact, for fixed parameters U and Umax, increasing task periods result

in a higher interference of jobs accross the deadline window (so called “carry-in”,
defined by Eq. (18)), increasing the overall utilization of an interface.

7.2.4 Varying task set utilization UT

We also analyze the gain of GMPR over MPR as the task set utilization UT varies.

The results are depicted in Fig. 20. In this case the gain decreases for increasing UT .

A reason for such behavior is that, although the absolute parallelism increment �m

remains constant, its relative proportion �m/mmin decreases (see Fig. 20a), due to

mmin increasing with UT , resulting in a reduced scope for parallelism.

7.2.5 Varying parallelism increment �m

In the last experiment we analyze the relation between an average utilization of a

virtual processor,
Θm , and the parallelism increment �m. The results are provided in

Fig. 21. As expected, an average utilization of a virtual processor reduces for increasing

parallelism of an interface.

V
P

 u
ti
liz

a
ti
o

n
,

/
(m

)

In
te

rf
a

c
e
 u

ti
liz

a
ti
o

n
,

/
m

m

G
a
in

 o
f

G
M

P
R

 o
v
e

r
M

P
R

,
%

M
P

R
 c

o
m

p
u

ta
ti
o

n
 t

im
e

,
(s

e
c
)

150 150

100 100

50

0
4 8 12

16 20

24 28

32 36

50

30
20
10
0

4 8 12

16 20

24 28

32 36

Number of tasks, n Number of tasks, n

(a) GMPR (b) MPR

The GMPR gain itself increases together with �m. Such a dependency is expectable

since an increased �m leads to a higher degree of freedom for GMPR over MPR,

allowing a larger margin to minimize the consumed resource.

We also notice that the utilization of both GMPR and MPR is minimal for �m = 0,
and it increases with �m. This observation confirms the result of Shin et al. (2008)

regarding the minimum utilization of a multiprocessor interface, and moreover, this

result looks to be independent of the schedulability test used to compute an interface.

7.3 Analysis of the run-time for the interface generation

In this experiment we analyze a set of performance metrics for the algorithm to com-

pute a GMPR interface, based on the solution of the resource minimization problem,

as described in Sect. 5. The algorithm has been implemented in the Matlab 2010

environment. The experiment has been performed on a hardware platform with the

following specifications:

– Processor: Intel(R) Core(TM) i7-3630QM CPU @ 2.40 GHz

– Operating memory (RAM): 8,00 GB

– System type: 64-bit

In Tables 4 and 5 and in Fig. 22 we report the measured run-time for the GMPR

computation, for a varying number of tasks n and the parallelism m. Although the

proposed algorithm to compute GMPR is considered to have an exponential complex-

ity, the results show a linear increase of the algorithm run-time over n and m. This

result confirms the effectiveness of the search space reduction mechanism derived in

Sect. 5.3.

The computation time for MPR is 2–5 times lower compared to GMPR, what is

due to a simpler PSF function in the optimization constraints of (27).

In addition, we have evaluated the performance of several optimization solvers avail-

able in the Matlab, as they significantly affect the overall run-time of the GMPR com-

putation. Although the interior-point algorithm finds a more precise solution for (27),

we have chosen the active-set algorithm for its 5–100 times faster performance, and

G
M

P
R

 c
o

m
p

u
ta

ti
o

n
 t

im
e

,
(s

e
c
)

Table 4 The performance metrics for m = 5

n GMPR time (s) MPR time (s) Size of Km Size reduction (times)

1–10

11–18

<10

1–20

<1

1–10

1–25

10–50

1–50

102–104

19–25 10–50 1–15 50–120 103–106

26–30 25–100 5–25 100–200 104–107

31–35 50–150 10–50 100–300 105–1010

Table 5 The performance metrics for m = 10

n GMPR time (s) MPR time (s) Size of Km Size reduction (times)

1–10

11–18

<10

5–100

<1

1–10

5–50

10–100

10–1,000

102–106

19–25 50–250 10–50 50–150 105–109

26–30

31–35

100–300

100–500

20–100

25–150

<400

<400

108–1013

108–1016

its acceptable error which is at most 0.05 %, and the failure ratio of at most 2 % (in

case the active-set fails, we employ the interior-point instead).

In Tables 4 and 5 we report the size of the reduced search space Km defined by

Eq. (41). In each case, this value corresponds to the number of optimization prob-

lems (27) to be resolved in order to determine the minimal GMPR interface. To ana-

lyze the efficiency of the search space reduction algorithm, proposed in Sect. 5.3, we

also indicate the relative size reduction of Km compared to the original search space

defined by the schedulability test (24). We observe an exponential size reduction of

Km over a number of tasks n and an interface parallelism m.

8 Conclusion

Motivated by the need to save resource, we introduced the GMPR model, as an interface

of a multiprocessor virtual platform, and proposed a schedulability test for a set of

sporadic tasks over GMPR.

Since GMPR is a generalization of the previously proposed MPR model (Shin

et al. 2008), it can consume at most as much as MPR. Our evaluation confirmed

that the resource gain of GMPR over MPR increases together with the period and the

parallelism of an interface. The GMPR gain is especially noticable for task sets with

smaller individual tasks’ utilizations and a shorter range of tasks’ periods.

We also addressed the problem of computing a GMPR interface for a given set

of sporadic tasks, objecting to minimize the overall amount of resource required by

an interface. This problem was modeled as an optimization problem, which turned

to be efficiently solvable thanks to the derived tight lower and upper bounds for the

solution search space. Such an approach is easily extendable to compute a customized

GMPR interface, which meets specific user requirements rather than simply has the

minimized consumed resource.

For the future, our primary objective is to explore the flexibility of the GMPR

model in deriving a tighter schedulability analysis, specifically dedicated for it. We

also consider extending GMPR to a case of asynchronous virtual processors with

different periods.

Acknowledgments This work was partially supported by National Funds through FCT (Portuguese Foun-

dation for Science and Technology) and European Regional Development Fund (ERDF) through COMPETE

(Operational Programme ‘Thematic Factors of Competitiveness’), within Project Ref. FCOMP-01-0124-

FEDER-022701; by FCT and COMPETE (ERDF), within REHEAT and REGAIN Project, Ref. FCOMP-01-

0124-FEDER-010045 and FCOMP-01-0124-FEDER-020447 respectively; by FCT and the EU ARTEMIS

JU funding, within RECOMP project—ref. ARTEMIS/0202/2009, JU Grant Number 100202; and by FCT

and European Social Fund (ESFE) through Portuguese Human Potential Operational Program (POPH),

under Ph.D. Grant SFRH/BD/71368/2010. The research leading to these results was supported by the

Marie Curie Intra European Fellowship within the 7th European Community Framework Programme and

by the Linneaus Center LCCC.

References

Almeida L, Pedreiras P, Fonseca JAG (2002) The FTT-CAN protocol: why and how. IEEE Trans Ind Electron

49(6):1189–1201

Ausiello G, Crescenzi P, Kann V, Gambosi G, Marchetti-Spaccamela A, Protazi M (2008) Complexity and

approximation: combinatorial optimization problems and their approximability properties. Springer,

Berlin

Baruah S, Bonifaci V, Marchetti-Spaccamela A, Stiller S (2010) Improved multiprocessor global schedu-

lability analysis. Real Time Syst J 46:3–24

Bertogna M, Cirinei M, Lipari G (2009) Schedulability analysis of global scheduling algorithms on multi-

processor platforms. IEEE Trans Parallel Distrib Syst 20(4):553–566

Bini E, Bertogna M, Baruah S (2009) Virtual multiprocessor platforms: specification and use. In: Proceed-

ings of the 30th IEEE real-time systems symposium, Washinghton, DC, USA, pp 437–446

Burmyakov A, Bini E, Tovar E (2012) The generalized multiprocessor periodic resource interface model for

hierarchical multiprocessor scheduling. In: Proceedings of the 20th international conference on real-time

and network systems (RTNS), pp 131–139

Chang Y, Davis R, Wellings A (2008) Schedulability analysis for a real-time multiprocessor system based

on service contracts and resource partitioning. Technical report YCS 432. University of York. http://

www.cs.york.ac.uk/ftpdir/reports/2008/YCS/432/YCS-2008-432.pdf

Deng Z, Liu JWS (1997) Scheduling real-time applications in open environment. In: Proceedings of the

18th IEEE real-time systems symposium, San Francisco, CA, USA, pp 308–319

Easwaran A, Anand M, Lee I (2007) Compositional analysis framework using EDP resource models. In:

Proceedings of the 28th IEEE international real-time systems symposium. IEEE Computer Society,

Tucson, pp 129–138. http://dx.doi.org/10.1109/RTSS.2007.17

Feng X, Mok AK (2002) A model of hierarchical real-time virtual resources. In: Proceedings of the 23rd

IEEE real-time systems symposium, Austin, TX, USA, pp 26–35

Fisher N, Dewan F (2009) Approximate bandwidth allocation for compositional real-time systems. In:

Proceedings of the 21st Euromicro conference on real-time systems, Dublin, Ireland, pp 87–96

Holman P, Anderson JH (2006) Group-based pfair scheduling. Real Time Syst 32(1–2):125–168

Khalilzad NM, Behnam M, Nolte T (2012) Exact and approximate supply bound function for multiprocessor

periodic resource model: unsynchronized servers. In: Proceedings of CRTS 2012

Kuo TW, Li CH (1999) Fixed-priority-driven open environment for real-time applications. In: Proceedings

of the 20th IEEE real-time systems symposium, Phoenix, AZ, USA, pp 256–267

Kuo TW, Lin K, Wang Y (2000) An open real-time environment for parallel and distributed systems. In:

Proceedings of the 20th international conference on distributed computing systems, Taipei, Taiwan, pp

206–213

http://www.cs.york.ac.uk/ftpdir/reports/2008/YCS/432/YCS-2008-432.pdf
http://www.cs.york.ac.uk/ftpdir/reports/2008/YCS/432/YCS-2008-432.pdf
http://dx.doi.org/10.1109/RTSS.2007.17

Leontyev H, Anderson JH (2008) A hierarchical multiprocessor bandwidth reservation scheme with timing

guarantees. In: Proceedings of the 20th Euromicro conference on real-time systems, Czech Republic,

Prague, pp 191–200

Lipari G, Bini E (2003) Resource partitioning among real-time applications. In: Proceedings of the 15th

Euromicro conference on real-time systems, Porto, Portugal, pp 151–158

Lipari G, Bini E (2010) A framework for hierarchical scheduling on multiprocessors: from application

requirements to run-time allocation. In: Proceedings of the IEEE real-time systems symposium

McGill R, Tukey JW, Larsen WA (1979) Variations of boxplots. Am Stat 32:12–16

Mercer CW, Savage S, Tokuda H (1994) Processor capacity reserves: operating system support for mul-

timedia applications. In: Proceedings of IEEE international conference on multimedia computing and

systems, Boston, MA, USA, pp 90–99

Moir M, Ramamurthy S (1999) Pfair scheduling of fixed and migrating periodic tasks on multiple resources.

In: Proceedings of the 20th IEEE real-time systems symposium, Phoenix, AZ, USA, pp 294–303

Parekh AK, Gallager RG (1993) A generalized processor sharing approach to flow control in integrated

services networks: the single-node case. IEEE/ACM Trans Netw 1(3):344–357

Shin I, Lee I (2003) Periodic resource model for compositional real-time guarantees. In: Proceedings of

IEEE real-time systems symposium (RTSS), pp 2–13

Shin I, Easwaran A, Lee I (2008) Hierarchical scheduling framework for virtual clustering of multiproces-

sors. In: Proceedings of the 20th Euromicro conference on real-time systems conference (ECRTS’08)
Stoica I, Abdel-Wahab H, Jeffay K, Baruah SK, Gehrke JE, Plaxton CG (1996) A proportional share

resource allocation algorithm for real-time, time-shared systems. In: Proceeding of the 17th IEEE real

time system symposium, Washington, DC, USA, pp 288–299

