
Compositional Program Synthesis from Natural Language and Examples

Mohammad Raza

Microsoft Research

Cambridge, UK

a-moraza@microsoft.com

Sumit Gulwani

Microsoft Research

Redmond, USA

sumitg@microsoft.com

Natasa Milic-Frayling

Microsoft Research

Cambridge, UK

natasamf@microsoft.com

Abstract

Compositionality is a fundamental notion in com-
putation whereby complex abstractions can be con-
structed from simpler ones, yet this property has
so far escaped the paradigm of end-user program-
ming from examples or natural language. Exist-
ing approaches restrict end users to only give holis-
tic specifications of tasks, which limits the expres-
sivity and scalability of these approaches to rela-
tively simple programs in very restricted domains.
In this paper we propose Compositional Program
Synthesis (CPS): an approach in which tasks can
be specified in a compositional manner through a
combination of natural language and examples. We
present a domain-agnostic program synthesis algo-
rithm and demonstrate its application to an expres-
sive string manipulation language. We evaluate our
approach on complex tasks from online help fo-
rums that are beyond the scope of current state-of-
the-art methods.

1 Introduction

End-user programming aims to empower the vast majority of
computer users who are non-programmers with the ability to
program computers. This may be achieved through natural in-
teraction techniques such as programming by example (PBE),
programming by natural language (PBNL) or a combination
of such approaches. The challenge is to translate such infor-
mal descriptions of tasks into a computer program expressed
in an underlying domain specific language (DSL) that is un-
known to the user. Although there have recently been suc-
cessful commercial applications for synthesizing simple pro-
grams in application domains such as spreadsheets [Gulwani,
2011] or other office applications [Raza et al., 2014], the main
obstacle faced by existing approaches is scalability to sophis-
ticated programs in expressive DSLs.

In PBE approaches [Lieberman, 2001; Gulwani et al.,
2012], where the aim is to generate programs from a small
number of input-output examples, the performance degrades
as the DSL becomes more expressive (as there can be many
possible programs satisfying a small set of examples). Hence
such approaches usually impose a strong language bias to re-
strict the domain of possible programs. For instance, the state

of the art PBE system of [Gulwani, 2011] which is avail-
able in Microsoft Excel 2013, permits a very restricted subset
of regular expressions (without literal string tokens, disjunc-
tions, or iterations) and therefore disallows many common
programs including search-and-replace operations. We refer
to such limitation on the DSL as the expressivity bottleneck.
On the other hand, PBNL approaches [Gulwani and Marron,
2014; Manshadi et al., 2013; Kushman and Barzilay, 2013]

can potentially support more expressive DSLs, as they en-
joy a stronger preference bias coming from explicit natural
language descriptions of intent as opposed to examples only.
However, apart from issues such as ambiguity in natural lan-
guage specifications, such approaches are limited by the ad-
equacy of the training phase - the supervision bottleneck - a
general problem in the field of semantic parsing [Clarke et
al., 2010].

With regard to these scalability issues, a notable character-
istic of existing PBE/PBNL approaches is the lack of com-
positionality in the interaction paradigm: end users can only
give a holistic specification of the entire task, whether it is
an NL description or input-output examples describing the
whole task at once. In contrast, compositionality is at the
heart of programming practice, with fundamental abstrac-
tions such as expressions, procedures, classes or libraries pro-
viding modularity and separation of concerns that helps con-
struct complex programs from simpler ones. We also observe
the need for such compositionality when end users express
their requirements to expert programmers in online help fo-
rums: often for sophisticated tasks, the expert must request
elaboration or examples about specific parts of the user’s ini-
tial task description before they can provide a correct answer.

Hence as tasks get more sophisticated, some kind of com-
positional paradigm is the way forward. But one reason this
is difficult to achieve in end user settings is that the user has
no knowledge of the underlying formal DSL, and therefore
has no guidance on how to break a task down into appropri-
ate subtasks. In this paper we propose to address this issue by
leveraging the compositionality that is present in natural lan-
guage itself. Natural language descriptions of complex tasks
commonly refer to constituent concepts in the form of noun
phrases that occur in the sentence. Thus using standard tech-
niques to analyse the phrase structure of the natural language
descriptions, in our approach we allow the user to provide ex-
amples not just of the input and output of the whole program,

but of the constituent concepts as well. Such intermediate
examples are used by the system to synthesize relevant pro-
gram components to improve the accuracy and performance
of synthesis, without sacrificing DSL expressivity (as in PBE)
or being limited by training data (as in PBNL).

For instance, consider the task from a help forum shown
in Figure 1, where the user needs to match a complex string
pattern. This requires a regular expression involving dis-
junction, concatenation, different forms of iteration and lit-
eral character tokens, and cannot be synthesized by exist-
ing PBE or PBNL systems such as [Manshadi et al., 2013;
Gulwani, 2011]. The figure shows the original NL task de-
scription from the help forum, and four input-output exam-
ples which we gave for the task (where Ex 4 is a negative
example). The figure also shows three noun phrases detected
by the Stanford phrase structure parser [Klein and Manning,
2003], and the corresponding examples we gave for each of
these constituent concepts. With this input, our system syn-
thesizes the program using the desired regular expression.

Since our system uses an expressive DSL that supports un-
restricted regular expressions, there could be many possible
programs that satisfy the 4 given examples. However, us-
ing the intermediate examples of the constituent concepts, the
system first generates relevant components such as the inter-
val expression Interval(NumChar, 1, 5) for the concept “1-
5 numbers”, Interval(NumChar, 4) for “4 numbers” and the
single character token UpperChar for “a single letter”. Us-
ing these relevant components, the system is able to generate
the correct program efficiently and rank it higher than other
programs that may be using different components.

An important point to note is that in this approach we are
not applying any natural language learning techniques com-
monly used in PBNL approaches, but are only utilising the
natural language decomposition to enable compositional in-
put in the form of constituent examples. We avoid any super-
vised language learning in order to evaluate the effectiveness
of the compositional approach independently of other ap-
proaches and without reliance on any form of training input.
However, in practice we envision an ideal system combining
the strengths of the two approaches: semantic language un-
derstanding may alleviate the need for compositional input
in common cases, but for sophisticated tasks where language
understanding may fail due to ambiguity or inadequacy of
training, the user can still achieve their goal through compo-
sitional input.

We begin in the next section by describing the general pro-
gram synthesis framework and illustrate it with a particular
instantiation for the domain of string transformations. The
abstract framework consists of three main concepts: a do-
main specific language (DSL), the notion of a compositional
specification for tasks, and the notion of a component satis-
faction relation (CSR) which formally relates DSL compo-
nents to a compositional specification. In the following sec-
tion we describe the domain-agnostic program synthesis al-
gorithm which, parametrized by a DSL and a corresponding
CSR, generates programs from compositional specifications
of tasks. We then present an evaluation of our technique on
complex examples from online help forums and end with a
discussion of related work and research outlook.

“G” followed by 1-5 numbers or “G” followed by 4 numbers
followed by a single letter “A”-“Z”

Examples:

Ex 1 Ex 2 Ex 3 Ex 4

Input G2 G12345 G1234B G123456

Output G2 G12345 G1234B null

“1-5 numbers” 2 12345

“4 numbers” 1234

“a single letter” B

Synthesized program:

Filter(
DisjTok(

ConcatTok(
CharTok(‘G’),
Interval(NumChar, 1, 5)),

ConcatTok(
CharTok(‘G’),
ConcatTok(Interval(NumChar, 4),UpperChar))

)
)

Figure 1: Example from help forum. Shows original NL task
description, examples and synthesized program.

2 Compositional Synthesis Framework

Domain Specific Language (DSL). The DSL is the language
within which programs will be synthesized. It is defined as a

context-free grammar of the form (ψ̃NT , ψ̃T , ψstart ,Rules),

where ψ̃NT is a set of non-terminal symbols, ψ̃T is the set
of terminal symbols, ψstart is the start symbol and Rules
is the set of non-terminal production rules of the gram-
mar. Each production rule rule ∈ Rules is of the form
(ruleName, ψh ,Body) where ruleName is the rule name,

ψh ∈ ψ̃NT is the head symbol, and Body is a sequence of

symbols (ψ1, . . . , ψn) where each ψi ∈ ψ̃NT ∪ ψ̃T . The
semantics of the DSL is given by an interpretation of every
symbol ψ as ranging over a set of values JψK, and an inter-
pretation of each rule rule as a function

JruleK : Jψ1K×, . . . ,×JψnK → JψhK

where rule.Body = (ψ1, ..., ψn). A program P of type ψ is
any concrete syntax tree defined by the DSL grammar with
root symbol ψ. A complete program is a program with root
symbol ψstart . Any derivation from a non-root symbol is an
incomplete program or a program component.

Figure 2 illustrates a particular instantiation DSLs for
string transformations that we use in this paper. The start
symbol of the language is f which ranges over strings. The
non-terminal symbols are given on the left hand side on each
line along with their semantic value ranges in bold. The ter-
minal symbols of the language are k ,n, c, s as well as the
special symbol input which represents the input string on
which a program executes. The input symbol is the first pa-
rameter for every rule, but is omitted in the figure for brevity.

The DSL includes the language of Flash Fill [Gulwani,
2011], but we lift the strong expressivity restrictions required
in that work and permit unrestricted regular expression op-

string f := SubStr(p, p) | SubStr2(r , i) | ConstStr(s) | ConstChar(c) | Filter(r) | Replace(r , s) | Remove(p) |

Loop(w, f) | cnd | Concat(f , f)

string cnd := IfThen(b, f) | IfThenElse(b, f , f)

bool b := Match(r ,n) | Not(b) | And(b, b) | Or(b, b)

int p := CPos(k) | Pos(r , r , i)

rec r := EmptyTok | StartTok | EndTok | StrTok(s) | CharTok(c) | chCl | Neg(chCl) |

ConcatTok(r , r) | Interval(r ,n,n) | Interval(r ,n) | Optional(r) | KleenePlus(r) | KleeneStar(r) |

DisjTok(r , r) | LkBehind(r) | LkAhead(r) | IncludeWS(r)

rec chCl := AnyChar | NumChar | LowerChar | UpperChar | LiteralChar(c) | Union(chCl , chCl)

int i := k | k ∗ w + k

Figure 2: DSLs for string transformations. The start symbol is f , the terminal symbols k ,n, c and s represent literal values of
type integer, natural number, character and string respectively, and w is an integer variable.

erators such as disjunction, iteration, negation, look-arounds,
arbitrary literals, as well as additional string transformation
operators such as replace, remove, and filter. This lifting of
the expressivity limitations is one of the key features permit-
ted by the compositional synthesis approach that we evaluate
here.

We next discuss briefly the semantics of the DSL opera-
tors (for detailed semantics of Flash Fill operators see [Gul-
wani, 2011]). The SubStr(p1, p2) operator extracts the sub-
string between the positions p1 and p2 in the input string,
while SubStr2(r , i) extracts the i th occurrence of regular ex-
pression r from the input string. ConstStr and ConstChar
represent constant string and character values. Filter(r) re-
turns the input string if it satisfies regex r and null otherwise.
Replace(r , s) replaces every occurrence of a string matching
r in the input with string s . Remove(p) removes everything
after position p in the input. Concat(f , f) returns the concate-
nation of the two strings. IfThen(b, f) returns f if b is true
and the input string otherwise, while IfThenElse(b, f1, f2) re-
turns f2 in the else case. The Loop(w, f) operator produces a
concatenation of strings that are instances of f , where the kth

instance is the substitution of w = k for all occurrences of
the variable w in f . Boolean conditions (b) are based on the
Match(r ,n) predicate which asserts that there are n occur-
rences of regex r in the input string. Positions (p) in the input
string are generated by either the constant position construc-
tor CPos(k), or Pos(r1, r2, i) which is the i th occurrence of
a position in the input where the left satisfies r1 and the right
satisfies r2.

Regular expressions (r) include standard regex opera-
tors. There are character classes (chCl) for any char-
acter, numeric, lower case, upper case, literal characters
and unions of classes. Tokens include empty, start, end,
literals, character classes and their negations Neg(chCl).
ConcatTok(r , r) concatenates two tokens. Iteration opera-
tors include Interval(r ,n1,n2) (at least n1 and at most n2
occurrences of r), Interval(r ,n) (exactly n occurrences),
Optional (zero or one), KleenePlus (at least one) and
KleeneStar (zero or more). DisjTok, LkBehind and LkAhead
implement alternation (disjunction), look-behind and look-
ahead. IncludeWS(r) matches the regex r including any sur-

rounding whitespace on either side. Regex semantics is given
by occurrence records rec = P(int × int). An occurrence
record ρ ∈ rec is a set of pairs of start and end indexes rep-
resenting all possible matches of the regex in the input string.
This semantics provides a strong observational equivalence
relation between regexes over a given set of examples, which
helps to significantly reduce the search space in the synthesis.

Compositional Specifications. Let Σ be the domain of ob-
jects e.g., the set of strings for string manipulation tasks. A
standard input-output examples specification of a task is usu-
ally a pair (φI , φO) such that φI , φO ∈ Σn, specifying n input
states and their corresponding outputs. In our case, we define
the notion of a compositional examples specification which,
in addition to the input and output examples, also specifies
examples of constituent states. A compositional specifica-
tion with n input examples is defined as φ = (φI , φO) where
φI ∈ Σn and φO is a tree t ∈ T of the form t := ê[t, . . . , t].
A tree node ê ∈ P(Σ)n is an n-tuple of sets of examples. We
permit a set of examples in the output nodes to allow multi-
ple examples to be given for constituent concepts, e.g. for the
task “allow only letters and numbers”, the user may give mul-
tiple examples of “letters” occurring in the input string. The
root node of the tree φO specifies the final output for each in-
put, and should therefore always be a tuple of singleton sets.

Example 1 For the NL task description “Any 2 letters fol-
lowed by any combination of 6 whole numbers”, the user
provides one positive and one negative example for the in-
put,output and constituent concepts:

Ex 1 Ex 2

Input RJ123456 DDD12345

Output RJ123456 null

“Any 2 letters” RJ

“6 whole numbers” 123456

These examples are represented by the compositional spec
(φI , φO) where φI = (“RJ123456”, “DDD12345”) and
φO = ê1[ê2, ê3] where ê1 = ({“RJ123456”}, {null}), ê2 =
({“RJ”}, ∅) and ê3 = ({“123456”}, ∅).

The tree structure of the output also permits constituent ex-
amples to be given for every node, which may be required

for more complex constituent concepts. We refer to the root
node in the output tree as the output examples node and ev-
ery other node as a constituent-examples node. Intuitively, a
given program P in the DSL satisfies a compositional spec φ
if it satisfies the input and output examples, and is composed
of components that “satisfy” the constituent-examples nodes,
where this notion of satisfaction is formalised by a component
satisfaction relation which we define next.

Component Satisfaction Relation (CSR). When the user
gives a set of constituent examples, the examples could be
referring to any component program of a certain type in the
DSL, whether it is a regular expression, a character class, a
position expression, etc. Each of these types have their own
semantic values, and the CSR is meant to describe the rela-
tionship between the given examples and values of this type:
the values that may be relevant for the given examples. For
instance, for a given set of string examples, any occurrence
records matching those examples may be relevant regular
expression values. Formally, for each non-terminal symbol

ψ ∈ ψ̃NT in the DSL, a separate relation CSR〈ψ〉 is defined.
Assume we are given input examples φI = (e1, ..., en) and a
constituent-examples node ê. Let v̄ = (v1, . . . , vn) be a tuple
of n values such that vi ∈ JψK (values may be generated by
a program component operating on the input states φI). The
relation CSR〈ψ〉(φI , ê, v) determines whether the values cor-
respond to the constituent examples on the given input states.
The definition of the CSR relation is a design choice that is
up to the DSL designer, to specify how language components
would relate to a given set of examples. The only constraint
required is that the CSR for the start symbol should be exactly
the semantics of complete programs in the DSL, that is, the
value tuple should correspond exactly to the output examples.

For instance, the CSR relations we have defined for the
string DSL are given in Figure 3. For the start symbol f
which represents complete programs, the values correspond
exactly to the examples. For character classes, we require all
the characters in the given examples and value tuple to fall un-
der the same class. For example, in the case of φI and ê2 from
Example 1, any value tuple of occurrence records including
non-capital letters will not satisfy the CSR, since the example
only includes capital letters. For regular expressions (r), we
require all the example strings to be included in the matches
given in the occurrence records in the value tuple. Hence in
the case of ê2 in Example 1, the occurrence records gener-
ated by KleenePlus(UpperChar) and Interval(UpperChar, 2)
will satisfy the CSR, but Interval(UpperChar, 1) will not.
For position expressions, we require the example strings
to occur in the input string at either the start or end po-
sitions that are given in the value tuple. So in the case
of ê2, valid value tuples will contain the positions 0 or 2,
which may for example be generated by CPos(0), CPos(2)
or Pos(UpperChar,NumChar, 0). For other non-terminals,
we define the CSR to be false, to indicate no direct relation-
ship between examples and components of this type.

Apart from the relations defined for the non-terminal sym-

bols, for every terminal symbol ψ ∈ ψ̃T the CSR defines a
set of literal values to be used for these terminals: CSR〈ψ〉 ⊆

CSR〈f 〉(φI , ê, v̄) iff ∀i. ei = {vi}

CSR〈chCl〉(φI ,ê,v̄) iff Chars(∪iStrings(si,vi)) and
Chars(∪iei) belong to the same
minimal character class

CSR〈r〉(φI,ê,v̄) iff ∀i.ei ⊆ Strings(si, vi) and
CSR〈chCl〉(φI ,ê,v̄)

CSR〈p〉(φI , ê, v̄) iff ∀i.∀e ∈ ei. e is a substring of si which
has either start or end position vi in si

Strings(s, ρ) = all substrings of string s that are matches
determined by occurrence record ρ

Chars(S) = all characters occurring in any string in the set S

Figure 3: CSR〈ψ〉 for DSLs. We let φI = (s1, ..., sn),
ê = (e1, ..., en) and v̄ = (v1, ..., vn) with vi ∈ JψK

JψK. We initialise these sets with literal values that occur in
the natural language task description. Hence for Example 1,
the numeric values 2 and 6 are used as integer literals, and for
the example in Figure 1, “G” is used as a literal character.

3 Program Synthesis Algorithm

In this section we describe the program synthesis algorithm
which is parametric in a given DSL, CSR and a composi-
tional specification. At its core, the algorithm performs a sys-
tematic search over the state space of possible programs, but
this search is optimized by incorporating components that are
recursively synthesized from the compositional specification.
These components are also used to rank among numerous sat-
isfying programs that may be generated from the search. This
combination of systematic and specification-guided heuristic
techniques means that the algorithm performs efficiently on
complex tasks in practice, but is also theoretically sound and
complete in the sense that if the required terminal symbols
are given in the CSR and no timeouts are imposed then it will
always generate a program satisfying the input-output exam-
ples if one exists (even if no constituent examples are given).

In the rest of the description in this section we assume a
given DSL, CSR and specification φ = (φI , φO) with a fixed
number of examples n. Before describing the main algorithm,
we first give some preliminary definitions.

Value maps. The algorithm uses value maps to efficiently
maintain large sets of programs that yield the same values
(are observationally equivalent) on the given input examples

in φ. A value map θ is a partial map θ[ψ, v̄] = P̃ which
maps a DSL symbol ψ and a value tuple v̄ ∈ JψKn to a set

of programs P̃ of type ψ. We write dom(θ) for the set of
pairs (ψ, v̄) in the domain of θ, and Symbols(θ) for the set
of symbols in the domain of θ. We write θ|ψ to indicate the
restriction of the domain to just ψ. We define the union of
maps θ1 ∪ θ2 = θ such that θ[ψ, v̄] =

θ1[ψ, v̄] ∪ θ2[ψ, v̄] (ψ, v̄) ∈ dom(θ1) ∧ (ψ,v̄) ∈ dom(θ2)

θ1[ψ, v̄] (ψ, v̄) ∈ dom(θ1)

θ2[ψ, v̄] (ψ, v̄) ∈ dom(θ2)

We next define application of DSL rules to value maps. Let
rule = (ruleName, ψh, (ψ1, . . . , ψm)) be a DSL rule. For
1 ≤ i ≤ m, let v̄i ∈ JψiK

n such that v̄i = (vi,1, . . . , vi,n).

1: function SynthProgram(DSL,CSR, φ)
2: ψ := start symbol of DSL
3: ê := root node of φO

4: θ := SynthCSRStates(DSL,CSR, φ, ê, {ψ})
5: return GetTopRankedProgram(φ, θ)

1: function SynthCSRStates(DSL,CSR, φ, ê, ψ̃)
2: θI := GetCSRTerminalValuesMap(CSR, φ)

3: ψ̃NT := non-terminal symbols of DSL
4: Rules := rules of DSL
5: letM map constituent-examples nodes to value maps
6: for each child êc of ê do
7: M [êc] := SynthCSRStates(DSL,CSR, êc, ψ̃NT)
8: θI := θI ∪M [êc]

9: θI := θI ∪ AggregatorRules(DSL,M)
10: θI := θI ∪ModifierRules(DSL,M)

11: θR := GetCSRValuesMap(CSR, θI , φ, ê, ψ̃)

12: ψ̃ := ψ̃ − Symbols(θR)

13: while ψ̃ 6= ∅ do
14: θcur := θI ∪ θR
15: θcsr := ∅
16: while θcsr = ∅ do
17: θcur := θcur ∪ ApplyRules(Rules, θcur)

18: θcsr := GetCSRValuesMap(CSR, θcur , φ, ê, ψ̃)

19: θR := θR ∪ θcsr
20: ψ̃ := ψ̃ − Symbols(θR)

21: return θR
Figure 4: Program synthesis algorithm

The lifting of rule application to value tuples is defined as
JruleK(v̄1, . . . , v̄m) = v̄ such that v̄ = (v1, . . . , vn) and for
1 ≤ k ≤ n we have vk = JruleK(v1,k, . . . , vm,k). Rule appli-
cation for value maps is defined as JruleK(θ1, . . . , θm) = θ

such that θ[ψ, v̄] = P̃ if and only if there exist v̄1, . . . , v̄m
such that θ[ψi, v̄i] = P̃i, v̄ = JruleK(v̄1, . . . , v̄m) and

P̃ = {P | P = ruleName(P1, . . . , Pm) ∧ Pi ∈ P̃i}

We write JruleK(θ) = JruleK(θ1, . . . , θm) if θi = θ for all i.
For a rule set Rules , we define

ApplyRules(Rules , θ) =
⋃

rule∈Rules

JruleK(θ)

Main algorithm. The main function of the algorithm is
SynthProgram defined in Figure 4, which takes a DSL, CSR
and compositional spec and returns a program. This function
first generates a value map of satisfying programs by calling
the recursive function SynthCSRStates with the root node of
the specification and the start symbol of the grammar. It then
returns the top ranked program according to a specification-
based ranking scheme which we describe below.

The SynthCSRStates function takes a DSL, CSR, a spec-
ification φ, a constituent-examples node ê from φO and a set

of symbols ψ̃. It returns a value map which, for each symbol

ψ ∈ ψ̃, contains programs of type ψ that satisfy the CSR〈ψ〉
with respect to the examples node ê. Hence when called with
the root node of the specification and the start symbol (in the

main function), it returns a set of complete programs satis-
fying the input-output examples. The SynthCSRStates func-
tion can be described in two main phases: the initialization
phase (lines 1-10) is the generation of an initial set of pro-
gram components in value map θI . These initial components
are then used in the search phase (lines 11 to 21) to perform a
systematic search through the space of possible programs by
iteratively generating increasingly bigger programs, similar
in style to [Katayama, 2007].

Initialization. The value map θI is first initialized with all
the terminal components specified in the CSR terminal state
sets. This is done by the GetCSRTerminalValuesMap func-
tion:

GetCSRTerminalValuesMap(CSR, φ)
let n be the number of examples in φ
return θr such that θr[ψ, v̄] = v for all terminal

symbols ψ, v ∈ CSR〈ψ〉 and v̄ = (v, . . . , v) of size n.

Then, for each child of the node ê, there is a recursive
call to generate components satisfying the child node and
these components are added to θI (lines 3-8). The algo-
rithm then gives priority to two commonly occurring rule
application patterns over the constituent components, before
going into brute-force search. The first is for the aggre-
gator rules, which are binary recursive rules of the form
(ruleName, ψ, (ψ,ψ)). Examples of such rules in the string
DSL are Concat, DisjTok, ConcatTok, And, Or and in
other DSLs may include operators such as sequential com-
position. Such recursive rules are often used to aggregate
components together by repetitive application of the form
ruleName(P1, . . . , Pn), e.g. tasks requiring a sequence of
concatenations or disjunctions. For each aggregator rule
rule = (ruleName, ψ, (ψ, ψ)) in the DSL and sub-sequence
of child nodes êi, . . . êj , the function AggregatorRules per-
forms the rule application JruleK(M [êi]|ψ, . . . ,M [êj]|ψ).

Similarly, the modifier rule pattern applies unary recursive
rules of the form (ruleName, ψ, (ψ)). Examples of such
rules may be KleeneStar, LkBehind or Not. Constituent con-
cepts in task specifications are often modified with such rules
when used in the full program. For example, in the specifi-
cation “extract all characters that occur after a number”, the
regular expression for “number” may be used under the appli-
cation of a look-behind operator. For each modifier rule rule
in the DSL and child node êc, the function ModifierRules per-
forms the rule application JruleK(M [êc]|ψ).

Search. The search phase begins at line 11, where it is first
checked if any CSR-satisfying components have already been
generated:

GetCSRValuesMap(CSR, θ, φ, ê, ψ̃)
return θr such that θr[ψ, v̄] = θ[ψ, v̄] iff

ψ ∈ ψ̃ ∧ CSR〈ψ〉(φ, ê, v̄) and undefined otherwise

The value map θR collects CSR states for all the required
symbols. Using the initial components from θI , rules of the
DSL are iteratively applied until CSR-satisfying components
have been found for all the required symbols (lines 13-20). In
practice we apply timeouts for rule application and recursive
calls for component synthesis.

Ranking. The ranking scheme our algorithm uses is
based on a combination of the amount of CSR-satisfying

FF B1 B2 CPS

Number of timeouts 0 26 7 6

Number of incorrect results 46 15 6 0

Number of correct results 2 7 35 42

Average time (seconds) < 0.5 12.35 8.99 9.97

Figure 5: Baselines (FF, B1,B2) and full system (CPS) on 48 tasks

components the program contains (which indicates the rel-
evance of the program with respect to the given con-
stituent examples and literal values), and the size of the
program (favouring “simpler” programs based on the Oc-
cam’s Razor approach of [Gulwani, 2011]). The function
GetTopRankedProgram ranks among satisfying programs
using a relation that is a lexical ordering of three met-
rics (CSRScore,Size,NumCSRComps). For a program P ,
CSRScore(P) is the number of constituent example nodes
for which P contains a satisfying component + the number of
literal terminal values from the CSR relation that occur in P .
The Size(P) is the number of nodes in the syntax tree of P .
NumCSRComps(P) is the total number of components in
P that satisfy the CSR (may include duplicate occurrences).
Hence the ranking scheme is to first prefer programs that sat-
isfy the most constituent examples nodes and CSR terminal
values, then to choose the smallest from among these, and
then from these choose the one with the most CSR satisfying
components.

4 Evaluation

The evaluation of our approach is based on string manipu-
lation tasks from online help forums for Excel and regular
expressions 1. These help forums illustrate the numerous dif-
ficulties users face in the string manipulation domain, as well
as their need to express intent using both natural language and
examples. We evaluated our compositional synthesis system
on a set of 48 tasks taken from these forums. These tasks are
covered by the wide range of constructs provided by DSLs,
including conditionals, loops, the various string transforma-
tion operators and complex regular expressions. Of the 48
tasks, 40 are not expressible in the DSLs of [Gulwani, 2011;
Manshadi et al., 2013] (require disjunctions, iterations, liter-
als), and 20 are not expressible in the DSL of [Kushman and
Barzilay, 2013] (require conditionals, loops, look-arounds
and other string transformations).

For each task, we performed our evaluation using the natu-
ral language description as stated in the original forum ques-
tion, and obtained the noun phrases for constituent concepts
from this description using the Stanford [Klein and Manning,
2003] and SPLAT constituency parsers [Quirk et al., 2012].
Out of the 48 tasks, our system synthesized correct programs
for 42 and timed out on the remaining 6. The average number
of examples required was 2.73, with a maximum of 6 exam-
ples for one of the tasks. The average number of constituent
concepts required was 1.53 (maximum 4 , minimum 0). The
average execution time was 9.97 seconds, with 28 tasks com-
pleting in under 4 seconds. The programs synthesized by

1www.forums.devshed.com/regex-programming-147,
www.stackoverflow.com, www.mrexcel.com

our system contained an average of 7 distinct DSL functions
(minimum 4, maximum11), and had an average syntax tree
size of 10.5 nodes (minimum 5, maximum 25).

We also compared our full system against three baselines,
as shown in Figure 5. The first was the Flash Fill (FF) system
[Gulwani, 2011], which uses a domain-specific algorithm for
a subset of the string manipulation DSL we use here. FF gave
correct results on 2 of the 48 tasks (only 8 were expressible
in the FF language and 6 of those yielded incorrect programs
on the same input-output examples given to our system). For
the second baseline B1, we supplied our system with only the
input-output examples for each task and no constituent ex-
amples. Only 7 programs were synthesized correctly in this
case, demonstrating the improvement achieved with compo-
sitionality. For the third baseline B2, we applied our system
with a ranking scheme that chose the smallest program as ad-
vocated in [Gulwani, 2011]. In this case 35 programs were
correctly synthesized, showing the benefits of compositional-
ity not only in the tractability of search, but in the accuracy of
ranking as well.

The timeouts on the 6 tasks can be explained by the expo-
nential nature of the systematic search performed by the al-
gorithm. In practice we expect significant optimizations to be
obtained when we incorporate natural language understand-
ing, based on training that the system can receive as tasks are
performed. However, such NL-training by itself is inadequate
and data-dependent e.g. [Kushman and Barzilay, 2013] re-
port only 65% task coverage on their regular expression DSL
which is much simpler than ours. We demonstrate 87% task-
coverage without any training and with very few examples.
Further gains are expected by incorporating NL-training, but
in this work we have avoided such optimizations in order to
evaluate the compositional approach independently of train-
ing data.

Discussion of sample forum tasks In Figure 6 we illus-
trate six of the help forum tasks used in our evaluation. For
each task we show the relevant fragment of the original task
description as given by the user in the help forum, the web ad-
dress of the forum question, the examples given to our system
and the program that was synthesized. Details of every task
handled by our system can be found in [Raza et al., 2015].

Task 6a illustrates how our system handles a string replace-
ment task where the replacement is to be done on only part
of the string that is to be matched. The task description may
suggest the use of a conditional to check the existence of a
16 digit number, but this does not ensure that the string be-
ing replaced would be part of the one that is matched in the
condition. Instead, after synthesizing the correct components
Interval(NumChar, 12) and Interval(NumChar, 16), our sys-
tem uses the lookahead operator to ensure correct substring
replacement. This shows how the generated program may
not always have a straightforward correspondence with the
task description, as seen in other cases such as in Figure 1.

Task 6b illustrates a relatively bigger program using posi-
tion expressions. Since the position expressions in the SubStr
constructor are independent of one another, they can easily be
used incorrectly in extraction tasks. For example, for Task 6b

Ex 1 Ex 2

Input a5424180123456789c c4015b1234567890123

Output axxxxXXXXxxxx6789c c4015b1234567890123

“a 16 digit number” 5424180123456789

“the first 12 digits” 542418012345

Replace(
ConcatTok(

LkAhead(Interval(NumChar, 16)),
Interval(NumChar, 12)

),
“xxxxXXXXxxxx”

)

(a) If the cells contain a 16 digit number then -Replace the first 12 digits of each string with “xxxxXXXXxxxx”
(http://www.mrexcel.com/forum/excel-questions/712609-replace-numbers-string.html)

Ex 1 Ex 2 Ex 3 Ex 4

Input abc SN 12345 xyz edf 242353 SN No. 421156 212311 mno 453abc11SN abc 12131232112 SN123

Output 12345 421156 12131232112 123

“some other text” ‘ ’ No. abc

“numbers” 12345 421156 12131232112 123

SubStr(
Pos(ConcatTok(StrTok(“SN”),KleeneStar(Neg(NumChar))),KleenePlus(NumChar), 0),
Pos(ConcatTok(StrTok(“SN”),ConcatTok(KleeneStar(Neg(NumChar)),KleenePlus(NumChar))),Optional(StrTok(“SN”)), 0)

)

(b) extract any numbers afters “SN”. the numbers can be vary in digits. Also, at times there is some other text in between numbers and
search word (http://www.mrexcel.com/forum/excel-questions/763905-extract-numbers-after-specific-words.html)

Ex 1 Ex 2

Input Class (4) 1m5f Good 2 2 3 5M2Fxyz 3

Output 1m5f 5M2F

“a digit” 1 5

“the letter” m M

“a digit” 5 2

“the letter” f F

SubStr2(
ConcatTok(

NumChar,
ConcatTok(

DisjTok(CharTok(‘m’),CharTok(‘M ’)),
ConcatTok(NumChar,DisjTok(CharTok(‘f ’),CharTok(‘F ’)))

)
),
0

)

(c) a digit, following by the letter “m” or “M”, followed by a digit, then followed by the letter “f” or “F”.
(http://stackoverflow.com/questions/18314280/java-regex-finding-a-characters-anywhere-in-a-string)

Ex 1 Ex 2 Ex 3

Input She had ringing in her ear. mouth pain Something else

Output face face body

IfThenElse(
Match(DisjTok(StrTok(“ear”), StrTok(“mouth”)), 0),
ConstStr(“body”),
ConstStr(“face”)

)

(d) If column A contains the words “ear” or “mouth”, then I want to return the value of “face” otherwise I want it to return the value of
“body”. (http://www.mrexcel.com/forum/excel-questions/719190-if-cell-contains-certain-text-then-return.html)

Ex 1 Ex 2 Ex 3 Ex 4

Input 1 1c 2 b

Output 1 1c 2 null

“any character” c

Filter(
ConcatTok(DisjTok(CharTok(‘1’),CharTok(‘2’)),Optional(LowerChar))

)

(e) The string must start with “1” or “2” (only once and mandatory) and then followed by any character between “a” to “z”(only once)
(http://stackoverflow.com/questions/16580566/regex-for-string-starts-with-numbers-and-followed-by-letters)

Ex 1 Ex 2 Ex 3 Ex 4

Input Asd rZt35Hbeas ra- d2B

Output Asd rZt35Hbeas null null

“alphabet” Asd rZt

“any alphanumeric” 35Hbeas

Filter(
ConcatTok(
Interval(Union(LowerChar,UpperChar), 3),
KleeneStar(Union(NumChar,Union(LowerChar,UpperChar)))

)
)

(f) first 3 character is alphabet (lower and upper both) then any alphanumeric if present (http://forums.devshed.com/regex-programming-
147/linux-regexp-machine-name-957229.html)

Figure 6: Sample forum tasks: the original task descriptions, the examples given to our system and the synthesized programs.

an incorrect expression for the second position may require
only a number to match on the left. This may work in most
cases where there is a single number in the string, but ex-
ample 2 shows a case where this fails. As such, our system
synthesizes the much longer position expression that ensures
that the left matches the string “SN” followed by some se-
quence of characters, followed by a number. Also notice how
the right-matching expression for the second position is big-
ger than required (an empty match would suffice), but that
this does not affect the semantic correctness of the program.

Task 6c illustrates how our approach permits differ-
ent semantic interpretations for the same natural language
phrase used in different contexts. For example, the con-
cept “the letter” appears twice in the task description, re-
ferring to two different abstractions. Based on the con-
stituent examples, our system correctly infers the dif-
ferent disjunctions DisjTok(CharTok(‘m’),CharTok(‘M ’))
and DisjTok(CharTok(‘f ’),CharTok(‘F ’)) for the two oc-
currences of this concept. This is due to the literal characters
in the task specification and the requirement of least general
character classes in the CSR relation. In contrast, for the con-
cept “a digit” which also appears twice, the same abstraction
NumChar is correctly inferred in both cases.

Task 6d illustrates the synthesis of a conditional program.
No constituent examples are required for this task since the
literal strings in the task description provide the correct CSR
terminals and the aggregator rule optimization helps to effi-
ciently generate the disjunctive condition.

Task 6e shows how with the help of examples our approach
can achieve robustness with respect to inaccuracies or ambi-
guities that often occur in natural language descriptions of
tasks. In this case the user states that the letter must appear
“only once”, but the four examples taken from his question
indicate that the letter can occur at most once or not all (and
this is indeed clarified by the user later on in the question).
From these four clarifying examples our system is able to
correctly apply the Optional modifier to the LowerChar to-
ken. Handling such ambiguities or inaccuracies may be diffi-
cult for purley language-based synthesis approaches such as
[Kushman and Barzilay, 2013].

Task 6f illustrates another regular expression which uses
disjunctive character classes. While our system generates the
correct character class for the concept “alphanumeric” from
the given constituent examples, this task also illustrates how
compositional specifications with greater depths may be used.
For instance, with a different CSR definition the system may
not infer the correct composite character class for “alphanu-
meric”. In this case, the user may elaborate on this concept
and may describe it as “a number, lower case letter or upper
case letter”. Giving further constituent examples for each of
these three concepts consititutes a further level in the com-
positional specification tree, and our system synthesizes the
correct program given such a deeper specification.

5 Related Work and Conclusion

In recent years there has been much work in the area of pro-
gram synthesis from natural language, examples or a mixture
of such approaches. Natural language learning approaches

have addressed the translation of sentences to meaning repre-
sentations such as database queries [Zettlemoyer and Collins,
2009; Clarke et al., 2010; Gulwani and Marron, 2014; Liang
et al., 2011], navigation plans [Chen and Mooney, 2011]

and string manipulation expressions [Manshadi et al., 2013;
Kushman and Barzilay, 2013]. Apart from ambiguity issues
in NL, such approaches are limited by the adequacy of the
domain-specific training phase. Although we have demon-
strated the compositional examples-based approach indepe-
dently of any language learning supervision, the incorpora-
tion of such advanced NLP techniques is expected to reduce
the amount of constituent examples required, while still sup-
porting complex tasks when language understanding fails.

There has also been significant work on purely example-
based synthesis techniques for string manipulation tasks
[Gulwani, 2011; Raza et al., 2014; Le and Gulwani, 2014;
Perelman et al., 2014]. However, all of these approaches im-
pose strong limitations on the expressivity of the DSL, which
can be avoided with the compositional paradigm as we have
demonstrated in this work.

The closely related area of Programming-by-
Demonstration [Lau et al., 2003b] also advocates a
degree of compositionality, as users can demonstrate traces
of actions rather than just give input-output examples.
However, this is only true for the concrete actions that can
be performed rather than expressing the general conditions
under which the action is to be performed e.g. a complex
regular expression for extracting a string (such as in Figure
1) cannot be expressed through a series of actions. It will be
beneficial to incorporate such approaches when the user has
knowledge of the demonstrational interface, which may be
true in particular domains such as web browsing [Allen et
al., 2007] but not in general.

In summary, we have described a domain-agnostic pro-
gram synthesis framework and algorithm, with which com-
plex tasks can be accomplished by providing input in a com-
positional manner. In particular, we have demonstrated the
approach in the particular domain of string manipulation, sup-
porting a very expressive domain language and evaluating
with complex tasks from online help forums which are out-
side the scope of current state-of-the-art methods.

Given the domain-independent nature of our algorithm,
in future work we plan to explore applications to other do-
mains such as numerical algorithms [Lau et al., 2003a]. Such
explorations may also require further development of the
language-based decomposition technique: in this work we
have focussed on noun phrases as representing concepts for
which examples may be given, but different decomposition
approaches may be more suited to other possibly imperative
(rather than functional) domains.

In the long run, as we attempt to address more sophisticated
tasks, one can imagine moving towards a dialog-based inter-
action model. For example, much like the experts on help
forums, the system may request the user for elaboration or
examples of concepts mentioned, present paraphrased natural
language descriptions of synthesized programs to the user,
and request counter-examples if such proposals are not cor-
rect. We aim to explore such interactive approaches in future
work.

References

[Allen et al., 2007] James F. Allen, Nathanael Chambers,
George Ferguson, Lucian Galescu, Hyuckchul Jung,
Mary D. Swift, and William Taysom. Plow: A collab-
orative task learning agent. In AAAI, pages 1514–1519.
AAAI Press, 2007.

[Chen and Mooney, 2011] David L. Chen and Raymond J.
Mooney. Learning to interpret natural language naviga-
tion instructions from observations. In Wolfram Burgard
and Dan Roth, editors, AAAI. AAAI Press, 2011.

[Clarke et al., 2010] James Clarke, Dan Goldwasser, Ming-
Wei Chang, and Dan Roth. Driving semantic parsing from
the world’s response. In Proceedings of the Fourteenth
Conference on Computational Natural Language Learn-
ing (CoNLL-2010), pages 18–27, Uppsala, Sweden, 2010.

[Gulwani and Marron, 2014] Sumit Gulwani and Mark Mar-
ron. Nlyze: Interactive programming by natural language
for spreadsheet data analysis and manipulation. In Pro-
ceedings of the 2014 ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD ’14, pages 803–
814, New York, NY, USA, 2014. ACM.

[Gulwani et al., 2012] Sumit Gulwani, William R. Harris,
and Rishabh Singh. Spreadsheet data manipulation using
examples. Commun. ACM, 55(8), 2012.

[Gulwani, 2011] Sumit Gulwani. Automating String Pro-
cessing in Spreadsheets using Input-Output Examples.
In Principles of Programming Languages (POPL), pages
317–330, 2011.

[Katayama, 2007] Susumu Katayama. Systematic search for
lambda expressions. In Marko C. J. D. van Eekelen, edi-
tor, Revised Selected Papers from the Sixth Symposium on
Trends in Functional Programming, TFP 2005, volume 6,
pages 111–126. Intellect, 2007.

[Klein and Manning, 2003] Dan Klein and Christopher D.
Manning. Accurate unlexicalized parsing. In ACL ’03:
Proceedings of the 41st Annual Meeting on Association for
Computational Linguistics, pages 423–430, Morristown,
NJ, USA, 2003. Association for Computational Linguis-
tics.

[Kushman and Barzilay, 2013] Nate Kushman and Regina
Barzilay. Using semantic unification to generate regular
expressions from natural language. In HLT-NAACL, pages
826–836. The Association for Computational Linguistics,
2013.

[Lau et al., 2003a] Tessa A. Lau, Pedro Domingos, and
Daniel S. Weld. Learning programs from traces using ver-
sion space algebra. In John H. Gennari, Bruce W. Porter,
and Yolanda Gil, editors, K-CAP, pages 36–43. ACM,
2003.

[Lau et al., 2003b] Tessa A. Lau, Steven A. Wolfman, Pedro
Domingos, and Daniel S. Weld. Programming by Demon-
stration Using Version Space Algebra. Machine Learning,
53(1-2):111–156, 2003.

[Le and Gulwani, 2014] Vu Le and Sumit Gulwani. Flashex-
tract: A framework for data extraction by examples. In
PLDI, 2014.

[Liang et al., 2011] Percy Liang, Michael I. Jordan, and Dan
Klein. Learning dependency-based compositional seman-
tics. CoRR, abs/1109.6841, 2011.

[Lieberman, 2001] Henry Lieberman, editor. Your Wish is
My Command: Programming by Example. Morgan Kauf-
mann Publishers, 2001.

[Manshadi et al., 2013] Mehdi Hafezi Manshadi, Daniel
Gildea, and James F. Allen. Integrating programming by
example and natural language programming. In Marie
desJardins and Michael L. Littman, editors, AAAI. AAAI
Press, 2013.

[Perelman et al., 2014] Daniel Perelman, Sumit Gulwani,
Dan Grossman, and Peter Provost. Test-driven synthesis.
In PLDI, 2014.

[Quirk et al., 2012] Chris Quirk, Pallavi Choudhury, Jian-
feng Gao, Hisami Suzuki, Kristina Toutanova, Michael
Gamon, Wen tau Yih, Colin Cherry, and Lucy Vander-
wende. Msr splat, a language analysis toolkit. In HLT-
NAACL, pages 21–24. The Association for Computational
Linguistics, 2012.

[Raza et al., 2014] Mohammad Raza, Sumit Gulwani, and
Natasa Milic-Frayling. Programming by example using
least general generalizations. In AAAI, 2014.

[Raza et al., 2015] Mohammad Raza, Sumit Gulwani, and
Natasa Milic-Frayling. Compositional program synthesis
from natural language and examples. Microsoft Research
Technical Report MSR-TR-2015-33, 2015.

[Zettlemoyer and Collins, 2009] Luke S. Zettlemoyer and
Michael Collins. Learning context-dependent mappings
from sentences to logical form. In Keh-Yih Su, Jian Su,
and Janyce Wiebe, editors, ACL/IJCNLP, pages 976–984.
The Association for Computer Linguistics, 2009.

