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Abstract—This paper presents an approach to the schedulability analysis of real-time systems modeled in time Petri nets by

separating timing properties from other behavioral properties. The analysis of behavioral properties is conducted based on the

reachability graph of the underlying Petri net, whereas timing constraints are checked in terms of absolute and relative firing domains. If

a specific task execution is schedulable, we calculate the time span of the task execution, and pinpoint nonschedulable transitions to

help adjust timing constraints. A technique for compositional timing analysis is also proposed to deal with complex task sequences,

which not only improves efficiency but also facilitates the discussion of the reachability issue with regard to schedulability. We have

identified a class of well-structured time Petri nets such that their reachability can be easily analyzed.

Index Terms—Real-time systems, time Petri nets, schedulability, reachability.

æ

1 INTRODUCTION

IN a real-time system, the process of verifying whether a
schedule of task execution meets the imposed timing

constraints is referred to as schedulability analysis [10].
Many researchers have tackled this problem by focusing on
either the implementation of a real-time system or the
specification of a real-time system. Examples of schedul-
ability analysis based on implementations include the
works by Stoyenko et al. [10] and Haban and Shin [5]. In
[10], a set of language-independent schedulability techni-
ques based on the information of program implementation
was proposed. In [5], an approach to monitor and verify the
task executions was presented. Representatives of schedul-
ability analysis based on specifications include the real time
logic technique by Jahanian and Mok [6], and the Petri net
based technique by Tsai et al. [11].

Our work studies schedulability analysis of specifica-
tions modeled in time Petri nets [8]. As a visual model, time
Petri nets (TPNs) have been proven very convenient for
expressing timing constraints in time dependent systems.
TPNs associate transitions with time pairs instead of single
delays in timed Petri nets, thus TPNs are more general than
timed Petri nets [1]. Furthermore, TPNs support formal
analysis by adapting the well-known reachability analysis
technique [1], [2]. A reachability graph (or tree) provides a
representation of the complete dynamic behavior of a TPN
based on the interleaving semantics. The nodes are state
classes and the edges are labeled with firing transitions and
firing domains reflecting timing constraints. Schedulability,
though closely related to reachability, has more specific

concerns about transition sequences rather than markings
or states. State classes constructed for the purpose of
validating the dynamic behavior is therefore not so effective
for schedulability analysis. In particular, the end-to-end
delay in task execution, an important issue in time critical
systems, cannot be directly derived from the firing domain
of state classes. Thus, the techniques developed in [1], [2]
are useful for reachability analysis but not efficient for
schedulability analysis.

An alternative analysis technique for real-time systems is
to separate the analysis of timing properties from the
analysis of other nontiming behavioral properties. For a
Petri net (PN) based model with extended time-handling
capability, the analysis can be conducted in two phases:
reachability analysis without considering the timing con-
straints and timing analysis of task sequences. Reachability
is analyzed to verify whether a transition sequence � is an
occurrence sequence reaching a certain marking Mn in the
underlying PN. The occurrence sequence � is then analyzed
to verify whether � is schedulable or Mn is reachable by
means of � with the timing constraints. Tsai et al. employed
this approach for the schedulability analysis of real-time
system specifications modeled by timing constraint Petri
nets (TCPNs) [11]. TCPNs extend Petri nets by associating a
minimum/maximum timing constraint with each transition
and place, and associating a duration constraint for firing
each transition. Different from TPNs and timed PNs,
TCPNs use the weak firing rule. TCPNs are more
expressive, but more complicated to use. Furthermore, it
is difficult to address the general reachability issue of
TCPNs when we need to analyze both behavioral and
timing properties. The schedulability analysis of TCPNs,
though adapted from TPNs and timed PNs, is not
applicable to that of TPNs because of different firing rules
that have different interpretations of timing constraints on
net structures such as synchronization and concurrence. In
addition, the following formulas of earliest beginning fire
time (EFBT) and latest fire ending time (LFET) for a weakly
firable transition (WFT) in Definition 4 [11] are inconsistent
with the meanings of timing constraints:
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EFBTðtjÞ ¼ MaxfTCminðpjÞg þ TCminðtjÞ;
LFETðtjÞ ¼ MinfTCmaxðpjÞ;TCmaxðtjÞg:

This problem leads to the incorrect conclusions in
Theorems 1 and 2.

Consider a simple example in Fig. 1, where p is the only
input place of transition t. Suppose the token in p arrives at
time T0. Then, transition t is enabled at T0.

Using the above formulas, EFBTðtÞ ¼ 3þ 2 ¼ 5 and
LFETðtÞ ¼ Minf15; 10g ¼ 10.

LFETðtÞ ÿ EFBTðtÞ ¼ 10ÿ 5 ¼ 5 < FIREdurðtÞ ¼ 6:

Thus, t is not firable. As a matter of fact, this is not consistent
with the meanings of timing constraints. The timing
constraints on place p, ðTCminðpÞ;TCmaxðpÞÞ ¼ ð3; 15Þ, are
the minimum/maximum elapsed time intervals between
the token arrival time of p ðT0Þ, and the beginning/ending
firing times of p’s output transition, i.e., t. In other words, t
can fire only during ðT0 þ 3;T0 þ 15Þ. The timing con-
straints on t, ðTCminðpÞ;TCmaxðpÞÞ ¼ ð2; 10Þ mean that t is
firable only during ðT0 þ 2;T0 þ 10Þ. Thus,

EFBTðtÞ ¼ MaxfT0 þ 3;T0 þ 2g ¼ T0 þ 3;

and

LFETðtÞ ¼ MinfT0 þ 15;T0 þ 10g ¼ T0 þ 10;

LFETðtÞ ÿ EFBTðtÞ ¼ ðT0 þ 10Þ ÿ ðT0 þ 3Þ ¼ 7 > 6:

Thus, t is firable.
In more general cases when token arrival times are

considered, formulas 4.a and 4.b in Theorem 1 defining
EFBT and LFET for a strongly firable transition (SFT) are
incorrect either. For the example in Fig. 2, suppose the token
arrival times of p1, p2, and p3 be different.

Considering the place constraints, t can only fire in the
following three intervals:

ðTOKENarrðpjÞ þ TCminðpjÞ;TOKENarrðpjÞ þ TCmaxðpjÞÞ;

where pj 2 fp1; p2; p3g. On the other hand,

MAXf TOKENarrðpjÞ : pj 2 fp1; p2; p3gg

is the time when t is enabled. According to the transition
constraints, t is firable only during

ðMAXf TOKENarrðpjÞ : pj 2 fp1; p2; p3gg þ TCminðtÞ;
MAXf TOKENarrðpjÞ : pj 2 fp1; p2; p3gg þ TCmaxðtÞÞ:

Thus,

EFBTðtÞ ¼ MAXf TOKENarrðpjÞ þ TCminðpjÞ;
MAXf TOKENarrðpjÞ : pj 2 fp1; p2; p3gg þ TCminðtÞg

LFETðtÞ ¼ MINf TOKENarrðpjÞ þ TCmaxðpjÞ;
MAXf TOKENarrðpjÞ : pj 2 fp1; p2; p3gg þ TCmaxðtÞg:

These should be the correct versions for formula 4.a and 4.b
in Theorem 1. However, they are not as easy to deduce
TOKENarrðpjÞ as in formulas 4.a and 4.b. In other words, it
is rather complex to use them to automatically determine
the schedulability of all transitions in a TCPN. In conclu-
sion, the complex timing constraints provide little help for
modeling and analyzing real time systems.

In this paper, we focus on the schedulability analysis of
TPNs. Our main results include: 1) an approach for
determining whether a specific transition sequence is
schedulable or not, for calculating the time span of a
schedulable task execution, or for pinpointing out non-
schedulable transitions to help adjust timing constraints
and correct design errors, 2) a compositional approach to
deal with complex task sequences, 3) identification of a
class of well-structured time Petri nets so that the reach-
ability of these nets can be easily analyzed. These results
serve dual purposes: On one hand, TPNs are used as a
model for architectural specification in SAM [13], a soft-
ware architecture specification model developed by us, the
scheduability technique provides an important analysis
technique for timing critical properties of SAM specifica-
tions. On the other hand, our schedulability analysis
technique of TPNs offers a more effective and practical
way complementing the traditional reachability analysis.
Our schedulability analysis is based on both relative and
absolute time modes and can be integrated with reach-
ability analysis of TPNs [1], [14].

This paper is organized as follows: Section 2 gives a brief
introduction to TPNs and schedulability. Section 3 shows
how to conduct timing verification for schedulability
analysis of task execution by separating timing properties
from behavioral properties. Section 4 describes how to
conduct schedulability analysis by decomposing a firing
sequence in underlying Petri net into a number of
subsequences. Section 5 discusses the reachability problem
of TPNs based on the reachability graph of underlying Petri
net and the compositional schedulability analysis. Section 6
demonstrates the main idea through an example. Sections 7
concludes the paper.

2 TIME PETRI NETS AND SCHEDULABILITY

A time Petri net TN is a tuple (P, T, B, F, C, M0) where:

. P is a finite set of places.

. T is a finite set of transitions.

. B is the backward incidence function, B: T� P! N,
where N is the set of nonnegative integers.

. F is the foreward incidence function, F: T� P! N.

. M0 is the initial marking function, M0 : P! N.
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Fig. 1. TCPN—Example 1.

Fig. 2. TCPN—Example 2.



. C is a mapping called static interval, C: T!
Q� �Q� where Q� is the set of nonnegative rational
numbers.

P, T, B, F, and M0 together define a Petri net without any
timing constraints. We denote this underlying net as UN ¼
ðP;T;B;F;M0Þ and use its reachability graph as the basis
for the schedulability analysis of TN. Given a marking M
and a place p 2 P, M(p) denotes the number of tokens in p.
For any transition t 2 T; � t ¼ fp 2 P: ðt; pÞ 2 Bg. For con-
venience, we also denote C(t) as tðEFTðtÞ, LFTðtÞÞ 2 C,
where t 2 T, EFT, and LFT are called static (relative) earliest
firing time and latest firing time, respectively. The static
interval for any transition is finite since this paper is mainly
concerned with the schedulability of finite task sequences
within finite time. Let I1 ¼ ða1; b1Þ, I2 ¼ ða2; b2Þ, where 0 �
ai � bi <1 and k 2 N, we define I1þ I2 ¼ ða1 þ a2; b1 þ b2Þ,
I1 ÿ I2 ¼ ða1 ÿ a2; b1 ÿ b2Þ, and k�I1 ¼ ðk�a1; k

�b1Þ.
In a time Petri net TN, a transition t is said to be enabled

under marking M if ð8p 2 � tÞMðpÞ � Bðt; pÞ. An enabled
transition t with time interval t(EFT (t), LFT (t)) under
marking M at time � may not fire before � þ EFTðtÞ and
must fire before or at � þ LFTðtÞ unless another transition
fires before and modifies M [1]. According to the strong
firing mode, a transition is forced to fire at � þ LFTðtÞ if the
transition has not fired and not been disabled by others
transitions’ firing (on the contrary, PNs use a weak firing
mode, which does not force an enabled transition to fire; in
other words, an enabled transition may or may not fire)
[11]. As in [1], we also assume no transition can be multiply
enabled. We use EN(M) to denote the set of transitions
enabled under marking M.

In a TN, an enabled transition t is said to be schedulable
under marking M if t can be the first transition to fire (i.e.,
can fire before any other enabled transitions). For example,
in Fig. 3a, both t1 and t2 in the conflict structure are
schedulable under the current marking, though the firing of
one transition makes the other disabled under the new
marking. In Fig. 3b, only t1 is schedulable; t2 is not
schedulable because t1 must fire before t2 has a chance to
fire. In Fig. 3c, both t1 and t2 are schedulable. After the
firing of t1 (or t2), t2 (or t1) is still enabled and schedulable
under the new marking. Generally, the schedulability of
an individual transition depends on the time constraints

of all enabled transitions under the current marking.
Transition t is schedulable under the initial marking M0 if
EFTðtÞ � minfLFTðt0Þ : t0 is enabled under M0g. More gen-
eral cases are discussed in the next section.

In a TN, a transition sequence � ¼ ðt1 . . . ti . . . tnÞ is said to
be schedulable or � is a schedule if all transitions in � are
schedulable in the given order, that is, there exist markings
M1; . . . ;Mn such that ðM0t1M1 . . . tiMi . . . tnMnÞ is a firing
sequence in the underlying net and tið1 � i � nÞ is schedul-
able under Miÿ1. If at least one transition in � is
nonschedulable, then � is nonschedulable. In a TN, a
marking Mn is said to be reachable from M0 if there exists a
schedule � that reaches Mn from M0. In the underlying net
UN, a marking Mn is said to be reachable if there is a firing
sequence ðM0t1M1 . . . tiMi . . . tnMnÞ, or simply an occurrence
sequence � ¼ ðt1 . . . ti . . . tnÞ, that transforms M0 to Mn. We
use LðM0;MnÞ to denote the set of all possible firing
sequences from M0 to Mn in a UN. If a transition sequence
is not an occurrence sequence in the UN, it is not
schedulable in a TN. However, an occurrence sequence in
the UN is not necessarily a schedule in the TN and a
marking that is reachable in the UN is not necessarily
reachable in the TN. In this paper, we focus on checking
whether occurrence sequences in a UN are schedulable in
the TN.

3 SCHEDULABILITY ANALYSIS

In this section, we first show that the time span of a task
sequence cannot be accurately evaluated by the relative time
mode for checking the schedulability in a TN. A method
integrating the absolute time mode with the relative time
mode is then presented to conduct a schedulability analysis.

Generally, the relative firing domains for the state classes of
TPNs in [1] can be used to determine the schedulablility of
transitions. Let us first disregard the timing inequalities on
pairs of enabled transitions, which were originally used for
comparing state classes when generating state class graphs.
Suppose Di is a relative firing domain for enabled
transitions at Mi. The dynamic firing interval of transition
t in Di is denoted as DiðtÞ, ðREFTi ðtÞ;RLFTi ðtÞÞ, or
tðREFTi ðtÞ;RLFTi ðtÞÞ, where REFTi ðtÞ and RLFTi ðtÞ
are referred to as the relative earliest firing time and the
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relative latest firing time, respectively. Let D0 ¼ fCðtÞ : t 2
ENðM0Þg and ðREi;RLiÞ be the relative schedulable interval
for ti. The schedulability of tiþ1ð0 � i � nÿ 1Þ in firing
sequence ðM0t1 . . . . . . tnMnÞ can be checked by the following
steps:

Step 1: If tiþ1 2 ENðMiÞ and REFTiðtiþ1Þ � MINfRLFTiðtÞ :
t 2 ENðMiÞg, then tiþ1 is schedulable at marking Mi

during interval

ðREiþ1;RLiþ1Þ ¼ ðRLFTiðtiþ1Þ;
MINfRLFTiðtÞ : t 2 ENðMiÞgÞ:

Else, tiþ1 is nonschedulable at marking Mi;

Step 2: Build new relative firing domain:

. Diþ1 :¼ ;.

. For any newly enabled transition t (disabled
under Mi and enabled under Miþ1), add its static
time interval C(t) into Diþ1.

. For any inherited transition t (enabled by both
Mi and Miþ1, t 6¼ tiþ1), the interval of t to be
added into Diþ1 is (MAX f0;REFTiðtÞ ÿ RLiþ1g,
RLFTiðtÞ ÿ REiþ1).

. If tiþ1 is enabled again under Miþ1, add its static
interval into Diþ1,

Let us check the schedulability of t1t2 in Fig. 3c, where
M0 ¼ fp1; p3g and D0 ¼ ft1ð1; 3Þ; t2ð2; 5Þg.

1. Check t1 : t1 is schedulable during ð1;minf3; 5gÞ ¼
ð1; 3Þ; ==M1 ¼ fp2; p3g

D1 ¼ ft2ðmaxf2ÿ 3; 0g; 5ÿ 1Þg ¼ ft2ð0; 4Þg:

2. Check t2 : t2 is schedulable during (0,4);
==M2 ¼ fp2; p4g D2 ¼ ;.

According to the above steps, t1 fires at �1ð1 � �1 � 3Þ
relative to time � (at M0) and t2 fires at �2ð0 � �2 � 4Þ
relative to � þ �1ðat M1Þ. At M2 after t2 fires, the time should
be � þ �1 þ �2. Is ð1; 3Þ þ ð0; 4Þ ¼ ð1; 7Þ the interval for
�1 þ �2? The answer is negative. At least, this is not
accurate. The correct time span for t1t2 is (2,5) because t2

is enabled under M0 and it must fire at sometime between
(2,5). Similarly, t2t1 is a schedule in Fig. 3c. The relative
schedulable interval for t2 is ð2;minf3; 5gÞ ¼ ð2; 3Þ and the
relative schedulable interval for t1 is ðmaxf1ÿ 3; 0g; 3ÿ 2Þ
¼ ð0; 1Þ. ð2; 3Þ þ ð0; 1Þ ¼ ð2; 4Þ is not the correct time span for
t2t1 either. Since t1 must fire before or at 3, the correct time
span for t2t1 should be (2,3). As a matter of fact, we cannot
accurately determine the time span of an occurrence
sequence according to the relative firing domains. The
problem arises from the timing constraints of concurrent
transitions. For a transition t enabled at both Mi and Miþ1,
relative interval ðMAXf0;REFTiðtÞ ÿ RLiþ1g;RLFTiðtÞ ÿ
REiþ1Þ loses time information for calculating the time span.
For example, the relative interval at Mi is not necessarily
equal to the relative interval at Miþ1 plus the schedulable
interval during which tiþ1 fires under Mi, that is,
ðREFTiðtÞ;RLFTiðtÞÞ is not necessarily equal to

ðMAXf0;REFTiðtÞ ÿ RLiþ1g;
RLFTiðtÞ ÿ REiþ1Þ þ ðRLiþ1;REiþ1Þ:

The above problem may be solved by transforming
timing inequalities for transition pairs in dynamic firing
domains into a canonical form before their use. However,
this approach has a polynomial complexity [2] and is less
understandable and effective. In this paper, we introduce
the absolute firing domains for enabled transitions and global
time stamps for reached markings based on absolute
intervals, which are relative to � at M0. After firing a
transition, the reached marking is stamped and an absolute
firing domain is constructed for newly enabled transitions
and those transitions remain enabled. Suppose TSi ¼
ðAEi;ALiÞ is the time stamp at Mi, which means Mi is
reached at sometime during ðAEi;ALiÞ relative to � at M0ðMi

cannot be reached before AEi or after ALi); ADið1 � i � nÞ is
the absolute firing domain for the transitions enabled under
Mi. The interval of transition t in ADi is denoted as ADiðtÞ,
ðAEFTiðtÞ;ALFTiðtÞÞ, or tðAEFTiðtÞ;ALFTiðtÞÞ, where
AEFTiðtÞ and ALFTiðtÞ are referred to as the absolute
earliest firing time and the absolute latest firing time,
respectively. AD0ðtÞ ¼ fCðtÞ : t 2 ENðM0Þg; let the time
stamp at M0 be TS0 ¼ ð0; 0Þ. Whether firing sequence
ðM0t1 . . . tiMi . . . tnMnÞ in a UN is schedulable or not in TN ¼
ðP;T;B;F;C;M0Þ can be determined by checking each
transition tiþ1ð0 � i � nÿ 1Þ as follows:

Step 1: If tiþ1 =2 ENðMiÞ, then, � is not an occurrence
sequence in UN and, thus, nonschedulable.

Step 2: If REFTiðtiþ1Þ � MINfRLFTiðtÞ : t 2 ENðMiÞg, then
tiþ1 is schedulable at marking Mi; do Steps 3-5. Else, tiþ1

is nonschedulable at marking Mi.

Step 3: Calculate the relative schedulable interval of tiþ1:

ðREiþ1;RLiþ1Þ ¼ ðREFTiðtiþ1Þ;
MINfRLFTiðtÞ : t 2 ENðMiÞgÞ:

Calculate the absolute schedulable interval of tiþ1, i.e.,
time stamp:

TSiþ1 ¼ ðAEiþ1;ALiþ1Þ ¼ ðAEFTiðtiþ1Þ;
MINfALFTiðtÞ : t 2 ENðMiÞgÞ:

Step 4: Build the new relative firing domain Diþ1 from Di:

. Diþ1 :¼ ;.

. For any newly enabled transition t (disabled
under Mi and enabled under Miþ1,), add its static
time interval C(t) into Diþ1, i.e.,

Diþ1 :¼ Diþ1 [ fCðtÞ : t =2 ENðMiÞ ^ t 2 ENðMiþ1Þg:

. For any inherited transition t (enabled by both Mi

and Miþ1) and t 6¼ tiþ1, the interval of t to be
added into Diþ1 is

ðMAXf0;REFTiðtÞ ÿ RLiþ1g;RLFTiðtÞ ÿ REiþ1Þ;

i.e.,

Diþ1 :¼ Diþ1 [ fðMAXf0;REFTiðtÞ ÿRLiþ1g;
RLFTiðtÞ ÿ REiþ1Þ : t 2 ENðMiÞ
^ t 2 ENðMiþ1Þ ^ t 6¼ tiþ1g:
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. If tiþ1 is enabled by Miþ1 (tiþ1 has already fired
under Mi, but is enabled again under Miþ1), add
its static interval into Diþ1, i.e.,

Diþ1 :¼ Diþ1 [ fCðtiþ1Þ : tiþ1 2 ENðMiþ1Þg:

Step 5: Build the new absolute firing domain ADiþ1 from
ADi:

. ADiþ1 :¼ ;.

. For any newly enabled transition t, add the sum
of its static interval and current time stamp, i.e.,

ADiþ1 :¼ ADiþ1 [ fCðtÞ þ TSiþ1 : t =2 ENðMiÞ
^ t 2 ENðMiþ1Þg:

. For any inherited transition t ðt 6¼ tiþ1Þ, the
interval added to ADiþ1 is

ðMAXfAEFTiðtÞ;AEiþ1g;ALFTiðtÞÞ;

i.e.,

ADiþ1 :¼ ADiþ1 [ fðMAXfAEFTiðtÞ;AEiþ1g;
ALFTiðtÞÞ : t 2 ENðMiÞ ^ t 2 ENðMiþ1Þ ^ t 6¼ tiþ1g:

. If tiþ1 is enabled under Miþ1, add the sum of its
static interval and current time stamp into
ADiþ1, i.e.,

ADiþ1 :¼ ADiþ1[fCðtiþ1Þ þ TSiþ1 : tiþ1 2 ENðMiþ1Þg:

In the above algorithm, ENðMiþ1Þð0 � i � nÿ 1Þ are
directly obtained from the reachability tree of the under-
lying Petri net UN. Relative firing domains Di are used to
determine the schedulability of individual transitions and
absolute firing domains ADi are used to calculate the times
when transitions fire and new markings are reached. The
computations of ADi and Di are independent from the
preconditions of Steps 1 and 2. The time stamp TSiþ1 is the
absolute schedulable interval of tiþ1 reaching Miþ1. If the
sequence is schedulable, the time span of executing the
sequence is TSn. This can be illustrated by the following
induction: 1) According to the definition of schedulability, t1

is schedulable during ðEFTðt1Þ;MINfLFTðtÞ : t2ENðM0Þg.
Since ðEFTðtÞ;LFTðtÞÞ ¼ CðtÞ ¼ ðAEFT0ðtÞ;ALFT0ðtÞÞ for
any t 2 ENðM0Þ, the schedulable interval of t1 is equal to

ðAEFT0ðt1Þ;MINfALFT0ðtÞ : t 2 ENðM0ÞgÞ
¼ TS1 ¼ ðAE1;AL1Þ:

TS1 is the interval (time stamp) for reaching M1. In addition,
AD1 contains correct absolute intervals for all enabled
transitions under M1. For any newly enabled transition t,
the absolute interval during which t can fire is the static
interval (relative to M1,) plus the absolute schedulable
interval of t1 (the interval during which M1 is reached,
i.e., TS1). For any transition t ðt 6¼ t1Þ enabled under both
M0 and M1, t will never fire before AE1 because t1

fires after or at AE1 and t must fire after t1. Thus,
ðMAXfAEFT1ðtÞ;AE1gÞ is the earliest absolute time that t

can fire. If t1 is still enabled under M1, the new absolute
interval for t1 in AD1 is its static interval plus TS1 (like a
newly enabled transition). 2) Suppose TSi is the time span
during which ti fires and ADi contains correct absolute
intervals for all enabled transitions under Mi. Obviously,
tiþ1 may not fire before AEFTiðtiþ1Þ. Also, tiþ1 must fire
before any other enabled transition is forced to fire, i.e., tiþ1

must not fire after MINfALFTiðtÞ : t 2 ENðMiÞg. Thus,
ðAEFTiðtiþ1Þ;MINfALFTiðtÞ : t 2 ENðMiÞgÞ is the interval
during which tiþ1 fires or the time span of firing
t1; t2; . . . tiþ1. This interval is exactly TSiþ1. Similarly, it is
easy to show that ADiþ1 also contains correct absolute
intervals for all enabled transitions under Miþ1.

Furthermore, we can easily know the time span between
any two transitions or markings in a schedulable occurrence
sequence. In fact, the time span of the subsequence
ðtitiþ1 . . . tjÞðj > i > 0Þ or from ti to tj is TSj ÿ TSiÿ1. This
facilitates the composition of transition sequences because a
sequence that does not begin with M0 can also be analyzed.

For example, the schedulability of � ¼ ðt1t2t3t4t5Þ in
Fig. 4a is checked as follows:

1. Initial time stamp TS0 ¼ ð0; 0Þ; ==M0 ¼ fp1g;
D0 ¼ ft1ð0; 5Þg;
Initial absolute firing domain AD0 ¼ ft1ð0; 5Þg.

2. Check t1 : t1 is schedulable during dynamic relative
interval (0,5);

New time stamp TS1 ¼ ð0; 5Þ; ==M1 ¼ fp2g;
D1 ¼ ft2ð1; 4Þ; t6ð5; 7Þg;
Add the intervals of newly enabled transitions t2

and t6 to new absolute domain AD1:
AD1ðt2Þ ¼ Cðt2Þ þ TS1 ¼ ð1; 4Þ þ ð0; 5Þ ¼ ð1; 9Þ;
AD1ðt6Þ ¼ Cðt6Þ þ TS1 ¼ ð5; 7Þ þ ð0; 5Þ ¼ ð5; 12Þ.

3. C h e c k t2 : REFT1ðt2Þ ¼ 1 � MINfRLFT1ðt2Þ ¼ 4;
RLFT1ðt6Þ ¼ 7g ¼ 4;

t2 is schedulable during (1,4); ==M2 ¼ fp3; p4g;
TS2 ¼ ð1; 9Þ;
D2 ¼ ft3ð1; 3Þ; t4ð4; 5Þg;
Add the intervals of newly enabled transitions t3

and t4 to new absolute domain AD2:
AD2ðt3Þ ¼ Cðt3Þ þ TS2 ¼ ð1; 3Þ þ ð1; 9Þ ¼ ð2; 12Þ;
AD2ðt4Þ ¼ Cðt4Þ þ TS2 ¼ ð4; 5Þ þ ð1; 9Þ ¼ ð5; 14Þ.

4. C h e c k t3 : REFT2ðt3Þ ¼ 1 � MINfRLFT2ðt3Þ ¼ 3;
RLFT2ðt4Þ ¼ 5g ¼ 3

t3 is schedulable during (1,3); ==M3 ¼ fp5; p4g;
TS3 ¼ ð2; 12Þ;
D3 ¼ ft4ð1; 4Þg; AD3ðt4Þ ¼ ð5; 14Þ.

5. Check t4 : t4 is schedulable during (1,4);
==M4 ¼ fp5; p6g;
TS4 ¼ ð5; 14Þ;
D4 ¼ ft5ð1; 5Þg;
AD4ðt5Þ ¼ ð1; 5Þ þ ð5; 14Þ ¼ ð6; 19Þg.

6. Check t5 : t5 is schedulable during (1,5);
==Mn ¼ M5 ¼ fp7g;
TS5 ¼ ð6; 19Þ;
D5 ¼ ;; AD5 ¼ ;.

Thus, � is schedulable and the time span of � is
TS5 ¼ ð6; 19Þ. The time span of subsequence ðt3t4Þ is
TS4 ÿ TS2 ¼ ð5; 14Þ ÿ ð1; 9Þ ¼ ð4; 5Þ, i.e., it takes four to five
units of time to finish firing t3 and then t4. This complies
with the interpretation of timing constraints imposed on the
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concurrence structure. Note that, the absolute firing
domains cannot be used to determine the schedulability
of individual transitions. In the above example, the absolute
domain after firing t1 is AD1 ¼ ft2ð1; 9Þ; t6ð5; 12Þg. It seems
from AD1 that either t2 or t6 in the synchronization/conflict
structure is schedulable. This is not true because t6

is nonschedulable according to the timing constraints
defined for t2 and t6. Similarly, it seems from AD2 ¼
ft3ð2; 12Þ; t4ð5; 14Þg that t3 and t4 in the concurrence
structure can fire in both sequences: ðt3t4Þ and ðt4t3Þ. This
is not true because t3 must fire before t4 according to the
timing constraints of t3 and t4. As will be pointed out later,
there is another issue related to the reachability graph if we
merely use the absolute firing domain. This is why we use
relative firing domains and absolute firing domains to
determine the schedulability of individual transitions and
the time span of transition sequences, respectively.

Similarly, �1 ¼ ðt1t2t4t3t5Þ is not schedulable in Fig. 4a
because t4 cannot fire before t3 according to M2 ¼ fp3; p4g,
D2 ¼ ft3ð1; 3Þ; t4ð4; 5ÞgÞ, and

REFT2ðt4Þ ¼ 4 > MINfRLFT2ðt3Þ;RLFT2ðt4Þg ¼ 3:

Let us consider �2 ¼ ðt1t6t7t8Þ. t1 is schedulable and its firing

results in M1 ¼ fp2g and D1 ¼ ft2ð1; 4Þ; t6ð5; 7Þg. Obviously,

t2 is schedulable and t6 is not schedulable. Thus, �2 is not

schedulable either. Note that LðM0;MnÞ ¼ f�; �1; �2g, i.e., �,

�1, and �2 are exactly the three possible firing sequences

reaching Mn ¼ fp7g. However, Mn is reachable only by

means of �. In Fig. 4b, the time Petri net has the same

underlying Petri net as in Fig. 4a, but the static intervals of t4

and t6 are replaced with (2,4) and (3,7), respectively. In this

case, �, �1, and �2 are all schedulable. Their spans are (4,18),

(4,17), and (8,24), respectively. The span of ðt3t4Þ in � is (2,4),

whereas the span of ðt4t3Þ in �1 is (2,3). It should also be

noticed that the dynamic interval of t6 in �2 is (3,4) and,

therefore, the absolute interval of firing t6 is (3,9).

4 COMPOSITIONAL ANALYSIS OF SCHEDULABILITY

In this section, we describe how to conduct a schedulability
analysis by decomposing a firing sequence in UN into a
number of subsequences. Because of decomposition and
composition, the analysis result of some sequence can be
reused for checking other sequences. Specifically, the
analysis of those sequences containing duplicated subse-
quences can be simplified. This not only reduces the
complexity but also helps address the reachability issue.

As mentioned above, any marking in a schedule is
stamped with an absolute time interval, relative to the
initial marking. It is easy to get the time span between any
two markings or transitions from a given schedule. To
facilitate decomposition and composition, here, we use
firing sequences instead of occurrence sequences and
extend the schedulability analysis in the last section for
more general cases. A sequence � is allowed to start from
any marking reachable from M0 in UN, rather than M0 itself.
In other words, � is allowed to be a part of a firing sequence.
The algorithm of checking schedulability of � is then
denoted as a mapping 	 : ST ! Q� �Q�, where ST is the
set of all firing (sub)sequences in UN. If � is nonschedulable,
then 	(�) = (0,0); otherwise 	ð�Þ ¼ TSn, which is the time
span relative to the start time.

Definition 1. Let �1 ¼ ðM10t11M11 . . . t1iM1i . . . t1mM1mÞ ðm �
1Þ and �2 ¼ ðM20t21M21 . . . t2jM2j . . . t2nM2nÞ ðn � 1Þ be two

sequences in UN, where M10 and M20 are reachable from M0.

�2 is composable with �1 if and only if M1m ¼ M20 and
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ENðM1mÞ \ ENðM1mÿ1Þ ÿ ft1mg ¼ ;. The composition of �2

with �1, denoted as �1 þ �2, is

ðM10t11M11 . . . t1iM1i . . . t1mM1mt21M21 . . . t2jM2j . . . t2nM2nÞ:

ENðM1mÞ \ ENðM1mÿ1Þ ÿ ft1mg ¼ ; means that M1m and

M1mÿ1 do not share any other enabled transitions except
t1m, i.e., all transitions enabled by M1m are newly enabled

after firing t1m. t1m, if still enabled under M1m, is

considered as a new one. For example, in Fig. 4a,

ðM2t3M3t4M4t5M5Þ is composable with ðM0t1M1t2M2Þ be-

cause ENðM2Þ ¼ ft3; t4g, ENðM1Þ ¼ ft2; t6g, and ENðM2Þ
\ ENðM1Þ ¼ ;; ðM3t4M4t5M5Þ is not composable with

ðM0t1M1t2M2t3M3Þ b e c a u s e ENðM3Þ ¼ ft4g;ENðM2Þ ¼
ft3; t4g and ENðM3Þ \ ENðM2Þ 6¼ ;, i.e., ðt1t2t3t4t5Þ cannot

be decomposed into ðt1t2t3Þ and ðt4t5Þ. Generally, it is

incorrect to separate concurrent transitions while decom-

posing a sequence.
Obviously, sequence composition is associative, that is,

�1 þ �2 þ �3¼ð�1 þ �2Þ þ �3 ¼ �1 þ ð�2 þ �3Þ; where �1, �2,

and �3 are sequences. In the following, � and �i are

sequences, and �1 þ �2 þ . . .þ �k is simply denoted as

�1�2 . . . �k.

Theorem 1. Let �2 be composable with �1. �1�2 is schedulable if

and only if both �1 and �2 are schedulable, and 	ð�1�2Þ ¼
	ð�1Þ þ	ð�2Þ if �1�2 is schedulable.

Proof. Let

�1 ¼ ðM10t11M11 . . . t1iM1i . . . t1mM1mÞ;
�2 ¼ ðM20t21M21 . . . t2jM2j . . . t2nM2nÞ; and

�1�2 ¼ ðM10t11M11 . . . t1iM1i . . . t1mM1mt21M21

. . . t2jM2j . . . t2nM2nÞ:

1. Suppose both �1 and �2 are schedulable. There
exist two sequences of relative firing domains for
checking the schedulability of �1 and �2, say,
ðD10D11 . . . D1mÞ, and ðD20D21 . . . D2nÞ. Since �2 is
composable with �1, M1m ¼ M20, and

ENðM1mÞ [ ENðM1mÿ1Þ ÿ ft1mg ¼ ;:

So, D1m ¼ fCðtÞ : t 2 ENðM1mÞg, i.e., for any

transition enabled by M1m, the dynamic interval
is exactly the static interval. On the other hand,

D20 ¼ fCðtÞ : t 2 ENðM20Þg. Therefore, D1m ¼ D20

and ðD10D11 . . . D1mD21 . . . D2nÞ is exactly the

sequence of relative firing domains for checking

the schedulability of �1�2. So, �1�2 is schedulable.
Similarly, there exist two sequences of time

stamps for checking the schedulability of �1 and

�2, say, TS10TS11 . . . TS1m and TS20TS21 . . . TS2n,

where TS10 ¼ TS20 ¼ ð0; 0Þ. 	ð�1Þ ¼ TS1m and

	ð�2Þ ¼ TS2n. There also exists two sequences of

absolute firing domains for checking the schedul-

ability of �1 and �2, say, ðAD10AD11 . . . AD1mÞ and

ðAD20AD21 . . . AD2nÞ. AD1m ¼ fCðtÞ þ TS1m : t 2
ENðM20Þg and

AD20 ¼ fCðtÞ : t 2 ENðM20Þg:

Let AD2j
0 ¼ fIþ TS1m : I 2 AD2jg and TS2j

0 ¼
TS2j þ TS1m ð0 < j < nþ 1Þ. Then, ðAD10AD11 . . .
AD1mAD021 . . . AD02nÞ is exactly the sequence of
absolute firing domains and ðTS10TS11 . . .
TS1mTS021 . . . TS02mÞ is exactly the sequence of time
stamps for checking the schedulability of �1�2. So,

	ð�1�2Þ ¼ TS02n ¼ TS2n þ TS1m ¼ 	ð�2Þ þ	ð�1Þ:

2. Suppose

�1�2 ¼ðM10t11M11 . . . t1iM1i . . . t1mM1m

t21M21 . . . t2jM2j . . . t2nM2nÞ

is schedulable. There exists a sequence of relative
firing domains, say, ðD10D11 . . . D1mD21 . . . D2nÞ.
Obviously, ðD10D11 . . . D1mÞ and ðD1mD21 . . . D2nÞ
are the sequences of relative firing domains for
checking �1 and �2, respectively. So, both �1 and �2

are schedulable. Similarly, there exist a sequence
of time stamps, say,

ðTS10TS11 . . . TS1mTS21 . . . TS2nÞ:

	ð�1�2Þ ¼ TS2n. Obviously, ðTS10TS11 . . . TS1mÞ is
the sequences of time stamps for checking �1.
	ð�1Þ ¼ TS1m. Suppose TS1m doesn’t contain
infinite time. Let TS20

0 ¼ ð0; 0Þ and TS2j
0 ¼ TS2j

ÿ TS1mð0 < j < nþ 1Þ. TS20
0TS21

0 . . . TS2n
0 is the

sequence of time stamps for checking �2.
	ð�2Þ ¼ TS2n

0 ¼ TS2n ÿ TS1m. So,

	ð�1Þ þ	ð�2Þ ¼ TS1m þ TS2n

ÿ TS1m ¼ TS2n ¼ 	ð�1�2Þ:

If TS1m contains infinite time, TS2jð0 < j < nþ 1Þ
all contain infinite time. Similarly, we can prove
	ð�1�2Þ ¼ 	ð�1Þ þ	ð�2Þ.

According to 1 and 2, the theorem holds. tu

If �2 is not composable with �1, checking �1 and �2

individually does not provide any useful information for
analyzing the composition of �1 and �2. The reason is that
the dynamic intervals in the initial relative and absolute
firing domains are always equal to the static intervals. For
example, let �1 ¼ ðM0t1M1t2M2t3M3Þ, �2 ¼ ðM3t4M4t5M5Þ,
and � ¼ ðM0t1M1t2M2t3M3t4M4t5M5Þ. In Fig. 4a, �, �1, and �2

are all schedulable according to the extended algorithm,
and 	ð�Þ ¼ ð6; 19Þ, 	ð�1Þ ¼ ð2; 12Þ, 	ð�2Þ ¼ ð5; 10Þ. Ob-
viously, 	ð�Þ 6¼ 	ð�1Þ þ	ð�2Þ. As a result, we cannot
analyze the schedulability of � by means of �1 and �2.

Theorem 2. Let �ið1 � i � kÞ be sequences, and �ið2 � i � kÞ be
composable with �iÿ1. �1 . . . �k is schedulable if and only if
�ið1 � i � kÞ are all schedulable. 	ð�1 . . . �kÞ ¼

Pk
i¼1 	ð�iÞ if

�1 . . . �k is schedulable.

Proof. It is obvious if k = 2; if k = 3, then �1�2�3 ¼ ð�1�2Þ�3.
Let � ¼ �1�2. �1�2�3 ¼ ��3. ��3 is schedulable iff � and �3

are schedulable iff �1, �2, and �3 are schedulable. Suppose
� ¼ �1 . . . �kÿ1 is schedulable iff �ið1 � i � kÿ 1Þ are all
schedulable. �1 . . . �k ¼ ��k. �1 . . . �k is schedulable iff �
and �k are schedulable iff �ið1 � i � kÞ are schedulable.
By induction, the theorem holds. tu
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Theorem 2 shows the schedulability can be analyzed by

decomposing a sequence into a number of subsequences,
whenever possible and necessary.

Theorem 3. Suppose sequence �2 is composable with itself (called

self-composable) and with sequence �1 and sequence �3 is

composable with �2. Let � ¼ ð�2Þk ¼ �2 . . . �2 . . . �2, where the

number of �2 is kðk > 0Þ. �1��3 is schedulable if and only if

�1�2�3 is schedulable. 	ð�1��3Þ ¼ 	ð�1�2�3Þ þ ðkÿ 1Þ�	ð�2Þ
if �1��3 is schedulable.

Proof. If �2 ¼ ðM20t21M21 . . . t2iM2i . . . t2mM2mÞ is a self-

composable sequence, then M20 ¼ M2m. This theorem
directly follows from Theorem 2. tu

The significance of Theorem 2 and Theorem 3 is that they
not only simplify the schedulability analysis of those

sequences containing loops, but also help analyze reach-
ability. In Fig. 5a, there is an infinite number of firing

(occurrence) sequences reaching M3 ¼ fp4g from M0 ¼ fp1g
in the underlying net, but any firing sequence can

be constructed by ðM0t1M1t2M2Þð�ÞkðM2t4M3Þ, where
� ¼ ðM2t3M1t2M2Þ, M1 ¼ fp2g, M2 ¼ fp3g, and k 2 N. Ac-

cording to Theorem 3, ðM0t1M1t2M2Þð�Þ100ðM2t4M3Þ is
schedulable if and only if ðM0t1M1t2M2Þ�ðM2t4M3Þ is

schedulable. Here, neither is schedulable because

ðM2t4M3Þ is nonschedulable. To determine the reachability
of M3 in TN, we only need to check the schedulability of
basic sequences, i.e., �1 ¼ ðM0t1M1t2M2t4M3Þðk ¼ 0Þ and
�2 ¼ ðM0t1M1t2M2�M2t4M3Þðk ¼ 1Þ. With regard to timing
constraints, M3 is unreachable since neither �1 nor �2 is
schedulable. In Fig. 5b, we can also identify some key
transition sequences reaching fp10g in the underlying net,
such as ðt2t3t4t5Þ, ðt2t4t3t5Þ, ðt6t7t8Þ, ðt9t2t3t4t5Þ, ðt9t2t4t3t5Þ,
ðt9t6t7t8Þ, ðt1Þ, and ðt10Þ. Since ðt2t4t3t5Þ and ðt6t7t8Þ are
nonschedulable from M1 ¼ fp2g, any sequence containing
ðt2t4t3t5Þ or ðt6t7t8Þ is nonschedulable. However,
ðt1Þðt2t3t4t5Þðt9t2t3t4t5Þkðt10Þ is schedulable, where k 2 N.
Thus, fp10g is reachable in the TN. Note that Theorems 1-3
are useful only if sequences can be decomposed, i.e., no
concurrency is present at decomposition markings.

5 SCHEDULABILITY AND REACHABILITY

In this section, we discuss the reachability problem of TPNs
according to the reachability graph of PNs. Though we
know Mn is reachable by finding a schedule that starts from
M0 to Mn, it is generally difficult to determine whether Mn is
reachable or when the reachable marking Mn is reached
because all possible firing sequences from M0 to Mn in a UN
(i.e., in LðM0;MnÞÞ must be analyzed.
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Figs. 4a and 4b have the same underlying Petri net.
LðM0;MnÞ¼ f�¼ðt1t2t3t4t5Þ; �1¼ðt1t2t4t3t5Þ; �2¼ðt1t6t7t8Þg;
where Mn ¼ fp7g. In Fig. 4a, � is schedulable, and
	ð�Þ ¼ ð6; 19Þ, whereas �1 and �2 are nonschedulable. The
earliest time and the latest time when Mn is reached are
(6, 19). In Fig. 4b, all �, �1, and �2 are schedulable.
	ð�Þ ¼ ð4; 18Þ, 	ð�1Þ ¼ ð4; 17Þ, and 	ð�2Þ ¼ ð8; 24Þ. There-
fore, the earliest time and the latest time when Mn is
reached are (4, 24).

However, can we determine whether Mn is unreachable
if none of �, �1, or �2 are schedulable? It is known that the
reachability and boundedness problems are decidable for
PNs [9], but undecidable for TPNs [1]. Even if Mn is
reachable in a UN, it may not be reachable in a TN. This
does not mean that we cannot establish some relationship
between the reachability of a TN and the reachability of its
UN. In fact, we have:

Theorem 4. Mn is unreachable in a TN if marking Mn is
unreachable in its UN.

Proof. We need to show that, if Mn is reachable in a TN,
then Mn is reachable in its UN. If Mn is reachable in a TN,
there exists a firing schedule, say

< M0;D0 > ÿ!
t1ð�1Þ

< M1;D1 >... ÿ!
tið�iÞ

< Mi;Di > . . . ÿ!tnð�nÞ < Mn;Dn > :

t1 is firable and schedulable by < M0;D0 > in the TN, so
t1 in the UN is firable by M0 and the firing of t1 in the UN
reaches M1 exactly. Therefore, ðM0t1M1Þ is a firing
sequence in the UN. By induction,

ðM0t1M1 . . . tiMi . . . tnMnÞ

is a firing sequence in the UN, that is, Mn is reachable in
the UN. tu

Theorem 5. It is decidable whether Mn in a TN is reachable or
not if LðM0;MnÞ is a finite set.

Proof. Since LðM0;MnÞ is finite, there is a finite number of
firing sequences that reach Mn in the UN. For any firing
sequence � in LðM0;MnÞ, we can check whether � is
schedulable or not in the TN. If there exists at least one
schedulable firing sequence, then Mn is schedulable in
the TN, otherwise Mn is nonschedulable in the TN
according to Theorem 4. tu

If Mn is schedulable in a TN, the earliest time when Mn is
reached is the minimum of the times of schedulable firing
sequences reaching Mn, i.e., MINfAEð�Þ : � 2 LðM0;MnÞ ^ �
is schedulable} and the latest time is MAXfALð�Þ : � 2
LðM0;MnÞ ^ � is schedulable}, where ðAEð�Þ;ALð�ÞÞ ¼ 	ð�Þ.
Theorem 5 is less practical because a finite LðM0;MnÞmeans
there is no loop from M0 to Mn in the net. Now, we extend it
to infinite LðM0;MnÞ where sequences can be composed.

Definition 2. A Petri net UN ¼ ðP;T;B;F;M0Þ is said to be
well structured with respect to a reachable marking Mn if there
exists a finite set S of composable sequences such that any
firing sequence in LðM0;MnÞ can be composed from S.

For example,

S ¼ fðM0t1M1t2M2Þ; ðM2t4M3Þ; ðM2t3M1t2M2Þg

for the underlying net in Fig. 5a and Mn ¼ M3 ¼ fp4g and

S ¼fðM0t1M1Þ; ðM1t2t3t4t5M5Þ; ðM1t2t4t3t5M5Þ;
ðM1t6t7t8M5Þ; ðM5t9t2t3t4t5M5Þ; ðM5t9t2t4t3t5M5Þ;
ðM5t9t6t7t8M5Þ; ðM5t10MnÞg

for the underlying net in Fig. 5b and Mn ¼ fp10g. Thus, the
nets in Fig. 5 are well structured with respect to Mn.

In practice, whether a UN net is well structured with
respect to Mn can be determined in terms of the reachability
tree of the UN. The UN is a well-structured if 1) BLðM0;MnÞ
is finite, i.e., there is a finite number of basic firing sequences
(without duplicate subsequences). 2) For any basic loop
ðMjtkMk . . . Mlÿ1tlMi . . . :tjMjÞ (without duplicate subse-
quences) in path ðM0t1M1 . . . tiMi . . . tjMj . . . tnMnÞ; ðMjtkMkÞ
is composable with ðtiMi . . . :tjMjÞ and ðMitiþ1Miþ1Þ is
composable with ðtkMk . . . tlMiÞ. That is,

UNðMjÞ \UNðMjÿ1Þ ÿ ftjg ¼ ; and

UNðMlÿ1Þ \UNðMiÞ ÿ ftlg ¼ ;:

Such basic loops are called composable loops. In addition, a
UN net is not well structured if concurrent branches have
internal loops (see the end of the next section).

For the underlying net in Fig. 5a and Mn ¼ M3 ¼ fp4g,
BLðM0;MnÞ ¼ fðM0t1M1t2M2t4M3Þg and loop ðM2t3M1t2M2Þ
ði ¼ 1; j ¼ 2; tl ¼ tk ¼ t3; and Mlÿ1 ¼ MjÞ is a composable
loop because UNðMjÞ \UNðMjÿ1Þ ¼ UNðMlÿ1Þ \UNðMiÞ ¼
UNðM2Þ \UNðM1Þ ¼ ft3; t4g \ ft2g ¼ ;. Similarly, for the
underlying net in Fig. 5b and Mn ¼ fp10g,

BLðM0;MnÞ ¼ fðM0t1t2t3t4t5t10Þ; ðt1t2t4t3t5t10Þ; ðt1t6t7t8t10Þg;

and basic loops ðt9t2t3t4t5Þ; ðt9t2t4t3t5Þ; ðt9t6t7t8Þ are all
composable.

Theorem 6. The reachability of Mn in a TN is decidable if the UN
is well structured with respect to Mn.

Proof. Suppose the UN is well structured with respect to Mn.
There exists a finite set of composable sequences S such
that any firing sequence in LðM0;MnÞ can be composed
from S. In terms of S, we can build a set of basic firing
sequences reach Mn from M0, say, BLðM0;MnÞ �
LðM0;MnÞ, such that, for any � 2 BLðM0;MnÞ, � cannot
be decomposed into �1::�i�i . . . �k, where �iði ¼ 1 . . . kÞ 2 S.
That is, � does not contain duplicate composable
sequences. Since S is finite, BLðM0;MnÞ is finite too.
According to Theorem 2 and Theorem 3, if none of firing
sequences in BLðM0;MnÞ is schedulable, then none of
firing sequences in LðM0;MnÞ is schedulable, i.e., Mn is
unreachable in the TN. If there is a schedulable firing
sequence in BLðM0;MnÞ, Mn is reachable in the TN. In this
case, the earliest time when Mn is reached is MINfAEð�Þ :
� 2 BLðM0;MnÞ ^ � is schedulable}. Thus, whether Mn is
reachable is decidable. tu

According to Theorem 6, the reachability of Mn ¼ fp10g
in Fig. 5b is decidable no matter what timing constraints are
imposed on the well structured underlying net. Thus,
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Theorem 6 is more general than Theorem 5 because the
underlying net is well structured if LðM0;MnÞ is a finite set.
It should be noticed that the schedulability analysis in this
paper is not intended to address the general reachability
problem though they are closely related. As a matter of fact,
< Mi;Di > is a state class in the enumerative method [1]
and schedule

< M0;D0 > ÿ!
t1

< M1;D1 > . . .

ÿ!ti < Mi;Di > . . .ÿ!tn < Mn;Dn >

is a path in the reachability graph. The time span of
executing such a schedule can be evaluated according to the
absolute firing domains. Nevertheless, the values in a
sequence of absolute firing domains and in a sequence of
time stamps are monotonically increased. They cannot be
used as a part of state classes to generate the reachability
graph that contains loops, otherwise it makes no sense to
compare two state classes. For example, two state classes
with the same marking and same relative firing domain
reached by different schedules are usually unequal since
they have different absolute firing domains and time
stamps. This reflects a reason why absolute time mode is
used to conduct the schedulability analysis, rather than to
address the general reachability issue, for TPNs.

6 SCHEDULABILITY ANALYSIS OF

AN ASSEMBLY SYSTEM

We have applied SAM to model various time-dependent
software system architectures, such as flexible manufactur-
ing systems (FMS) [12] and command and control systems
(C2) [13], and used the method described in this paper to
conduct schedulability analysis of these system architec-
tures. This section describes how to analyze the schedul-
ability of an assembly subsystem in an FMS, separating
timing properties from functional properties.

FMS systems provide a means to achieve better quality,
lower cost, and smaller lead-time in manufacturing. An
FMS is a real-time system composed of a number of
computer-controlled tools and automated material hand-
ling, assembly, and storage systems that operate as an
integrated system under the control of host computers. The
growing demand for higher performance and flexibility in

these systems and the interlocking factors of concurrency,
deadline-driven activities, and real-time decision-making
pose a significant challenge to FMS design, especially in
terms of control and scheduling. For a complex FMS, it is
necessary to experiment with different alternatives of
control and scheduling policies against the same hardware
configuration. It is therefore highly desirable to be able to
“plug-in” the specifications of various control modules to
an FMS model without having to make major changes or re-
construct the entire system model each time.

Let us consider the assembly subsystem in an FMS. As
shown in Fig. 6, the assembly system is composed of three
processors, one inspector, one assembler, and two disas-
semblers. The system receives two types of parts (A and B)
as inputs and, after processing the input parts, one A-part
and one B-part are assembled into a final product. The
assembly procedure is described as follows: raw parts
arrive in pairs, A-parts are processed by processors 1 and 2
in series, while B-parts are processed by processor 3.
Processed A-parts and B-parts are finally assembled by an
assembler. The inspector is responsible for quality control of
the assembled products. If an assembled product satisfies
the quality requirements, it is unloaded from the system as
a final product; otherwise, it is disassembled either by
disassembler 1 or 2 depending upon their status. Disas-
sembler 1 generates A-parts to be sent back to processors 1
and 2 and B-parts to assembler, respectively. Disassembler 2
generates A-parts to be sent back to processors 1 and 2 and
B-parts to processor 3. For all processors, inspectors,
assemblers, and disassemblers, there are certain timing
constraints imposed on them (refer to Table 1). Considering
timing constraints, we need to check a number of assem-
bling schedules. Whether an A-part and a B-part are
assembled in a given time period mostly depends on the
analysis of following cases:

1. Neither A-part nor B-part has any quality problem.
2. There is no problem with B-part, but A-part cannot

pass the quality examination for m times (m > 0).
3. A-part and B-part cannot pass the quality examina-

tion for m and n times respectively (m,n > 0).

The TPN model of the assembly system is shown in
Fig. 7. The places and transitions are described in Table 1.
Suppose the assembly system receives an A-part and a
B-part at sometime, that is, M0 ¼ fpi1; pi2g. Without
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consideration of timing constraints, the functional require-

ments of above cases are easily analyzed. For example,

�1 ¼ ðt1t2t3t4t5t6t7Þ;
�2 ¼ ðt1t2t3t4t5t6t8t2t3t5t6t7Þ; and

�3 ¼ ðt1t2t3t4t5t6t9t2t3t4t5t6t7Þ

are three basic occurrence sequences in the underlying net

that model the functional behaviors of correspondent

assembly processes.
According to the algorithm in Section 2, the schedul-

ability of �1 is analyzed as follows:

1. TS0 ¼ ð0; 0Þ; ==M0 ¼ fpi1; pi2g;
D0 ¼ ft1ð0; 1Þg; AD0 ¼ ft1ð0; 1Þg:

2. t1 is schedulable during (0,1); ==M1 ¼ fp1; p4g;
TS1 ¼ ð0; 1Þ; D1 ¼ ft2ð1; 3Þ; t4ð2; 4Þg;
AD1 ¼ ft2ð1; 4Þ; t4ð2; 5Þg:

3. t2 is schedulable during (1,3); ==M2 ¼ fp2; p4g;
TS2 ¼ ð1; 4Þ; D2 ¼ ft3ð1; 2Þ; t4ð0; 3Þg;
AD2 ¼ ft3ð2; 6Þ; t4ð2; 5Þg:

4. t3 is schedulable during (1,2); ==M3 ¼ fp3; p4g;
TS3 ¼ ð2; 5Þ; D3 ¼ ft4ð0; 2Þg; AD3¼ ft4ð2; 5Þg:

5. t4 is schedulable during (0,2); ==M4 ¼ fp3; p5g;
TS4 ¼ ð2; 5Þ; D4 ¼ ft5ð1; 3Þg; AD4¼ ft5ð3; 8Þg:

6. t5 is schedulable during (1,5); ==M5 ¼ fp6g;
TS5 ¼ ð3; 8Þ; D5 ¼ ft6ð0; 1Þg; AD5¼ ft6ð3; 9Þg:

7. t6 is schedulable during (0,1); ==M6 ¼ fp7g;
TS6 ¼ ð3; 9Þ; D6 ¼ ft7ð0; 2Þ; t8ð0; 1Þ; t7ð0; 1Þg;
AD6 ¼ ft7ð3; 11Þ; t8ð3; 10Þ; t7ð3; 10Þg:

8. t7 is schedulable during (0,1); ==M7 ¼ fp0g;
TS7 ¼ ð3; 10Þ; D7 ¼ ;; AD7 ¼ ;:

Thus, �1 is schedulable, and 	ð�1Þ ¼ ð3; 10Þ. Similarly, �2

and �3 are also schedulable, and 	ð�2Þ ¼ ð6; 19Þ and

	ð�3Þ ¼ ð6; 18Þ.
Besides the analysis of basic sequences, we also need to

deal with concurrence and loop. Here, t4 and t2t3 are

concurrent. ðt2t3t4Þ, ðt2t4t3Þ, and ðt4t2t3Þ are all schedulable

from marking M1 ¼ fp1; p4g. The sequences obtained from

�1, �2, and �3 by replacing ðt2t3t4Þ with ðt2t4t3Þ or ðt4t2t3Þ are

all schedulable. For example, if ðt2t3t4Þ in �1 is replaced with

ðt4t2t3Þ, we can change steps 3, 4, and 5 as follows:

3. t4 is schedulable during (2,3); ==M2 ¼ fp1; p5g;
TS2 ¼ ð2; 4Þ; D2 ¼ ft2ð0; 1Þg; AD2 ¼ft2ð2; 4Þg:

4. t2 is schedulable during (0,1); ==M3 ¼ fp2; p5g;
TS3 ¼ ð2; 4Þ; D3 ¼ ft3ð1; 2Þg; AD3 ¼ft3ð3; 6Þg:
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5. t3 is schedulable during (1,2); ==M4 ¼ fp3; p5g;
TS4 ¼ ð3; 6Þ; D4 ¼ ft5ð1; 3Þg; AD4 ¼ft5ð4; 9Þg:

If ðt2t3t4Þ in �1 is replaced with ðt2t4t3Þ, we can change steps
(3), (4), and (5) as follows:

3. t2 is schedulable during (1,2); ==M2 ¼ fp2; p4g;
TS2 ¼ ð1; 4Þ; D2 ¼ ft3ð1; 2Þ; t4ð0; 3Þg;
AD2 ¼ ft3ð2; 6Þ; t4ð2; 5Þg:

4. t4 is schedulable during (0,2); ==M3 ¼ fp2; p5g;
TS3 ¼ ð2; 5Þ; D3 ¼ ft3ð0; 2Þg; AD3 ¼ft3ð2; 6Þg:

5. t3 is schedulable during (0,2); ==M4 ¼ fp3; p5g;
TS4 ¼ ð2; 6Þ; D4 ¼ ft5ð1; 3Þg; AD4 ¼ft5ð3; 9Þg:

	ðt2t3t4Þ, 	ðt2t4t3Þ, and 	ðt4t2t3Þ relative to the time at
M1 are (2,4), (2,5), and (3,5), respectively. The loops that
should be taken into account are �1 ¼ ðt8t2t3t5t6Þ and
�2 ¼ ðt9�t5t6Þ, where � ¼ ðt2t3t4Þ or ðt2t4t3Þ, or ðt4t2t3Þ. It
is easy to show that 	ð�1Þ¼ð3; 9Þ and 	ð�2Þ ¼ 	ð�Þ þ ð1; 4Þ,
relative to the time at M6 ¼ fp7g.

Recall the assembling schedules. They are actually
correspondent to the following task sequences:

1. ðt1�t5t6t7Þ;
2. ðt1�t5t6�

m
1 t7Þ; and

3. ðt1�t5t6�
m
1 �

n
2t7Þ,

where (m > 0 and n > 0). These sequences are obviously
occurrence sequences in the underlying net and their timing
properties are easily calculated according to above discus-
sion. Note that �1 and �2 are self-composable sequences,
and �2 (�1) is composable with �1 (�2). Both the starting
marking and the ending marking are fp7g. �1�2 ¼ �2�1 (i.e.,
the ordering of �1 and �2 is not important). So, A-part fails
m times and B-part fails n times at any sequences can be
represented by �m1 �

n
2 . Moreover, the underlying net is well

structured with respect to Mn ¼ fpog because any firing
sequences can be composed from S ¼ ft1�t5t6; �1; �2; t7g
according to the reachability tree in Fig. 8a. The set of basic

sequences BLðM0;MnÞ ¼ ft1�t5t6t7g and both basic loops �2

and �1 are composable. So, we can determine whether Mn is

reachable and whether a given task execution is schedulable

no matter what the timing constraints are. For the

constraints given in Fig. 7, there is no nonschedulable

transition and Mn is reachable. However, if we add a new

transition t10 with interval (0,2), input place p3, and output

place p2 to Fig. 7, then the new underlying net is not well

structured (branch t2t3 with a loop t10t2t3 is concurrent with

branch t4). The reachability tree of the new underlying net is

shown in Fig. 8b. Basic loop t10t2t3 is not composable

because

UNðfp3p4gÞ \UNðfp2p4gÞ ÿ ft3g
¼ ft10; t4g \ ft3; t4g ÿ ft3g ¼ ft4g 6¼ ;;

where fp3p4g and fp2p4g are the markings after/before the

firing of t3 in the loop. To determine the schedulability of a

sequence with such loops, we cannot use the compositional

technique described in this paper.

7 CONCLUSIONS

We have presented an approach to the schedulability

analysis of real-time systems modeled by time Petri nets.

The contribution of this paper includes:

1. An approach for schedulability analysis by separat-
ing timing properties from other behavioral proper-
ties and by using relative/absolute time modes to
determine the schedulability of individual transi-
tions and to evaluate the time span of task execution.
This provides an incremental verification technique
from Petri nets to time Petri nets in the software
architecture methodology SAM.
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Fig. 8. Reachability trees of underlying nets.



2. A compositional technique to reduce the complex-
ity of schedulability analysis by decomposing a
complicated task execution into a number of
subsequences.

3. A relationship between some reachability and
timing issues of time Petri nets and the reachability
of underlying Petri nets and the compositional
analysis.

4. Identification of a class of time Petri nets with well-
structured underlying Petri nets so that the reach-
ability of these nets can be easily analyzed.

Our compositional schedulability analysis is applicable

to TPNs that model behaviors and timing constraints of

individual system components (subsystems) and connec-

tions (communication and interaction among components)

of real time systems. An interesting research problem is

how the approach can be extended to analyze distributed

real time systems. In particular, how to compose system

components modeled by TPNs at a higher abstraction level

is our on-going research problem.
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