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Abstract— We propose a compositional stability analysis
framework for verifying properties of systems that are in-
terconnections of multiple subsystems. The proposed method
assembles stability certificates for the interconnected system
based on the certificates for the input-output properties of the
subsystems. The decomposition in the analysis is achieved by
utilizing dual decomposition ideas from optimization. Decou-
pled subproblems establish subsystem level input-output prop-
erties whereas the “master” problem imposes and updates the
conditions on the subproblems toward ensuring interconnected
system level stability properties. Both global stability analysis
and region-of-attraction analysis are discussed.

I. INTRODUCTION

We propose a compositional analysis framework for ver-
ifying stability properties of systems that are formed as
interconnection of multiple subsystems. The method con-
structs certificates of input-output properties of subsystems
in isolation from other subsystems and assembles stability
certificates for the interconnected system based on these
subsystem certificates. The assembly of system level certifi-
cates from subsystem certificates, of course, has to account
for the fact that the output of a subsystem is the input of
another subsystem (i.e., for the interconnection structure).
In particular, consider a signal w which is the output of
subsystem A and at the same time the input of subsystem B.
Then, in the analysis of subsystem A the “output” signal w
has to satisfy all properties that are assumed for the “input”
signal w in the analysis of subsystem B. Such matching con-
ditions at the interfaces between subsystems are introduced
as coupling constraints. Then, decomposition of analysis
is achieved by utilizing the dual decomposition techniques
where violation of these coupling constraints is allowed but
iteratively reduced by adapting the subsystem level analysis
questions through a subgradient type optimization scheme.

In addition to dual decomposition from optimization, the
proposed scheme utilizes ideas from multiple domains. First
of all the subsystem level analysis builds on the dissipation
inequalities and storage functions [1] to characterize input-
output properties. However, local versions of these concepts,
where dissipation inequalities hold over bounded subsets
of the state space and verify input-output properties for
certain levels of inputs norms but not necessarily for signals
with larger norm, are emphasized as discussed in [2], [3].
Moreover, especially the compositional analysis framework
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for region-of-attraction estimation (introduced in section
III) is inspired by the assume-guarantee type compositional
techniques that have been proposed as a partial remedy for
the “state explosion” problem in software verification [4],
[5]. The updates of the dual variables by the subgradient
algorithm can be interpreted as automated adjustments to
the assumptions in assume-guarantee schemes.

The motivation for the current work stems from the com-
putational complexity of optimization-based analysis of non-
linear dynamical systems and in particular our earlier work
on sum-of-squares (SOS) optimization [6] based quantitative
local analysis of systems governed by polynomial ordinary
differential equations [7], [8], [9], [10]. The growth of the
“problem size” in SOS optimization based analysis with the
state dimension and the degree of the polynomial certificates
(e.g. Lyapunov functions) is so fast that even the com-
plexity of problems for systems of modest state dimension
exceeds the capabilities of currently available computational
resources [11] (see Table I). Moreover, local (quantitative)
analysis leads to bilinear, non-convex optimization problems
adding to the computational complexity [9]. Therefore, the
use of optimization-based techniques strongly depend on the
improvements in the scalability of the algorithms.

Compositional analysis and design have a long history in
controls and we here give a very limited list of references
mostly as it ties to the current paper. The survey [12] and
the volume [13] provide an exposition to the early work.
Reference [14] used the primal decomposition to decouple
large-scale linear matrix inequalities that appear in the dis-
tributed analysis of systems composed of different sub-units,
interconnected over an arbitrary graph and [15] employed
the dual decomposition in distributed optimal control.

The next section discusses the compositional analysis for
global stability and section III presents extensions for the
region-of-attraction analysis. These sections are followed by
a simple example and concluding remarks. We emphasize
that the current paper aims at a simplified exposition of and
a proof-of-concept for the proposed methodology. Detailed
analysis and demonstrations are subject to current study.

II. GLOBAL STABILITY ANALYSIS

This section presents the compositional analysis for the
case where the subsystems satisfy input-output properties
globally. Global input-output properties are relations between
inputs and outputs of the system that hold independent of
the “level” of the input. For example, for the input w and
the output z of a system, the global L2-gain relation holds if
there exists a constant γ > 0 such that ‖z‖2 ≤ γ‖w‖2 for all

Joint 48th IEEE Conference on Decision and Control and
28th Chinese Control Conference
Shanghai, P.R. China, December 16-18, 2009

WeB04.3

978-1-4244-3872-3/09/$25.00 ©2009 IEEE 1175



2d
n 4 6 8 10
2 6 6 10 27 15 75 21 165
5 21 105 56 1134 126 6714 252 2e4
9 55 825 220 1e4 715 2e5 ? ?
14 120 4200 680 ? ? ? ? ?
16 153 6936 ? ? ? ? ? ?

TABLE I. The number Ndecision of decision variables (right
column in each block) and the size NSDP of the matrix
(left column in each block) in the semidefinite program for
checking the existence of a SOS decomposition for a degree
2d polynomial in n variables.

values of ‖w‖2, where ‖ · ‖2 denotes L2 signal norm.1 Note
that global L2-gain relations hold for stable linear systems
whereas nonlinear systems may or may not satisfy such
relations. That is, for the input w and the output z of a
nonlinear system, there may exist a constant γ > 0 such that
‖z‖2 ≤ γ‖w‖2 for all w with ‖w‖2 ≤ R for some R but
this gain relation may not hold for larger values of R.

For ease of presentation, we will focus the discussion on
the interconnection of three subsystems as shown in Figure
1. Extensions of the framework to more general system
interconnections is straightforward. In Figure 1, w1, w2,
w3, and w4 denote the internal signals. Let x1 ∈ Rn1 ,
x2 ∈ Rn2 , and x3 ∈ Rn3 be the states of the subsystems
whose evolution is governed by the following differential
equations with the output maps h1 : Rn1 → Rm1 , h2 :
Rn2 → Rm2+m3 , and h3 : Rn3 → Rm4

ẋ1 = f1(x1, w2, w3)
w1 = h1(x1)
ẋ2 = f2(x2, w1)
(w2, w3) = h2(x2)
ẋ3 = f3(x3, w3)
w4 = h3(x3)

(1)

that satisfy f1(0, 0, 0) = 0, h1(0) = 0, f2(0, 0) = 0, h2(0) =
0, f3(0, 0) = 0, and h3(0) = 0. That is (x1, x2, x3) =
(0, 0, 0), x1 = 0, x2 = 0, and x3 = 0 are equilibrium points
of the interconnected system and respective subsystems.
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Fig. 1. Interconnection of 3 systems.

The compositional stability analysis builds on the follow-
ing Lyapunov-type result which provides a sufficient condi-
tion for the stability of the interconnected system around the
equilibrium point at the origin.

1With the extra assumption that the system starts from rest where the
output of the system vanishes.

Theorem 1: If there exists a positive definite C1 func-
tion V : Rn1+n2+n3 → R such that V (0) = 0
and V̇ (x1, x2, x3) < 0 for all nonzero (x1, x2, x3) ∈
Rn1+n2+n3 , then the system in Figure 1 is internally asymp-
totically stable around (x1, x2, x3) = (0, 0, 0). C
In theorem 1 and hereafter, for a map x → V (x), V̇ (x)
denotes ∇V (x)ẋ and C1 denotes the set of scalar valued,
continuously differential functions on Rn.

The goal is to construct a Lyapunov function (i.e., a
function that satisfies the conditions in Theorem 1) to verify
the internal stability of the interconnected system but through
isolated analysis of the input-output properties of subsystems
1, 2, and 3. To this end, we resort to Willems’ dissipation
inequalities theory [1] and use the following proposition to
obtain sufficient conditions for asymptotic stability.

Proposition 1: If there exist positive definite C1 functions
V1 : Rn1 → R, V2 : Rn2 → R, and V3 : Rn3 → R such
that V1(0) = 0, V2(0) = 0, and V3(0) = 0 and positive real
numbers γ11, γ12, γ14, γ21, γ22, γ23, γ33, and γ34 such that

V̇1(x1, w2, w4) < −γ11w
T
1 w1 + γ12w

T
2 w2 + γ14w

T
4 w4

= −γ11h1(x1)Th1(x1) + γ12w
T
2 w2 + γ14w

T
4 w4

for all w2, w4, and nonzero x1

(2)
V̇2(x2, w1) < −γ22w

T
2 w2 − γ23w

T
3 w3 + γ21w

T
1 w1

= −h2(x2)T
[
γ22 0
0 γ23

]
h2(x2) + γ21w

T
1 w1

for all w1, and nonzero x2

(3)

V̇3(x3, w3) < −γ34w
T
4 w4 + γ33w

T
3 w3

= −γ34h3(x3)Th3(x3) + γ33w
T
3 w3

for all w3 and nonzero x3

(4)

and

−γ11 + γ21 ≤ 0, −γ22 + γ12 ≤ 0,
−γ23 + γ33 ≤ 0, −γ34 + γ14 ≤ 0, (5)

then (x1, x2, x3) = (0, 0, 0) is an (internally) asymptotically
stable equilibrium point of the system in Figure 1. C

Remark 1: Note that the conditions in (2)-(4) and (5) are
homogenous in the decision variables in Vi’s and γij’s. This
can be avoided by setting some of the γij’s (for example
γ11, γ21, and γ34) to 1. By such normalization, the number
constraints in (5) can be reduced. However, we don’t employ
this normalization in order to keep the conditions in (2)-
(4) and (5) notationally symmetric. Instead, we avoid this
homogeneity by properly normalizing one of the decision
variables in each Vi. C

Proof: (of Proposition 1) Let V : Rn1+n2+n3 → R be
defined through V (x1, x2, x3) := V1(x1) +V2(x2) +V3(x3)
and note that V (x1, x2, x3) > 0 for all nonzero (x1, x2, x3)
and V (0, 0, 0) = 0. Then, V̇ (x1, x2, x3) < (−γ11 +
γ21)wT1 w1 + (−γ22 + γ12)wT2 w2 + (−γ23 + γ33)wT3 w3 +
(−γ34 + γ14)wT4 w4 ≤ 0 for all x1, x2, x3, w1, w2, w3, and
w4 where the first inequality follows from (2)-(4) and the
second from (5). Consequently, V satisfies the conditions
in Theorem 1 and the closed-loop system is asymptotically
stable around the origin.
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The inequalities in (2)-(4) are dissipation inequalities
with the quadratic supply rates −γ11w

T
1 w1 + γ12w

T
2 w2 +

γ14w
T
4 w4, −γ22w

T
2 w2 − γ23w

T
3 w3 + γ21w

T
1 w1, and

−γ34w
T
4 w4 + γ33w

T
3 w3, respectively [1]. In fact, conditions

in (2)-(4) are slight generalizations of the dissipation inequal-
ities corresponding to induced L2-gain relations. V1, V2, and
V3 are called the storage functions associated with the re-
spective subsystems and the supply rates. Roughly speaking
conditions in (2)-(4) constrain the (weighted) L2-norms of
the outputs of the subsystems in terms of the (weighted)
L2-norms of the inputs and conditions in (5) ensure the
internal stability of the interconnection of these subsystems.
Proposition 1 can be considered as a generalization of the
small-gain theorem [16], [17] for the interconnection of
multiple subsystems (with specified governing equations in
(1) and “gain” relations in (2)-(4)).

One would typically use a specific finite (linear) param-
eterization for Vi’s (e.g. quadratic or polynomial functions)
and search for Vi’s and γij’s satisfying the conditions in (2)-
(4) and (5) through numerical optimization (or feasibility
search). For example, for linear dynamics and output maps
and quadratic parameterizations for the storage functions,
conditions in (2)-(4) and (5) lead to standard linear matrix in-
equality (LMI) constraints [18] and for polynomial dynamics
and storage functions this search can be performed through
sum-of-squares programming [6]. Note that conditions in (2)-
(4) are only coupled through γij’s. Typically, the number of
decision variables in γij’s is a small fraction of the total
number of decision variables in the numerical optimization
problems for the search of Vi’s and γij’s that satisfy the
conditions in Proposition 1.2

Toward decoupling the conditions in (2)-(4), consider the
following related optimization problem:

max
λ1,...,λ4≥0

min
γij ’s, Vi’s

λ1(γ21 − γ11) + λ2(γ12 − γ22)
+ λ3(γ33 − γ23) + λ4(γ14 − γ34)

subject to (2)− (4), V1(0) = 0, V2(0) = 0, V3(0) = 0,
V1, V2, V3 are C1, positive definite.

(6)
and re-write the problem in (6) as

max
λ1,...,λ4≥0

ϕ1(λ) + ϕ2(λ) + ϕ3(λ), (7)

where

ϕ1(λ) := min
γ11,γ12,γ14, V1

− λ1γ11 + λ2γ12 + λ4γ14

subject to (2), V1(0) = 0,
V1 is C1, positive definite, and γ11, γ12, γ14 > 0

(8)

ϕ2(λ) := min
γ22,γ23,γ21, V2

λ1γ21 − λ2γ22 − λ3γ23

subject to (3), V2(0) = 0,
V2 is C1, positive definite, and γ22, γ23, γ21 > 0

(9)

2One of the main difficulties of sum-of-squares programming is that the
number of the extra decision variables that are introduced to parameterize the
Gram matrices corresponding to the polynomial inequalities rapidly grows
with the state dimension.

ϕ3(λ) := min
γ33,γ34, V3

λ3γ33 − λ4γ34

subject to (4), V3(0) = 0,
V3 is C1, positive definite, and γ33, γ34 > 0.

(10)

For given λ, one can compute ϕ1(λ), ϕ2(λ), and ϕ3(λ)
by solving (8)-(10) independently and if the optimizing
values of γij’s satisfy the inequality constraints in (5), then
V := V1 + V2 + V3 satisfies the conditions in Proposition
1 and the internal stability of the interconnected system is
certified. If the optimizing values of γij’s do not satisfy
the inequality constraints in (5), then λ1, . . . , λ4 need to
be updated. To this end, we attempt to solve (7) using a
subgradient algorithm [19]. Define λ := (λ1, λ2, λ3, λ4)
and for given λ, let γ∗ij(λ) denote the optimal value of γij
in (8)-(10). Define g1(λ) := (−γ∗11(λ), γ∗12(λ), 0, γ∗14(λ))T ,
g2(λ) := (γ∗21(λ),−γ∗22(λ),−γ∗23(λ), 0)T , and g3(λ) :=
(0, 0, γ∗33(λ),−γ∗34(λ))T . Then, by the following inequalities
that hold for all µ := (µ1, µ2, µ3, µ4)

ϕ1(µ) ≥ ϕ1(λ)− γ∗11(λ)(µ1 − λ1)
+ γ∗12(λ)(µ2 − λ2) + γ∗14(λ)(µ4 − λ4)

ϕ2(µ) ≥ ϕ2(λ) + γ∗21(λ)(µ1 − λ1)
− γ∗22(λ)(µ2 − λ2)− γ∗23(λ)(µ3 − λ3)

ϕ3(µ) ≥ ϕ3(λ) + γ∗33(λ)(µ3 − λ3)− γ∗34(λ)(µ4 − λ4),

g1(λ), g2(λ), and g3(λ) are subgradients of ϕ1, ϕ2, and ϕ3

at λ, respectively [19]. Consequently, g1(λ)+g2(λ)+g3(λ) is
a subgradient of ϕ at λ. Then, the subgradient method solves
the problem in (6) iteratively by updating λ at iteration k for
` = 1, . . . , 4 using λk+1

` = λk` − αkδ`(λk)k` , where

δ1(λk) = γ∗11(λk)− γ∗21(λk) (11a)
δ2(λk) = γ∗22(λk)− γ∗12(λk) (11b)
δ3(λk) = γ∗23(λk)− γ∗33(λk) (11c)
δ4(λk) = γ∗34(λk)− γ∗14(λk) (11d)

and αk > 0 denotes the step size at iteration k.
Consider now that at iteration k one of the constraints in

(5), say −γ∗11(λk) + γ∗21(λk) ≤ 0, is violated. Then,

λk+1
1 = λk1−αkδ1(λk) = λk1−αk

(
γ∗11(λk)− γ∗21(λk)

)
> λk1 .

Consequently, if −γ∗11(λk) + γ∗21(λk) > 0, then the update
rule (11) increases λ1 (the dual variable corresponding to
the constraint −γ11 + γ21 ≤ 0) and this puts a larger
penalty on the violation of the constraint −γ11 +γ21 ≤ 0. If
multiple constraints in (5) are violated, then the increase in
the dual variables corresponding to these violated constraints
is proportional to the amount of violation, i.e., the weight
of the penalty on the largest violation increases most from
iteration k to iteration k+ 1. More generally, the problem in
(6) penalizes the violations in the constraints in (5) and then
the subgradient algorithms adjusts the level of penalty with
an adjustment proportional to the relative size of violation
of the “dualized” constraints, i.e., constraints in (5).

Note that λ1, λ2, λ3, λ4 ≥ 0 and therefore (for given λ) the
objective of the optimization problem in (8) is to minimize
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a linear combination of γ12 and γ14 with respect to γ11.
Referring back to the condition in (2), the subproblem in (8)
tries to minimize the gain from a weighted L2-norm of the
input signals (w2 and w4) of subsystem 1 to the L2-norm of
the output w1. Similar relations can be established between
the problems in (9) and (10) and the conditions (3) and (4),
respectively. Hence, one reaches at an interpretation of the
dual variables parallel to the “price” interpretation (see, for
example, [20] for such an interpretation in network analysis):
the master problem sets the “prices” for the subsystems for
deviating from the system level analysis objectives and, given
the “price,” subproblems try to compute an optimal estimate
for the subsystem level input-output properties.

Remark 2: The procedure that led to the structure with the
“master” problem in (7) and the decoupled subproblems in
(8)-(10) is called the dual decomposition [19], [21] and has
been used in many engineering applications including com-
munication networks [20] and more recently in distributed
optimal control [15]. C

Remark 3: The dual decomposition based procedure em-
ployed in this section is not limited to three subsystem
configuration in Figure 1. Its generalization for more than
three subsystems is straightforward: the conditions in (2)-
(4) are extended to include a dissipation inequality for each
subsystem and the conditions in (5) are extended to include
all conditions of the form −γjk+γik ≤ 0 whenever wk is an
input signal to a subsystem i and an output signal of another
subsystem j (with i 6= j).

Extensions are possible by using more general supply rates
that those in Proposition 1. For example, general quadratic
supply rates (instead of those in (2)-(4)) lead to linear matrix
inequalities in the decision variables in the supply rates
instead of the linear inequalities in (5). C

Remark 4: When the dynamics in (1) are linear, time-
invariant, problems in (8)-(10) can be solved as (affine)
semidefinite programs. For fi’s polynomial in the states
and affine in the inputs and hi’s polynomial in the states,
there exist well-known sum-of-squares programming based
relaxations for (8)-(10) that lead to semidefinite programs.
C

III. REGION-OF-ATTRACTION ANALYSIS

This section is devoted to a brief discussion on com-
positional local stability analysis. Building on the follow-
ing characterization of invariant subsets of the region-of-
attraction around the origin, we propose sufficient conditions
that enable the construction of a Lyapunov function using
local dissipation inequalities for the subsystems.

Lemma 1: Consider a system governed by ẋ = f(x) with
f(0) = 0 and f locally Lipschitz. Let R ∈ R be nonnegative.
If there exists a C1 function V : Rn → R such that

V (0) = 0 and V (x) > 0 for all x 6= 0 (12)
ΩV,R := {x ∈ Rn : V (x) ≤ R} is bounded, (13)
ΩV,R\ {0} ⊂ {x ∈ Rn : ∇V (x)f(x) < 0} , (14)

then ΩV,R is an invariant subset of the region-of-attraction
around the origin. C

Proposition 2: If there exist positive definite C1 functions
V1 : Rn1 → R, V2 : Rn2 → R, and V3 : Rn3 → R
such that V1(0) = 0, V2(0) = 0, and V3(0) = 0, positive
real numbers γ11, γ12, γ14, γ21, γ22, γ23, γ33, and γ34, and
nonnegative real numbers R1, R

′
1, R2, R

′
2, R3, and R′3 such

that ΩV1,R1 , ΩV2,R2 , and ΩV3,R3 are bounded,

V̇1(x1, w2, w4) < −γ11w
T
1 w1 + γ12w

T
2 w2 + γ14w

T
4 w4

for all w2, w4, and nonzero x1 s.t.
V1(x1) ≤ R1 and ‖h1(x1)‖22 ≤ R′1

(15)
V̇2(x2, w1) < −γ22w

T
2 w2 − γ23w

T
3 w3 + γ21w

T
1 w1

for all w1, and nonzero x2 s.t.
V2(x2) ≤ R2 and ‖h2(x2)‖22 ≤ R′2

(16)

V̇3(x3, w3) < −γ34w
T
4 w4 + γ33w

T
3 w3

for all w3 and nonzero x3 s.t.
V3(x3) ≤ R3 and ‖h3(x3)‖22 ≤ R′3

(17)

and
−γ11 + γ21 ≤ 0
−γ22 + γ12 ≤ 0
−γ23 + γ33 ≤ 0
−γ34 + γ14 ≤ 0
R′2 +R′3 ≤ R1

R′1 ≤ R2

R′2 ≤ R3

(18)

then ΩV1+V2+V3,min{R1,R′
1,R2,R′

2,R3,R′
3} is an invariant sub-

set of the region-of-attraction around the origin for the
interconnected system shown in Figure 1. C

Proof: Let V := V1 + V2 + V3 and R :=
min{R1, R

′
1, R2, R

′
2, R3, R

′
3}. Then, V is positive definite

and vanishes at the origin. Moreover, ΩV,R is bounded and
V̇ (x1, x2, x3) < 0 for all nonzero x ∈ ΩV,R. Consequently,
Proposition 2 follows from Lemma 1.

Similar to the previous section, the dual decomposition
procedure can be applied to decouple the constraints in (15)-
(17) by penalizing the violations of the constraints in (18).
Let us introduce the dual variables λ1, λ2, λ3, and λ4, as
before, to dualize the constraints on γij in (18) and the extra
dual variables µ1, µ2, and µ3 for the remaining constraints
in (18). Then, the master problem is written as

max
λ1,...,λ4,µ1,µ2,µ3≥0

φ1(λ, µ) + φ2(λ, µ) + φ3(λ, µ), (19)

where φ1, φ2, φ3 are solutions to the following three prob-
lems respectively.

min
γ11,γ12,γ14,R1,R′

1, V1

−λ1γ11 + λ2γ12 + λ4γ14

− µ1R1 + µ2R
′
1

subject to conditions in Prop 2 excluding (18)

min
γ21,γ22,γ23,R2,R′

2, V2

λ1γ21 − λ2γ22 − λ3γ23

+ µ1R
′
2 − µ2R2 + µ3R

′
2

subject to conditions in Prop 2 excluding (18)
min

γ33,γ34,R3,R′
3, V3

λ3γ33 − λ4γ34 + µ1R
′
3 − µR3

subject to conditions in Prop 2 excluding (18).
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The rules to update λ1, . . . , λ4, µ1, . . . , µ3 can be adapted in
a similar manner to the development in section II.

Conditions in (15)-(17) are local dissipation inequalities,
i.e., they hold in certain subsets (ΩVi,Ri

) of the state space.
If the subsystem i starts from rest, then these conditions
ensure that the corresponding weighted L2-gain relations
hold between the inputs and outputs if the inputs to sub-
system i have an L2-norm less than or equal to

√
Ri. On

the other hand, recall that every signal wk is an input to
subsystem i and at the same time an output of subsystem
j. Therefore, the constraint ‖wk‖2 = ‖hj(xj)‖2 ≤ R′j in
(15)-(17) coupled with R′j ≤ Ri in (18) ensures that wk
does not violate the assumptions made on the input norm at
subsystem i. For example, the L2-norm of w1 as an output
of subsystem 1 cannot exceed that as an input to subsystem 2
(i.e., R′1 ≤ R2). These conditions are motivated by assume-
guarantee type compositional analysis ideas [4], [5] and the
dual decomposition based hierarchical scheme automates the
adjustment of assumptions in such schemes.

IV. EXAMPLE

Let the dynamics and output maps of the subsystems in
Figure 1 be given by

ẋ1 =
[
−1 0
2 −2

]
x1 + I2

[
w2

w3

]
w1 = 0.5

[
1 1

]
x1

ẋ2 =
[
−8 0
12 −2

]
x2 +

[
1
1

]
w1[

w2

w3

]
= 0.5x2

ẋ3 =
[
−1 0
2 −2

]
x3 +

[
1
1

]
w3

w4 = 0.4
[

1 1
]
x3.

We apply the compositional analysis to verify the global
asymptotic stability of the interconnected system. Let the
step size in the subgradient algorithm be 3

αk =
0.01

10 + k
.

In this case, the optimization problems in (8)-(10) are LMIs
with the decision variables γij’s and those in Vi’s. The dual
variables are initialized at λ0

1 = 0, λ0
2 = 0, λ0

3 = 0, and λ0
4 =

0. Figure 2 shows the violations in the constraints on the γij’s
(negative value means that the corresponding constraint is not
violated). The subgradient iterations are terminated when all
constraints are satisfied. Figure 3 shows the values of the dual
variables λi’s versus the the iteration number and Figure 4
shows the value of the objective function in (6) versus the
iteration number.

V. CONCLUSIONS AND CRITIQUE

We proposed a compositional stability analysis method-
ology for verifying properties of systems that are inter-
connections of multiple subsystems. The proposed method
assembles stability certificates for the interconnected system

3See [21] for guidelines for choosing the step size α.
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Fig. 2. Violations of the constraints on γij’s. Negative value
indicates that the corresponding constraint is satisfied.
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Fig. 3. The dual variable (λi’s) versus the iteration number.
The correspondence between the dual variables and the
constraints is as in (6).

based on the certificates for the input-output properties of the
subsystems. The decomposition in the analysis is achieved
by utilizing dual decomposition ideas from optimization.
Decoupled subproblems establish subsystem level input-
output properties whereas the “master” problem imposes and
updates the conditions on the subproblems toward ensuring
(interconnected) system level stability properties. Both global
stability analysis and region-of-attraction analysis were dis-
cussed.

There are a series of limitations and also possible exten-
sions of the method proposed here. First of all, the decompo-
sition in analysis is achieved through a fixed decomposition
of the sufficient conditions for (local and global) stability
based on the specific choice of supply rates, i.e., L2-gain
relations, (in (2)-(4) and (15)-(17)) for the subsystems. It
may be possible to reduce the conservatism associated with
these specific choices by exploring optimization over the
choice of supply rates. Also note that the proposed method is
inherently more conservative than a “centralized” search (for
the overall closed-loop dynamics) for a general Lyapunov
function and even a Lyapunov function of the form V (x) =∑N
i=1 Vi(xi) (with N being the number of subsystems).
The convergence of the subgradient based optimization
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Fig. 4. The value of the objective function in (6) versus the
iteration number.

schemes is known to be slow. Therefore, it may be of
interest to both theoretically and practically investigate the
convergence properties of the proposed scheme. Note that we
have presented the compositional analysis framework for a
specific interconnection structure. Although the extensions to
larger number of subsystems with a general interconnection
structure are straightforward, the effect of these extensions
on convergence remains to be examined. Nevertheless, we
emphasize that one of the main difficulties in solving large-
scale semidefinite programs is the memory requirements of
the interior-point type algorithms [11]. Therefore, composi-
tional analysis may be the sole option (even if it converges
slowly) for certain systems for which solving large-scale
semidefinite programming problems corresponding to system
level certificates is not practical.

We have only considered stability analysis (i.e., no exoge-
nous signals). It may be possible to extend the framework to
identify system level input-output properties (in the presence
of exogenous inputs and outputs).

The method proposed here heavily relies on the existence
of the notion of a “norm” for the input and output signals
(specifically L2 signal norms are used here). In fact, the role
of these norms is mainly to provide a means (analogous to
a “partial order”) for “comparing” inputs of a subsystem
to its outputs (i.e., input-output gains) and outputs of a
subsystem to the inputs of the subsystems it is connected to.
It may be possible to generalize the technique to the cases
for which (partial) comparison of signals is possible. An
interesting future research direction is to explore such notions
for systems with discrete valued inputs and outputs. This may
potentially enable compositional analysis for systems where
discrete and continuous dynamics interact. For a recent work
on related ideas see [22] which discussed small-gain type
theorems for hybrid systems.
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