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Abstract

In order to model the behaviour of open concurrent systems by means of Petri nets,
we introduceopen Petri nets, a generalization of the ordinary model where some places,
designated asopen, represent an interface of the system towards the environment. Besides
generalizing the token game to reflect this extension, we define a truly concurrent semantics
for open nets by extending the Goltz-Reisig process semantics of Petri nets.

We introduce a composition operation over open nets, characterized as a pushout in the
corresponding category, suitable to model both interaction through open places and synchro-
nization of transitions. The deterministic process semantics is shown to be compositional
with respect to such composition operation. If a netZ3 results as the composition of two
netsZ1 andZ2, having a common subnetZ0, then any two deterministic processes ofZ1 and
Z2 which “agree” on the common part, can be “amalgamated” to produce a deterministic
process ofZ3. Vice versa, any deterministic process ofZ3 can be decomposed into pro-
cesses of the component nets. The amalgamation and decomposition operations are shown
to be inverse to each other, leading to a bijective correspondence between the deterministic
processes ofZ3 and pair of deterministic processes ofZ1 andZ2 which agree on the common
subnetZ0. Technically, our result is similar to the amalgamation theorem for data-types in
the framework of algebraic specification. A possible application field of the proposed con-
structions and results is the modeling of interorganizational workflows, recently studied in
the literature. This is illustrated by a running example.

1 Introduction

Among the various models of concurrent and distributed systems, Petri nets [Rei85] are cer-
tainly not the most expressive or the best-behaved. However, due to their intuitive graphical
representation, Petri nets are widely used both in theoretical and applied research to specify
and visualize the behaviour of systems. Especially when explaining the concurrent behaviour
of a net to non-experts, one important feature of Petri nets is the possibility to describe their
execution within the same visual notation, i.e., in terms of processes [GR83].�Research partially supported by the EC TMR Network GETGRATS (General Theory of Graph Transformation
Systems), by the ESPRIT Working Group APPLIGRAPH (Applications of Graph Transformation), and by the MURST
project TOSCA (Teoria della Concorrenza, Linguaggi di Ordine Superiore e Strutture di Tipi).
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Figure 1: Sample net modeling an interorganizational workflow.

However, when modelingreactive systems, i.e., concurrent systems with interacting subsys-
tems, Petri nets force us to take a global perspective. In fact, ordinary Petri nets are not adequate
to modelopensystems which can interact with their environment or, in a different view, which
are only partially specified. This contradicts the common practice, e.g., in software engineering,
where a large system is usually built out of smaller components.

Let us explain this problem in more detail by means of a typical application of Petri nets, the
specification of workflows. Aworkflowdescribes a business process in terms of tasks and shared
resources. Such descriptions are needed, for example, when interoperability of the workflows
of different organizations is an issue, which is frequently the case, e.g., when applications of
different enterprises shall be integrated over the Internet. Aworkflow net[vdA98] is a Petri
net satisfying some structural constraints, like the existence of one initial and one final place,
and a correspondingsoundness condition: from each marking reachable from the initial one
(one token on the initial place) we can reach the final marking (one token on the final place).
An interorganizational workflow[vdA99] is modeled as a set of such workflow nets connected
through additional places for asynchronous communication and synchronization requirements
on transitions.

For instance, Fig. 1 shows an interorganizational workflow consisting of two local workflow
netsTraveler andAgency related through communication placescan, ack, bill, payment andticket
and a synchronization requirement between the tworeserve transitions, modeled by a dashed
line. The example describes the booking of a flight by a traveler in cooperation with a travel
agency. After some initial negotiations (which is not modeled), both sides synchronize in the
reservation of a flight. Then, the traveler may eitheracknowledge or cancel and re-enter the
initial state. In both cases an asynchronous notification (e.g., a fax), modeled by the placesack
andcan, respectively, is sent to the travel agency. Next the local workflow of the traveler forks
into two concurrent threads, the booking of a hotel and the payment of the bill. The trip can
start when both tasks are completed and the ticket has been provided by the travel agency.

The overall net in Fig. 1 describes the system from a global perspective. Hence, the classical
notion of behaviour (described, e.g., in terms of processes) is completely adequate. However,
for a local subnet in isolation (likeTraveler) which will only exhibit a meaningful behaviour
when interacting with other subnets, this semantics is not appropriate because it does not take
into account the possible interactions.

In order to overcome these limitations of ordinary Petri nets, we extend the basic model
introducingopen nets. An open net is a P/T Petri net with a distinguished set of places which are
intended to represent the interface of the net towards the external world. Some similarities exist
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with other approaches to net composition, like thePetri box calculus[BDH92, KEB94, KB99],
the Petri nets with interface[NPS95, PW98] and thePetri net components[Kin97], which
will be discussed in the conclusions. As a consequence of the (hidden, implicit) interaction
between the net and the environment, some tokens can “freely” appear in or disappear from
the open places. Besides generalizing the token game to reflect this changes, we provide a truly
concurrent semantics by extending the ordinary (deterministic)process semantics[GR83] to
open nets.

The embedding of an open net in a context is formally described by a morphism in a suitable
category of open nets. Intuitively, in the target net new transitions can be attached to open places
and, moreover, the interface towards the environment can be reduced by “closing” open places.
Therefore, open net morphisms do not preserve but reflect the behaviour, i.e., any computation
of the target (larger) net can be projected back to a computation of the source (smaller) net.

A composition operationis introduced over open nets. Two open netsZ1 andZ2 can be
composed by specifying a common subnetZ0 which embeds both inZ1 andZ2. Then the two
nets can be glued along the common part. This is permitted only if the prescribed composition
is consistent with the interfaces, i.e., only if the places ofZ1 and Z2 which are used when
connecting the two nets are actually open. The composition operation is characterized as a
pushout in the category of open nets, where the conditions for the existence of the pushout
nicely fit with the mentioned condition over interfaces.

Based on these concepts, the representation of the system of Fig. 1 in terms of two inter-
acting open nets is given by the top part of Fig. 2, which comprises the two component nets
Traveler andAgency, and the netCommon which embeds into both components by means of
open net morphisms. Places with incoming/outgoing dangling arcs are open. Observe that the
common subnetCommon of the componentsTraveler andAgency closely corresponds to the
dashed items of Fig. 1, which represent the ‘glue” between the two components. The net result-
ing from the composition ofTraveler andAgency over the shared subnetCommon is shown in
the bottom part of Fig. 2.

Obviously, one would like to be able to establish a clear relationship between the behaviours
of the component nets (in the example, the netsTraveler andAgency) and the behaviour of the
composition (in the example, the netGlobal). We will show that indeed, the behaviour of the
latter can be constructed “compositionally” out of the behaviours of the former, in the sense that
two deterministic processes which “agree” on the shared part, can be synchronized to produce a
deterministic process over the composed net. Vice versa,anydeterministic process of the global
net can be decomposed into deterministic processes of the component nets, which, in turn, can
be synchronized to give the original process again. The top part of Fig. 3 shows two processes
of the netsTraveler andAgency, the corresponding common projections over netCommon and
the process ofGlobal arising from their synchronization.

The synchronization of processes, based on the composition of their underlying nets, resem-
bles theamalgamationof data-types in the framework of algebraic specifications, and therefore
we will speak ofamalgamation of processes. In analogy with the amalgamation theorem for
algebraic specifications [EM85], the main result of this paper shows that the amalgamation and
decomposition constructions mentioned above are inverse to each other, establishing a bijective
correspondence between the pairs of processes of two nets which agree on a common subnet
and the processes of the net resulting from their composition.

The rest of the paper is organized as follows. Section 2 introduces the open Petri net model
and the corresponding category. Section 3 extends the notion of process from ordinary to open
nets and defines the operation of behaviour projection. Section 4 introduces the composition
operation for open nets, based on a pushout in the category of open nets. Section 5 presents
the compositionality result of the process semantics of open nets. Finally, Section 6 discusses
some related work in the literature and outlines possible directions of future investigation. An
extended abstract of this paper has been published as [BCEH01].
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Figure 2: Interorganizational workflow as composition of open netsTraveler andAgency.
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2 Open nets

An open netis an ordinary P/T Petri net with a distinguished set of places which are intended to
represent the interface of the net towards the external world (environment). As a consequence of
the (hidden, implicit) interaction between the net and the environment, some tokens can freely
appear in and disappear from the open places. Concretely, an open place can be either aninput
or anoutputplace (or both), meaning that the environment can put or remove tokens from that
place.

Given a setX we will denote byX� the free commutative monoid generated byX and by
2X its powerset. Furthermore given a functionh : X!Y we will denote byh� : X�!Y� its
monoidal extension, while the same symbolh : 2X! 2Y denotes the extension ofh to sets.

DEFINITION 1 (P/T PETRI NET) A P/T Petri netis a tuple N= (S;T;σ;τ) where S is the set of
places, T is the set of transitions (with S\T = /0) andσ;τ : T! S� are the functions assigning
to each transition its pre- and post-set.

In the following we will denote by�(�) and(�)� the monoidal extensions of the functionsσ and
τ to functions fromT� to S�. Furthermore, given a places2 S, the pre- and post-set ofs are
defined by�s= ft 2 T j s2 t�g ands� = ft 2 T j s2 �tg.
DEFINITION 2 (PETRI NET CATEGORY) Let N0 and N1 be Petri nets. APetri net morphism
f : N0! N1 is a pair of total functions f= h fT ; fSi with fT : T0! T1 and fS : S0! S1, such
that for all t0 2 T0, � fT(t0) = fS�( �t0) and fT(t0)� = fS�(t0�) (see the diagram below).

T0

fT

σ0

τ0
S0

�
fS
�

T1

σ0

τ0
S1

�
The category of P/T Petri nets and Petri net morphisms is denoted byNet.

Petri net morphisms are closed under composition. This immediately follows by observing that
given f0 : N0! N1 and f1 : N1! N2, we have( fS1 Æ fS0)� = fS1

� Æ fS0
�.

CategoryNet is a lluf subcategory of the categoryPetri of [MM90]. The latter has the same
objects, but more general morphisms which can map a place into a multiset of places.

We are now ready to introduce the notion of open net.

DEFINITION 3 (OPEN NET) Anopen netis a pair Z= (NZ;OZ), where� NZ = (SZ;TZ;σZ;τZ) is an ordinary P/T Petri net and� OZ = (O+
Z ;O�

Z ) 2 2SZ�2SZ are the input and output open places of the net.

Observe that the setsO+
Z andO�

Z are not necessarily disjoint, hence a place can be both an input
and an output open place at the same time.

The notion of enabledness for a transition (or multiset of transitions) of an open net is
the usual one, but, besides the changes produced to the state by the firing of the “internal”
transitions of the net, one considers also the interaction with the environment, modelled by a
kind of invisible actions producing/consuming tokens in the input/output places of the net. The
actions of the environment which produce and consume tokens in an open places are denoted
by+s and�s, respectively.
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DEFINITION 4 (FIRING) Let Z be an open net. Asequential movecan be (i) the firing of a
transition, i.e., m� �t [ti m� t�, with m2 SZ

�, t 2 TZ; (ii) the creation of a token by the
environment, i.e., m[+si m� s, with s2 O+

Z , m2 SZ
�; (iii) the deletion of a token by the

environment, i.e., m�s [�si m, with m2 SZ
�, s2O�

Z .
A parallel moveis of the form

m� �A�m� [Ai m�A��m+,

with m2 SZ
�, A2 TZ

�, m+ 2 (O+
Z )�, m� 2 (O�

Z )�.

Alternatively, the token game of an open net can be described as the behaviour of an ordi-
nary net, called theclosureof Z and denoted bȳZ. The netZ̄ is obtained by adding transitions
connected to open places which can freely produce/remove tokens from input/output places,
i.e., Z̄ = (T 0;SZ;σ0;τ0) where� T 0 = TZ[f+s j s2O+

Z g[f�s j s2O�
Z g;� σ0(+s) = 0 andτ0(+s) = s for anys2O+

Z ;� σ0(�s) = s andτ0(�s) = 0 for anys2O�
Z ;

andσ0, τ0 coincide withσZ, τZ on the other transitions.

Example.The open nets for the local workflowsTraveler andAgency of Fig. 1 are shown in the
middle part of Fig. 2. Ingoing and outgoing arcs without source or target designate the input
and output places, respectively. Observe that the synchronization transitionreserve is common
to both nets. Furthermore the communication places, likecan, become open places.

DEFINITION 5 (OPEN NET MORPHISM) Anopen net morphismf : Z1! Z2 is a Petri net mor-
phism f : NZ1 ! NZ2 such that, if we definein( f ) = fs2 S1 j � fS(s)� fT( �s) 6= /0g and out( f ) = fs2 S1 j fS(s)�� fT(s�) 6= /0g
then

(i) f �1
S (O+

2 )[ in( f ) �O+
1 and (ii) f�1

S (O�
2 )[out( f ) �O�

1 .

The morphism f is called anopen net embeddingif both components fT and fS are injective.

In the sequel, given an open net morphismf = h f S; fTi : Z1! Z2, to lighten the notation, we
will omit the subscripts “S” and “T” in its place and transition components, writingf (s) for
fS(s) and f (t) for fT(t).

A morphism f : Z1! Z2 can be thought of as an “insertion” of netZ1 into a larger netZ2,
which extendsZ1. In other words,Z2 can be thought of as an instantiation ofZ1, where part
of the unknown environment gets more specified. Conditions (i) and (ii) first require that open
places are reflected and hence that places which are “internal” inZ1 cannot be promoted to open
places inZ2. Furthermore, the context in whichZ1 is inserted can interact withZ1 only through
the open places. To understand how this is formalized, observe that for each places in in( f ),
its imagef (s) is in the post-set of a transition outside the image of�s. Hence we can think that
in Z2 new transitions are attached tos and can produce tokens in such place. This is the reason
why condition (i) also asks any place inin( f ) to be an input open place ofZ1. Condition (ii) is
analogous for output places.

The above intuition better fits with open net embeddings, and indeed most of the construc-
tions in the paper will be defined for this subclass of open net morphisms. However, for tech-
nical reasons (e.g., to characterize the composition of open nets as a pushout) the more general
notion of morphism is useful.

Example. As an example of open net morphism, consider the embedding of netTraveler into
net Global of Fig. 4 (extracted from Fig. 2). Observe that the constraints characterizing open
nets morphisms have an intuitive graphical interpretation:
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Figure 4: The open net embedding of netTraveler into netGlobal.� the connections of transitions to their pre-set and post-set have to be preserved. New
connections cannot be added;� in the larger net, a new arc may be attached to a place only if the corresponding place of
the subnet has a dangling arc in the same direction. Dangling arcs may be removed, but
cannot be added in the larger net. For instance, without the outgoing dangling arc from
placecan in net Traveler, i.e., if placecan were not output open, the mapping in Fig. 4
would have not been a legal open net morphism.

Next we show that open net morphisms are closed under composition.

PROPOSITION6 Open net morphisms are closed under composition.

Proof .Let f1 : Z1! Z2 and f2 : Z2! Z3 be open net morphisms. Thenf2 Æ f1 is a morphism
in Net. As for condition (i) of Definition 5, first observe thatin( f2 Æ f1)� in( f1)[ f�1

1 (in( f2)) (1)

In fact,in( f2 Æ f1) == fs2 S1 j � f2( f1(s))� f2( f1( �s)) 6= /0g= fs2 S1 j � f2( f1(s))� f2( � f1(s)) 6= /0g[fs2 S1 j f2( � f1(s))� f2( f1( �s)) 6= /0g� fs2 S1 j f1(s) 2 in( f2)g[fs2 S1 j f2( � f1(s)� f1( �s)) 6= /0g= f�1
1 (in( f2))[fs2 S1 j � f1(s)� f1( �s) 6= /0g= f�1
1 (in( f2))[ in( f1)

Therefore,in( f2 Æ f1)� in( f1)[ f�1
1 (in( f2)) [by using (1)]�O+

1 [ f�1
1 (O+

2 ) [since, by def. of morphism,in( f1)�O+
1 andin( f2)�O+

2 ]�O+
1 [since, by def. of morphism,f �1

1 (O+
2 )�O+

1 ]
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Furthermore,( f2 Æ f1)�1(O+
3 ) = f�1

1 ( f�1
2 (O+

3 )) � f�1
1 (O+

2 ) � O+
1 , since f1 and f2 are mor-

phisms. Thus, summing up,( f2 Æ f1)�1(O+
3 )[ in( f2 Æ f1)�O+

1

Condition (ii), over output open places, can be proved in a totally analogous way. 2
By the previous proposition we can consider a category of open nets.

DEFINITION 7 (OPEN NETS CATEGORY) We will denote byONet the category of open nets
and open net morphisms.

We said that open net morphisms are designed to capture the idea of “insertion” of a net
into a larger one. Hence it is natural to expect that they “reflect” the behaviour in the sense that
given f : Z0! Z1, the behaviour ofZ1 can be projected along the morphism to the behaviour of
Z0 (this fact will be formalized later, in Construction 13). Instead, differently from most of the
morphisms considered over Petri nets, open net morphisms cannot be thought of as simulations
since theydo not preservethe behaviour. For instance, consider the open netsZ0 andZ1 in Fig. 5
and the obvious open net morphism between them. Then the firing sequence 0[+ si s [ti 0 in Z0

is not mapped to a firing sequence inZ1.
There is an obvious forgetful functor from the category of open nets to the category of

ordinary nets.

DEFINITION 8 We denote byF : ONet! Net the forgetful functor defined byF(Z) = NZ for
any open net Z andF( f : Z0! Z1) = f : NZ0 ! NZ1 for any open net morphism f .

Since functorF acts on arrows as identity, with abuse of notation, given an open net morphism
f : Z0! Z1 we will often write f : F(Z1)! F(Z2) instead ofF( f ) : F(Z1)! F(Z2).
3 Deterministic processes of open nets

Similarly to what happens for ordinary nets, a process of an open net, providing a truly concur-
rent description of a (possibly nondeterministic) computation of the net, is an open net itself,
satisfying suitable acyclicity and conflict freeness requirements, together with a mapping to the
original net.

The open net underlying a process is an open occurrence net, namely an open netK such that
NK is an ordinary occurrence net and satisfying some additional conditions over open places.
The open places inK are intended to represent tokens which are produced/consumed by the
environment in the considered computation. Consequently, every input open place is required to
have an empty pre-set, i.e., to be minimal with respect to the causal order. In fact, an input open
place in the post-set of some transition would correspond to a kind of generalized backward
conflict: a token on this place could be generated in two different ways, i.e., by the firing of an
“internal” transition or by the environment, and this would prevent one to interpret the place as
a token occurrence.
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Figure 6: A (nondeterministic) open occurrence net.

Observe that, instead, an output open place can be in the pre-set of a transition, as it happens
for places in the open occurrence net of Fig. 6. The idea is that the token occurrence represented
by places can be consumed either by the environment or by transitiont.

Recall that for an ordinary netN = (S;T;σ;τ) thecausal relation<N is defined as the least
transitive relation overS[T such thatx<K y if y2 x�, for x;y2 S[T. Theconflict relation#N

is defined as the least symmetric relation overS[T such that i) if �t \ �t 0 6= 0 andt 6= t 0 then
t#Nt 0 (immediate conflict) and ii) ifx#y<N z thenx#Nz (inheritance w.r.t. causality).

DEFINITION 9 (OPEN OCCURRENCE NET) Anopen occurrence netis an open net K such that

1. NK is an ordinary occurrence net, namely in NK there are no backward conflicts, i.e., for
any t; t 0 2 TK , if t 6= t 0 then t�\ t 0� = /0, the causal relation<K is a finitary strict partial
order and the conflict relation#K is irreflexive;

2. each input open place is minimal w.r.t.<K , i.e.,8s2O+
K : �s= /0.

We are now ready to introduce the notion of process for open nets.

DEFINITION 10 (OPEN NET PROCESS) A processof an open net Z is a mappingπ : K ! Z
where K is an open occurrence net andπ : NK ! NZ is a Petri net morphism, such that

πS(O+
K )�O+

Z and πS(O�
K )�O�

Z .

Observe that the mapping from the occurrence netK to the the original netZ is not, in general,
an open net morphism. In fact, the process mapping, differently from open net morphisms, must
be a simulation, i.e., it must preserve the behaviour. Furthermore, the image of an open place
in K must be an open place inZ, since tokens can be produced (consumed) by the environment
only in input (output) open places ofZ.

In the following, when the meaning is clear from the context, we will sometimes identify a
processπ : K! Z with the corresponding morphismπ : F(K)! F(Z) in the categoryNet.

As usual, a process will be called deterministic if it represents a uniquely determined con-
current computation. First, an open occurrence net is deterministic if the underlying ordinary
occurrence net is deterministic, i.e., each place is in the pre-set of at most one transition. Fur-
thermore, the output open places must be maximal with respect to the causal order, i.e., an
output open place cannot be in the pre-set of any transition. In fact, as already observed, an out-
put open placeswhich is in the pre-set of a transitiont represents a token occurrence which can
be consumed either by the environment or by transitiont. A process will be called deterministic
if the underlying open occurrence net is deterministic.
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Figure 7: An process of the open netGlobal and its projection to the subnetTraveler.

DEFINITION 11 (DETERMINISTIC OCCURRENCE NET AND PROCESS) An open occurrence
net K is calleddeterministicif

1. the underlying ordinary occurrence net NK is deterministic, i.e.8s2 SK : js�j � 1;

2. each output open place is maximal, i.e.,8s2O�
K : s� = /0.

A processπ : K! Z of an open net Z isdeterministicif K is deterministic.

Example.A deterministic process for the open netTraveler is shown in Fig. 7 on the left. The
morphism back to the original netTraveler is implicitly represented by the labeling. Observe
that the requirement that each input place is minimal and each output place is maximal w.r.t. to
the causal order of the process has a natural graphical interpretation: the absence of backward
and forward conflicts extends to dangling arcs, i.e., in total, each place may have at most one
ingoing and one outgoing arc.

Next we introduce a category of processes, where objects are processes and arrows are pairs
of open net morphisms.

DEFINITION 12 (CATEGORY OF PROCESSES) We denote byProc the category where objects
are processes and, given two processesπ0 : K0! Z0 andπ1 : K1! Z1, an arrowψ : π0! π1

is a pair of open net morphismsψ = hψZ : Z0! Z1;ψK : K0! K1i such that the following
diagram (indeed the underlying diagram inNet) commutes

K0

π0

ψK
K1

π1
ψ

Z0 ψZ
Z1

3.1 Projecting processes along embeddings

Let f : Z0! Z1 be an open net morphism. As mentioned before, it is natural to expect that each
computation inZ1 can be “projected” toZ0, by considering only the part of the computation of
the larger net which is visible in the smaller net. The above intuition is formalized, in the case
of an open net embeddingf : Z0! Z1, by showing how a process ofZ1 can be projected along
f giving a process ofZ0.

11



CONSTRUCTION13 (PROJECTION OF A PROCESS) Let f : Z0!Z1 be an open net embedding
and letπ1 : K1! Z1 be a process ofZ1. A projection ofπ1 along f is a pairhπ0;ψi where
π0 : K0! Z0 is a process ofZ0 andψ : π0! π1 is an arrow inProc, constructed as follows.
Consider the pullback ofπ1 and f in Net, thus obtaining the net morphismsπ0 andψK .

NK0

π0

ψK NK1

π1

NZ0 f
NZ1

Then K0 is obtained by takingNK0 with the smallest sets of open places which make
ψK : NK0 ! NK1 an open net morphism, namely

O+
K0

= ψK
�1(O+

K1
)[ in(ψK) and O�

K0
= ψK

�1(O�
K1
)[out(ψK).

andψ = hψK ; f i.
The next proposition shows that the notion of projection is well-defined, and restricts to deter-
ministic processes.

PROPOSITION14 The processπ0 : K0! Z0, as introduced in Construction 13, is well defined.
Furthermore, the projection of a deterministic process is still a deterministic process.

Proof .First observe thatK0 is an open occurrence net. Sincef is injective, alsoψK is injective,
and thusNK0 is isomorphic to the subnet ofNK1 in the codomain ofψK , which is clearly an
ordinary occurrence net. Furthermore, we must show that each open input place is minimal. Let
s2O+

K0
. Then we have two possibilities:

i) ψK(s) 2O+
K1

.

Observe that�s= ψ�1
K ( �ψK(s)). SinceK1 is an open occurrence net,�ψK(s) = /0 and thus�s= /0.

ii) s2 in(ψK).
In this case�ψK(s)�ψK(�s) 6= /0. Recalling thatK1 is an occurrence net and thusj �ψK(s)j � 1,
we conclude thatψK( �s) = /0. Hence, as desired,�s= /0.

Now, observe thatπ0 is clearly a morphism inNet. Hence to conclude thatπ0 is a well
defined process it only remains to show that it also satisfies

π0(O+
K0
)�O+

Z0
and π0(O�

K0
)�O�

Z0
.

Let us show, for instance, the first inclusion. Considers2 O+
K0

. Since, by construction,O+
K0

=
ψ�1

K (O+
K1
)[ in(ψK) we distinguish two possibilities:

1) s2 ψ�1
K (O+

K1
)

We havef (π0(s)) = π1(ψK(s)) 2 π1(O+
K1
) and, by definition of process,π1(O+

K1
)�O+

Z1
. Hence

π0(s) 2 f�1(O+
Z1
)�O+

Z0
, sincef is an open net morphism.

2) s2 in(ψK)
In this case,�ψK(s)�ψK( �s) 6= /0. SinceK1 is an occurrence net, this means that there exists
t 2 �ψK(s) andψK( �s) = /0, i.e., �s= /0. Now observe thatπ1(t) 2 �π1(ψK(s)) = � f (π0(s)).
Moreover, since the square in Construction 13 is a pullback,π1(t) 62 f (�π0(s)). In fact, ifπ1(t)2
f ( �π0(s)) then there would bet 0 in NK0 such thatf (π0(t 0)) = π1(t), hencet 0 2 �s and thus
ψK(t 0)2 �ψK(s), which should be empty. Summing upπ1(t) belongs to� f (π0(s))� f (�π0(s)),
which thereby is non-empty. Henceπ0(s) 2 in( f ).

12



Let us prove the second part, assume thatπ1 : K1! Z1 is a deterministic process ofZ1. As
in the general case, the netNK0 is isomorphic to the subnet ofNK1 in the codomain ofψK , and
thus it is an ordinary deterministic occurrence net. We already know that8s2 O+

K0
: �s= /0,

andπ0(O+
K0
) � O+

Z0
, π0(O�

K0
) � O�

Z0
. Thus we only need to show that8s2 O�

K0
: s� = /0. Let

s2 O�
K0

. To prove thats� = /0 just distinguish the case 1)s2 ψ�1
K (O�

K1
) and 2)s2 out(ψK).

Then proceed exactly as in points (1) and (2) above, by substituting “�” andout(�) for + andin(�), respectively. 2
The processπ0 of Z0 is uniquely determined up to isomorphism. Observe that fixing a rep-

resentative in the isomorphism class ofπ0 still we can have different choices forψK (obtained
one from the other by composing with an automorphism overNK0).

Example. The embedding ofTraveler into Global in Fig. 4 induces a projection of open net
processes in the opposite direction. For instance, the right part of Fig. 7 shows a process of
Global. Its projection along the embedding ofTraveler into Global is shown on the left part of
the same figure. Notice how transitionacknowledged, which consumes a token in placeack, is
replaced in the projection by a dangling output arc: an internal action in the larger net becomes
an interaction with the environment in the smaller one.

REMARK 15 The construction of categoryProc strictly resembles the construction of an ar-
row category. Denote byN : Proc! ONet the projection functor which maps each process
π : K! Z to Z and each process arrowhψZ;ψKi to ψZ. Then, given an embeddingf : Z0! Z1

and a processπ1 : K1! Z1, a projection ofπ1 along f , as defined above, is a cartesian arrow
for π1 and f .

If we restrict our attention to open net embeddings, thus obtaining the subcategoriesONet �
andProc�, then the corresponding functorN� is a fibration with total categoryProc� and base
categoryONet�. Furthermore, the fibrationN� is split. In fact, the injectivity of the arrows in
ONet� provides a choice of the pullbacks which are used for projections. Look at the diagram in
Construction 13. Whenf is injective, alsoψK is injective and thus we have a canonical choicehK0

0;ψ0
K ;π00i for the construction, i.e.� occurrence net K00:
NK0

0
is the subnet ofNK1 identified as the image ofψK ; the open places ofK 0

0 are the
open places inK1 which belong toK 0

0 and the “interface places”, namely the places inK 0
0

whose precondition is outsideK 0
0, i.e.

O+
K0

0
= (O+

K1
\SK0

0
)[fs2 SK0

0
: �s\ (TK0�TK0

0
) 6= /0g

andO�
K0

0
is defined in similar way.� arrowsψ0
K andπ00:

ψ0
K the inclusion ofK 0

0 into K1 and π00 is uniquely determined by the requirement of
commutativity.

The cleavagec( f ;π1) = hπ00;h f ;ψ0
Kii defined in this way is splitting.

4 Composing open nets

In this section we introduce a basic mechanism for composing open nets which will be charac-
terized as a pushout construction in the category of open nets. Intuitively, two open netsZ1 and
Z2 are composed by specifying a common subnetZ0, and then by joining the two nets along
Z0. Consider, for instance, the open nets for the local workflowsTraveler andAgency in the
middle of Fig. 2. The two nets share the subnetCommon depicted in the top of the same figure,
which represents the “glue” between the two components. The netGlobal resulting from the

13
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Figure 8: CategoryONet does not have all pushouts.

composition ofTraveler andAgency over the shared subnetCommon is shown in the bottom
part of Fig. 2. This composition is only defined if the embeddings of the components into the
resulting net satisfy the constraints of open net morphisms. For example, if we remove the ingo-
ing dangling arc of the placeticket in the netTraveler, the embedding ofCommon into Traveler
would still represent a legal open net morphism. However, in this case the embedding ofTrav-
eler into Global would become illegal because of the new arc fromissueTicket (see condition
(i) of Definition 5).

Formally, given two netsZ1 andZ2 and a spanf1 : Z0! Z1 and f2 : Z0! Z2, the compo-
sition operation constructs the corresponding pushout inONet. CategoryONet does not have
all pushouts, while categoryNet does. We will see that this corresponds to the intuition that the
composition operation can be performed inNet and then lifted toONet, but only when it re-
spects the interfaces specified by the various components, e.g., a new transition can be attached
to a place only if such place is open. For instance it is possible to verify that there is no pushout
for the arrows in Fig. 8, since intuitively the construction should merge all the places nameds,
attaching transitiont to a place inZ1 which is not (output) open.

We start by recalling a characterization of pushouts in categoryNet.

PROPOSITION16 (PUSHOUT INNet) Let N1
f1 N0

f2! N2 be a span inNet. Then its pushout

always exists, and can be defined as N1
α1! N3

α2 N2, where the sets of places and transitions of
N3 are computed as the pushout inSet of the corresponding components:

S3 = S1+S0 S2 and T3 = T1+T0 T2,

with source and target functions defined by: for all t2 T3, if t = αi(ti) with ti 2 Ti and i2 f1;2g
then �t = αi

�( �ti) and t� = αi
�(ti�).

Next we formalize the condition which ensures the composability of a span inONet.

DEFINITION 17 (COMPOSABLE SPAN) Let Z1
f1 Z0

f2! Z2 be a span of open net morphisms.
We say that f1 and f2 are composableif

1. f2(in( f1))�O+
Z2

and f2(out( f1))�O�
Z2

;

2. f1(in( f2))�O+
Z1

and f1(out( f2))�O�
Z1

.

In words, f1 and f2 are composable if the places which are used as interfaces byf1, namely the
placesin( f1) andout( f1), are mapped byf2 to input and output open places inZ2, and also the
symmetric condition holds. If, and only if, this condition is satisfied the pushout off 1 and f2
can be computed inNet and then lifted toONet.

14
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Figure 9: Pushout inONet.

PROPOSITION18 (PUSHOUTS INONet) Let Z1
f1 Z0

f2! Z2 be a span inONet (see the dia-
gram in Fig. 9). Compute the pushout of the corresponding diagram in the categoryNet obtain-
ing the net NZ3 and the morphismsα1 andα2, and then take as open places, for x2 f+;�g,

Ox
Z3

= fs3 2 S3 j α�1
1 (s3)�Ox

Z1
^α�1

2 (s3)�Ox
Z2
g.

Then(α1;Z3;α2) is the pushout inONet of f1 and f2 if and only if f1 and f2 are composable.

Proof . (if part) Let us show that, whenf1 and f2 are composable, thenZ1
α1! Z3

α2 Z2 is a
pushout inONet.

We first prove thatα1 andα2 are open net morphisms. The proof is carried out explicitly
only for α1, since the case ofα2 is completely analogous. First notice thatin(α1) = f1(in( f2)).
In fact, lets1 2 in(α1). Hence there exist a transitiont3 2 �α1(s1)�α1( �s1). Since the square
in Fig. 9 is a pushout inNet, there existss2 2 S2 such thatα1(s1) = α2(s2) and alsot2 2 �s2

such thatα2(t2) = t3 and t2 62 f2(T0). By using again the properties of pushouts, we deduce
the existence ofs0 2 S0 such thatf1(s0) = s1 and f2(s0) = s2. Now, t2 2 � f2(s0)� f2(T0) �� f2(s0)� f2(�s0). Hences02 in( f2) and thusf1(s0) = s12 f1(in( f2)). This proves thatin(α1)�
f1(in( f2)). The converse inclusion can be proved by reverting the proof steps.

Now, α1 is clearly a morphism inNet by construction. Furthermore, it satisfies also the
conditionα�1

1 (O+
Z3
)[ in(α1)�O+

Z1
andα�1

1 (O�
Z3
)[out(α1)�O�

Z1
. For instance, the condition

over input places is proved by noticing thatα�1
1 (O+

Z3
) � O+

Z1
by construction, and,in(α1) =

f1(in( f2)) � O+
Z1

by condition (2) of composability (Definition 17). Thusα 1 is an open net
morphism.

Moreover, for any pair of open net morphisms,β1 : Z1! Z4 andβ2 : Z2! Z4, such that

β1 Æ f1 = β2 Æ f2, sinceNZ1

α1! NZ3

α2 NZ2 is a pushout inNet, there exists a unique arrow
h : Z3! Z4 in Net such that the diagram below commutes.

Z0
f2f1

Z1

α1

β1

Z2

α2

β2

Z3

h

Z4

We only need to prove thath is an open net morphism, by showing that it satisfies the condition
over open places of Definition 5. Let us prove, for instance, thath�1(O+

4 )[ in(h) � O+
3 . We

divide the proof in two parts:

- h�1(O+
4 )�O+

3
Let s3 2 h�1(O+

4 ), i.e.,s3 2 S3 andh(s3)2O+
4 . Letsi 2 α�1

i (s3) for somei 2 f1;2g. By hÆαi =
15



βi we haveβi(si) = h(s3)2O+
4 . Thus, sinceβi is an open net morphism,si 2O+

i . In other words,
α�1

1 (s3)�O+
1 andα�1

2 (s3)�O+
2 . Hence, by definition ofO+

3 , s3 2O+
3 .

- in(h)�O+
3

Let s3 2 in(h), namely�h(s3)�h( �s3) 6= /0. Observe that ifs3 = αi(si) for somei 2 f1;2g, then
we have that

/0 6= �h(s3)�h( �s3) == �h(αi(si))�h( �αi(si))= �βi(si)�h( �αi(si))� �βi(si)�h(αi( �si)) [since �αi(si)� αi( �si)]= �βi(si)�βi( �si)
Thereforesi 2 in(βi), and thus, sinceβi is an open net morphism,si 2O+

i . Hences3 2α�1
i (O+

i ).
Summing up, we deduce thatα�1

1 (s3) � O+
1 andα�1

2 (s3) � O+
2 . Hence, by definition ofO+

3 ,
s3 2O+

3 .

(only if part) To prove composability off1 and f2 is also necessary for ensuring that the pushout
computed inNet is lifted to a pushout inONet, suppose, for instance, that there existss2 2
f2(in( f1)) ands2 62O+

2 . Hence there iss0 2 in( f1) such thats2 = f2(s0).
Suppose, by contradiction, that the described construction gives a pushoutZ1

α1! Z3
α2 Z2

in ONet. Hence the placess1 = f1(s0) ands2 = f2(s0) have a common images3 = α1(s1) =
α2(s2). Sinces0 2 in( f1), there existst1 2 � f1(s0)� f1( �s0). Thuss3 = α1(s1) 2 α1(t1)�.
Moreover, from the fact thats2 62O+

2 , by definition of open net morphism, we haves2 62 in(α2).
Hence there existst2 2 �s2 such thatα2(t2) = α1(t1). Therefore there ist0 2 T0 such that
f1(t0) = t1 and f2(t0) = t2. But this contradicts the fact thatt1 2 � f1(s0)� f1( �s0). 2

It is worth stressing that the pushout inONet might exists also whenf1 and f2 are not
composable. This is the case for the diagram in Fig. 10.(a), which is a pushout inONet, al-
though the underlying diagram inNet is not a pushout. Indeed,f 1 and f2 arenot composable
since, for instance,f2(out( f1)) = f2(fs0g) = fs2g 6�O�

2 . In this case the construction described
in Proposition 18 does not work: it leads to the diagram in Fig. 10.(b), where the mappings
αi : Zi ! Z3 are not open net morphisms, since, for instances1 2 out(α1), buts1 62O�

1 .
One could be tempted to assume a different notion of composable span, i.e., to definef 1

and f2 composable whenever their pushout exists inONet. However, according to our intuition,
morphismsf1 and f2 define a kind of “composition plan”, which specifies that the images ofZ0

in Z1 andZ2 must be fused. The effect of the composition operation should be local, in the sense
that nothing more than the images ofZ0 should be affected by the fusion. This fact is formalized
by requiring that the pushout inONet is obtained by lifting the pushout inNet. Observe that,
instead, in the pushout depicted in Fig. 10.(a), also transitionst1 andt2, which are not in the
common subnetZ0, get fused.

5 Amalgamating deterministic processes

Let f1 : Z0! Z1 and f2 : Z0! Z2 be a composable span of open net embeddings and consider
the corresponding composition, i.e., the pushout inONet, as depicted in Fig. 9. We would like
to establish a clear relationship among the behaviours of the involved nets. Roughly speak-
ing, we would like that the behaviour ofZ3 could be constructed “compositionally” out of the
behaviours ofZ1 andZ2.

In this section we show how this can be done for deterministic processes. Given two de-
terministic processesπ1 of Z1 andπ2 of Z2 which “agree” onZ0, we construct a deterministic
processπ3 of Z3 by “amalgamating”π1 andπ2. Vice versa, each deterministic processπ3 of Z3

can be projected over two deterministic processesπ1 andπ2 of Z1 andZ2, respectively, which
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Figure 10: (a) A pushout inONet of two non-composable arrows. (b) The pushout of the same
arrows inNet.

can be amalgamated to produceπ3 again. Hence, all and only the deterministic processes of
Z3 can be obtained by amalgamating the deterministic processes of the componentsZ1 andZ2.
This is formalized by showing that, working up to isomorphism, the amalgamation and decom-
position operations are inverse to each other. This leads to a bijective correspondence between
the processes ofZ3 and pair of processes of the componentsZ1 andZ2 which agree on the
common subnetZ0.

5.1 Pushout of deterministic occurrence open nets

As a first step towards the amalgamation of processes we identify a suitable condition which
ensures that the pushout of deterministic occurrence open nets exists and produces a net in
the same class. This condition will be used later to formalize the intuitive idea of processes of
different nets which “agree” on a common part.

First, given a spanK1
f1 K0

f2! K2 we introduce the notion of causality relation induced
by K1 andK2 overK0. When the two nets are composed the corresponding causality relations
get “fused”. Hence, to avoid the creation of cyclic causal dependencies in the resulting net, the
induced causality will be required to be a strict partial order.

DEFINITION 19 (INDUCED CAUSALITY AND CONSISTENT SPAN) Let K1
f1 K0

f2! K2 be a
span inONet, where Ki (i 2 f0;1;2g) are occurrence open nets. The relation of causality<1;2
induced over K0 by K1 and K2, through f1 and f2 is the least transitive relation such that for
any x0;y0 in K0, if f1(x0)<1 f1(y0) or f2(x0)<2 f2(y0) then x0 <1;2 y0.

We say that the span isconsistent, written f1 " f2, if f1 and f2 are composable and the
induced causality<1;2 is a finitary strict partial order.

We next show that the composition operation inONet, when applied to a consistent span of
deterministic occurrence nets, produces a deterministic occurrence net. We first need a prelim-
inary result.
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LEMMA 20 Let K1
f1 K0

f2! K2 be a composable span inONet, where Ki (i 2 f0;1;2g) are

deterministic occurrence open nets. Let K1
α1! K3

α2 K2 be the pushout.

K0
f2f1

K1

α1

K2

α2

K3

For any x0;y0 in K0, if we let x3 = α1( f1(x0)) = α2( f2(x0)) and y3 = α1( f1(y0)) = α2( f2(y0)),
then

x0 <1;2 y0 iff x3 <3 y3.

Proof . Below we will freely use the fact that open net morphisms, and thus, in particular
α1 andα2, preserve the causality relation, in the sense that ifxi <i yi in Ki (i 2 f1;2g) then
αi(xi)<3 αi(yi).

()) Suppose thatx0 <1;2 y0. There are two possible cases:

- The causal dependence is directly induced by a causal dependence inK1 or K2, namely
fi(x0) <i fi(y0) for some i 2 f1;2g. Sinceαi preserve causality,αi( fi(x0)) <3 αi( fi(y0)),
namelyx3 <3 y3.

- Otherwise, the causal dependence is generated by the transitive closure, namely there isz0

such thatx0 <1;2 z0 <1;2 y0. Hence, an inductive reasoning allows us to conclude thatx3 <3

αi( fi(z0))<3 y3 and thusx3 <3 y3.

(() Let�i denote the immediate causality inKi , i.e.,x�i y if x<i y and there is noz such
thatx<i z<i y. It is easy to see that for anyx3;y3 in K3,

x3�3 y3 iff there arei 2 f1;2g, xi ;yi in Ki such thatx3 = αi(xi), y3 = αi(yi), xi �i yi .

Assume thatx3 <3 y3. Then there is a�3 chainx3 = x1
3 �3 x2

3 �3 : : : �3 xn
3 = y3. Let C =fx1

3; : : : ;xn
3g. By the remark above, ifC is included inα i(Si [ Ti) for somei 2 f1;2g, then

fi(x0)<i fi(y0), and thusx0 <1;2 y0. More generally, sinceK3 is obtained as pushout ofK1 and

K2, the chainC can be divided intoh+1 segmentsx3; : : : ;xk1
3 ; : : : ;xk2

3 ; : : : ;xkh
3 ; : : :y3, such that

each segment is included inαi(Si [Ti) for somei 2 f1;2g and any “border” elementx
kj
3 is in

α1(S1[T1)\α2(S2[T2). By general properties of pushouts, for anyj we can findx j
0 2 S0[T0,

such thatαi( fi(x j
0)) = x

kj
3 for i 2 f1;2g.

Therefore, by the remark about immediate precedence inK3, surely, for anyj there is some
i 2 f1;2g, such that

fi(x j
0)<i fi(x j+1

0 ) (2)

and, similarly,fi(x0)<ix fi(x1
0) and fi(xh

0)<iy fi(y0) for suitableix; iy 2 f1;2g. But recalling the
definition of induced causality, we deduce thatx0 <1;2 x1

0 <1;2 x2
0 <1;2 : : :xk

0 <1;2 y0, and thus
x0 <1;2 y0. 2
PROPOSITION21 Let K1

f1 K0
f2! K2 be a composable span inONet, where Ki (i 2 f0;1;2g)

are deterministic occurrence open nets, and let K1
α1! K3

α2 K2 be the pushout inONet.

K0 f2f1

K1

α1

K2

α2K3

Then f1 " f2 if and only if the pushout object K3 is a deterministic occurrence open net.
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Proof . ()) We know thatK3 is a well defined open net. To prove thatK3 is a deterministic
open occurrence net we start showing that the underlying netNK3 is a deterministic occurrence
net.

(1.a)causality<3 is a strict partial order.
Assume, by contradiction, that<3 is not irreflexive. Hence we can find a cycle of immediate
causality inK3, i.e.,x1

3 �3 x2
3 �3 : : : �3 xn

3 �3 x1
3, an letC = fx1

3; : : : ;xn
3g. The cycleC cannot

be included inαi(Si [Ti) for somei 2 f1;2g, otherwise�i would be cyclic inKi . Hence there
exists an itemx3 2C\α1(S1[T1)\α2(S2[T2). Considerx0 in K0 such thatαi( fi(x0)) = x3.
Sincex3 <3 x3, by Lemma 20, we havex0 <1;2 x0 contradicting the hypothesis that the span is
consistent.

(1.b)causality<3 is finitary.
The proof can be done as in the point before, by exploiting the finitariness of causality inK 1

andK2, and Lemma 20. Assuming the existence of a infinite descending chain of< 3 in K3 we
deduce that<1;2 has an infinite descending chain inK0, contradicting the assumption that the
span is consistent and thus<1;2 is finitary.

(1.c)K3 does not have forward conflicts
Suppose, by contradiction, that there exists a places3 2 S3 such thatjs3

�j > 1. Let t3; t 03 2 s3
�

such thatt3 6= t 03. Then surelyt3 2 α1(T1)�α2(T2) and t 03 2 α2(T2)�α1(T1), otherwise we
would have a forward conflict in one ofK1 or K2. Therefores3 2 α1(S1)\α2(S2). Let s1 2 S1

such thatα1(s1) = s3. Thens1 2 out(α1). But, sinces1
� 6= /0 this contradicts the assumption

thatK1 is a deterministic open net.

(1.d)K3 does not have backward conflicts
Assume, by contradiction, that there is a backward conflict inK3, i.e. there aret3; t 03 2 T3 with
a common place in their post-sets3 2 t3� \ t 03�. Considers1 2 S1 such thatα1(s1) = s3. Since
K2 andK3 do not have backward conflicts, necessarilyt3 2 α1(T1)�α2(T2). Thens1 2 in(α1),
and thus, sinceα1 is an open net morphism,s1 2O+

1 . But this contradicts the fact thatK1 is an
open occurrence net, sinces1 2 t1�.

To conclude it remains to show the validity of the conditions over open places:

(2.a)8s2O�
3 : s� = /0

Same proof as point (1.c)

(2.b)8s2O+
3 : �s= /0.

Same proof as point (1.d)

(() Let K1
f1 K0

f2!K2 be a composable span inONet, whereKi (i 2 f0;1;2g) are deterministic
occurrence open nets and assume that the pushoutK3 is an open deterministic net. We must
show that induced causality<1;2 is a finitary strict partial order. Letf3 = α1 Æ f1 = α2 Æ f2.
To conclude just recall that<3 is a finitary strict partial order and then use the fact that, by
Lemma 20,x0 <1;2 y0 iff f3(x0)<3 f3(y0). 2
5.2 Amalgamating deterministic processes

As mentioned before two deterministic processesπ1 of Z1 andπ2 of Z2 can be amalgamated
only when they agree on the common subnetZ0, an idea which is formalized by resorting to the
notion of consistent span of deterministic occurrence open nets. In the rest of this section we
will refer to a fixed pushout diagram inONet, as represented in Fig. 9, wheref1 and f2 are a
composable span ofopen net embeddings.
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Figure 11: Figures for Lemma 23.

DEFINITION 22 (AGREEMENT OF DETERMINISTIC PROCESSES) We say that two determinis-
tic processesπ1 : K1! Z1 andπ2 : K2! Z2 agreeon Z0 if there are projectionshπ0;ψii along

fi of πi for i 2 f1;2g such thatψ1
K "ψ2

K (i.e., the span K1
ψ1

K K0
ψ2

K! K2 is consistent). In this casehπ0;ψ1i andhπ0;ψ2i are calledagreement projectionsfor π1 andπ2.

Before introducing the notion of amalgamation we need to recall a simple technical result.

LEMMA 23 1) Consider the diagram inSet depicted in Fig 11.(a). If the diagram is a pushout
and f is injective, then the diagram is also a pullback.

2) Consider a commuting diagram in a categoryC, as depicted in Fig 11.(b). If the internal
square, marked byPB, and the external one are pullbacks, then other internal square is a
pullback as well.

DEFINITION 24 (AMALGAMATION OF PROCESSES) Let π i : Ki ! Zi (i 2 f0;1;2;3g) be de-
terministic processes and lethπ0;ψ1i and hπ0;ψ2i be agreement projections ofπ1 and π2

along f1 and f2 (see Fig. 12.(a)). We say thatπ3 is an amalgamationof π1 and π2, written
π3 = π1+ψ1;ψ2 π2, if there exist projectionshπ1;φ1i andhπ2;φ2i of π3 over Z1 and Z2, respec-
tively, such that the upper square is a pushout inONet.

We next give a more constructive characterization of process amalgamation, which also
proves that the result is unique up to isomorphism.

PROPOSITION25 (AMALGAMATION CONSTRUCTION) Letπ1 : K1! Z1 andπ2 : K2! Z2 be
deterministic processes that agree on Z0, and lethπ0;ψ1i andhπ0;ψ2i be corresponding agree-
ment projections. Then theamalgamationπ1+ψ1;ψ2 π2 is a processπ3 : K3! Z3, where the net

K3 is obtained as the pushout inONet of ψ1
K : K0!K1 andψ2

K : K0!K2 and the process map-
ping π3 : K3! Z3 is uniquely determined by the universal property of the underlying pushout
diagram inNet (see Fig. 12.(a)). Henceπ1+ψ1;ψ2 π2 is unique up to isomorphism.

Proof . We first show thatπ3, defined as above, is a well-defined process ofZ3. Since by
hypothesisψ1

K " ψ2
K , we know by Proposition 21, thatK3 is a deterministic occurrence open

net.
Furthermore,π3 is an arrow inNet. To conclude thatπ3 is a deterministic open net process

we prove thatπ3(O+
K3
)�O+

Z3
andπ3(O�

K3
)�O�

Z3
.

To this aim, we first observe that in the diagram of Fig. 12, the square with verticesK1, K3,
Z3, Z1 is a pullback. Let us show, for instance, that the place component of the morphisms form a
pullback. Actually, it suffices to show that givens12SZ1 ands032SK3 such thatα1(s1) = π3(s03),
there existss01 2SK1 such thatφ1

K(s01) = s03. In fact, by commutativity of the diagram this implies
thatα1(π1(s01)) = α1(s1), and thus, by injectivity ofα1, π1(s01) = s1. Furthermore, uniqueness
of s00 follows from the injectivity ofφ1

K . Hence, let us considers1 2 SZ1 ands03 2 SK3 such that
α1(s1) = π3(s03) = s3. If s03 = φ1

K(s01) for somes01 2 SK1, then we conclude. Otherwise, since
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Figure 12: Amalgamation of open net processes.

the upper square is a pushout, necessarilys03 = φ2
K(s02) for somes02 2 SK2. Thenα2(π2(s02)) =

s3 = α1(s1). Since the squareZ0, Z1, Z2, Z3 is a pushout, this implies that there existss0 in Z0

such thatf1(s0) = s1 and f2(s0) = π2(s02). But, since the squareZ2, K2, K0, Z0 is a pullback,
there must bes00 2 SK0 such thatψ2

K(s00) = s02. Hence, if we takes01 = ψ1
K(s00), we haveφ1

K(x01) =
φ1

K(ψ1
K(s00)) = φ2

K(ψ2
K(s00)) = φ2

K(s02) = s03, as desired.

Now, takes032O+
K3

and considerπ3(s03). We distinguish the following (non exclusive) cases:

- π3(s03) = α1(s1) for somes1 2 SZ1.
Since, as observed above, the squareK1, K3, Z3, Z1 is a pullback, there iss01 2 SK1 such that
φ1

K(s01) = s3 andπ1(s01) = s1. From the first equality, sinceφ1
K is an open net morphism, we

deduce thats01 2O+
K1

, and thus, by the second equality, sinceπ1 is a process,s1 2O+
Z1

.

- π3(s03) = α2(s2) for somes2 2 SZ2.
As above, we can concludes2 2O+

Z2
.

Summing up the two cases, we have thatα�1
1 (π3(s3)) � O+

Z1
and α�1

2 (π3(s3)) � O+
Z2

.
Therefore, by construction of the pushout inONet (see Proposition 18)π 3(s3) 2 O+

Z3
. Thus

π3(O+
K3
) � O+

Z3
. The other inclusion, i.e.,π3(O�

K3
) � O�

Z3
, can be shown in a completely sym-

metric way.

The last thing to observe is thathπi ;φii is a projection ofπ3 alongαi , for i 2 f1;2g. But
this fact immediately follows from the above observations, since the squaresK i , K3, Z3, Zi are
pullbacks inNet. Furthermore,O+

i = φi
K
�1(O+

3 )[ in(φi
K). In fact,φi

K is an open net morphism

and thusφi
K
�1(O+

3 )[ in(φi
K) � O+

i . To prove the other inclusion, for instance, wheni = 1,

let s1 2 O+
K1

. If φ1
K(s1) 2 O+

K3
, we have thats1 2 φ1

K
�1(O+

K3
). Otherwise, by recalling how the

open places of the pushout object are defined (see Proposition 18), we deduce that there exists
s2 2 SK2 such thatφ2

K(s2) = φ1
K(s1) ands2 62 O+

K2
. Since the upper square is a pushout, there

must bes0 2 SK0 such thatψ1
K(s0) = s1 andψ2

K(s0) = s2. Sinceψ1
K is an open net morphism,

this implies thats0 2O+
K0

. Sinces2 62O+
K2

andπ0 is a projection ofπ2, we have thats0 2 in(ψ2
K).

Therefore, since the upper square is a pushout inNet, s1 2 in(φ1
K), as desired. 2

The amalgamation construction can be given a more elegant (although less constructive)
characterization. In fact, processπ3 (and the corresponding process morphismsφ1 andφ2) can
be obtained by taking the pushout inProc of the arrowsψ 1 : π0! π1 andψ2 : π0! π2.

The next result shows how each deterministic process of a composed net can be constructed
as the amalgamation of deterministic processes of the components.
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PROPOSITION26 (DECOMPOSITION OF PROCESSES) Letπ3 : K3!Z3 be a deterministic pro-
cess of Z3 and, for i2 f1;2g, let hπi ;φii be projections ofπ3 alongαi . Then processπ3 can be
recovered as a suitable amalgamation ofπ1 andπ2.

Proof .Let hπi ;φii be projections ofπ3 alongαi for i 2 f1;2g. Take any projectionhπ0;ψ1i of
π1 along f1. The non-dotted part of the diagram below summarizes the situation:

K0

π0
ψ1

K ψ2
K

K1

π1

φ1
K

Z0f1 f2
K2

π2

φ2
K

Z1

α1

K3

π3

Z2

α2

Z3

Then projectionhπ0;ψ2i of π2 along f2 is obtained by definingψ2
K as the arrow determined

by the universal property of the pullback with verticesK3, Z3, Z2 andK2. To show that the
projection is well-defined, first observe two facts

1) the square with verticesK0, Z0, Z2, K2 is indeed a pullback inNet.
In fact, by construction, the diagram commutes. Furthermore, in categoryNet the square with
verticesK0, K3, Z3, Z0 is a pullback (since it can be viewed as the composition of two pullbacks
K0, K1, Z1, Z0 andK1, K3, Z1, Z3). However the same square is composed out ofK0, K2, Z2, Z0

andK2, K3, Z3, Z2. Hence, by Lemma 23, also the squareK0, Z0, Z2, K2 is a pullback inNet.

2) the upper square with verticesK0, K1, K3, K2 is a pushout inNet.
In fact, the vertical faces of the cube are pullbacks and the lower face is a pushout, hence, by
the 3-cube lemma [CEL+96], we can conclude that the upper square is a pushout.

Let us prove thathπ0;ψ2i is a well-defined projection ofπ2 along f2, by showing that

O+
K0

= ψ2
K
�1(O+

K2
)[ in(ψ2

K) andO�
K0

= ψ2
K
�1(O�

K2
)[out(ψ2

K).
We restrict our attention to the first equality (the second one is proved by a symmetric reason-
ing), and we show the two inclusions separately.

(�) Let s0 2 O+
K0

. Sincehπ0;ψ1i is a projection ofπ1, thens0 2 ψ1
K
�1(O+

K1
)[ in(ψ1

K). We
distinguish two cases

- Let s0 2 ψ1
K
�1(O+

K1
), i.e.,ψ1

K(s0) 2O+
K1

. Then, sincehπ1;φ1i is a projection, again,ψ1
K(s0) 2

φ1
K
�1(O+

K3
)[ in(φ1

K). If φ1
K(ψ1

K(s0)) 2 O+
K3

then, observing thatφ2
K(ψ2

K(s0)) = φ1
K(ψ1

K(s0)) and

recalling thatφ2
K is an open net morphism, we conclude thatψ2

K(s0) 2 O+
K2

, and thuss0 2
ψ2

K
�1(O+

K2
). If instead,ψ1

K(s0) 2 in(φ1
K) then �φ1

K(ψ1
K(s0))�φ1

K( �ψ1
K(s0)) 6= /0. SinceK1 is an

occurrence open net andψ1
K(s0) is input open we have that�ψ1

K(s0) = /0. Thus, since the upper
square is a pushout,�ψ2

K(s0)�ψ2
K( �s0) 6= /0. Hences0 2 in(ψ2

K).
- Let s0 2 in(ψ1

K). Thus there existst1 2 �ψ1
K(s0)�ψ1

K( �s0). Since the upper square is a
pushout,φ1

K(t1) 2 �φ2
K(ψ2

K(s0))� φ2
K( �ψ2

K(s0)) henceψ2
K(s0) 2 in(φ2

K) � O+
K2

, sinceφ2
K is an

open net morphism. Hences0 2 ψ2
K
�1(O+

K2
). Observe that, in particular, we have shown that

ψ2
K(in(ψ1

K))�O+
K2

.

(�) Let s0 2 ψ2
K
�1(O+

K2
)[ in(ψ2

K). We distinguish two cases
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- Let s0 2 ψ2
K
�1(O+

K2
), i.e., ψ2

K(s0) 2 O+
K2

. Sincehπ2;φ2i is a projection ofπ3, we have that

ψ2
K(s0) 2 φ2

K
�1(O+

K3
)[ in(φ2

K). If φ2
K(ψ2

K(s0)) 2 O+
K3

then, sinceφ1
K is an open net morphism

ψ1
K(s0)2O+

K1
and thuss02O+

K0
. If insteadψ2

K(s0)2 in(φ2
K) then�φ2

K(ψ2
K(s0))�φ2

K(�ψ2
K(s0)) 6=

/0. Since the upper square is a pushout, this implies that�ψ1
K(s0)�ψ1

K( �s0) 6= /0 and thus
s0 2 in(ψ1

K).
- Let s0 2 in(ψ2

K). Then �ψ2
K(s0)�ψ2

K( �s0) 6= /0. Since the upper square is a pushout, we have
that �φ1

K(ψ1
K(s0))� φ1

K( �ψ1
K(s0)) 6= /0. Sinceφ1

K is an open net morphism,ψ1
K(s0) 2 O+

K1
and

thuss0 2O+
K0

.

To conclude the proof, we need only to show thatψ 1
K " ψ2

K . We observe that the upper
square, which is known to be a pushout inNet, is also a pushout inONet. To this aim we prove
that, forx2 f+;�g,

Ox
K3

= fs3 2 SK3 j φ1
K
�1(s3)�Ox

3 ^ φ2
K
�1(s3)�Ox

K2
g

Let us consider the condition on input places (x=+). Let s3 2O+
K3

. Then, ifφ�1
i (s3)�O+

Ki
for

i 2 f1;2g, sinceφi is an open net morphism. For the converse inclusion, assume that

φ1
K
�1(s3)�O+

K1
and φ2

K
�1(s3)�O+

K2
(3)

Since the upper square is a pushout inNet, there issi 2Si (for somei 2 f1;2g) such thatφi(si) =
s3. Assume, without loss of generality, that there existss1 2 S1 such thatφ1

K(s1) = s3. Hence,

by (3),s1 2O+
K1

. Sinceπ1 is a projection ofπ3, O+
K1

= φ1
K
�1(O+

K3
)[ in(φ1

K). If s1 2 φ1
K
�1(O+

K3
)

then we conclude. Otherwise, ifs1 2 in(φ1
K) then there existst3 2 �φ1

K(s1)�φ1
K( �s1). Since the

upper square is a pushout inNet, there ares2 in K2 andt2 2 �s2 such thatφ2
K(s2) = φ1

K(s1) = s3

and φ2
K(t2) = t3. Sinces2 2 φ2

K
�1(s3), by (3) we have thats2 2 O+

K2
, which contradicts the

assumption thatK2 is an occurrence net since�s2 6= /0.

The condition over output places (x=�) is dealt with in a symmetric way, by exploiting the
fact that the occurrence netK3 is deterministic. This allows us to conclude thatψ1

K " ψ2
K since

this is a necessary condition to ensure that the pushout, computed inNet and lifted toONet
gives a deterministic occurrence open net (see Proposition 21). 2

The amalgamation and decomposition results for open net processes are summarized in
a theorem which establishes a bijective correspondence between the processes ofZ1 andZ2

which agree onZ0 and the processes ofZ3. To formulate this result we need some preliminary
observations.

Notice that an isomorphismf : Z0! Z1 in ONet is an isomorphismf : F(Z1)! F(Z2) in
Net such thatf (O+

0 ) =O+
1 and f (O�

0 ) =O�
1 . LetZ be an open net. Two deterministic processes

of Z, π : K! Z andπ0 : K0 ! Z, are calledisomorphicwritten π ' π0, if they are isomorphic
in Proc, i.e., if there exists an isomorphismρ : K ! K 0 in ONet such that (inNet) it holds
π Æ ρ = π0. In this case we will say thatρ : π! π0 is a process isomorphism (to mean thathρ; idZi is a process isomorphism). Letπ : K ! Z be a process. We denote by[π℄ the set of
processes ofZ isomorphic toπ, i.e.,[π℄ = fπ0 : K0! Z j π0 ' πg. Then the set of (isomorphism
classes of) processes ofZ is denoted byDProc(Z), i.e.,

DProc(Z) = f[π℄ j π : K! Z is a deterministic processg.
Given a spanZ1

f1 Z0
f2! Z2 in ONet, the isomorphism classes of deterministic processes ofZ1

andZ2 which agree onZ0, denoted byDProc(Z1
f1 Z0

f2! Z2), is the setf[π1
ψ1 π0

ψ2! π2℄ j ψ1;ψ2 agreement projections forπ1;π2 along f1; f2g,
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where isomorphism of process spans is defined by(π1
ψ1 π0

ψ2! π2)' (π01 φ1 π00 φ2! π02) if there
are process isomorphismsρi : φi ! φ0i such that the following diagram commutes

K0
1

π01ρ1

K0
0

ρ0

ψ1
Kψ2

K

π00 K0
2

ρ2

π02K1

π1

K0
φ1

Kφ2
K

π0

K2

π2

Z1 Z0
f2f1

Z2

Observe that this implies thatπ00 2 [π0℄ andπ01 and thatπ02 agree onπ00.

THEOREM 27 (AMALGAMATION THEOREM ) Let Z0;Z1;Z2;Z3 be as in Fig. 9 and assume that
the square is a pushout of two composable open net embeddings f1 and f2. Then there are
composition and decomposition functions:Comp : DProc(Z1

f1 Z0
f2! Z2)! DProc(Z3)

and De : DProc(Z3)! DProc(Z1
f1 Z0

f2! Z2)
establishing a bijective correspondence betweenDProc(Z3) andDProc(Z1

f1 Z0
f2! Z2).

Proof Sketch.Let us defineComp : DProc(Z1
f1 Z0

f2! Z2)! DProc(Z3) byComp([π1
ψ1 π0

ψ2! π2℄) = [π3℄,
whereπ3 = π1 +ψ1;ψ2 π2 is the amalgamation ofπ1 andπ2 (see Definition 24). FurthermoreDe : DProc(Z3)! DProc(Z1

f1 Z0
f2! Z2) is defined byDe([π3℄) = [π1

ψ1 π0
ψ2! π2℄,

whereπ1
ψ1 π0

ψ2! π2 is the decomposition ofπ3 as defined in Proposition 26. Then it is possible
to prove thatComp andDe are well-defined and inverse to each other. 2
Example. The amalgamation theorem is exemplified in Fig. 3. Two processes for the compo-
nent netsTraveler andAgency which agree on the shared subnetCommon, i.e., such that their
projections overCommon coincide, can be amalgamated to produce a process for the composed
netGlobal. Vice versa, each process of the netGlobal can be reconstructed as amalgamation of
compatible processes of the component nets.

6 Conclusions and related work

In this paper we have introducedopen nets, an extension of ordinary Petri nets which allows
to specify open concurrent systems, interacting with an external environment. Open nets are
endowed with a composition operation, suitable to model both interaction through open places
and synchronization of transitions. The generalization to open nets of the Goltz-Reisig process
semantics has been shown to be compositional with respect to the composition operation over
open nets: if two netsZ1 andZ2 are composed, producing a netZ3, then the processes ofZ3 can
be obtained as amalgamations of processes ofZ1 andZ2, and vice versa, any process ofZ3 can
be decomposed into processes of the component nets. The amalgamation and decomposition
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operations are shown to be inverse to each other, leading to a bijective correspondence between
the processes ofZ3 and pair of processes ofZ1 andZ2 which agree on the common subnetZ0.

As mentioned in the introduction, the last result appears to be related to the amalgama-
tion theorem for data-types in the framework of algebraic specifications [EM85]. There an
amalgamation construction allows one to “combine” any two algebrasA1 andA2 of algebraic
specificationsSPEC1 andSPEC2 having a common subspecificationSPEC0, if and only if the
restrictions ofA1 andA2 to SPEC0 coincide. The amalgamation construction produces a unique
algebraA3 of specificationSPEC3, union ofSPEC1 andSPEC2. The fact that the amalgamation
of algebras is a pushout construction in the Grothendick’s category of generalized algebras, sug-
gests the possibility of having a similar characterization for process amalgamation using fibred
categories (see also Remark 15).

Open nets have been partly inspired by the notion ofopen graph transformation sys-
tem [Hec98], an extension of graph transformation for specifying reactive systems. In fact,
P/T Petri nets can be seen as a special case of graph transformation systems [Cor96] and this
correspondence extends to open nets and open graph transformation systems. However, a com-
positionality result corresponding to Theorem 27 is still lacking in this more general setting.

In the field of Petri nets, several other approaches to net composition have been proposed
in the literature. Most of them can be classified as algebraic approaches. A first family, which
dates back to the papers [NPW81, Win87a], considers a category of Petri nets where morphisms
arise by viewing a Petri net as the signature of a multisorted algebra, the sorts being the places.
Then an unfolding semantics is defined, which is characterized as a categorical right adjoint.
This fact ensures its compositionality with respect to operations on nets defined in terms of
categorical limits (e.g., net synchronization [Win87b]). The algebraic view is pushed forward
in another seminal paper [MM90], where a Petri net is still seen as a signature, and its compu-
tational model (the category of deterministic processes in the sense of Best-Devillers [BD87])
is characterized as the free algebra (up to suitable axioms) over such a signature. Being ob-
tained as a free construction, which in categorical terms provides a left adjoint, in this case the
semantics is compositional with respect to operations defined in terms of colimits. However, in
both cases, differently from what happens in our approach, there is no distinction between open
and internal places. Basically, every place of a netN can be implicitly seen as open because it
can be used for connectingN to other nets. On the other hand, the semantics (e.g., the notions
of process in [GR83] or [MM90]) does not take into account explicitly the interaction with the
environment.

A second, more recent class of approaches to Petri net composition aims at defining a “cal-
culus of nets”, where a set of process algebra-like operators allows to build complex nets
starting from a suitable set of basic net components. For instance, in the Petri Box calcu-
lus [BDH92, KEB94, KB99] a special class of nets, calledplain boxes(safe and clean nets),
provides the basic components. Plain boxes are then combined by means of operations which
can all be seen as an instance of refinement over suitable nets. More precisely, the authors iden-
tify a special family of nets, calledoperator boxes. Once a set of operator boxes is fixed, the
composition is realized by refining such operator boxes with plain boxes, an operation which
produces a net still identifiable with a plain box. The calculus is given a compositional seman-
tics (both interleaving and concurrent). Although based on some common ideas, like the use of
interface places, this approach is quite different from ours, since it mainly relies on refinement
and it focuses on a special class of nets and on the possibility of defining a kind of process
algebra over such nets, where plain boxes are constants and operator boxes are the operators of
the algebra.

Another relevant approach in the second family, closer to ours, is presented in the pa-
pers [NPS95, PW98], which introduce an algebra of (labeled) Petri nets with interfaces. An
interface consists of a set of public places and transitions, where a net can be extended and
combined with other nets by means of composition operators. E.g., it is possible to add new
transitions and places, to connect existing transitions and places by new arcs, to hide items in
the net, etc. These operators can be used as basic constructors to build terms corresponding to
nets with an interface. The representation of a Petri net via a term of the algebra of combinators
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resembles the encoding of Petri nets into Milner action calculi [Mil96]. Thepomset semantics
of nets with interfaces, defined by using a notion of universal context for a net, is shown to be
compositional with respect to the net combinators [PW98]. Despite some technical differences
and the different focus, which in these papers is more on the syntactical aspects of the Petri
net algebra, Petri nets with interface appear to have several analogies with open nets, and their
relationship surely deserves a deeper investigation.

Finally we recall two approaches toPetri net components, i.e., Petri nets with distinguished
interface places. Kindler [Kin97] introduces Petri net components with input and output places,
which can be combined by means of an operation which connects the input places of a com-
ponent to the output places of the other, and vice versa. A partial order semantics is introduced
for components and it is proved to be compositional. Components can be viewed as particular
open nets and, similarly, the composition operation for components can be seen as an instance
of the composition operation for open nets. A very interesting idea in [Kin97], which we intend
to explore also for open nets, is the introduction of a temporal logic, interpreted over processes,
which can be used for reasoning in a modular way over distributed systems.

Basten [Bas98] considers components of Petri nets with interface places, called pins, of
unspecified orientation, where nets can be fused together. A compositional operational seman-
tics of Petri net components is described within a process algebra specifically designed for this
purpose. This allows the verification of net components against requirements by means of equa-
tional reasoning. Moreover, the algebraic presentation of the operational semantics is used to
formalize a notion of behavior inheritance between components.

The notions of projection and of amalgamation of processes can be extended to general
(possibly nondeterministic) processes. We are currently working on the generalization of the
amalgamation theorem to nondeterministic processes, which could represent a first step to-
wards an unfolding semantics for open nets, in the style of Winskel [NPW81, Win87a], still
compositional with respect to our composition operation.

It would be also interesting to extend the constructions and results in this paper to open
high level nets, which have been already studied on a conceptual level in [PJHE98]. Part of the
technical background is already available — for instance it has been shown in [PER95] how
to construct pushouts of algebraic high level nets — but a suitable formalization of high level
processes is still missing.
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