
Accepted Manuscript

Compositional Strategy Synthesis for Stochastic Games with Multiple Objectives

N. Basset, M. Kwiatkowska, C. Wiltsche

PII: S0890-5401(17)30167-0
DOI: http://dx.doi.org/10.1016/j.ic.2017.09.010
Reference: YINCO 4324

To appear in: Information and Computation

Received date: 1 March 2016
Revised date: 22 December 2016

Please cite this article in press as: N. Basset et al., Compositional Strategy Synthesis for Stochastic Games with Multiple Objectives, Inf.
Comput. (2017), http://dx.doi.org/10.1016/j.ic.2017.09.010

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing
this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is
published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.ic.2017.09.010

Compositional Strategy Synthesis for Stochastic Games with Multiple Objectives

N. Basseta, M. Kwiatkowskaa,∗, C. Wiltschea

aDepartment of Computer Science, University of Oxford, United Kingdom

Abstract

Design of autonomous systems is facilitated by automatic synthesis of controllers from formal models and spec-
ifications. We focus on stochastic games, which can model interaction with an adverse environment, as well as
probabilistic behaviour arising from uncertainties. Our contribution is twofold. First, we study long-run specifications
expressed as quantitative multi-dimensional mean-payoff and ratio objectives. We then develop an algorithm to syn-
thesise ε-optimal strategies for conjunctions of almost sure satisfaction for mean payoffs and ratio rewards (in general
games) and Boolean combinations of expected mean-payoffs (in controllable multi-chain games). Second, we propose
a compositional framework, together with assume-guarantee rules, which enables winning strategies synthesised for
individual components to be composed to a winning strategy for the composed game. The framework applies to a
broad class of properties, which also include expected total rewards, and has been implemented in the software tool
PRISM-games.

1. Introduction

Game theory has found versatile applications in the past decades, in areas ranging from artificial intelligence,
through modelling and analysis of financial markets, to control system design and verification. The game model con-
sists of an arena with a number of positions and two or more players that move a token between positions, sometimes
called games on graphs [27]. The rules of the game determine the allowed moves between positions, and a player’s
winning condition captures which positions or sequences of positions are desirable for the player. When a player de-
cides on a move, but the next position is determined by a probability distribution, we speak of a stochastic game [55].
Since stochastic games can model probabilistic behaviour, they are particularly attractive for the analysis of systems
that naturally exhibit uncertainty.

In this article we focus our attention on the development of correct-by-construction controllers for autonomous
systems via the synthesis of strategies that are winning for turn-based zero-sum stochastic games. When designing
autonomous systems, often a critical element is the presence of an uncertain and adverse environment. The control-
lable parts are modelled as Player ♦, for which we want to find a strategy, while the non-cooperative behaviour of
the environment is modelled as Player �. Modelling that Player � tries to spoil winning for Player ♦ expresses that
we do not make any assumptions on the environment, and hence a winning strategy for Player ♦ has to be winning
against all possible behaviours of the environment. We take the view that stochasticity models uncertain behaviour
where we know the prior distribution, while nondeterminism models the situation where all options are available to
the other player.

In addition to probabilities, one can also annotate the model with rewards to evaluate various quantities, for
example profit or energy usage, by means of expectations. Often, not just a single objective is under consideration,
but several, potentially conflicting, objectives must be satisfied, for example maximising throughput and minimising
latency of a network. In our previous work [20, 21], we studied multi-objective expected total reward properties for
stochastic games with certain terminating conditions. Expected total rewards, however, are unable to express long-run

∗Corresponding author
Email addresses: nicolas.basset@ulb.ac.be (N. Basset), Marta.Kwiatkowska@cs.ox.ac.uk (M. Kwiatkowska),

clemens.wiltsche@cs.ox.ac.uk (C. Wiltsche)

Preprint submitted to Elsevier September 13, 2017

average (also called mean-payoff) properties. Another important class of properties are ratio rewards [62], with which
one can state, e.g., speed (distance per time unit) or fuel efficiency (distance per unit of fuel). In this paper we extend
the repertoire of reward properties for stochastic games by considering winning conditions based on long-run average
and ratio rewards, both for expectation and almost sure satisfaction semantics. These can be expressed as single or
multi-objective properties with upper or lower thresholds on the expected target reward to be achieved, for example
“the average energy consumption does not exceed 100 units per hour almost surely”, or “the expected number of
passengers transported is at least 100 per hour, while simultaneously ensuring that the expected fuel consumption is
at most 50 units per hour”. Multi-objective properties allow us to explore trade-offs between objectives by analysing
the Pareto curve. The difficulty with multi-objective strategy synthesis compared to verification is that the objectives
cannot be considered in isolation, but the synthesised Player ♦ strategy has to satisfy all simultaneously. Another issue
is that monolithic strategy synthesis may be computationally infeasible, as a consequence of algorithmic complexity
bounds [16, 21].

We thus formulate a compositional framework for strategy synthesis, which allows us to derive a strategy for the
composed system by synthesising only for the (smaller) individual components; see e.g. [13] for an approach for
non-stochastic systems. To this end we introduce a game composition operation (‖), which is closely related to that of
probabilistic automata (PAs) in the sense of [54]. PAs correspond to stochastic games with only one player present, and
can be used (i) for verification, to check whether all behaviours satisfy a specification (when only Player � is present),
and (ii) for strategy synthesis, to check whether there exists a strategy giving rise to behaviors satisfying a specification
(when only Player ♦ is present) [40]. In verification, the nondeterminism that is present in the PA models an adverse,
uncontrollable, environment. By applying a Player ♦ strategy to a game to resolve the controllable nondeterminism,
we are left with a PA where only uncontrollable nondeterminism for Player � remains. This observation allows us
to reuse rules for compositional PA verification, such as those in [39], to derive synthesis rules for games. Similarly
to [39], which employs multi-objective property specifications to achieve compositional verification of PAs, multi-
objective properties are crucial for compositional strategy synthesis, as elaborated below.

In our framework, we assume that the designer provides games G1,G2, . . . representing components of a larger
system, which is modelled as their composition G = G1 ‖ G2 ‖ · · · . By giving a local specification ϕi for each compo-
nent game Gi, we deduce global specifications ϕ for the composed game G, so that, given local strategies πi achieving
the respective specifications ϕi, the global specification ϕ is satisfied in G by applying the local strategies. We deduce
the global specifications independently of the synthesised strategies, by instead deducing the global specification ϕ
from the local specifications ϕi using compositional verification rules, that is, rules for systems without controllable
nondeterminism (such as PAs) to determine whether ϕ holds for all strategies given that, for each component Gi, ϕi

holds for all strategies. In Theorem 15 we show that, whenever there is a PA verification rule deducing ϕ from ϕi, then
there is a corresponding synthesis rule for games, justifying the use of local strategies for ϕi in the composed game
G to achieve ϕ. The compositional synthesis problem is thus reduced to finding the local strategies πi achieving ϕi,
which is the classical monolithic strategy synthesis question from (quantitative) objectives that are compatible with
the composition rules. By allowing general Boolean combinations of objectives, we can, for example, synthesise for
one component a strategy satisfying an objective ϕA, and for a second component a strategy that satisfies an objective
ϕG under the assumption ϕA, that is, the implication ϕA → ϕG, so that the global specification that these strategies
satisfy is ϕG.

Contributions. The paper makes the following main contributions.

• Section 3: We show that the strategy synthesis problem for conjunctions of almost sure mean payoffs, which
maintain several mean payoffs almost surely above the corresponding thresholds, is in co-NP (Corollary 2) and
present a synthesis algorithm for ε-optimal strategies (Theorem 7).

• Section 4: For expectation objectives, we show how to reduce synthesis problems for Boolean combinations to
those for conjunctions (Theorem 8), which allows us to obtain ε-optimal strategies for Boolean combinations of
expected mean-payoff objectives (Theorem 14) in a general class of controllable multi-chain (CM) games that
we introduce.

• Section 5: We develop a composition of stochastic games that synchronises on actions, together with compo-
sition rules that allow winning strategies synthesised for individual components to be composed to a winning
strategy for the composed game (Theorem 15).

2

Previous Work. Preliminary versions of this work appeared as [4] for synthesis of ε-optimal strategies for multi-
objective mean payoff, and as [5] for the compositional framework. We additionally draw inspiration for Boolean
combinations from [20]. By introducing controllable multichain games, we can synthesise Boolean combinations of
long-run objectives, which allows more general assume-guarantee rules than in [5, 4]. Further, due to our decision
procedure, we can present the semi-algorithm of [4] as an algorithm.

The techniques presented here have been implemented in the tool PRISM-games 2.0 [41], a new release of PRISM-
games [18]. The implementation supports compositional assume-guarantee synthesis for long-run properties studied
here, as well as total expected reward properties of [20, 21]. PRISM-games has been employed to analyse several
case studies in autonomous transport and energy management, including human-in-the-loop UAV mission planning,
to compute optimal Pareto trade-offs for a UAV performing reconnaissance of roads, reacting to inputs from a human
operator [29], and autonomous urban driving, to synthesise strategies to steer an autonomous car through a village,
reacting to its environment such as pedestrians or traffic jams [21], both for conjunctions of expected total rewards.
Compositional assume-guarantee synthesis techniques described in this paper were applied to generate a strategy
that maximises uptime of two components in an aircraft electrical power network, reacting to generator failures and
switch delays, for a conjunction of almost-sure satisfaction of ratio rewards [4]; and to control the temperature in three
adjacent rooms, reacting to the outside temperature and whether windows are opened, for Boolean combinations of
expected ratios [64]. For more information we refer the reader to [64, 57, 59, 38] and references therein.

1.1. Related Work

Multi-objective strategy synthesis. Our work generalises multi-objective strategy synthesis for MDPs by intro-
ducing nondeterminism arising from an adversarial environment. Previous research on multi-objective synthesis for
MDPs discusses PCTL [3], total discounted and undiscounted expected rewards [63, 15, 31],ω-regular properties [28],
expected and threshold satisfaction of mean-payoffs [6, 14], percentile satisfaction of mean-payoffs [50, 14], as well
as conditional expectations for total rewards [1]; recent work on mixing types of objectives appeared in [10, 49].

In contrast to the case for MDPs, synthesis for games needs to take into account the uncontrollable Player �. For
non-stochastic games, multi-objective synthesis has recently been discussed in the context of mean-payoff and energy
games [8, 11], for mean-payoffs and parity conditions [16, 9], and robust mean-payoffs [60]. Non-zero-sum games in
the context of assume-guarantee synthesis arise in [13]. For stochastic games, PCTL objectives are the subject of [7].
The special case of precisely achieving a total expected reward is discussed in [19], which is extended to Boolean
combinations and LTL specifications for stopping games in [20, 21, 57]. Under stationary strategies and recurrence
assumptions on the game, [56] approximate mean-payoff conjunctions. Non-zero-sum stochastic games for more than
two players, where each player has a single discounted expected total reward objective, are discussed in [43].

Since this paper was submitted, [17] have also shown that the strategy synthesis decision problem for multiple
almost sure long-run average objectives is in co-NP. In contrast with [17], in this paper we also formulate an algo-
rithm to construct a strategy, if it exists, where stochastically updated memory strategies are generated, which can
yield exponentially more compact representations than deterministically updated strategies used in [17]. Further, we
identify a general class of games for which the synthesis algorithm can be extended to arbitrary Boolean combinations
of expected mean-payoff objectives.

Stochastic games with shift-invariant objectives. To formulate our decision problem for almost-sure satisfac-
tion of conjunctions of mean-payoff objectives (Corollary 2), we rephrase this multi-objective property in terms of
shift-invariant winning condition studied in [34] and [35]. These papers state general properties about qualitative
determinacy (there is always a winner) and half-positionality (one player needs only memoryless deterministic strate-
gies) for a general class of games, in which the winning condition (possibly multi-objective) is shift-invariant. [34]
also consider the problem of satisfaction probability being above an arbitrary given threshold, which is more general
than the problem of almost-sure satisfaction considered here. In fact, [34] explain how to solve the former problem
using an oracle for the latter, but were not concerned with synthesis nor ε-optimal winning strategies. We believe
that ideas could be borrowed from [34] to extend our synthesis algorithm from almost sure satisfaction to arbitrary
threshold satisfaction.

Compositional modelling and synthesis. Our compositional framework requires a notion of parallel composition of
components, so that composing winning strategies of the components yields a winning strategy for the composition.
Several notions of parallel composition of non-stochastic games have been proposed, for example [33], but player

3

identity is not preserved in the composition. In [32] the strategies of the components have to agree in order for the
composed game not to deadlock. Similarly, the synchronised compositions in [44] and [45] require the local strategies
to ensure that the composition never deadlocks.

Composition of probabilistic systems is studied for PAs in [54], where, however, no notion of players exists. Com-
positional approaches that distinguish between controllable and uncontrollable events include [26] and probabilistic
input/output automata (PIOA) [22]. However, when synthesising strategies concurrent games have to be considered,
as there is no partitioning of states between players. In contrast, we work with turn-based games and define a com-
position that synchronises on actions, similarly to that for PAs [54]. This is reminiscent of single-threaded interface
automata (STIA) [25] that enforce a partition between running and waiting states, which we here interpret as Player ♦
and Player � respectively.

The problem of synthesising systems from components whose composition according to a fixed architecture sat-
isfies a given global LTL specification is undecidable [46]. Strategies in the components need to accumulate sufficient
knowledge in order to make choices that are consistent globally, while only being able to view the local history, as
discussed in [37]. In our setting, each strategy is synthesised on a single component, considering all other components
as black boxes, and hence adversarial. Assume-guarantee synthesis is a convenient way of encoding assumptions on
other components and the overall environment in the local specifications; see [13] for a formulation as non-zero-sum
non-stochastic games.

2. Preliminaries

In this section we introduce notations and definitions for stochastic games, their strategies and winning conditions.
We work with two representations of strategies, (standard) deterministic update and stochastic update of [6], and prove
that they are equally powerful if their memory size is not restricted. We then define strategy application and discuss
behaviour of stochastic games under strategies. In particular, we define the induced probabilistic automata and Markov
chains obtained through strategy application. First, we give general notation used in the article and refer to [51, 52]
for basic concepts of topology and probability theory.

Probability distributions. A distribution on a countable set Q is a function μ : Q → [0, 1] such that
∑

q∈Q μ(q) = 1;
its support is the set supp(μ) def

= {q ∈ Q | μ(q) > 0}. We denote by D(Q) the set of all distributions over Q with finite
support. A distribution μ ∈ D(Q) is Dirac if μ(q) = 1 for some q ∈ Q, and if the context is clear we just write q to
denote such a distribution μ.

The vector space R
n. When dealing with multi-objective queries comprising n objectives, we operate in the

vector space R
n of dimension n over the field of reals R, one dimension for each objective, and consider optimisation

along n dimensions. We use the standard vector dot product (·) and matrix multiplication. We use the uniform
norm ‖�x‖∞ def

= maxi=1..n |xi| and the corresponding notion of distance between vectors. For a set X ⊆ R
n, we denote

by conv(X) its convex hull, that is, the smallest convex set containing X. We use the partial order on R
n defined

for every �x, �y ∈ R
n by �x ≤ �y if, for every 1 ≤ i ≤ n, xi ≤ yi. The downward closure of a set X is defined as

dwc(X) def
= {�y ∈ R

n | ∃�x ∈ X . �y ≤ �x}. Its upward closure is upc(X) def
= {�y ∈ R

n | ∃�x ∈ X . �x ≤ �y}. An extreme point of
a convex set Y is a point of Y that cannot be obtained as a convex combination of points other than itself. We denote
by C(X) the set of extreme points of dwc(X) for a closed convex set X. For instance, in Figure 4, the thick segment
between the two points �v0 and �v1 is the convex hull of {�v0,�v1}. The set of extreme points of this segment is {�v0,�v1},
and the downward closure of the convex hull is the grey set.

2.1. Stochastic Models

We define stochastic games and discuss their relationship to probabilistic automata in the sense of [54].

2.1.1. Stochastic games

Primarily, we consider turn-based action-labelled stochastic two-player games (henceforth simply called games),
which distinguish two types of nondeterminism, each controlled by a separate player. Player ♦ represents the con-
trollable part for which we want to synthesise a strategy, while Player � represents the uncontrollable environment.

4

s0

(1, 0)

s1 a : (−1, 0)

s3b : (0, 1) s2 (−2, 2)

3
4

1
4

1

Figure 1: An example game. Moves and states for Player ♦ and Player � are respectively shown as ©, ♦ and �. States are annotated with a
two-dimensional reward structure (see Section 2.3.1) used in Example 3. Moves (also called stochastic states) are labelled with actions.

Definition 1. A game G is a tuple 〈S , (S♦, S�, S©), ς,A, χ,Δ〉, where S is a nonempty, countable set of states
partitioned into Player ♦ states S♦, Player � states S �, and stochastic states S ©; ς ∈ D(S♦ ∪ S�) is an initial
distribution; A is a set of actions; χ : S© → A ∪ {τ} is a (total) labelling function; and Δ : S × S → [0, 1] is a

transition function, such that Δ(s, t) = 0 for all s, t ∈ S♦ ∪ S�, Δ(s, t) ∈ {0, 1} for all s ∈ S♦ ∪ S� and t ∈ S ©, and∑
t∈S♦∪S� Δ(s, t) = 1 for all s ∈ S©.

We call S ♦ ∪ S� the player states. Define the successors of s ∈ S as Δ(s) def
= {t ∈ S |Δ(s, t) > 0}. For a stochastic

state s, we sometimes write s = (a, μ) (called move), where a
def
= χ(s), and μ(t) = Δ(s, t) for all t ∈ S . For a player

state s and a move (a, μ), if Δ(s, (a, μ)) > 0 we write s
a−→ μ for the transition labelled by a ∈ A ∪ {τ}, called an

a-transition. The action labels a ∈ A on transitions model observable behaviours, whereas τ can be seen as internal:
it is not synchronised in the composition that we formulate in this paper. A move (a, μ) is incoming to a state t if
μ(t) > 0, and is outgoing from a state s if s

a−→ μ.
We remark that we work with finite games; more precisely, all our statements are for finite stochastic games, except

for the induced PAs which may be infinite. In the rest of this paper, if not explicitly stated otherwise, we assume that
games have no deadlocks, that is, |Δ(s)| ≥ 1 for every s ∈ S .

A path λ = s0s1s2 . . . is a (possibly infinite) sequence of states such that, for all i ≥ 0, Δ(si, si+1) > 0. Note
that paths of games alternate between player and stochastic states. Given a finite path λ = s0s1 . . . sN , we write
last(λ) = sN , and write |λ| = N + 1 for the length of λ. We denote the set of finite (infinite) paths of a game G by Ωfin

G
(ΩG), and by Ωfin

G,♦ (Ωfin
G,�) the set of finite paths ending in a Player ♦ (Player �) state. A state t is called reachable

from a set of states A if there exists a finite path λ = s0s1 . . . sN with s0 ∈ A and sN = t.
A finite (infinite) trace is a finite (infinite) sequence of actions. Given a path λ, its trace trace(λ) is the sequence

of actions that label moves along λ, where we elide τ. Formally, trace(s0s1 . . .) = trace(s0) · trace(s1) · · · where
trace(s) = χ(s) if s ∈ S © and χ(s) � τ, and trace(s) = ε otherwise, where ε is the empty trace, that is, the neutral
element for concatenation of traces. We write A∗ (resp. Aω) for the set of finite (resp. infinite) sequences over A.

Example 1. Figure 1 shows a stochastic game, where Player ♦ and Player � states are respectively shown as ♦ and

�, and moves as ©. A path of the game is s0s1s0s3s2s3 and its trace is abb.

2.1.2. Probabilistic automata

If S ♦ = ∅ then the game a probabilistic automaton (PA) [54], which we write as 〈S , (S �, S©), ς,A, χ,Δ〉. An
example PA is shown in Figure 2. The model considered here is due to Segala [54], and should not be confused with
Rabin’s probabilistic automata [48]. Segala’s PAs have strong compositionality properties, as discussed in [58]. These
compositionality properties are partly due to the fact that PAs are allowed to have several moves associated to each
action, as is common in process algebras, in contrast to Markov decision processes (MDPs)1. Note, however, that a
PA can be viewed as essentially the same object as an MDP, because action labels are attached to stochastic states and
thus selecting an action corresponds to selecting a stochastic state. Two arbitrary stochastic states are distinguishable

1A Markov decision process (MDP) is a PA where, for every state s of the single player and action a, there is at most one stochastic state labelled
by a that is a successor of s.

5

s′0

(1, 0)

s′′0

(1, 0)

s1 a : (−1, 0)

s3b : (0, 1) s2 (−2, 2)

1
2

1
2

3
8

3
8

1
4

1

Figure 2: An example PA.

s0

(1, 0)

s1 a : (−1, 0)

s3b : (0, 1)

s′2 (−2, 2)

s′′2 (−2, 2)

1
21

2

3
4

1
4

1

1

1

Figure 3: An example DTMC. The labelling function is partial: only s1 and s3 have labels.

even if they are labelled by the same action. Therefore, many concepts and results stated for MDPs automatically
transfer to PAs.

An end component (EC) is a sub-PA that is closed under the transition relation and strongly connected. Formally,
an EC E of a PA M is a pair (S E,ΔE) with ∅ � S E ⊆ S and ∅ � ΔE ⊆ Δ, such that (i) for all s ∈ S E ∩ S ©,∑

t∈S� ΔE(s, t) = 1; (ii) for all s ∈ S E, ΔE(s, t) > 0 only if t ∈ S E; and (iii) for all s, t ∈ S E, there is a finite path
s0s1 . . . sl ∈ Ωfin

M within E (that is, si ∈ S E for all 0 ≤ i ≤ l), such that s0 = s and sl = t. An end component is a
maximal end component (MEC) if it is maximal with respect to the pointwise subset ordering. For instance, the PA of
Figure 2 is a MEC. There are three ECs, the PA itself, the PA without the transition from s2 to s3, and the EC formed
by states s2, s3 and transitions between these two states.

2.1.3. Discrete-time Markov chains

In contrast to games and PAs, the discrete-time Markov chain model contains no nondeterminism.

Definition 2. A discrete-time Markov chain (DTMC) D is a tuple 〈S , ς,A, χ,Δ〉, where S is a nonempty, countable

set of states, ς ∈ D(S) is an initial distribution on states, A is a finite alphabet of actions, χ : S → A is a partial

labelling function and Δ is a transition function such that
∑

t∈S Δ(s, t) = 1.

An example DTMC is shown in Figure 3.
Note that, as opposed to games and PAs, there are no player states in DTMCs but only stochastic states. The

labelling function is partial to allow for states that correspond to stochastic states of a game, which are labelled, as
opposed to states that correspond to player states of a game, which are unlabelled (see Example 2 below). Note also
that DTMCs cannot have deadlocks.

Paths and traces of DTMCs are defined as for games, where the set of finite (infinite) paths is denoted by Ωfin
D

(resp. ΩD).

2.2. Strategies

Nondeterminism for each player is resolved by a strategy, which keeps internal memory that can be updated
stochastically. For the remainder of this section, fix a game G = 〈S , (S♦, S�, S©), ς,A, χ,Δ〉.
Definition 3. A strategy π of Player ♦ is a tuple 〈M, πc, πu, πd〉, where M is a countable set of memory elements;

πc : S ♦ ×M → D(S ©) is a choice function s.t. πc(s,m)(a, μ) > 0 only if s
a−→ μ; πu : M × S → D(M) is a memory

6

update function; and πd : S♦ ∪ S � → D(M) is an initial distribution on M. A strategy σ of Player � is defined

analogously.

We will sometimes refer to Player ♦ strategy as a controller. For a given strategy, the game proceeds as follows.
It starts in a player state with memory sampled according to the initial distribution. Every time a (stochastic) state s

is entered, both players update their current memory m and n according to these states; the updated memory elements
m′ and n′ are randomly chosen according to m′ �→ πu(m, s)(m′) and n′ �→ πu(n, s)(n′). Once the memory is updated,
if s is a stochastic state then the next state is picked randomly according to the probability t �→ Δ(s, t); otherwise,
s is a player state and the next stochastic state t is chosen according to the distribution πc(s,m′) when s ∈ S ♦, and
according to σc(s, n′) if s ∈ S�.

If the memory update function maps to Dirac distributions, we speak of deterministic memory update (DU) strate-
gies, and sometimes use the alternative, equivalent, formulation2 where π : Ωfin

G,♦ → D(S ©) is a function such that

π(λ)(a, μ) > 0 only if last(λ)
a−→ μ for all λ ∈ ΩG,♦ (and symmetrically for Player �). If we want to emphasise

that memory might not be deterministically updated, we speak of stochastic memory update (SU) strategies. A finite

memory strategy is a strategy for which the set of memory elements M is finite. Finite memory DU (SU) strategies
are abbreviated by FDU (FSU). If a DU strategy can be represented with only one memory element and its choice
functions maps to a Dirac distribution in every state, it is called memoryless deterministic (MD).

2.2.1. Strategy application

Definition 4. Given a game G = 〈S , (S♦, S�, S©), ς,A, χ,Δ〉, Player ♦ strategy π and Player � strategy σ, we define

the induced DTMC Gπ,σ = 〈S ′, ς′,A, χ′,Δ′〉, where S ′ ⊆ S ×M × N is defined as the set of reachable states from

supp(ς′) through Δ′ defined as follows. For every s ∈ supp(ς), ς′(s,m, n) = πd(s)(m)πd(s)(n) and Δ′ is such that

Δ′((s,m, n), (s′,m′, n′)) = πu(m, s′)(m′) · σu(n, s′)(n′) ·

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
πc(s,m)(s′) if s ∈ S♦
σc(s, n)(s′) if s ∈ S�
Δ(s, s′) if s ∈ S©

(1)

The labelling function χ′ is defined by χ′(s,m, n) = χ(s) for every s ∈ S©.

The first two terms of the right-hand side of (1) correspond to the memory updates, while the last term corresponds
to the probability of moving from one state to another depending on the type of the current state.

Note that paths of the induced DTMC include memory. We introduce a mapping pathG((s0,m0, n0) · · · (sn,mn, nn)) =
s0 · · · sn to retrieve paths of the game from paths of the induced DTMC.

Example 2. Figure 3 shows the induced DTMC from the stochastic game of Figure 1 by the two strategies described

below. The Player ♦ strategy is memoryless (let m its single memory element); it randomises amongst the successors

of s0 with the same probability 1
2 . The Player � strategy decides in state s2 to go to the state visited just before

entering s2. It hence requires only two memory elements, n and n′. The current memory element is always n except

when s2 is chosen from s3, where it is updated to n′. For the sake of readability we denote by si the state (si,m, n) for

i � 2, by s′2 = (s2,m, n
′) and s′′2 = (s2,m, n). For instance, pathG(s0s1s0s3s′2s3) = s0s1s0s3s2s3.

Similarly, given a PA M and a Player � strategy σ, one can define an induced DTMC Mσ and a mapping pathM,
where a generic path of the induced PA is of the form κ = (s0, n0) · · · (sn, nn) and is mapped to pathM(κ) def

= s0 · · · sn.
Note that the maps pathM and pathG preserve the lengths of the paths.

We define the (standard) probability measure on paths of a DTMC D = 〈S , ς,A, χ,Δ〉 in the following way. The
cylinder set of a finite path λ ∈ Ωfin

D (resp. trace w ∈ A∗) is the set of infinite paths (resp. traces) with prefix λ (resp. w).
For a finite path λ = s0s1 . . . sn ∈ Ωfin

D and a distribution ϑ ∈ D(S), we define PD,ϑ(λ), the measure of its cylinder set
weighted by the distribution ϑ, by PD,ϑ(λ)

def
= ϑ(s0)

∏n−1
i=0 Δ(si, si+1). If ϑ = ς, i.e. the initial distribution, we omit it

and just write PD. Given a PA M and a strategy σ, one can define for every path λ the measure of its cylinder set by

2This formulation is typically used in papers on (stochastic) games. Our formulation in Definition 3 was originally given in [6] (for MDPs). We
show that the two formulations are equivalent in Proposition 1.

7

P
σ
M(λ) def

=
∑

{λ′ | pathM(λ′)=λ} PMσ (λ′). Similarly, given a game G and a pair of strategies π, σ, define for every path λ the

measure P
π,σ
G (λ) def

=
∑

{λ′ | pathG(λ′)=λ} PGπ,σ (λ′).
We introduce the remaining definitions for a generic model (game, PA or DTMC) together with the probability

measure P on its paths. Given a finite trace w, paths(w) denotes the set of minimal finite paths with trace w, i.e.
λ ∈ paths(w) if trace(λ) = w and there is no path λ′ � λ with trace(λ′) = w and λ′ being a prefix of λ. The measure
of the cylinder set of w is P̃(w) def

=
∑
λ∈paths(w) P(λ), and we call P̃ the trace distribution induced by P. The measures

uniquely extend to infinite paths due to Carathéodory’s extension theorem. We denote by E[�ρ] the expectation wrt P
of a measurable function �ρ over infinite paths, that is,

∫
�ρ(λ)dP(λ), and use the same subscript and superscript notation

for E and P, for instance ED,ϑ denotes expectation wrt PD,ϑ.
Given a subset T ⊆ S , let P(F=k T) def

=
∑{P(λ) | λ = s0s1 . . . s.t. sk ∈ T ∧ ∀i < k . si � T } the probability to reach T

in exactly k steps, and by P(F T) def
=

∑{P(λ) | λ = s0s1 . . . s.t. ∃i . si ∈ T } the probability to eventually reach T .

2.2.2. Determinising strategies

In this section we show that SU and DU strategies are equally powerful if the memory size is not restricted
(Proposition 1). The memory elements of the determinised strategies are distributions over memory elements of the
original strategy. Such distributions can be interpreted as the belief the other player has about the memory element,
knowing only the history and the rules to update the memory, while the actual memory based on sampling is kept
secret. The term belief is inspired by the study of partially observable Markov decision processes. At any time, the
belief attributes to a memory element m the probability of m under the original strategy given the history.

Definition 5. Given an SU strategy π = 〈M, πc, πu, πd〉, we define its determinised strategy π̄ = 〈D(π), π̄c, π̄u, π̄d〉,
where D(π) ⊆ D(M) is a countable set called the belief space defined as the reachable beliefs from the initial beliefs

π̄d(s) under belief updates π̄u along paths of the game defined as follows. The initial belief in a state is the initial

memory distribution in this state:

π̄d(s) def
= πd(s).

Any belief d is updated according to a state s′ as follows:

π̄u(d, s′)(m′) def
=

∑
m∈M
d(m) · πu(m, s′)(m′).

The choice of a state s′ is made according to a belief d as follows:

π̄c(s, d)(s′) def
=

∑
m∈M
d(m)πc(s,m)(s′).

Note that determinising a finite memory SU strategy can lead to either a finite or an infinite memory DU strategy.
We can now state the main result of this section, namely, that the original and the determinised strategy give

exactly the same semantics. They are indistinguishable from the Player � viewpoint.

Proposition 1. Given a game G and two strategies π, σ, it holds that Pπ,σG = P
π̄,σ
G , where π̄ is the determinisation of π.

This proposition is proved in Appendix A.1. We do not need to consider the determinisation of Player � strategies.
Note, however, that it could be defined in the same way, and using Proposition 1 twice (once for each player) yields
P
π,σ
G = P

π̄,σ
G .

2.3. Winning Conditions

2.3.1. Rewards and long-run behaviours

Since we are interested in quantitative analysis, we annotate games with quantities that can represent, for example,
resource usage. We refer to such quantities as rewards. Average rewards (aka. mean-payoff) measure the long-run
average of such quantities along paths. We also allow ratio rewards, originally defined for MDPs in [62], which
measure the long-run behaviour of the ratio of two rewards. For instance, if a game models a car driving along a
route, then one can model fuel consumption per time unit using ratio of the rewards that compute the quantity of fuel
consumption and the time spent on the route.

8

Formally, a reward structure of a game G is a function r : S → R; it is defined on actions Ar ⊆ A if r(a, μ) =
r(a, μ′) for all moves (a, μ), (a, μ′) ∈ S© such that a ∈ Ar, and r(s) = 0 otherwise. r straightforwardly extends to
induced DTMCs via r(s) = r(pathG(s)) for s ∈ S Gπ,σ . For a path λ = s0s1 . . . (of a game or DTMC) and a reward
structure r, we define rewN(r)(λ) def

=
∑N

i=0 r(si), reward for N steps, and similarly for traces if r is defined on actions.
Given another reward c that takes non-negative values, we similarly define ratioN(r/c)(λ) def

=
∑N

i=0 r(si)/(1+
∑N

i=0 c(si)).
For a game (or DTMC) equipped with a reward structure r and a path λ, the average reward (mean-payoff) of λ is

mp(r)(λ) def
= limN→∞

1
N + 1

rewN(r)(λ)

where lim denotes limit inferior. Further, given a reward structure c that takes non-negative values, the ratio reward

of the path λ is
ratio(r/c)(λ) def

= limN→∞ratioN(r/c)(λ) ∈ R ∪ {+∞}.
Note that the ratio reward can be infinite for paths along which c is null too often. This does not cause difficulties if the
probability of these problematic paths is zero. We say that c is a weakly positive reward structure if it is non-negative
and there exists cmin > 0 such that Pπ,σG (mp(c) > cmin) = 1 for all π and σ. If c is weakly positive then |ratio(r/c)(λ)|
is almost surely bounded by maxs∈S |r(s)|/cmin. This result is proved in Appendix C.1. In the following, we only
consider ratio rewards ratio(r/c) for which c is weakly positive. We use lim in the definition of mean-payoff and ratio
rewards because the limit may not be defined.

Mean-payoff and ratio rewards with lim (limit superior) may also be useful and are denoted by mp and ratio (see
further discussions in Remark 1 below).

Example 3. Let r and c be the first and second component of the reward structure of the game shown in Figure 1.

The reward structure c is weakly positive because, under every pair of strategies, s2 or s3 are visited with positive

frequency. In the induced DTMC shown in Figure 3, every path λ that begins with s0s1s0s3s′′2 s3 has cumulative

rewards after 6 steps equal to rew6(r)(λ) = r(s0)+ r(s1)+ r(s0)+ r(s3)+ r(s′′2)+ r(s3) = 1+ (−1)+1+0+ (−2)+0 = −1
and rew6(c)(λ) = 4, leading to a ratio of ratio6(r/c)(λ) = −1/5 after 6 steps.

Given reward structures r and r′, define the reward structure r + r′ by (r + r′)(s) def
= r(s) + r′(s) for all s ∈ S , and,

given v ∈ R, define r + v by (r + v)(s) def
= r(s) + v for all s ∈ S .

If a DTMC D has a finite state space, the limit inferior (lim) and the limit superior (lim) of the average and ratio
rewards can be replaced by the true limit, as it is almost surely defined (see Lemma 14 and 15 in Appendix A.2). Ratio
rewards ratio(r/c) generalise average rewards mp(r) since, to express the latter, we can let c(s) = 1 for all states s of
G, see [62].

2.3.2. Specifications and objectives

A specification ϕ on a model (game, PA, or DTMC) is a predicate on its path distributions. We call a Player ♦
strategy π winning for ϕ in G if, for every Player � strategy σ, Pπ,σG satisfies ϕ. Dually, we call a Player � strategy σ
spoiling for ϕ in G if, for every Player ♦ strategy π, Pπ,σG does not satisfy ϕ. We say that ϕ is achievable if a Player ♦
winning strategy exists, written G |= ϕ. A specification ϕ on a PA M is satisfied if, for every Player � strategy σ,
P
σ
M satisfies ϕ, which we write M |= ϕ. A specification ϕ on a DTMC D is satisfied if PD satisfies ϕ, which we write

D |= ϕ. A specification ϕ is defined on traces of A if ϕ(P̃) = ϕ(P̃′) for all P,P′ such that P̃(w) = P̃
′(w) for all traces

w ∈ A∗. We consider the following objectives, which are specifications with single-dimensional reward structures.

Semantics Reward Syntax Definition
(a.s.) satisfaction mean payoff Pmp(r)(v) P(mp(r) ≥ v) = 1
(a.s.) satisfaction ratio Pratio(r/c)(v) P(ratio(r/c) ≥ v) = 1
expectation mean payoff Emp(r)(v) E[mp(r)] ≥ v

expectation ratio Eratio(r/c)(v) E[ratio(r/c)] ≥ v

Note that, when inducing a DTMC, the reward structure is carried over and the mean-payoff and ratio reward
are not affected; hence, specifications defined for games are also naturally carried over to the induced models. In

9

particular, a Player ♦ strategy π of a game G is winning for a specification ϕ if and only if, for every Player � strategy
σ, Gπ,σ |= ϕ. The same remark holds for induced PAs Gπ defined in Section 2.5 below.

The objective Pmp(r)(v) (resp. Emp(r)(v)) is equivalent to Pmp(r − v)(0) (resp. Emp(r − v)(0)), i.e. with the
rewards shifted by −v. Hence, we will mainly consider the target 0 without loss of generality. An objective with target
v is ε-achievable for a given ε > 0 if the objective is achievable with target v − ε by some strategy, which we call
ε-optimal. A target is approximable if it is ε-achievable for every ε > 0.

Remark 1. We mainly consider maximizing a reward (or ensuring that it is above a threshold) in the worst case

scenario, and therefore work with the operator lim rather than lim. On the other hand, when we wish to minimise a

reward, we need to use the operator lim. Thus, we are also interested in objectives of the form P(mp(r) ≤ v) = 1,

P(ratio(r/c) ≤ v) = 1, E[mp(r)] ≤ v and E[ratio(r/c)] ≤ v, where the definitions of mp and ratio are obtained from

the definitions of mp and ratio by replacing lim by lim. These objectives are respectively equivalent to Pmp(−r)(−v),
Pratio(−r/c)(−v), Emp(−r)(−v) and Eratio(−r/c)(−v), and hence treated in our framework.

Remark 2. In this paper we also consider negation of expectation objectives: for example, ¬(E[mp(r)] ≥ v) is

equivalent to E[mp(r)] < v and to E[mp(−r)] > −v. Note that the goal is no longer to maximise the lim operator,

but rather to minimise it (which could be rephrased as maximising lim). We do not directly address this goal but

instead use the following fact: a strategy that achieves Emp(−r)(−v) is ε-optimal for ¬Emp(r)(v), for every ε > 0.

This follows from the inequalities E[mp(−r)] ≥ E[mp(−r)] ≥ −v > −v − ε. We do not consider negating almost-sure

satisfaction objectives here.

Additionally, we consider expected energy (EE) objectives, which we use as an auxiliary tool in strategy synthesis.
A DTMC D satisfies the EE objective EE(r) if there exists a finite shortfall v0, such that, for every state s of D,
ED,s[rewN(r)] ≥ v0 for all N ≥ 0.

We recall known results about strategies in PAs and games.

Lemma 1 (Theorem 9.1.8 in [47]). In finite PAs, MD strategies suffice to achieve single-dimensional Emp objectives.

Given a game G, a set A ⊆ S is called Player ♦ almost surely reachable from a state s ∈ S if there is a strategy π
of Player ♦ such that, for every strategy σ of Player �, the probability in the DTMC induced by π and σ that a state
of A is reached is 1.

Lemma 2 (see Section 2.1.1 of [36]). Given a game G, and a set A ⊆ S , the set of states A′ from which A is Player ♦
almost surely reachable is computable in polynomial time. Moreover, an MD strategy π reaching almost surely A from

any state of A′ is computable in polynomial time.

2.3.3. Multi-objective queries and their Pareto sets

A multi-objective query (MQ) ϕ is a Boolean combination of objectives and its truth value is defined inductively
on its syntax. Given an MQ with n thresholds v1, v2, . . . vn, call �v = (v1, v2, . . . , vn) the target vector. Denote by ϕ[�x]
the MQ ϕ, where, for all i, the bound vi is replaced by xi. An MQ ϕ is a conjunctive query (CQ) if it is a conjunction
of objectives. The notation Pmp(�r)(�v), Emp(�r)(�v) stands for the CQ

∧n
i=1 Pmp(ri)(vi) and

∧n
i=1 Emp(ri)(vi), respec-

tively. The notation Pratio(�r/�c)(�v), Eratio(�r/�c)(�v) stands for the CQ
∧n

i=1 Pratio(ri/ci)(vi) and
∧n

i=1 Eratio(ri/ci)(vi),
respectively. We write �ε to denote the vector (ε, ε, . . . , ε), and, if the context is clear, we use ε instead of �ε.

The Pareto set Pareto(ϕ) of an MQ ϕ is the topological closure of the set of achievable vectors. Alternatively, this
set can be defined as the set of approximable target vectors. For instance, Pareto(Pmp(�r)) denotes the set of vectors
�v such that, for every ε > 0, there is a strategy that achieves Pmp(�r)(�v − �ε). We denote by ParetoFDU(ϕ) the subset of
Pareto(ϕ) concerning achievability by an FDU strategy.

In some of our results, we consider only finite memory adversaries. We denote by ParetoFDU,FSU(ϕ) the topological
closure of the set of vectors achievable against FSU strategies by FDU strategies. Note that a Pareto set is equal to
its downward closure for the objectives we consider. More precisely, we distinguish three regions in a Pareto set, the
interior of the Pareto set where vectors are achievable; the boundary of a Pareto set, usually called the Pareto frontier,
where vectors are approximable but may not be achievable; and the complement of the Pareto set, where vectors are
not achievable.

10

s0

s1a s2 b

s3s5

c : (−1, 1)
s4 s6

d : (1,−1)

�v1

�v0

r1−1

r2

−1

Figure 4: Left: A game; omitted rewards on s0, s1, s2, s3 and s4 are null. Right: Pareto sets for Pmp (hashed) and Emp (grey). For p ∈ [0, 1],
let πp be the Player ♦ strategy that in s0 chooses s1 with probability p and s2 with probability 1 − p. Every Player ♦ strategy is of the form πp

for some p ∈ [0, 1]. Strategy π1 induces only the single path s0 s1(s3 s5)ω. The vector of mean-payoff of this path is �v1
def
= (−1/2, 1/2). Hence π1

achieves Pmp(�r)(�v1). Similarly, π0 achieves Pmp(�r)(�v0) with �v0
def
= (1/2,−1/2). The thick segment is the convex hull of {�v0,�v1}, which consists of

points �vp
def
= p�v1 + (1 − p)�v0 for p ∈ [0, 1]. For p ∈ (0, 1), πp achieves Emp(�r)(�vp) but it achieves only Pmp(�r)(min(�v1,�v0)).

Remark 3. For every game, reward structure r and target �v, if a strategy π is winning for Pmp(�r)(�v) then it is winning

for Emp(�r)(�v). In particular, Pareto(Pmp(�r)) ⊆ Pareto(Emp(�r)) and ParetoFDU(Pmp(�r)) ⊆ ParetoFDU(Emp(�r)) but the

converse inclusions do not hold in general. The same remark holds when replacing mean-payoff by ratio rewards.

Indeed, given a probability distribution on paths, if the mean payoff is almost surely above a threshold then the
expected mean payoff is also above this threshold, leading to the inclusion claimed. Figure 4 provides an example
where the inclusion is strict.

The following Proposition states that Pratio and Pmp are inter-reducible.

Proposition 2. A strategy π is winning for Pratio(�r/�c)(�v) if and only if it is winning for Pmp(�r − �v • �c)(0) where, for

every dimension i and state s, [�r − �v • �c]i(s) = ri(s) − vici(s).

This proposition is proved in Appendix A.3.

2.3.4. Problem statement

We are mainly interested in the following synthesis problem: given a quantitative specification ϕ, an approximable
target vector and a positive real ε, synthesise an ε-optimal strategy for this vector. To obtain achievable specifications,
we are also interested in (under-approximating) the Pareto set to provide a choice of approximable targets as input to
the synthesis problem. Specifically, we seek to compute, for every ε > 0, ε-tight under-approximations of Pareto sets
where, given two subsets X, Y of Rn, X is an ε-tight under-approximation of Y if Y ⊆ X and for every x ∈ X there is
y ∈ Y such that ‖x − y‖∞ ≤ ε.

2.4. A running example

In this section we introduce a running example that we refer to throughout the paper, indicated by the subscript
re, as in “Examplere 9.” Consider a plant producing widgets, with the objective to produce the maximum number of
widgets, while minimising the resource requirements. We consider a plant and a supervisor that operate in parallel,
and communicate with each other over a channel. The communication channel is modelled via synchronisation of
actions, and it allows serial communication, arbitrated by a scheduler. The environment of the plant monitors the
quality of the raw materials available. The plant and supervisor are modelled as stochastic games, shown in Figure 5,
and explained in the following.

We model the plant as G2
re. In state t1 the plant is producing widgets, since the action b is enabled. The raw

materials might be of imperfect quality, and so, after a widget is produced, the plant may enter the idle state t2, where
additional post-processing on the widget is performed. With some probability, however, the widget is ok, and the plant
returns to state t1 and is ready to produce the next widget. The probability of low-quality raw materials is anywhere
between 1

2 and 1, and so we model this by Player � choosing a distribution that randomises between the moves in
state t1. Once state t2 is entered, there is a τ-transition present in the model to allow the scheduler to arbitrate the
communication channel. If state t0 is entered, the plant can either decide to resume widget production using the q2
action, or it can decide to cool down with some probability, using the a action.

11

Supervisor

s0
(control)

d (boost) q1 (normal)

s1
(protocol)

a (cool) b (produce)

s2
(idle)τ

a (cool)

Plant

t0
(control)

a (cool)
q2 (resume)

t1
(producing)

b (produce) b (produce)

t2
(idle) τ

Figure 5: Example games G1
re (left) and G2

re (right). Distributions in stochastic states are uniform. The rewards are (1, 0, 0, 1) for a, (0, 1, 1, 1) for
b, and (0, 1, 0, 0) for d, where the three first components correspond to reward structures r1, r2, r3 and the fourth corresponds to c.

The supervisor is modelled as G1
re. In state s1, the protocol for widget production is enforced by allowing only

certain sequences of cooling and production: cooling is always allowed, but a sequence of producing n widgets is
allowed only with probability 1

2n , in order to prevent overheating of the plant. State s2 has the a action enabled
in order to listen on the communication channel, and the outgoing τ-transition allows channel arbitration by the
scheduler. Once in state s0, the supervisor can decide to resume production normally using the q1 action, or boost
production by one widget by simply inserting a widget with the d action.

We define reward structures for our running example, based on the properties outlined above. The reward structure
c used for ratios of rewards advances time when cooling and producing, that is, c(a) = c(b) = 1. We define�r to express
the quantities that we want to optimise. To minimise the cooling, we let r1(a) = 1; to maximise the number of widgets
produced, we let r2(b) = r2(d) = 1; and to minimise the required resources during production, we let r3(b) = 1. We
use Eratio(−r1/c)(−v1) in the local specifications, in particular, to establish an assume-guarantee contract between the
components. The global specification for Gre is

ϕre = Eratio(r2/c)(v2) ∧ Eratio(−r3/c)(−v3),

meaning that we want to maximise the number of widgets produced, and minimise the amount of resources required
(see Remark 2). Locally, we consider the specifications

ϕ1
re = Eratio(−r1/c)(−v1) → Eratio(r2/c)(v2),

ϕ2
re = Eratio(−r1/c)(−v1) ∧ Eratio(−r3/c)(−v3),

for G1
re and G2

re, respectively, where we use the objective to minimise cooling as a contract between the components.

2.5. A Two-Step Semantics for Stochastic Games

PAs arise naturally from games when one considers fixing only the Player ♦ strategy, and then checking against all
Player � strategies if it is winning. Later in the paper, for instance in Theorem 15, we will show how to automatically
lift results from the PA (and MDP) world to the game domain (from the literature or proved here). For this, we will
need to map strategies of the induced PA to Player � strategies of the original game. To facilitate the lifting, we adopt
a two-step semantics defined as follows. In the first step we apply a Player ♦ strategy to a game, leading to an induced
PA. Then, in the second step, we apply a Player � strategy to the induced PA, resulting in a probability measure that
is the same as that obtained by applying both strategies simultaneously (Proposition 3).

2.5.1. First step: inducing the PA

We consider a DU Player ♦ strategy π (note that this is without loss of generality by Proposition 1). The induced
PA Gπ essentially corresponds to the game where π has been applied. The memory of Player ♦ is encoded in the

12

s0 m0

s1 m1 s2 m2

s3 m3 s4 m4 s5 m5 s6 m6

p 1 − p

a b c d

s0,m0

s1 s3,m1 s1 s4,m1 s2,m2

s3,m3 s4,m4
s5,m5 s6,m6

pp1 pp2 1 − p

a b c d

Figure 6: Stochastic game G (left) and induced PA Gπ (right). Memory elements are represented on the right of each state of the game, and encoded
in the states of the PA. At s1 with memory m1, the strategy π plays a and b with probability p1 and p2, respectively.

states of the induced PA as depicted in Figure 6. To allow alternation between stochastic and Player � states in the
induced PA, we transform each Player ♦ state s′ into several Player � states, each of the form (s′, s′′), corresponding
to the choice of s′′ ∈ S © as a successor of s′. Any incoming transition s → s′ of the game is thus replaced by several
transitions in the PA, each of the form s → (s′, s′′) with probability given as a product of Δ(s, s′) and the probability
of s′′ given by πc in s′. Formally, the induced PA is defined as follows.

Definition 6. Let G = 〈S , (S ♦, S�, S©), ς,A, χ,Δ〉 be a game and let π be a Player ♦ DU strategy. The induced PA
Gπ is 〈S ′, (S ′

�, S
′
©), ς′,A, χ′,Δ′〉, where S ′

� ⊆ (S� ∪ S♦ × S©) ×M and S ′
© ⊆ S© ×M are defined inductively as

the reachable states from the initial distribution ς′, defined by ς′(s, πd(s)) = ς(s); and through the transition relation

Δ′ defined as follows. Given states s ∈ S ′ of the form (s,m) and t ∈ S ′ of the form (t,m′) or ((t, t′),m′), Δ′(s, t) is not

null only if m′ = πu(m, t) and is defined by

Δ′(s, t) def
= Δ(s, t) ·

{
πc(t,m′)(t′) if t

def
= (t, t′) ∈ S♦ × S ©;

1 otherwise

Every state of the form ((s, s′),m) has only one successor (thus taken with probability 1), which is (s′, πu(m, s′)). The

labelling function is defined by χ′(s) = χ(s) for s ∈ S©.

Example 4. Figure 2 shows the PA induced from the game of Figure 1 by the memoryless strategy that randomises in

s0 between s1 and s3 with the same probability 1
2 , as in Example 2. The single memory element m is omitted for the

sake of readability and states ((s0, s1),m), ((s0, s3),m) are called s′0 and s′′0 respectively.

Remark 4. The induced PA corresponding to a finite DU strategy has a finite state space, which was not the case

with the definition of [5]. We rely on this fact to prove numerous results in the paper.

2.5.2. Second step: inducing the DTMC

Given a game G and a DU strategy π, every strategy σ of the induced PA Gπ induces a DTMC (Gπ)σ. One can
define a mapping, still denoted by pathG, from paths of this DTMC to the game. Formally, every state of the DTMC
is of the form ((s,m), n) or (((s, s′),m), n), which is mapped by pathG to s.

An associated probability measure can thus be defined by

P
(π,σ)
G (λ) def

=
∑

{P(Gπ)σ (λ′) | pathG(λ′) = λ},
called the two-step semantics.

The two-step semantics is justified by Proposition 3, showing equivalence with the original semantics of Defini-
tion 4.

Proposition 3 (Equivalence of semantics). The two-step semantics is equivalent to the semantics of the game of

Definition 4 in the following sense. Let G be a game and π a DU strategy, then for every strategy σ in G (resp. σ′ in

Gπ) one can build a strategy σ′ in Gπ (resp. σ in G) such that Pπ,σG = P
(π,σ′)
G . Moreover, if π has finite memory, then σ

has finite memory if and only if σ′ has finite memory.

13

To build a Player � strategy σ in a game from a strategy σ′ in the induced PA, it suffices to simulate the deter-
ministic memory of π (available from the state of the induced PA) in the memory of σ. If the strategies π and σ′ are
finite then so is the memory of σ. The other direction is straightforward; if σ is a strategy in a game, then one can use
it in an induced PA without even taking care of the memory of π.

3. Conjunctions of Pmp Objectives

In this section we consider conjunctions of Pmp objectives, which maintain several mean payoffs almost surely
above the corresponding thresholds. We first show in Corollary 2 that we can decide which player wins in co-NP
time. Next, to synthesise strategies, we introduce a reduction to expected energy (EE) objectives in Lemma 5. We
then construct succinct ε-optimal finite SU strategies in Theorem 7.

3.1. Decision Procedures

In this section we present our decidability result of the achievability problem for Pmp CQs, based on a general
class of objectives defined via shift-invariant submixing functions. A function � : ΩG → R is shift-invariant if
∀κ ∈ Ωfin

G , λ ∈ ΩG . �(κλ) = �(λ). A function � : ΩG → R is submixing if, for all κ, κ′, λ ∈ ΩG such that λ is an
interleaving of κ and κ′, it holds that �(λ) ≤ max{�(κ), �(κ′)}. Given a measurable function �, we write P(�) for the
objective P(� ≥ 0) = 1.

We obtain a co-NP algorithm by studying the strategies Player � needs to win for Pmp objectives against
Player ♦, and using that the games are qualitatively determined for Pmp objectives. We have from [35] that MD
strategies suffice for Player ♦ to win for single-dimensional shift-invariant submixing functions.

Theorem 1 (Theorem V.2 of [35]). Let G be a game, let � : ΩG → R be measurable, shift-invariant and submixing.

Then Player � has an MD strategy σ̃ such that infπ Eπ,σ̃G [�] = supσ infπ Eπ,σG [�].

Further, a game G with specification ϕ is qualitatively determined if either Player ♦ has a winning strategy, or
Player � has a spoiling strategy. It is called Player �-positional if the following implication holds: if Player � has a
spoiling strategy then it has an MD spoiling strategy.

Theorem 2 (Theorem 7 of [34]). Stochastic games with shift-invariant winning condition are qualitatively deter-

mined.3

Given a measurable subset A of ΩG, we denote by 1A its indicator function, that is, 1A(λ) def
= 1 if λ ∈ A and 0

otherwise.

Lemma 3. Let �1, . . . , �n be shift-invariant submixing functions, and let A
def
= {λ | ∃i . − �i(λ) < vi}. The function 1A is

shift-invariant and submixing.

Proof. Since �i is shift-invariant for all i, also 1A is shift-invariant. We now show that 1A is submixing. Let λ, κ, κ′ ∈
ΩG such that λ is an interleaving of κ and κ′. If 1A(κ) = 1 or 1A(κ′) = 1 then 1A(λ) ≤ max{1A(κ), 1A(κ′)}. Otherwise,
1A(κ) = 1A(κ′) = 0, that is, −�i(κ) ≥ vi and −�i(κ′) ≥ vi for all i. Since �i is submixing, �i(λ) ≤ max{�i(κ), �i(κ′)}, for
all i. Then, for all i, vi ≤ min{−�i(κ),−�i(κ′)} ≤ −�i(λ). Thus, 1A(λ) = 0 ≤ max{1A(κ), 1A(κ′)} as expected.

Theorem 3. A game G with specification P(−��), where �1, . . . , �n are shift-invariant submixing functions, is Player �-

positional.

Proof. Assume that Player � has a spoiling strategy σ. It means that for every Player ♦ strategy π, it holds that
E
π,σ
G [1A] > 0 with A as in Lemma 3. Since, by Lemma 3, 1A is submixing and shift-invariant, by Theorem 1, there

exists an MD Player � strategy σ̃ in G such that ∀π .Eπ,σ̃G [1A] > 0, concluding the proof.

Theorem 4. Let G be a game with a specification ϕ qualitatively determined and Player �-positional. If for PAs M
with specification ϕ the problem ∃σ,Mσ |= ϕ is in the time-complexity class A, then the problem ∃π .∀σ .Gπ,σ |= ϕ is

in co-NP if A ⊆ co-NP, and in A if A ⊇ co-NP.

3 This result was originally stated for the weaker assumption of tail conditions, see the discussion in III.B. of [35].

14

s0s4

(0, 1)
s1

s2

s3 s5

(1, 0)

Figure 7: Omitted rewards on s0, s1, s2 and s3 are null. Player ♦ needs infinite memory to win optimally for Pmp(�r)(1
4 ,

1
4), but finite-memory DU

strategies are sufficient for ε-optimality for MDPs ([6]) and for stochastic games as we show in Theorem 13 (example taken from [6]).

Proof. By qualitative determinacy, the decision problem of interest is equivalent ∀σ .∃π .Gπ,σ |= ϕ. The answer
is negative exactly if ∃σ .∀π .Gπ,σ |= ¬ϕ, which is equivalent to deciding whether some MD strategy σ satisfies
∀π .Gπ,σ |= ¬ϕ. Such an MD spoiling strategy σ can be guessed in polynomial time. To decide ∀π .Gπ,σ |= ¬ϕ, it
suffices to decide its negation ∃π .Gπ,σ |= ϕ, and this problem is in the class A. The overall complexity is hence the
maximum complexity of co-NP and A.

Using Theorems 2 and 3, we obtain the following corollary.

Corollary 1. Let G be game, let �1, . . . , �n be shift-invariant submixing functions, and suppose the problem whether

there exists a strategy σ for a PA M such that Mσ satisfies P(−��) is in the time-complexity class A. The problem

∃π .∀σ .Gπ,σ |= P(−��) is in co-NP if A ⊆ co-NP, and in A if A ⊇ co-NP.

Applying this to mean payoff and using Theorem 7 of [61] for co-NP hardness, we obtain the following corollary
(see also4 [17]).

Corollary 2. The Pmp CQ achievability problem is co-NP complete.

Proof. To show that the problem lies in co-NP, we use previous results and the fact that ∃σ .Pmp(�r)(�v) is decidable in
polynomial time for PAs, by virtue of B.3 of [6]. The problem is already co-NP hard for the subclass of non-stochastic
games (Theorem 7 of [61]).

Finally, we consider the complexity of Pareto set computation for Pmp CQs. We approximate the Pareto set of
an n-dimensional conjunction, Pmp(�r), via gridding, by some grid-size ε, the set of targets in the hyperrectangle
{�v ∈ R

n | ∀i . − ρ∗ ≤ vi ≤ ρ∗}, where ρ∗ def
= maxi,s∈S |ri(s)|. At every such point �v in the grid, we call the co-NP

decision procedure of Corollary 2, and hence obtain an ε-approximation of the Pareto set by taking the downward
closure of the set of achievable points. There are ρ∗/ε sections per dimension, and 2|S | strategies to be checked with
the polynomial-time oracle of B.3. in [6], and so we obtain the following theorem.

Theorem 5. An ε-approximation of the Pareto set Pareto(Pmp(�r)), for an n-dimensional conjunction of Pmp objec-

tives, can be computed using O((ρ∗/ε)n) calls to the co-NP oracle of Corollary 2.

3.2. Finite Memory Strategies

In general, infinite memory might be required to achieve a multi-objective query: in the game in Figure 7, Player ♦
has to play the transitions between s0 and s1 in order to achieve Pmp(�r)(1

4 ,
1
4), but can only do so optimally if in the

limit these transitions are never played; this fact holds already for MDPs, see [6]. Nevertheless, we are able to show
that finite-memory DU strategies are sufficient for ε-optimality for stochastic games, see Theorem 13. For MDPs, this
was proved in [6]. We work with SU strategies, which can be exponentially more succinct than DU strategies, and
were shown to be equally powerful if the memory is not restricted in Proposition 1.

4The hardness result is also stated in [17] (Section 5), which was published after this paper was submitted.

15

3.2.1. ε-optimality with finite DU Player ♦ strategies

The following theorem states that Player ♦ can achieve any target ε-optimally with a finite DU strategy if it is
achievable by an arbitrary Player ♦ strategy.

Theorem 6. Given a game and a multi-dimensional reward structure �r, then it holds that

Pareto(Pmp(�r)) = ParetoFDU(Pmp(�r)).

This theorem is proved in Appendix B.1.

3.2.2. Succinctness of SU strategies

We justify our use of SU strategies by showing that they can be exponentially more succinct than DU strategies.

Proposition 4. Finite SU strategies can be exponentially more succinct than finite DU strategies for expected and

almost sure mean-payoff.

The proof method is based on similar results in [16, 57]. The proof is included in Appendix B.2.

3.3. Inter-Reduction between Pmp and EE

We demonstrate in this section how strategy synthesis for almost sure mean-payoff objectives reduces to synthesis
for expected energy objectives, under ε-optimality. Our use of energy objectives is inspired by [16], where non-
stochastic games are considered. We first show that for finite DU strategies of Player ♦ it is sufficient to consider
finite Player � strategies.

3.3.1. Finite Player � strategies are sufficient for EE
When Player ♦ fixes a finite DU strategy π, aiming to satisfy a conjunction of EE objectives, then the aim of

Player � is to spoil at least one objective in the finite induced PA Gπ. This enables us to work with single-dimensional
rewards in PAs and DTMCs, depending on whether we fix only one or two strategies.

In the following we use boldface notation for vectors over the state space, reserving the arrow notation for vectors
over the reward dimensions. Let M = 〈S , (S�, S©), ς,A, χ,Δ〉 be a PA, and let r be a single-dimensional reward
structure. For a given Player � strategy σ, write Δσ for the transition function of the induced DTMC Mσ. The
sequence of expected non-truncated energies is inductively defined for all states (s,m) of Mσ by e0

s,m
def
= 0, and, for all

k > 0,
ek

s,m
def
= r(s) +

∑
(t,m′)∈Δσ(s,m)

Δσ((s,m), (t,m′)) · ek−1
t,m′ .

The Player � strategy σ is spoiling if for every shortfall v0 there exists a state (s,m) and k ≥ 0 such that ek
s,m ≤ v0.

To witness whether Player � can spoil, without needing to induce the DTMC Mσ, we also define the sequence (uk)k≥0

of single-dimensional truncated energy, parametrised by states of the PA M. That is, for all states s of M put u0
s

def
= 0,

and, for every k > 0, we define

uk+1
s

def
=

⎧⎪⎪⎨⎪⎪⎩
min(0, r(s) +mint∈Δ(s) uk

t) if s ∈ S�
min(0, r(s) +

∑
t∈Δ(s)Δ(s, t)uk

t) if s ∈ S©.
(2)

In Player � states, the minimum over the next states models the worst-case spoiling choice that Player � can take
while in stochastic states, where the prescribed distribution is applied. The cut-off of positive values is made to ensure
that (uk)≥0 is a non-increasing sequence that hence converges towards a limit u∗ in (R≤0 ∪ {−∞})|S |. Let S fin (resp.
S∞) be the set of states s of M such that u∗

s is finite (resp. infinitely negative). We now show that S ∞ � ∅ witnesses
that Player � can spoil the EE objective with a finite strategy.

Proposition 5. Let M be a finite PA with a one-dimensional reward structure r. If S ∞ � ∅, then Player � has a finite

strategy to spoil EE(r − ε), for every ε > 0.

This proposition is proved in Appendix B.3.

16

Lemma 4. If Player � can spoil EE(r), in a finite PA with a one-dimensional reward structure r, then S ∞ � ∅.

Finally, with the help of Lemma 4 and Proposition 5, we can show that it is sufficient to consider finite memory
Player � strategies for EE objectives.

Proposition 6. Let π be a finite DU Player ♦ strategy. If π wins for EE(�r−�ε) for some ε > 0 against all finite Player �
strategies, then it wins for EE(�r) for all Player � strategies.

Proof. We show the contrapositive. Assume the strategy π loses for EE(�r) against an arbitrary strategy of Player �.
Then there is a coordinate r of the rewards �r such that Player � wins EE(r) in the induced PA Gπ. By Lemma 4 this
implies that S∞ � ∅, which by Proposition 5 yields that Player � spoils EE(r − ε), and hence EE(�r − �ε) for every ε,
with a finite memory strategy.

3.3.2. Transforming between EE and Pmp
We are now ready to show that EE and Pmp objectives are equivalent up to ε-achievability, and the proof is

included in Appendix B.5.

Lemma 5. Given a finite strategy π for Player ♦, the following hold:

(i) if π achieves EE(�r), then π achieves Pmp(�r)(�0); and

(ii) if π is DU and achieves Pmp(�r)(�0), then π achieves EE(�r + �ε) for all ε > 0.

The above reduction to energy objectives enables the formulation of our main method, see Theorem 7 below,
for computing strategies achieving EE(�r + �ε), and hence, by virtue of Lemma 5(i), deriving ε-optimal strategies
for Pmp(�r)(�0). Lemma 5(ii) guarantees completeness of our method, in the sense that, for any target �v such that
Pmp(�r)(�v) is achievable, we compute an ε-optimal strategy. If Pmp(�r)(�v) is not achievable, it is detected by the
decision procedure of Corollary 2.

3.4. Strategy Synthesis

This section describes the strategy synthesis method for EE objectives (and hence for Pmp objectives as shown
in the previous section) and proceeds as follows. We first describe in Section 3.4.1 how to characterise the set of
achievable shortfalls for an EE objective in every state of the game. This set of shortfalls is a collection of convex
downward-closed subsets of Rn (one per state) that we represent using finitely many corner points; this set is obtained
via iterating a Bellman operator acting on a collection of subsets of Rn. The strategy synthesised by our synthesis
algorithm for EE objectives, given in Section 3.4.2, uses as memory the corner points that finitely represent the set of
achievable shortfalls.

3.4.1. Shortfall computation by iteration of a Bellman operator

Before we introduce the Bellman operator, we outline the construction of the space that it acts on. In a game with a
specification consisting of n objectives, we keep a set of n-dimensional real-valued vectors for each of the |S | states and
moves, where each such n-dimensional vector �v intuitively corresponds to an achievable target for multi-dimensional
truncated energy.

Formally, the construction is as follows. Given M ≥ 0 and a set A ⊆ R
n, define the M-downward closure of A by

dwc(A) ∩ BoxM , where BoxM
def
= [−M, 0]n. The set of convex closed M-downward-closed subsets of Rn is denoted by

Pc,M and endowed with the partial order � defined by A � B if dwc(B) ⊆ dwc(A). For a set X ⊆ (Rn)|S | and state s,
we denote by Xs the sth component of X. We define the space CM

def
= P|S |

c,M and endow it with the product partial order

� defined by Y � X if, for every s ∈ S , Ys � Xs. The set ⊥M
def
= Box|S |

M is a bottom element for this partial order (that
is, for all X ∈ CM , ⊥M � X). More precisely, we have an algebraic characterisation of CM as a complete partial order
(CPO), whose definition is given in Appendix B.6 (see also [23]).

Proposition 7. (CM ,�) is a complete partial order.

17

This proposition is shown in Appendix B.6.
We now define operations on the CPO CM . Given A, B ∈ Pc,M , let A + B

def
= {�x + �y | �x ∈ A, �y ∈ B} (the Minkowski

sum). Given A ∈ Pc,M , let α × A
def
= {α · �x | �x ∈ A} for α ∈ R, and let A + �x

def
= {�x′ + �x | �x′ ∈ A} for �x ∈ R

n. Given Y ∈ CM ,
which is a vector of sets, and �y ∈ (Rn)|S |, define [Y + �y]s

def
= Ys + �y.

The Bellman operator FM. In games, in order to construct Player ♦ strategies for EE objectives, we consider
the truncated energy for multi-dimensional rewards, which we capture via a Bellman operator FM,G over the CPO
CM , parameterised by M ≥ 0. Our operator FM,G is closely related to the operator for expected total rewards in [20],
but here we cut off values outside of BoxM , similarly to the controllable predecessor operator of [16] for computing
energy in non-stochastic games. Bounding with M allows us to use a geometric argument to upper-bound the number
of iterations of our operator (Proposition 10 below), replacing the finite lattice arguments of [16]. We define the
operator FM,G : CM → CM by

[
FM,G(X)

]
s

def
= BoxM ∩ dwc

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝�r(s) +

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
conv(

⋃
t∈Δ(s) Xt) if s ∈ S♦⋂

t∈Δ(s) Xt if s ∈ S�∑
t∈Δ(s)Δ(s, t) × Xt if s ∈ S©

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

for all s ∈ S . If the game G is clear from context, we write just FM . The operator FM computes the expected truncated
energy Player ♦ can achieve in the respective state types. In s ∈ S ♦, Player ♦ can achieve the values in successors
(union), and can randomise between them (convex hull). In s ∈ S �, Player ♦ can achieve only values that are in all
successors (intersection), since Player � can pick arbitrarily. Lastly, in s ∈ S ©, Player ♦ can achieve values with the
prescribed distribution.

Fixpoint of FM. A fixpoint of FM is an element Y ∈ CM such that FM(Y) = Y . We show that iterating FM on ⊥M

converges to the least fixpoint of FM .

Proposition 8. FM is order-preserving, and the increasing sequence Fk
M(⊥M) converges to the set fix(FM) defined by

[fix(FM)]s
def
= [

⋂
k≥0 Fk

M(⊥M)]s. Further, fix(FM) is the unique least fixpoint of FM.

This proposition is a consequence of Scott continuity of FM and the Kleene fixpoint theorem. For the proof see
Appendix B.6.

Examplere 5. Continuing our running example of Section 2.4, now consider the game G2
re with specification ϕ2

re[(1
4 ,

3
4)].

We use Proposition 2 to convert ϕ2
re[(1

4 ,
3
4)] to the CQ Pmp(r′1, r

′
3)(0, 0) with r′1 = −r1 +

1
4 · c and r′3 = −r3 +

3
4 · c. The

new rewards are hence r′1(a) = − 3
4 , r′1(b) = 1

4 , r′3(a) = 3
4 , r′3(b) = − 1

4 , and zero otherwise. In Figure 8 we show the

fixpoint fix(FM) for the game G2
re equipped with such rewards.

Non-emptiness of the fixpoint. Non-emptiness of the fixpoint of FM for some M > 0 is a sufficient condition for
computing an ε-optimal strategy. To show the completeness of our method, stated in Theorem 7 below, we ensure
in the following proposition that, when an ε-optimal strategy exists, then the fixpoint of FM for some M > 0 is
non-empty.

Proposition 9. For every ε > 0, if EE(�r − �ε) is achievable by a finite DU strategy, then [fix(FM)]s � ∅ for every

s ∈ supp(ς) for some M ≥ 0.

This proposition is proved in Appendix B.7.
An ε-approximation of the fixpoint. We approximate fix(FM) in a finite number of steps, and thus compute the set

of shortfall vectors required for Player ♦ to win for EE(�r + �ε) given ε > 0. By Proposition 8, the fixpoint fix(FM)
is the limit of Fk

M(⊥M) as k → ∞. We let Xk def
= Fk

M(⊥M). Hence, by applying FM k times to ⊥M we compute the
sets Xk

s of shortfall vectors at state s, so that, for any �v0 ∈ Xk
s , Player ♦ can keep the expected energy above �v0

during k steps of the game. We illustrate this fixpoint computation in Figure 9: at iteration k, the set Xk
s of possible

shortfalls until k steps is computed from the corresponding sets Xk−1
t for successors t of s at iteration k− 1. The values

are restricted to be within BoxM , so that obtaining an empty set at a state s in the value iteration is an indicator of
divergence at s. Moreover, given some ε > 0, if, after a finite number of iterations k, successive sets Xk+1 and Xk

satisfy Xk+1 + ε � Xk and Xk
s � ∅ for every s ∈ supp(ς), then we can construct a finite-memory strategy achieving

EE(�r + �ε) (see Section 3.4.2 just below).
In the following proposition we state a bound on the number of steps k necessary to obtain Xk+1 + ε � Xk.

18

t0

r′1
− 3

4
r′3

− 3
4

m1

m0

a

r′1
− 3

4
r′3

m2

q1

r′1
− 1

4
r′3

− 1
2

− 3
4

m3

m4

t1

r′1
− 1

4
r′3

− 1
2

− 3
4

m5

m6

b

r′1
− 1

2
r′3

− 1
4

− 3
4

m7

m8

b

r′1
− 1

4
r′3

− 1
2

− 3
4

m9

m10

t2

r′1
− 3

4
r′3

− 3
4

m12

m11

τ

r′1
− 3

4
r′3

− 3
4

m14

m13

Figure 8: Fixpoint for FM in G2
re of Figure 5 with rewards given in Example 5. Each state s has an associated set fix(FM)(s) pointed to by the

blue (dashed) arrows, we do not show the box BoxM . The corner points are the memory elements of the strategy constructed in Example 6 of
Section 3.4.2.

Xk−1
t1

Xk−1
t2

Xk
s

−6 −4 −2

−6

−4

−2

r1

r2
−M

−M

(a) Player ♦ state s.

Xk−1
t1

Xk−1
t2

Xk
s

−6 −4 −2

−6

−4

−2

r1

r2
−M

−M

(b) Player � state s.

Xk−1
t1

Xk−1
t2

Xk
s

−6 −4 −2

−6

−4

−2

r1

r2
−M

−M

(c) Move s = (a, μ); μ uniform.

Figure 9: Illustration of the fixpoint computation for a state s with successors t1, t2, and rewards r1(s) = 0.5 and r2(s) = 0.

Proposition 10. Given M, ε > 0, and a sequence (Xk)k≥0 over CM such that Xk � Xk+1 for every k ≥ 0, there exists

k ≤ k∗∗ def
=

[
n((�M

ε
� + 1)2 + 2)

]|S |
, such that Xk+1 + ε � Xk.

This proposition is proved in Appendix B.8 using Theorem 4.5.2 of [53] on graphs.

3.4.2. The synthesis algorithm

The synthesis algorithm for Pmp CQs (Algorithm 1) computes an SU strategy that is ε-optimal, if it exists, and
returns null otherwise.

Construction of the strategy. We now show how to construct a strategy π achieving EE(�r+�ε) (and hence Pmp(�r+�ε))
in a game G = 〈S , (S♦, S�, S©), ς,A, χ,Δ〉, for a given ε ≥ 0, when a constant M and a set X ∈ CM , such that
FM(X) + ε � X and [FM(X)]s � ∅ for every s ∈ supp(ς), is provided (we will see in Algorithm 1 how such a constant
M and set X can be computed). For every state s, Xs is represented with its corner points C(Xs); they constitute the
memory of the strategy in state s.

19

Denote by TX ⊆ S the set of states and moves s for which [FM(X)]s � ∅. For any state t and point �q ∈ Xt, there is
some �q t ≥ �q that can be obtained by a convex combination of extreme points of C(Xt); the strategy we construct uses
C(Xs) as memory, randomising to attain the convex combination �q.

We define π = 〈M, πc, πu, πd〉 as follows.

• M def
=

⋃
s∈TX

{(s, �p) | �p ∈ C(Xs)};
• πd is defined by πd(s) = (s, �q s

0) for any s ∈ TX and arbitrary �q s
0 ∈ C(Xs);

• The update πu and next move function πc are defined as follows: at state s with memory (s, �p), for all t ∈ Δ(s),
pick a vector �q t =

∑n
i=1 β

t(i) · �q t
i which is a convex combination of extreme points (i.e. �q t

i ∈ C(Xk
t) for 1 ≤ i ≤ n

and βt ∈ D([1, n])) and a distribution α ∈ D(Δ(s) ∩ TX) if s ∈ S♦ such that

for s ∈ S♦:
∑

t α(t) · �q t ≥ �p − �r(s) − �ε, (3)
for s ∈ S�: �q t ≥ �p − �r(s) − �ε (for all t ∈ Δ(s)), (4)
for s ∈ S©:

∑
t∈Δ(s)Δ(s, t) · �q t ≥ �p − �r(s) − �ε : (5)

and let, for all t ∈ Δ(s) ∩ TX ,
πu((s, �p), t)(t, �q t

i) def
= βt(i) for all i

πc(s, (s, �p))(t) def
= α(t) if s ∈ S♦.

The left-hand side of inequalities (3), (4) and (5) should be interpreted as an upper bound on the least possible expected
memory vector obtained after a transition starting from the current state s with memory (s, �p). It is greater than the
current memory vector �p minus the current reward �r(s) further shifted by �ε. These equations iterated during N steps
show that the sum of the memory vector after N steps and of the cumulative reward rewN(�r + �ε) is in expectation
greater than −M in all dimensions. As the memory elements are vectors that are non-positive in every dimension, this
justifies the satisfaction of EE(�r + �ε). This fact is formally stated in the following lemma proved in Appendix B.9.

Lemma 6. For every ε ≥ 0, if FM(X) + ε � X and [FM(X)]s � ∅ for every s ∈ supp(ς), then the strategy π defined

above achieves EE(�r + �ε).

Examplere 6. In Figure 10 we give the strategy winning for the objective of Example 5 constructed from the fixpoint

fix(FM) shown in Figure 8.

The Algorithm. We can now summarise our synthesis algorithm. Given a game G, a reward structure �r with target
�v, and ε > 0, Algorithm 1 computes a strategy winning for Pmp(�r)(�v−ε). The algorithm terminates if the specification
is achievable, as a large enough value for M in BoxM exists according to Proposition 9, and, if the specification is not
achievable, this is captured by our decision procedure of Corollary 2. Note, however, that before starting the algorithm
we do not have an a-priori bound on M.

Theorem 7. Algorithm 1 terminates, returning a finite ε-optimal strategy for Pmp(�r)(�v) if it is achievable, and re-

turning null otherwise.

Proof. The case when Pmp(�r−�v)(�0) is not achievable is covered by Corollary 2. Suppose Pmp(�r−�v)(�0) is achievable
then, by Theorem 6, Pmp(�r−�v+ ε8)(�0) is achievable by a finite DU strategy. By Lemma 5 (ii), the objective EE(�r−�v+ ε4)
is achievable by a finite DU strategy. Applying Proposition 9 with �r′ def

= �r − �v + ε4 + ε′ and ε′ = ε4 , we have that there
exists an M such that, for every s ∈ supp(ς), [fix(FM)]s is nonempty for the reward structure �r − �v + ε2 . The condition
in Line 8 is then satisfied. Further, due to the bound M on the size of the box BoxM in the value iteration, the inner
loop terminates after a finite number of steps, as shown in Proposition 10. Then, by Lemma 6, the strategy constructed
in Line 9 (with degradation factor ε2 for the reward �r −�v+ �ε2) satisfies EE(�r −�v+ �ε), and hence, using Lemma 5(i), we
have Pmp(�r)(�v − �ε).

20

t0

m1

m0

q1 m4

a m2

t1 m6

b m10

b m8

t2
m12

m11

τ

m14

m13

1
3

1
3

Figure 10: Strategy constructed from the fixpoint in Figure 8, using the memory mapping shown therein. This strategy is winning for the objective
ϕ2

re[(1
4 ,

3
4)] as explained in Example 5. The initial memory element is m12. The update function, represented by (black) arrows, uses randomisation

when entering t2, where for instance πu(m10, t2)(m12) = 1/3. In t0, the thick (blue) arrows going from memory elements to states represent the
choice function, which is non-stochastic in this case.

Algorithm 1 PMP Strategy Synthesis

1: function SynthPMP(G, �r, �v, ε)
2: if Corollary 2 for Pmp(�r − �v)(�0) yields no then return null;
3: else
4: Set the reward structure to �r − �v + ε2 ; M ← 2; X ← ⊥M;
5: while true do
6: while FM(X) + ε2 �� X do
7: X ← FM(X);
8: if [FM(X)]s � ∅ for every s ∈ supp(ς) then
9: Construct π for ε2 using Lemma 6; return π;

10: else
11: M ← M2; X ← ⊥M;

4. Boolean Combinations for Expectation Objectives

In this section we consider Boolean combinations of expectation objectives. First, in Section 4.1 we show how
to transform Boolean combinations of a general class of expectation objectives to conjunctions of the same type of
objective. Then, in Section 4.2, we show how to synthesise strategies for Emp objectives using Pmp objectives for
games with the controllable multichain property. These two main results of this section then allow us to synthesise
(ε-optimally) strategies for arbitrary Boolean combinations of Emp objectives.

4.1. From Conjunctions to Arbitrary Boolean Combinations

In this section we consider generic expectation objectives of the form E[�] ≥ u and their Boolean combinations.
We only require that the function � is integrable, that is, for every pair of strategies π and σ, Eπ,σG [|�|] is well-defined
and finite. A function � is called globally bounded by B if, for every π and σ, Eπ,σG [|�|] ≤ B. Given n integrable
functions �i : ΩG → R for 1 ≤ i ≤ n and a target vector �u ∈ R

n, we denote by E(��)(�u) the conjunction of objectives∧n
i=1 E[�i] ≥ ui.

We are mainly interested in the following objectives, expressible in terms of integrable and globally bounded
functions.

• The expected total rewards in stopping games of [20, 21] For a definition of these objectives, we refer the
reader to [20, 21], where a special case of the results of this section was presented.

21

s0

s1a s2 b

s3s5

c : (−1, 1)
s4 s6

d : (1,−1)

r1−1

r2

−1

Figure 11: Left: A game with the winning condition ϕ = E(mp(r1)) ≥ u1 ∨ E(mp(r2)) ≥ u2 (this game can be seen as the game of Figure 4 with
the roles of players and signs of rewards inverted). Right: Its Pareto set depicted in grey. The white set is the set U in the proof of Lemma 7. The
dashed line is a hyperplane that separates the set U from any vector (u1, u2) for which E(2mp(r1)+mp(r2)) ≥ 2u1 + u2 is achievable. Such vectors
constitute the hashed set.

• The expected mean-payoff objectives. A global bound for this objective is B = maxS |r(s)|.
• The expected ratio rewards. They are particularly well suited to our compositional framework, as they are

defined on traces and admit synthesis methods for Boolean combinations. A global bound for ratio(r/c) is B =

maxS |r(s)|/cmin since |ratio(r/c)| is almost-surely bounded by B. This result (already claimed in Section 2.3.1)
is proved in Appendix C.1.

We establish that Boolean combinations of expectation objectives reduce to conjunctions of linear combinations of
expectation objectives. Any Boolean combination of objectives can be converted to conjunctive normal form (CNF),
that is, of the form

∧n
i=1

∨mi

j=1 E
π,σ
G [�i, j] ≥ ui, j. The total number of objectives is denoted by N def

=
∑n

i=1 mi. We denote
by �ui the vector whose jth component is ui, j for 1 ≤ j ≤ mi and by �u = (�u1, . . . , �un) ∈ R

N the concatenation of all the
�ui for 1 ≤ i ≤ n. We use the same notational convention for other vectors (e.g. the vector of weights �x below) and the
reward structure �ρ. Given two vectors �u, �x ∈ R

N , we denote by �x ·n �u def
= (�x1 · �u1, · · · , �xn · �un).

Theorem 8. Let G be a game, let ��i : ΩG → R
mi be integrable functions, and �ui ∈ R

mi , for 1 ≤ i ≤ n and let π be a

Player ♦ strategy. The following propositions are equivalent:

• There exist non-zero weight vectors �xi ∈ R
mi

≥0 for 1 ≤ i ≤ n such that π is winning for E(�x ·n ��)(�x ·n �u);

• π is winning for ψ =
∧n

i=1
∨mi

j=1 E[�i, j] ≥ ui, j.

Here winning means either winning against all strategies or winning against all finite memory strategies.

The theorem is a straightforward consequence of the following lemma that shows how disjunctions of expectation
objectives reduce to single-dimensional expectation objectives.

Lemma 7. Given a game G, an integrable function �� : ΩG → R
m, a target �u ∈ R

m, and a Player ♦ strategy π, there is

a non-zero vector �x ∈ R
m
≥0 such that ϕ = E

π,σ
G [�x · ��] ≥ �x · �u holds for all (finite) σ if and only if ψ =

∨m
j=1 E

π,σ
G [� j] ≥ u j

holds for all (finite) σ.

Before proving this lemma, we illustrate it with the help of an example.

Example 7. Consider the game in Figure 11 with the winning condition ϕ = E(mp(r1)) ≥ u1 ∨ E(mp(r2)) ≥ u2.

In this game the mean payoff can be defined with true limit (instead of lim) as there are only two paths and the

limit exists for these paths (as for the game of Figure 4). Note that the objective of Player �, ¬ϕ, is equivalent to

E(mp(−r1)) ≥ −u1 ∧ E(mp(−r2)) ≥ −u2, which is the objective of Player ♦ in the game of Figure 4 (with signs of

rewards inverted). The Pareto set of the game is denoted in grey (it can be inferred from the game of Figure 4 by

inverting the direction of axis and by changing player roles). The weight vector (x1, x2) = (2, 1) yields the objective

ψ = E(2mp(r1) + mp(r2)) ≥ 2u1 + u2. It is equivalent to the single-dimensional objective E(mp(r)) ≥ 2u1 + u2 with

r = 2r1 + r2, that is, r(c) = −1, r(d) = 1 and r is null otherwise. Player � minimises E(mp(r)) by choosing to move

to s1 in s0, which yields the mean payoff of −1/2. The Pareto set for ϕ thus contains the half-space of inequality

2u1 + u2 ≤ −1/2 (see the hashed set in Figure 11). The same reasoning with weight vectors (1, 0), (−1, 1) and (0, 1)
yields the three half-spaces of inequalities u1 ≤ −1/2, u1 + u2 ≤ 0 and u2 ≤ −1/2, respectively.

22

We now proceed to the proof of Lemma 7.

Proof. The proof method is based on a similar result in [20]. Fix a strategy π.

“If” direction. Assume π achieves ψ. Let U
def
= upc({�y ∈ R

m | ∃σ .Eπ,σG [��] = �y}) (see Figure 11). Note that this set
is convex. Indeed, for every two vectors �y1, �y2 ∈ U and weight p one can construct a strategy for p�y1 + (1 − p)�y2 by
choosing, with the initial memory distribution, with probability p to play a strategy for �y1 and with probability 1 − p

to play a strategy for �y2. Moreover, the strategy is finite if constructed from finite strategies. Since π achieves ψ, there
is a j satisfying y j ≥ u j for every �y ∈ U. We have that �u � int(U) where int(U) is the interior of U. Suppose otherwise,
then there is ε > 0 s.t. �u−�ε ∈ U, contradicting that for all �y ∈ U there is a j satisfying y j ≥ u j (take �y = �u−�ε to derive
the contradiction u j − �ε ≥ uj). By the separating hyperplane theorem (Theorem 11.3 of [51]), there is a non-zero
vector �x ∈ R

m, such that for all �w ∈ U, �w · �x ≥ �u · �x (see Figure 11). We now show �x ≥ 0. Assume for the sake of
contradiction that x j < 0 for some j. Take any �w ∈ U, let d = �w · �x−�u · �x ≥ 0, and let �w′ be the vector obtained from �w
by replacing the jth coordinate with wj +

d+1
−x j

. Since d+1
−x j

is positive and U is upwards closed in R
m, we have �w′ ∈ U.

So

�w′ · �x =
m∑

h=1

w′
h · xh = −(d + 1) +

m∑
h=1

wh · xh = −(d + 1) + �w · �x = �u · �x − 1,

implying �u · �x > �w′ · �x, which contradicts �w′ ∈ U.
Now fix a strategy σ. Since E

π,σ
G [��] ∈ U, it follows that Eπ,σG [�x · �] = �x · Eπ,σG [��] ≥ �x · �u.

“Only If” direction. Assume there is a non-zero vector �x ∈ R
m
≥0 such that π achieves ϕ. Assume for the sake of

contradiction that π does not achieve ψ. Fix σ such that ¬(Eπ,σG [� j] ≥ u j) for all j, which exists by assumption. Since
�x is such that π achieves ϕ, we have �x · Eπ,σG [��] = E

π,σ
G [�x · ��] ≥ �x · �u. Because �x is non-zero and has no negative

components, there must be a j such that Eπ,σG [� j] ≥ u j, a contradiction.

The above theorem enables us to transfer results from conjunctions of linear combinations to Boolean combina-
tions of objectives. In particular, we state below two transfer theorems, one for Pareto sets and the other for strategy
synthesis.

For the remainder of this section we continue with the same notation as above. We now show how to compute,
for every ε > 0, an ε-tight under-approximation of the Pareto set of ψ when one knows how to compute ε-tight
under-approximations of the Pareto set of E(�x ·n ��) and when the functions �i j are globally bounded by a constant
B. We denote by Pε(�x) an ε-tight under-approximation of Pareto(E(�x ·n ��)) and by ε′ = ε/(4B). We define Grid, the
set of vectors �x ∈ [0, 1 + ε′]N , such that each �xi is non-zero, has norm satisfying ‖�xi‖∞ ∈ [1 − ε′, 1 + ε′] and whose
components are multiples of ε′.

The first transfer theorem, proved in Appendix C.2, is for Pareto sets.

Theorem 9. The following set is an ε-tight under-approximation of the Pareto set of
∧n

i=1
∨mi

j=1 E[�i, j] ≥ ui, j:

⋃
�x∈Grid

{�u ∈ R
N | �x ·n �u ∈ Pε(�x)}.

The second transfer theorem deals with ε-optimal synthesis. Proof can be found in Appendix C.3.

Theorem 10. If there exists an algorithm to compute an ε-optimal strategy for E(�x ·n ��)(�v) for every �x, then there

exists an algorithm to compute an ε-optimal strategy for
∧n

i=1
∨m

j=1 E[�i, j] ≥ ui, j.

Another consequence of Theorem 8 is that synthesis for Pmp CQs enables us to synthesise strategies that are
winning for Boolean combinations of expected ratio objectives against every finite strategy.

Theorem 11. Let G be a game. For 1 ≤ i ≤ n, let �ri : S → R
mi be mi-dimensional reward structures, ci be

one-dimensional weakly positive reward structures, �ui ∈ R
mi and �xi ∈ R

mi

≥0 non-null weight vectors. Let ψ
def
=∧n

i=1
∨mi

j=1 E(ratio(ri, j/ci)) ≥ ui, j and ϕ�x
def
=

∧n
i=1 P(mp(�xi · �ri − (�xi · �ui)ci) ≥ 0) = 1. Every finite strategy winning

for ϕ�x is winning for ψ against finite strategies. For every ε > 0, there exists ε′ > 0 such that every ε′-optimal strategy

for ϕ�x is ε-optimal for ψ against finite strategies.

23

For the proof see Appendix C.4.

Examplere 8. Continuing with the running example, consider the game G1
re depicted in Figure 5 with the MQ

ϕ1
re[(1

4 ,
9
8)] = Eratio(−r1/c)(−1/4) → Eratio(r2/c)(9/8). This MQ is equivalent to ψ1

re[(1
4 ,

9
8)] def
= Eratio(r1/c)(1/4) ∨

Eratio(r2/c)(9/8) when both players play with finite memory. Consider the weight vector (1, 2
3) and define the single-

objective reward structure r′ by

r′(a) = (1, 2
3) · (r1(a), r2(a)) − ((1, 2

3) · (1
4 ,

9
8))c(a) = 0

r′(b) = (1, 2
3) · (r1(b), r2(b)) − ((1, 2

3) · (1
4 ,

9
8))c(b) = − 1

3
r′(d)= (1, 2

3) · (r1(d), r2(d)) − ((1, 2
3) · (1

4 ,
9
8))c(d)= 2

3 ,

and zero everywhere else. Then, by Theorem 11, every winning strategy for Pmp(r′)(�0) is winning for ψ1
re[(1

4 ,
9
8)]

against finite memory strategies (and is hence winning for ϕ1
re[(1

4 ,
9
8)] against finite memory strategies). The optimal

strategy for Player ♦ here clearly is to always take d. To spoil, the best Player � can do is play b, but, due to the

distribution, the expected number of times b is taken is at most
∑

k≥0 2−k = 2 before a is taken again, balancing exactly

the mean payoff to zero. Hence, Player ♦ wins for Pmp(r′)(�0), and also for ϕ1
re[(1

4 ,
9
8)].

4.2. Emp Objectives in Controllable Multichain Games

We now consider synthesis of Boolean combinations of Emp objectives. Our methods are based on the observation
that Pmp and Emp are equivalent in MECs of PAs. We define the class of controllable multichain (CM) games, in
which Player ♦ can approximate any distribution between the possible MECs (cf. Lemma 11); therefore, we can
construct strategies that induce PAs with a single MEC. Strategies synthesised for Pmp straightforwardly carry over
to Emp (Remark 3). The main result of this section is a completeness result, showing that, if Emp(�r)(�0) is ε-achievable
by a finite DU strategy, then we can synthesise an ε-optimal strategy for Pmp(�r)(�0).

First we note that, in the special case where an induced PA contains only a single MEC, achievability for Emp and
Pmp coincide. The lemma is proved in Appendix C.5.

Lemma 8. If a PA contains only one MEC, then it achieves Emp(�r)(�0) against finite strategies if and only if it achieves

Pmp(�r)(�0) against finite strategies.

We define, for each MEC E of an induced PA, the worst possible mean-payoff �zE as follows. Given an n-
dimensional reward structure �r, and a MEC E = (V,U) of a PA M, let �zE

= (zE
1 , . . . , z

E
n) be the vector given by

zE
i

def
= min

t∈S E
inf
σ
E
σ
E,t[mp(ri)] = min

t∈S E
inf
σ
E
σ
E,t

[
limN→∞

rewN−1(ri)
N

]
(6)

Note that Pmp(�r)(�0) is satisfied if and only if �zE ≥ �0 for every E, because Player � can reach any MEC with
positive probability. A weaker condition is satisfied when Emp(�r)(�0) is satisfied. In that case, there is a distribution γ
over MECs, such that

∑
E γ(E)�zE ≥ �0 (Lemma 9).

The idea underlying the definition of controllable multichain games (introduced below) is to make all the MECs of
an induced PA almost-surely reachable from each other, so that then the distribution γ can be realised by Player ♦ by
the frequencies of visits of each E in a new strategy, as formalised in Lemma 11. The strategy constructed ε-optimally
achieves Emp(�r)(�0), and induces a PA with a single MEC, and hence also satisfies Pmp(�r)(�0) ε-optimally.

Lemma 9. Let M be a finite PA for which Emp(�r)(�0) is satisfied and let E be the set of MECs in M. Then there exists

γ ∈ D(E) such that
∑

E∈E γ(E)�zE ≥ �0.

This lemma is proved in Appendix C.6.

24

4.2.1. Controllable multichain games

An irreducible component (IC) H of a game G is a pair (S H ,ΔH) with ∅ � SH ⊆ S and ∅ � ΔH ⊆ Δ, such that
(i) for all s ∈ S H ∩ S ♦, there exists exactly one state t ∈ S such that (s, t) ∈ ΔH ; (ii) for all s ∈ S H ∩ (S � ∪ S ©), for
all t ∈ S , (s, t) ∈ ΔH iff (s, t) ∈ Δ; and (iii) for all s, t ∈ S H , there is a finite path s0s1 . . . sl ∈ Ωfin

G within H (that is,
(si, si+1) ∈ ΔH for all 0 ≤ i ≤ l − 1), such that s0 = s and sl = t. A game G is a controllable multichain (CM) game if
each IC H of G is Player ♦ almost surely reachable from any state s ∈ S of G.

CM games generalise the PA notion of maximum end components (MECs) and are useful for modelling; in par-
ticular, all the case studies analysed in [41] are CM games. Games G1

re and G2
re of our running example of Section 2.4

are CM games. They have two ICs, one per choice of Player ♦ in the single Player ♦ state. Note that ICs can overlap,
as opposed to MECs in PAs. The game of Figure 4 is not CM: it contains two ICs H1 = ({s3, s5}, {(s3, s5), (s5, s3)})
and H2 = ({s2, s4}, {(s2, s4), (s4, s2)}), but there is no possibility for Player ♦ to reach H2 once the game is in H1 and
vice-versa.

Theorem 12. The problem of whether a game is CM is in co-NP.

Proof. A game is not a CM game if it has an IC H and a state s ∈ S G, such that H is not reachable almost surely
from s. One can guess in polynomial time such a subgame H and a state s, and check in polynomial time whether H
is an IC, and whether H is not reachable almost surely from s (Lemma 2). Hence, the problem lies in co-NP.

We do not know if this decision problem is co-NP-complete and leave this as an open question.
The main property we use below is that, for any CM game and any finite DU strategy, sets of states of the game

that correspond to MECs in the induced PA are Player ♦ almost surely reachable from everywhere in the game.
This property is in fact equivalent to the definition of CM games as stated in the following lemma. Given a MEC
E = (S E,ΔE) of an induced PA Gπ, define the set S G,E of G-states s occurring in E (we recall that states of E are of the
form (s,m) or ((s, s′),m)). We have the following lemma, which is proved in Appendix C.7.

Lemma 10. A game G is a CM game if and only if, for every finite DU strategy π, for every MEC E of Gπ, S G,E is

Player ♦ almost surely reachable from every state of S .

4.2.2. Emp CQs in CM Games

While a Player ♦ strategy π achieving an Emp CQ may randomise between several MECs, a strategy π for Pmp
CQ must be winning in every reached MEC. An example where Pmp and Emp Pareto sets differ is the (non-CM
game) of Example 4, since randomisation between ICs H1 and H2 (defined in Section 4.2.1 above) is invoked at
the beginning, once and for all, and there is no possibility, once in H1, to go to H2, and vice-versa. This kind of
phenomenon is disallowed in CM games.

Given a strategy π achieving Emp(�r)(�0) in a CM game G, we construct below a strategy π that ε-achieves the same
objective but induces a single MEC in Gπ via simulating the distribution over the MECs of Gπ. Then using Lemma 8
we will conclude that the constructed strategy ε-achieves Pmp(�r)(�0).

We construct π by looping between MECs, where each MEC El is of a PA Gπl

and has an associated finite step

count Nl.
Since G is CM, from each s ∈ S G, each MEC E can be reached almost surely by an MD strategy πE : S → S©

(see Lemma 10 and Lemma 2). We first explain the intuition of our construction of π. We start π by playing πE1 , the
MD strategy to reach E1. As soon as E1 is reached, π switches to π1, which is played for N1 steps, that is, π stays
inside E1 for N1 steps. Then, from whatever state s in E1 the game is in, π plays πE2 , and then in a similar fashion
switches to π2 for N2 steps within E2. This continues until EL is reached, at which point π goes back to E1 again. The
strategy π keeps track in memory of whether it is going to a MEC E, denoted �E, or whether it is at a MEC E and has
played j steps, denoted j@E. We emphasise that the strategies are finite DU. See Figure 12 for an illustration of π.

Definition 7. Let πl = 〈Ml, πl
c, π

l
u, π

l
d〉 be finite DU Player ♦ strategies, for 1 ≤ l ≤ L, with respective MECs El and

step counts Nl. The step strategy π is defined as 〈M, πc, πu, πd〉, where

M
def
= (M × { j@El | l ≤ L, j ≤ Nl}) ∪ ⋃L

l=1{�El},

25

E1 E2 E3 . . . EL

πE1

πE2 πE3 πE4 πEL

πE1

Figure 12: Illustrating the strategy π to simulate the distribution γ between MECs E1,E2, . . . ,EL.

and where, for all s, t, u ∈ S G, l ≤ L, j ≤ Nl, and m ∈ M,

πd(s) def
=

⎧⎪⎪⎨⎪⎪⎩
�E1 if s � S G,E1

(π1
d(s), 0@E1) if s ∈ S G,E1

πu(�El, t)
def
=

⎧⎪⎪⎨⎪⎪⎩
�El if t � S G,El

(πl
d(t), 0@El) if t ∈ S G,El

πu((m, j@El), s) def
=

⎧⎪⎪⎨⎪⎪⎩
�El′ if j = Nl and l′ = 1 + (l mod L)
(πl

u(m, s), j + 1@El) if j < Nl

πc(s,�El)(u) def
= πEl (s)(u)

πc(s, (m, j@El))(t)
def
= πl(s,m)(t).

The following lemma justifies that, for appropriate choices of the step counts Nl, the strategy π approximates a
distribution between MECs of Gπ, while only inducing a single MEC in Gπ.
Lemma 11. Let G be a CM game, let πl be finite DU strategies with associated MECs El of Gπl

, for 1 ≤ l ≤ L, and

let E be the set of MECs {El | 1 ≤ l ≤ L}. Then, for all γ ∈ D(E) and ε > 0, there exists a finite DU strategy π such that

Gπ contains only one MEC, and for all finite Player � strategies σ

E
π,σ

G [mp(�r)] ≥
∑
E∈E
γ(E)�zE − ε.

For the proof of the above lemma see Appendix C.8.
We now show in Theorem 13, the main result of this section, that in CM games, for any ε > 0, we can find a

strategy π that achieves Pmp(�r + ε)(�0) whenever Emp(�r)(�0) is achievable. The ε degradation is unavoidable for finite
strategies, due to the need for infinite memory in general, see Figure 7. Here, the strategy π has to minimise the
transient contribution, which only vanishes if the step counts Nl go to infinity.

Theorem 13. In CM games, it holds that

ParetoFDU,FSU(Emp(�r)) = ParetoFDU(Emp(�r)) = Pareto(Pmp(�r))

Proof. By Theorem 6 and Remark 3 it holds that

Pareto(Pmp(�r)) = ParetoFDU(Pmp(�r)) ⊆ ParetoFDU(Emp(�r)) ⊆ ParetoFDU,FSU(Emp(�r)).

It then remains to show that ParetoFDU,FSU(Emp(�r)) ⊆ Pareto(Pmp(�r)). For this purpose, it suffices to show that if
a finite DU strategy π achieves Emp(�r)(�0) against finite Player � strategies then, for all ε > 0, there is a finite DU
strategy π achieving Pmp(�r)(−�ε). We find a winning strategy π such that the induced PA Gπ contains only a single
MEC (which is reached w.p. 1, potentially via some transient states). Then we apply Lemma 8 to conclude that π
also wins for Pmp. Let ε > 0 and let π be a finite DU strategy such that Gπ |= Emp(�r)(�0). The induced PA Gπ
contains a set E of L MECs. If L = 1, we let π = π. If, on the other hand, L > 1, we construct a strategy π such that

26

Gπ |= Emp(�r + �ε)(�0) as follows. First, from Lemma 9, we obtain a distribution γ such that
∑

E∈E γ(E)�zE ≥ �0. We then
apply Lemma 11 with πl = π for each MEC El ∈ Gπ, to find a strategy π, so that Gπ contains only one MEC, and for
all finite Player � strategies σ, it holds that

E
π,σ

G [mp(�r)] ≥
L∑

l=1

γ(El)�z
El − ε ≥ −ε.

We conclude that π achieves Pmp(�r)(−�ε) using Lemma 8.

4.2.3. Emp MQs in CM Games

We can now summarise the results of this section in Theorem 14, which allows us to synthesise ε-optimal strategies
for Emp objectives in CM games.

Theorem 14. In CM games with Emp MQs ψ, one can solve the two following problems using the algorithms for

Pmp CQs.

1. Compute an ε-tight under-approximation of the Pareto set ParetoFDU,FSU(ψ).

2. Synthesise a strategy winning against every finite strategy for every target �u such that �u + �ε ∈ ParetoFDU,FSU(ψ).

Proof. 1. According to Theorem 9, it suffices to determine, for every �x ∈ Grid, an ε-tight under-approximation
of ParetoFDU,FSU(E(�x ·n mp(�r))). By Proposition 13 and Theorem 13 we have ParetoFDU,FSU(E(�x ·n mp(�r))) =
ParetoFDU,FSU(Emp(�x ·n�r)) = Pareto(Pmp(�x ·n�r)). By Theorem 5, ε-tight under-approximation can be computed
for these sets.

2. According to Theorem 10, it suffices to solve the synthesis problem for E(�x ·n mp(�r)). Take a vector in
ParetoFDU,FSU(E(�x ·n mp(�r))) = Pareto(Pmp(�x ·n �r)), then with Algorithm 1 we synthesise a finite strategy
winning for Pmp(�x ·n �r)(−ε), and hence for Emp(�x ·n �r)(−ε). This strategy is also winning against any finite
Player � strategy for E(�x ·n mp(�r)) thanks to Proposition 13.

5. Compositional Strategy Synthesis

In this section we develop our framework for compositional strategy synthesis. We first introduce a composition
operator (‖) for games and explain how Player ♦ strategies πi of the component games Gi for i ∈ I (here and in the
following I is a set of indices for component games) can be combined into a strategy ‖i∈I π

i of the composed game
‖i∈I Gi. Then we show how to instantiate sound synthesis rules of the form:

(Gi)π
i |= ∧mi

j=1 ϕ
i
j i ∈ I

(‖i∈I Gi)‖i∈Iπi |= ϕ ,

which hold for all Player ♦ strategies πi. This means that strategies πi synthesised for formulae
∧mi

j=1 ϕ
i
j in the

components Gi yield a strategy ‖i∈I π
i for the composed game ‖i∈I Gi that satisfies ϕ. An example of such a rule for

our running example of Section 2.4 is

(Rulere)
(G1)π

1 |=u ϕ1
re (G2)π

2 |=u ϕ2
re

(G1 ‖ G2)π1‖π2 |=u ϕre
(7)

The meaning of |=u and a proof of soundness of this rule is given in Section 5.4.1.
In this section, we allow deadlocks in the composed games. This relaxation is convenient for modelling and is

used, for example, in the aircraft case study in [4, 41]. The crucial point is that deadlocks in induced DTMCs are
avoided due to our use of fairness, as described in Section 5.4.1.

27

5.1. Game Composition

We provide a synchronising composition of games so that controllability is preserved for Player ♦, that is, actions
controlled by Player ♦ in the components are controlled by Player ♦ in the composition. Our composition is inspired
by interface automata [25], which have a natural interpretation as (concurrent) games. Each component game is
endowed with an alphabet of actions A, where synchronisation on shared actions in A1∩A2 is viewed as a (blocking)
communication over ports, as in interface automata, though for simplicity we do not distinguish inputs and outputs.
Synchronisation is multi-way and we do not impose input-enabledness of IO automata [22]. Strategies can choose
between moves, and so, within a component, nondeterminism in Player ♦ states is completely controlled by Player ♦.
In our game composition, synchronisation is over actions only, and hence the choice between several moves with the
same action is hidden to other components.

We illustrate the game composition with the help of the running example and refer the interested reader to [25] for
more detail on composition of interface automata.

5.1.1. Normal form of a game

Our game composition is defined for games in normal form, which we now define.

Definition 8. A game is in normal form if every τ-transition s
τ−→ μ is from a Player � state s to a Player ♦ state s′

with a Dirac distribution μ = s′; and every Player ♦ state s can only be reached by an incoming move (τ, s).

In particular, in games in normal form, every distribution μ of a non-τ-transition, as well as the initial distribution,
assigns probability zero to all Player ♦ states. Component games can already be provided in normal form before com-
posing, as in the running example of Section 2.4, although it is often convenient to model component games without
τ-transitions and use the following transformation to transform them to normal form. Thus a designer, for simplicity,
does not need to deal with τ-transitions, which we treat as a technical device to denote scheduling choice. We now
show how one can transform games without τ-transitions into their corresponding normal form before composing, so
that the transformation does not affect achievability of specifications defined on traces.

Given a game G without τ-transitions, one can construct its normal form by splitting every state s ∈ S ♦ into a
Player � state s and a Player ♦ state s, such that (a) the incoming (resp. outgoing) moves of s (resp. s) are precisely
the incoming (resp. outgoing) moves of s, with every Player ♦ state t ∈ S♦ replaced by t; and (b) the only outgoing
(resp. incoming) move of s (resp. s) is (τ, s). Intuitively, at s the game is idle until Player � allows Player ♦ to choose
a move in s. Hence, any strategy for a game carries over naturally to its normal form, and for specifications defined on
traces we can operate w.l.o.g. with normal-form games. As mentioned, τ can be considered as a scheduling choice. In
the transformation to normal form, at most one such scheduling choice is introduced for each Player � state, but in the
composition several scheduling choices may be present at a Player � state, so that Player � resolves nondeterminism
arising from concurrency.

5.1.2. Composition

Given games Gi, i ∈ I, in normal form with respective player states S i
♦ ∪ S i

�, the set of player states S ♦ ∪ S� of
the composition is a subset of the Cartesian product

∏
i∈I S i

♦ ∪ S i
�. We denote by si the ith component of �s ∈ ∏

i∈I S i.

We denote by �μ the product distribution of μi ∈ D(S i) for i ∈ I, defined on
∏

i∈I S i by �μ(�s) def
=

∏
i∈I μ

i(si). We say that
a transition �s

a−→ �μ involves the ith component if si a−→iμi, otherwise the state remains the same μi(si) = 1. We define
the set of actions enabled in a state s by En(s) def

= {a ∈ A | ∃μ . s a−→ μ}.
Definition 9. Given normal-form games Gi = 〈S i, (S i

♦, S
i
�, S

i
©), ςi,Ai, χi,Δi〉, i ∈ I, their composition is the game

‖i∈I Gi def
= 〈S , (S♦, S�, S©),

∏
i∈I ς

i,
⋃

i∈I Ai, χ,Δ〉, where the sets of Player ♦ and Player � states

S ♦ ⊆ {�s ∈
∏
i∈I

(S i
♦ ∪ S i

�) | ∃!ι . sι ∈ S ι♦} and S � ⊆
∏
i∈I

S i
�,

are defined inductively to contain the reachable states, where S ©, χ, and Δ are defined via

• �s a−→ �μ for a � τ if at least one component is involved and the involved components are exactly those with a in

their action alphabet, and if �s is a Player ♦ state then its only Player ♦ component Gι is involved; and

28

s0

d q1

s1

a b

s2
τ

a

t0

a q2

t1

b b

t2
τ

s2, t2
τ

s0, t2

d q1

s1, t2

τ

s1, t0

a

q2

τ
s2, t0

a q2

s2, t1

τ

s0, t1

d

q1

s1, t1

b

b

Figure 13: Example normal-form games G1
re (left) and G2

re (centre), with their composition Gre (right). All distributions are uniform.

• �s τ−→ �t if exactly one component Gi is involved, �s ∈ S�, and En(�t) � ∅.

We take the view that the identity of the players must be preserved through composition to facilitate synthesis, and
thus Player ♦ actions of the individual components are controlled by a single Player ♦ in the composition. Player �
in the composition acts as a scheduler, controlling which component advances and, in Player � states, selecting
among available actions, whether synchronised or not. Synchronisation in Player ♦ states means that Player ♦ in
one component may indirectly control some Player � actions in another component. In particular, we can impose
assume-guarantee contracts at the component level, so that Player ♦ of different components can cooperate to achieve
a common goal: in one component Player ♦ satisfies the goal B under an assumption A on its environment behaviour
(i.e. A → B), while Player ♦ in the other component ensures that the assumption is satisfied, against all Player �
strategies.

Under specifications defined on traces, our game composition is both associative and commutative, facilitating a
modular model development. We define the relation � between games so that G1 � G2 means that, for all specifica-
tions ϕ defined on traces, G1 |= ϕ if and only if G2 |= ϕ.

Proposition 11. Given normal-form games G1, G2 and G3, we have G1 ‖ G2 � G2 ‖ G1 (commutativity), and

(G1 ‖ G2) ‖ G3 � G1 ‖ (G2 ‖ G3) |= ϕ (associativity).

Our composition is closely related to PA composition [54], with the added condition that in Player ♦ states the
Player ♦ component must be involved. As PAs are games without Player ♦ states, the game composition restricted
to PAs is the same as classical PA composition. The condition En(�t) � ∅ for τ-transitions ensures that a Player ♦
state is never entered if it were to result in deadlock introduced by the normal form transformation. Deadlocks that
were present before the transformation are still present in the normal form. In the composition of normal form games,
τ-transitions are only enabled in Player � states, and Player ♦ states are only reached by such transitions; hence,
composing normal form games yields a game in normal form.

Examplere 9 (Game Composition). We return to our running example from Section 2.4. The games in Figure 5

are reproduced in Figure 13, with G1
re and G2

re on the left and in the centre respectively. Note that G1
re and G2

re are

already in normal form (the self-loop labelled a in s2 indicates that G1
re was not derived via our automatic normal-

form transformation). The game on the right is the composition Gre = G1
re ‖ G2

re. Actions a and b are synchronised.

Player � controls b in both s1 and t1, and so in the composition Player � controls b at (s1, t1). Player � controls a
in s1 and s2, but Player ♦ controls a in t0, and so it is controlled by Player ♦ in (s1, t0) and (s2, t0) in the composition.

Note that actions are not necessarily exclusive to Player ♦ or Player �, since a is enabled in s1, s2 ∈ S 1
�, as well as

in t0 ∈ S 2
♦.

29

5.2. Strategy Composition

For compositional synthesis, we assume the following compatibility condition on component games, which is
analogous to that for single-threaded interface automata [25]: we require that moves controlled by Player ♦ in one
game are enabled and fully controlled by Player ♦ in the composition.

Definition 10. Games (Gi)i∈I are compatible if, for every Player ♦ state �s ∈ S♦ in the composition with sι ∈ S ι♦, if

sι
a−→ιμι then there is exactly one distribution �ν, denoted by 〈μι〉�s,a, such that �s

a−→ �ν and νι = μι. (That is, for i � ι
such that a ∈ Ai, there exists exactly one a-transition enabled in si.)

5.2.1. Composing SU strategies

The memory update function of the composed SU strategy ensures that the memory in the composition is the
same as if the SU strategies were applied to the games individually. We assume w.l.o.g. that from the current memory
element m one can recover the current state denoted s(m). We let Γ(�m, �s) be the set of indices of components that
update their memory according to a new (stochastic) state formally defined by

Γ(�m, �s) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
{i ∈ I | si � s(mi)} if �s ∈ S♦ ∪ S �
{i ∈ I | a ∈ Ai} if �s = (a, �μ) ∈ S© s.t. a � τ
{ι} if �s = (τ,�t) ∈ S© s.t. sι ∈ S ι♦

Definition 11. The composition of Player ♦ strategies πi = 〈Mi, πu,i, πc,i, πd,i〉, i ∈ I, for compatible games is ‖i∈I π
i def
=

〈∏i∈IM
i, πc, πu, πd〉, where

πc(�s, �m)(a, 〈μι〉�s,a) def
= πc,ι(sι,mι)(a, μι) whenever sι ∈ S ι♦

πu(�m, �s)(�n) def
=

∏
i∈Γ(�m,�s) π

u,i(mi, si)(ni) whenever mi = ni for i � Γ(�m, �s)

πd(�s) def
=

∏
i∈I π

d,i(si).

Remark 5. In the above definition, product was defined on SU strategies, as this provides a more compact encoding

than with DU strategies. Recall that SU and DU strategies are equally powerful (Proposition 1). For the proofs one

can consider w.l.o.g. only products of DU strategies since, when given SU strategies, the product of their determini-

sation equals the determinisation of their product.

Strategy composition is commutative and associative.

Proposition 12. Given compatible normal-form games G1, G2 and G3, and strategies π1, π2 and π3, we have (G1 ‖
G2)π

1‖π2 � (G2 ‖ G1)π
2‖π1

(commutativity), and ((G1 ‖ G2) ‖ G3)(π1‖π2)‖π3 � (G1 ‖ (G2 ‖ G3))π
1‖(π2‖π3) (associativity).

Note that strategy composition can be implemented efficiently by storing the individual strategies and selecting
the next move and memory update of the strategies corresponding to the components Γ(act(�m), �s) involved in the
respective transitions.

5.3. Properties of the Composition

We now show that synthesising strategies for compatible individual components is sufficient to obtain a composed
strategy for the composed game.

5.3.1. Functional simulations

We introduce functional simulations, which are a special case of classical PA simulations [54], and show that they
preserve specifications over traces. Intuitively, a PA M′ functionally simulates a PA M if all behaviours of M are
present in M′, and if strategies translate from M to M′. Given a distribution μ, and a partial function F : S → S ′

defined on the support of μ, we write F (μ) for the distribution defined by F (μ)(s′) def
=

∑
F (s)=s′ μ(s).

Definition 12. A functional simulation from a PA M to a PA M′ is a partial function F : S → S ′ such that

(F1) F (ς) = ς′; and

30

(F2) if s
a−→ μ in M then F (s)

a−→′F (μ) in M′.

Lemma 12. Given a functional simulation from a PA M to a PA M′ and a specification ϕ defined on traces, for every

(finite) strategy σ there is a (finite) strategy σ′ such that (M′)σ′ |= ϕ⇔ Mσ |= ϕ.

We have included the proof of this lemma in Appendix D.1.

5.3.2. From PA composition to game composition

When synthesising a strategy πi for each component Gi, we can induce the PAs (Gi)π
i

, and compose them to
obtain the composed PA ‖i∈I (Gi)π

i

. However, in our synthesis rule we are interested in the PA (‖i∈I Gi)‖i∈Iπ
i

, which is
constructed by first composing the individual components, and then applying the composed Player ♦ strategy. The
following lemma exhibits a functional simulation between such PAs, which together with Lemma 12 allows us to
develop our synthesis rules for specifications defined on traces.

Lemma 13. Given compatible normal form games (Gi)i∈I , and Player ♦ strategies (πi)i∈I , there is a functional simu-

lation from (‖i∈I Gi)‖i∈Iπ
i

to ‖i∈I (Gi)π
i

.

Proof can be found in Appendix D.2. In general, there is no simulation in the other direction, as in the PA
composition states that were originally Player ♦ states can no longer be distinguished.

5.4. Composition Rules

Our main result for compositional synthesis is that any verification rule for PAs gives rise to a synthesis rule for
games with the same side conditions, shown in Theorem 15 below. The idea is to induce PAs from the games using
the synthesised strategies, apply PA rules, and, using Lemma 13, lift the result back into the game domain.

Theorem 15. Given a rule P for PAs Mi and specifications ϕi
j and ϕ defined on traces, then the rule G holds for all

Player ♦ strategies πi of compatible games Gi with the same action alphabets as the corresponding PAs, where

P ≡
Mi |= ϕi

j j ∈ J i ∈ I

‖i∈I Mi |= ϕ, and G ≡
(Gi)π

i |= ∧
j∈J ϕ

i
j i ∈ I

(‖i∈I Gi)‖i∈Iπi |= ϕ.
Proof. For all i ∈ I, let Gi be games, and let πi be respective Player ♦ strategies such that (Gi)π

i |= ∧
j∈J ϕ

i
j. By

applying the PA rule P with the PAs Mi def
= (Gi)π

i

, where Mi |= ∧
j∈J ϕ

i
j for all i ∈ I from how the strategies πi were

picked, we have that ‖i∈I Mi |= ϕ. From Lemma 13, there is a functional simulation from (‖i∈I Gi)‖i∈Iπ
i

to ‖i∈I (Gi)π
i

.
Since ‖i∈I (Gi)π

i |= ϕ, applying Lemma 12 yields (‖i∈I Gi)‖i∈Iπ
i |= ϕ.

Monolithic synthesis is performed for components Gi, i ∈ I, by obtaining for each i a Player ♦ strategy πi for
Gi |= ∧

j∈J ϕ
i
j. We apply P with Mi

def
= (Gi)π

i

(which never has to be explicitly constructed) to deduce that ‖i∈I π
i is a

winning strategy for Player ♦ in ‖i∈I Gi. The rules can be applied recursively, making use of associativity of the game
and strategy composition.

Note that, for each choice, the composed strategy takes into account the history of only one component, which is
less general than using the history of the composed game. Hence, it may be possible that a specification is achievable
in the composed game, while it is not achievable compositionally. Our rules are therefore sound but not complete,
even if the PA rules P are complete.

5.4.1. Verification rules for PAs

We develop PA assume-guarantee rules for specifications defined on traces. Our rules are based on those in [39],
but we emphasise that Theorem 15 is applicable to any PA rule. Given a composed PA M =‖i∈I Mi, a strategy σ is fair

if each component makes progress infinitely often with probability 1 [2]. We write M |=u ϕ if, for all fair strategies
σ, Mσ |= ϕ. Note that a specification defined on traces remains defined on traces under fairness. In games, fairness
is imposed only on Player �, and for a single component fairness is equivalent to requiring deadlock-freedom. Our
game composition does not guarantee freedom from deadlocks, that is, states without outgoing moves. However
fair, Player � strategies avoid reaching deadlocks and hence yield induced DTMCs without deadlocks. If deadlocks
are unavoidable then the set of fair Player � strategies is empty; in that case the synthesis problem is trivial: every
Player ♦ strategy satisfies any specification under fairness.

31

Theorem 16. Given compatible PAs M1 and M2, specifications ϕG, ϕG1 , ϕG2 , ϕA1 and ϕA2 defined on traces of

AG1 ⊆ A1, AG2 ⊆ A2, then the following rule is sound:

(Conj)
M1 |=u ϕG1 M2 |=u ϕG2

M1 ‖ M2 |=u ϕG1 ∧ ϕG2

Proof. Let M = M1 ‖ M2. We first recall concepts of projections from [39]. Given a state s = (s1, s2) of M,
the projection of s onto Mi is s�Mi

def
= si, and for a distribution μ over states of M we define its projection by

μ�Mi (si) def
=

∑
s�Mi=si μ(s). Given a path λ of M, the projection of λ onto Mi, denoted by λ�Mi , is the path obtained

from λ by projecting each state and distribution, and removing all moves with actions not in the alphabet of Mi,
together with the subsequent states. Given a strategy σ of M, its projection σ�Mi onto Mi is such that, for any finite
path λi of Mi and transition last(λi)

a−→ μi,

σ�Mi (λi)(a, μi) def
=

∑
λ�Mi=λi

∑
μ�Mi=μi

P
σ
M(λ) · σ(λ)(a, μ)/Pσ�Mi

Mi (λi)

From Lemma 7.2.6 in [54], for any trace w over actions A ⊆ Ai we have P
σ
M(w) = P

σ�Mi

Mi (w). Therefore, if ϕ is

defined on traces of A ⊆ Ai, we have that Mσ |= ϕ⇔ ϕ(PσM) ⇔ ϕ(Pσ
i�Mi

Mi) ⇔ (Mi)σ
i�Mi |= ϕ.

Take any fair strategy σ of M. From Lemma 2 in [39], the projections σ�M2 and σ�M1 are fair. We have that
Mi |=u ϕGi implies (Mi)σ�Mi |= ϕGi , since σ�Mi is fair; this in turn implies Mσ |= ϕGi , since AGi ⊆ Ai. Since σ was
an arbitrary fair strategy of M, this implies M |=u ϕG1 ∧ ϕG2 .

Another fundamental rule (whose soundness is straightforward) is

(Prop)
M |=u ϕ

M |=u ψ
, if ϕ implies ψ.

Using (Prop), which enables us to simplify logical formulae, and (Conj), which facilitates a split of tasks between
components, several rules can be created.

Examplere 10 (Assume-guarantee rule for the running example). We show how to derive the rule (Rulere) defined

in (7). The following derivation holds for specifications ϕA1 , ϕA2 , ϕA3 defined on traces, where AA1 ,AA2 ⊆ A1 ∩ A2,

AA3 ⊆ A3.

M1 |=u ϕA1 → ϕA2 M2 |=u ϕA1 ∧ ϕA3

(Conj) M1 ‖ M2 |=u (ϕA1 → ϕA2) ∧ (ϕA1 ∧ ϕA3)
(Prop) M1 ‖ M2 |=u ϕA2 ∧ ϕA3 .

The use of (Prop) is justified since one can show that (ϕA1 → ϕA2)∧(ϕA1 ∧ϕA3) is logically equivalent to ϕA1 ∧ϕA2 ∧ϕA3 ;

this latter formula straightforwardly implies ϕA2 ∧ ϕA3 . To get (Rulere) it suffices to define ϕA1 = Eratio(−r1/c)(−v1),
ϕA2 = Eratio(r2/c)(v2), ϕ2

re = Eratio(−r1/c)(−v1) ∧ Eratio(−r3/c)(−v3) and use Theorem 15.

5.4.2. Under-approximating Pareto sets

We now describe how to pick the targets of the specifications ϕi in a compositional rule, such as from Theorem 15,
so that ϕ in the conclusion of the rule is achievable. To this end, we compositionally compute an under-approximation
of the Pareto set for ϕ; we illustrate this approach in an example in Section 5.5 below.

Consider N reward structures, r1, . . . , rN , and objectives ϕi, i ∈ I, over these reward structures for respective games
Gi, as well as an objective ϕ, over the same reward structures, for the composed game G =‖i∈I Gi. Note that, for each
1 ≤ j ≤ N, the reward structure r j may be present in several objectives ϕi. Let Pi be an under-approximation of the
Pareto set for Gi |= ϕi, for i ∈ I, and so each point �v(i) ∈ Pi represents a target vector for the MQ ϕi[�v(i)] achievable in
the game Gi.

For a set Pi, define the lifting ↑Pi to all N reward structures by ↑Pi def
= {�v ∈ R

N | the coordinates of �v appearing in
ϕi are in Pi}. The set P′ def

= ∩i∈I↑Pi is the set of target vectors for all N reward structures, which are consistent with

32

P1

0

9/8

1.5

0 1/2 1.0

r1

r2

G1
re |= Eratio(−r1/c)(−v1)

→ Eratio(r2/c)(v2)

P2

0

1/2

3/4

1.0

0 1/2

r1

r3

G2
re |= Eratio(−r1/c)(−v1)

∧ Eratio(−r3/c)(−v3)

P1

P2 ↓ P′

0

1/2

3/4

1.0

0 9/8 1.5

r2

r3

r1

Gre |= Eratio(r2/c)(v2)

∧ Eratio(−r3/c)(−v3)

Figure 14: Pareto sets for example games in Figure 13. Specifications are given beneath the respective sets. The rightmost figure shows the
compositional Pareto set, ↓P′, as well as the oblique projections of P1 and P2 for reference.

achievability of all objectives ϕi in the respective games. The projection ↓P′ of P′ onto the space of reward structures
appearing in ϕ then yields an under-approximation of the Pareto set P for ϕ in the composed game G, that is, ↓P′ ⊆ P.
A vector �v ∈ ↓P′ can be achieved by instantiating the objectives ϕi with any targets �v(i) in P′ that match �v.

5.5. The Compositional Strategy Synthesis Method

Our method for compositional strategy synthesis, based on monolithic synthesis for individual component games,
is summarised as follows:

(S1) User Input: A composed game G =‖i∈I Gi, MQs ϕi, ϕ, and matching PA rules for use in Theorem 15.

(S2) First Stage: Obtain under-approximations of Pareto sets Pi for Gi |= ϕi, and compute the compositional under-
approximated Pareto set ↓P′.

(S3) User Feedback: Pick targets �v for the global specification ϕ from ↓P′; matching targets �v(i) for ϕi can be picked
automatically from Pi.

(S4) Second Stage: Synthesise strategies πi for Gi |= ϕi[�v(i)].

(S5) Output: The strategy ‖i∈I π
i, winning for G |= ϕ[�v] by Theorem 15.

Steps (S1), (S4) and (S5) are sufficient if the targets are known, while (S2) and (S3) are an additional feature
enabled by the Pareto set computation.

Examplere 11. Consider again the (controllable multichain) games of our running example introduced in Section 2.4.

We are given local games G1
re,G2

re and their composition Gre
def
= G1

re ‖ G2
re; local specifications ϕ1

re, ϕ
2
re and a global

specification ϕre; and a synthesis rule (Rulere) (given in (7)). This constitutes the inputs in step (S1). For step

(S2), under-approximations of the Pareto sets for G1
re and G2

re are shown in Figure 14 (left) and (centre) respectively,

together with the compositionally obtained under-approximated Pareto set ↓ P′ for G (right). In step (S3), if we want

to, for example, find a strategy satisfying ϕ with (v2, v3) = (9
8 ,

3
4), we look up a value for v1 that is consistent with both

P1 and P2, as indicated by the dashed lines in Figure 14 (left) and (centre), and we find v1 =
1
4 to be consistent for

both components. In step (S4) we synthesise strategies for the MQs ϕ1[(1
4 ,

9
8)] for G1

re and ϕ2[(1
4 ,

3
4)] for G2

re. In G1
re the

strategy π1 always plays d (as explained in Example 8), and the strategy π2 for G2
re is illustrated in Figure 10. Finally,

we return the composed strategy π = π1 ‖ π2 in step (S5).

33

6. Conclusion

We presented a compositional framework for strategy synthesis in stochastic games, where winning conditions
are specified as multi-dimensional long-run objectives. The algorithm proposed in Theorem 7 constructs succinct
ε-optimal stochastic memory update strategies, and we show how such winning strategies for component games can
be composed to be winning for the composed game. Since building the composed game is not necessary in order
to synthesise a strategy to control it, our approach enhances scalability. However, this is at a cost of restricting the
class of strategies. The techniques have been implemented and applied to several case studies, as reported separately
in [41, 5, 4, 64].

Our compositional framework applies to all specifications defined on traces, which include almost-sure and ex-
pected ratio rewards treated here, as well as expected total rewards studied in [20, 21], but not mean payoffs. Never-
theless, the ability to synthesise strategies for mean payoffs at the component level is useful because, as we showed in
Proposition 2 and Theorem 11, these enable us to synthesise strategies for conjunctions of almost-sure ratio rewards
and Boolean combinations of expected ratio rewards that are well suited to the compositional approach. We anticipate
that our framework is sufficiently general to permit further specifications defined on traces, such as Büchi specifica-
tions or ratio rewards with arbitrary satisfaction thresholds, but the problem of synthesising winning strategies for
such specifications for individual components remains open.

As future work, we intend to investigate satisfaction objectives with arbitrary probability thresholds, and believe
that this is possible using ideas from [34]. We would also like to adopt a unifying view between expectation and
satisfaction objectives as done for MDPs in [14]. Finally, the compositional framework could be augmented by
automatically decomposing games and specifications given a rule schema.

Acknowledgements. The authors thank Vojtěch Forejt, Stefan Kiefer, Benoı̂t Barbot and Dave Parker for helpful
discussions. The authors are partially supported by ERC Advanced Grant VERIWARE and EPSRC Mobile Autonomy
Programme Grant EP/M019918/1.

References

[1] C. Baier, C. Dubslaff, S. Klüppelholz, and L. Leuschner. Energy-utility analysis for resilient systems using probabilistic model checking. In
Petri Nets, pages 20–39. Springer, 2014.

[2] C. Baier, M. Größer, and F. Ciesinski. Quantitative analysis under fairness constraints. In ATVA, volume 5799 of LNCS, pages 135–150.
Springer, 2009.

[3] C. Baier, M. Größer, M. Leucker, B. Bollig, and F. Ciesinski. Controller synthesis for probabilistic systems (extended abstract). In IFIP TCS,
volume 155, pages 493–506. Springer, 2004.

[4] N. Basset, M. Kwiatkowska, U. Topcu, and C. Wiltsche. Strategy synthesis for stochastic games with multiple long-run objectives. In TACAS,
volume 9035 of LNCS, pages 256–271. Springer, 2015.

[5] N. Basset, M. Kwiatkowska, and C. Wiltsche. Compositional controller synthesis for stochastic games. In CONCUR, volume 8704 of LNCS,
pages 173–187. Springer, 2014.

[6] T. Brázdil, V. Brožek, K. Chatterjee, V. Forejt, and A. Kučera. Two views on multiple mean-payoff objectives in Markov decision processes.
LMCS, 10(4), 2014.

[7] T. Brázdil, V. Brožek, V. Forejt, and A. Kučera. Stochastic games with branching-time winning objectives. In LICS, pages 349–358.
ACM/IEEE, 2006.

[8] T. Brázdil, P. Jančar, and A. Kučera. Reachability games on extended vector addition systems with states. In ICALP, volume 6199 of LNCS,
pages 478–489. Springer, 2010.

[9] R. Brenguier and J.F. Raskin. Optimal values of multidimensional mean-payoff games. Research report, Université Libre de Bruxelles
(U.L.B.), Belgium, 2014.

[10] Véronique Bruyère, Emmanuel Filiot, Mickael Randour, and Jean-François Raskin. Meet your expectations with guarantees: Beyond worst-
case synthesis in quantitative games. In Ernst W. Mayr and Natacha Portier, editors, 31st International Symposium on Theoretical Aspects

of Computer Science (STACS 2014), STACS 2014, March 5-8, 2014, Lyon, France, volume 25 of LIPIcs, pages 199–213. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2014.

[11] K. Chatterjee, L. Doyen, T.A. Henzinger, and J.F. Raskin. Generalized mean-payoff and energy games. In FSTTCS, volume 8 of LIPIcs,
pages 505–516. Schloss Dagstuhl, 2010.

[12] K. Chatterjee and M. Henzinger. Faster and dynamic algorithms for maximal end-component decomposition and related graph problems in
probabilistic verification. In SODA, pages 1318–1336. ACM-SIAM, 2011.

[13] K. Chatterjee and T.A. Henzinger. Assume-guarantee synthesis. In TACAS, volume 4424 of LNCS, pages 261–275. Springer, 2007.
[14] K. Chatterjee, Z. Komárková, and J. Křetı́nský. Unifying two views on multiple mean-payoff objectives in Markov decision processes. In

LICS, pages 244–256. ACM/IEEE, 2015.
[15] K. Chatterjee, R. Majumdar, and T.A. Henzinger. Markov decision processes with multiple objectives. In STACS, volume 3884 of LNCS,

pages 325–336. Springer, 2006.

34

[16] K. Chatterjee, M. Randour, and J.F. Raskin. Strategy synthesis for multi-dimensional quantitative objectives. Acta Informatica, 51(3–4):129–
163, 2014.

[17] Krishnendu Chatterjee and Laurent Doyen. Perfect-information stochastic games with generalized mean-payoff objectives. In Martin Grohe,
Eric Koskinen, and Natarajan Shankar, editors, Proc. LICS ’16, pages 247–256. ACM, 2016.

[18] T. Chen, V. Forejt, M. Kwiatkowska, D. Parker, and A. Simaitis. PRISM-games: A model checker for stochastic multi-player games. In
TACAS, volume 7795 of LNCS, pages 185–191. Springer, 2013.

[19] T. Chen, V. Forejt, M. Kwiatkowska, A. Simaitis, A. Trivedi, and M. Ummels. Playing stochastic games precisely. In CONCUR, volume
7454 of LNCS, pages 348–363, 2012.

[20] T. Chen, V. Forejt, M. Kwiatkowska, A. Simaitis, and C. Wiltsche. On stochastic games with multiple objectives. In MFCS, volume 8087 of
LNCS, pages 266–277. Springer, 2013.

[21] T. Chen, M. Kwiatkowska, A. Simaitis, and C. Wiltsche. Synthesis for multi-objective stochastic games: An application to autonomous urban
driving. In QEST, volume 8054 of LNCS, pages 322–337. Springer, 2013.

[22] L. Cheung, N. Lynch, R. Segala, and F. Vaandrager. Switched PIOA: Parallel composition via distributed scheduling. TCS, 365(1–2):83–108,
2006.

[23] B.A. Davey and H.A. Priestley. Introduction to lattices and order. Cambridge University Press, 1990.
[24] L. De Alfaro. Formal verification of probabilistic systems. PhD thesis, Stanford University, 1997.
[25] L. de Alfaro and T.A. Henzinger. Interface automata. SIGSOFT Software Engineering Notes, 26(5):109–120, 2001.
[26] L. de Alfaro, T.A. Henzinger, and R. Jhala. Compositional methods for probabilistic systems. In CONCUR, volume 2154 of LNCS, pages

351–365. Springer, 2001.
[27] A. Ehrenfeucht and J. Mycielski. Positional strategies for mean payoff games. International Journal of Game Theory, 8(2):109–113, 1979.
[28] K. Etessami, M. Kwiatkowska, M.Y. Vardi, and M. Yannakakis. Multi-objective model checking of Markov decision processes. LMCS,

4(8):1–21, 2008.
[29] L. Feng, C. Wiltsche, L. Humphrey, and U. Topcu. Synthesis of human-in-the-loop control protocols for autonomous systems. IEEE

Transactions on Automation Science and Engineering, 13(2):450–462, April 2016.
[30] J. Filar and K. Vrieze. Competitive Markov decision processes. Springer, 1996.
[31] V. Forejt, M. Kwiatkowska, and D. Parker. Pareto curves for probabilistic model checking. In ATVA, volume 7561 of LNCS, pages 317–332.

Springer, 2012.
[32] M. Gelderie. Strategy composition in compositional games. In ICALP, volume 7966 of LNCS, pages 263–274. Springer, 2013.
[33] S. Ghosh, R. Ramanujam, and S. Simon. Playing extensive form games in parallel. In CLIMA, volume 6245 of LNCS, pages 153–170.

Springer, 2010.
[34] H. Gimbert and F. Horn. Solving simple stochastic tail games. In SODA, pages 847–862. ACM-SIAM, 2010.
[35] H. Gimbert and E. Kelmendi. Two-player perfect-information shift-invariant submixing stochastic games are half-positional. arXiv preprint

arXiv:1401.6575, 2014.
[36] F. Horn. Random Games. PhD thesis, Université Denis Diderot - Paris 7 & Rheinisch-Westfälische Technische Hochschule Aachen, 2008.
[37] G. Katz, D. Peled, and S. Schewe. Synthesis of distributed control through knowledge accumulation. In CAV, volume 6806 of LNCS, pages

510–525. Springer, 2011.
[38] M. Kwiatkowska. Model checking and strategy synthesis for stochastic games: From theory to practice. In Proc. 43rd International Col-

loquium on Automata, Languages, and Programming (ICALP 2016), pages 4:1–4:18. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2016.

[39] M. Kwiatkowska, G. Norman, D. Parker, and H. Qu. Compositional probabilistic verification through multi-objective model checking.
Information and Computation, 232:38–65, 2013.

[40] M. Kwiatkowska and D. Parker. Automated verification and strategy synthesis for probabilistic systems. In ATVA, volume 8172 of LNCS,
pages 5–22. Springer, 2013.

[41] M. Kwiatkowska, D. Parker, and C. Wiltsche. PRISM-games 2.0: A tool for multi-objective strategy synthesis for stochastic games. In
TACAS, 2016. (submitted).

[42] D.A. Levin, Y. Peres, and E.L. Wilmer. Markov chains and mixing times. AMS, 2009.
[43] L. MacDermed and C.L. Isbell. Solving stochastic games. In NIPS, pages 1186–1194. Curran Associates, Inc., 2009.
[44] P. Madhusudan and P.S. Thiagarajan. A decidable class of asynchronous distributed controllers. In CONCUR, volume 7454 of LNCS, pages

145–160. Springer, 2002.
[45] S. Mohalik and I. Walukiewicz. Distributed games. In FSTTCS, volume 2914 of LNCS, pages 338–351. Springer, 2003.
[46] A. Pneuli and R. Rosner. Distributed reactive systems are hard to synthesize. In FOCS, pages 746–757. IEEE, 1990.
[47] M.L. Puterman. Markov decision processes: discrete stochastic dynamic programming. Wiley-Interscience, 2009.
[48] Michael O. Rabin. Probabilistic automata. Information and Control, 6(3):230 – 245, 1963.
[49] M. Randour, J.F. Raskin, and O. Sankur. Variations on the stochastic shortest path problem. In VMCAI, volume 8318 of LNCS, pages 1–18.

Springer, 2014.
[50] M. Randour, J.F. Raskin, and O. Sankur. Percentile queries in multi-dimensional Markov decision processes. In CAV, volume 9206 of LNCS,

pages 123–139. Springer, 2015.
[51] R.T. Rockafellar. Convex Analysis. Princeton University Press, 1997.
[52] S.M. Ross. Stochastic processes, volume 2. John Wiley & Sons New York, 1996.
[53] O. Sankur. Robustness in Timed Automata: Analysis, Synthesis, Implementation. Thèse de doctorat, LSV, ENS Cachan, France, 2013.
[54] R. Segala. Modelling and Verification of Randomized Distributed Real Time Systems. PhD thesis, Massachusetts Institute of Technology,

1995.
[55] Lloyd S Shapley. Stochastic games. PNAS, 39(10):1095, 1953.
[56] N. Shimkin and A. Shwartz. Guaranteed performance regions in Markovian systems with competing decision makers. Automatic Control,

38(1):84–95, 1993.

35

[57] A. Simaitis. Automatic Verification of Competitive Stochastic Systems. PhD thesis, University of Oxford, 2013.
[58] A. Sokolova and E.P. de Vink. Probabilistic automata: system types, parallel composition and comparison. In VOSS, volume 2925 of LNCS,

pages 1–43. Springer, 2004.
[59] Mária Svorenová and Marta Kwiatkowska. Quantitative verification and strategy synthesis for stochastic games. volume 30, pages 15 – 30,

2016. 15th European Control Conference, {ECC16}.
[60] Y. Velner. Finite-memory strategy synthesis for robust multidimensional mean-payoff objectives. In LICS, pages 79:1–79:10. ACM/IEEE,

2014.
[61] Yaron Velner, Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, Alexander Moshe Rabinovich, and Jean-François Raskin. The

complexity of multi-mean-payoff and multi-energy games. Inf. Comput., 241:177–196, 2015.
[62] C. von Essen and B. Jobstmann. Synthesizing efficient controllers. In VMCAI, volume 7148 of LNCS, pages 428–444. Springer, 2012.
[63] D.J. White. Multi-objective infinite-horizon discounted Markov decision processes. J. Math. Anal. Appl., 89(2):639–647, 1982.
[64] C. Wiltsche. Assume-Guarantee Strategy Synthesis for Stochastic Games. PhD thesis, University of Oxford, 2016.

Appendix A. Proofs of results of Section 2

Appendix A.1. Proof of Proposition 1

Proof. The belief d♦λ after seeing a path λ is defined inductively as follows: d♦s = πd(s), dλs′
def
= πu(d♦λ , s

′). We define
d�λ for Player � similarly. We first remark that, given a game G and two strategies π, σ, then P

π,σ
G enjoys the following

recursive definition P
π,σ
G (s) = ς(s),

P
π,σ
G (λs′) = P

π,σ
G (λ)

∑
m,n

d♦λ (m)d�λ (n)
∑
m′,n′
Δ((s,m, n), (s′,m′, n′)). (A.1)

Indeed, d♦λ (m)d�λ (n) is the probability of having memory element m and n knowing the path λ and∑
m′,n′ Δ((s,m, n), (s′,m′, n′)) is the probability to have state s′ knowing that λ ends in s with memory element m

and n.
For the deterministic update strategy π̄, (A.1) can be written as:

P
π̄,σ
G (λs′) = P

π,σ
G (λ)

∑
n

d�λ (n)
∑
n′
Δ((s, d♦λ , n), (s′, d♦λs′ , n

′)). (A.2)

To show that (A.1) and (A.2) yield the same inductive definition, it suffices to note that the base case is satisfied
since P

π̄,σ
G (s) = ς(s) = P

π,σ
G (s), and show that

Δ((s, d♦λ , n), (s′, d♦λs′ , n
′)) =

∑
m,m′
d♦λ (m)Δ((s,m, n), (s′,m′, n′)). (A.3)

The right-hand side of (A.3) is equal to

∑
m

d♦λ (m)
∑
m′
πu(m, s′)(m′) · σu(n, s′)(n′) ·

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
πc(s,m)(s′) if s ∈ S♦
σc(s, n)(s′) if s ∈ S�
Δ(s, s′) if s ∈ S©

(A.4)

which after simplification using
∑
m′ πu(m, s′)(m′) = 1 and πc(s, d♦λ)(s′) =

∑
m∈M d

♦
λ (m)πc(s,m)(s′) yieldsσu(n, s′)(n′)·⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

πc(s, d♦λ)(s′) if s ∈ S♦
σc(s, n)(s′) if s ∈ S�
Δ(s, s′) if s ∈ S ©

which is equal to the left-hand side of (A.3): Δ((s, d♦λ , n), (s′, d♦λs′ , n
′)). We have proved that

P
π,σ
G and P

π̄,σ
G satisfy the same inductive definition, thus they are equal.

36

Appendix A.2. Some properties of long-run behaviour

We state here several results about the (multi-objective) long-run behaviours of stochastic models as introduced in
Section 2.3.

We begin by recalling standard definitions for Markov chains. A bottom strongly connected component (BSCC)
of a DTMC D is a nonempty maximal subset of states B ⊆ S s.t. every state in B is reachable from any other state in
B, and no state outside B is reachable. A state s ∈ S of a DTMC D is called recurrent if it is in some BSCC B of D.
A state which is not recurrent is called transient. A DTMC is irreducible if its state space comprises a single BSCC.
Given a BSCC B ⊆ S of a DTMC D, the stationary distribution μB ∈ D(S) is such that

∑
s∈B μB(s) · Δ(s, t) = μB(t)

holds for all t ∈ B; its existence and uniqueness is demonstrated, e.g., by Proposition M.2 in [30].

Theorem 17 (Theorem 4.16 in [42]). Let D be an irreducible DTMC with a single BSCC B, and let r be a reward

structure. The sequence 1
N+1 rewN(r)(λ) almost surely converges to

∑
s∈B μB(s) · r(s), where λ ∈ ΩD.

Remark 6. From the previous theorem, the mean-payoff in a BSCC B is the same at every state s ∈ B, and we define,

for a reward structure �r, mp(�r)(B) def
=

∑
s∈B�r(s)μB(s).

Lemma 14. Given a finite DTMC D and a reward structure �r, for λ ∈ ΩD the limit limN→∞ 1
N+1 rewN(�r)(λ) almost

surely exists and takes values �x in the finite set {mp(�r)(B) | B is a BSCC of D} with probability

∑
B s.t. mp(�r)(B)=�x

PD(FB).

Proof. Note first that, for every path λ ∈ ΩD, 1
N+1 rewN(�r)(λ) converges if and only if, for every suffix λ′ of λ,

1
N+1 rewN(�r)(λ′) converges to the same limit. For every recurrent state t of D, we denote by Wt the set of paths λ such
that t is the first recurrent state along λ. Paths λ ∈ Wt have suffixes λ′ distributed according to PD,t. By Theorem 17,

1
N+1 rewN(�r)(λ′) almost surely converges to

∑
t′∈B μB(t′)r(t′). Thus, with probability PD(FB) =

∑
t∈B PD(Wt), the

sequence 1
N+1 rewN(�r)(λ) converges to mp(�r)(B). To conclude, it suffices to recall that

∑
B∈B(D) PD(FB) = 1, and thus

the result holds almost surely.

Remark 7. Consequently, mp(�r)(λ) ≥ 0 for almost all paths of a DTMC D if and only if mp(�r)(B) ≥ 0 for every

BSCC B of D that is reached.

Lemma 15. Given a finite DTMC and two reward structures r and c with c weakly positive, then the sequence

rewN(r)/(1 + rewN(c)) converges almost surely to mp(r)/mp(c).

Proof. Fix a finite DTMC D. By Lemma 14, the limit inferior can be replaced by the true limit in mp(c) and mp(r).
ratio(r/c)(λ) = mp(r)(λ)

mp(c)(λ) . Using the conditions on c imposed by the definition of ratio rewards, we have that, with
probability one, mp(c) > 0. Hence,

mp(r)(λ)
mp(c)(λ)

=
limN→∞ 1

N+1 rewN(r)(λ)

limN→∞ 1
N+1 rewN(c)(λ)

= lim
N→∞

1
N+1 rewN(r)(λ)

1
N+1 rewN(c)(λ)

.

There is no indeterminacy for this quotient of limits, as the denominator is positive and the numerator is finite.
Simplifying the 1

N+1 term yields the equality mp(r)(λ)
mp(c)(λ) = limN→∞ rewN (r)(λ)

rewN (c)(λ) . This is almost surely equal to ratio(r/c)(λ) =

limN→∞ rewN (r)(λ)
1+rewN (c)(λ) since rewN(c)(λ) → +∞ almost surely.

As a consequence of Lemma 14 and Lemma 15 it follows that mean-payoff and ratio rewards are linear in finite
DTMCs.

Proposition 13. Given a finite DTMC, let �r be an n-dimensional reward structure and c a weakly positive reward

structure. For every �x ∈ R
n
≥0, it almost surely holds that mp(�x · �r) = �x · mp(�r) and ratio(�x · �r/c) = �x · ratio(�r/c).

37

Appendix A.3. Proof of Proposition 2

Proof. First note that Pratio(�r/�c)(�v) holds iff Pratio((�r − �v • �c)/�c)(0) holds. So, up to replacing �r − �v • �c by �r, we
can assume without loss of generality that �v = 0. We now show equivalence between Pmp(�r)(0) and Pratio(�r/�c)(0).
Fix a Player � strategy σ and a dimension i. By weak positivity of ci, for almost every path the sequence (1 +
rewN(ci)(λ))/(N + 1) has a positive limit inferior and, as it takes only positive values, this implies that it has a positive
lower bound. It is also upper-bounded as (1 + rewN(ci)(λ))/(N + 1) ≤ 1 + N maxs∈S ci(s)/(N + 1) → 1 +maxs∈S ci(s).
Now, note that for two real-valued sequences aN and bN such that lim aN ≥ 0, bN is positive, inf bN > 0 and
sup bN < ∞ then lim aN/bN ≥ 0. We apply this remark with sequences aN(λ) = rewN(ri)(λ)/(N + 1) and bN(λ) =
(1 + rewN(ci)(λ))/(N + 1), where λ is a path such that mp(ci)(λ) > 0. Then for almost every path the following
equivalence holds: ratio(ri/ci)(λ) = limaN(λ)/bN(λ) ≥ 0 iff mp(ri)(λ) ≥ 0. Thus, π is winning for Pratio(�r/�c)(0) iff it
is winning for Pmp(�r − �v • �c)(0).

Appendix B. Proofs of results of Section 3

Appendix B.1. Proof of Theorem 6

The proof of Theorem 6 relies on notions and results presented in Appendix A.2 above. We also state a technical
lemma used in the proof of this theorem.

Lemma 16. Let (Xn)≥n be a sequence of real-valued random variables. If P(limn→∞Xn ≥ v) = 1, then, for every

δ > 0, P(Xn < v − δ) → 0 as n → ∞.

Proof. Assume that P(limn→∞Xn ≥ v) = 1, and fix δ > 0. Let An
def
=

⋃
m≥n{e | Xm(e) < v − δ}. As An is a non-increasing

sequence of events, as n → ∞, it holds that P(An) → P(
⋂

n≥1 An), which is zero by hypothesis of the lemma. Hence
P(Xn < v − δ) also tends to zero as n → ∞, since P(Xn < v − δ) ≤ P(An).

We can now proceed to the proof of Theorem 6.

Proof. Let π be a Player ♦ strategy achieving Pmp(�r)(�0). We show that, for every ε > 0, Player ♦ has a finite DU
strategy to achieve Pmp(�r + ε)(�0). Let M = Gπ.

Denote by S M and S G the respective states spaces of M and G. Without loss of generality, we assume that the
memory of π is the set Ωfin

G of paths in G, and so M is an infinite tree where each state corresponds to a path λ ∈ Ωfin
G .

Consider the set SM,G
def
= {last(λ) ∈ S G | λ ∈ S M} of states of the game that appear in some state of M. For every

λ ∈ S M, PσM,λ(mp(�r) ≥ 0) = 1 holds for all Player � strategies σ. Consider, for each state s ∈ S M,G, a state λs ∈ S M
with last(λs) = s (note that, given s, λs is not unique, but it suffices to pick an arbitrary one). Then, for every Player �
strategy σ and every state s, it holds that PσM,λs

(limN→∞
1

N+1 rewN(�r) ≥ 0) = 1, and hence, by Lemma 16, the quantity

ps,h,σ
def
= P

σ
M,λs

(1
h+1 rewh(�r) ≤ −ε/2) (defined for a fixed h > 0) tends to 0 as ε → 0. We define ph,σ

def
= maxs ps,h,σ, and

let ph be the maximum ps,h,σ over all MD Player � strategies σ. As the maxima are taken over finite sets, we have
that ph → 0 as h → ∞.

Now for a fixed positive integer h, construct the finite DU Player ♦ strategy πh that plays as follows: starting
from s ∈ S M,G, it initialises its memory to λs and plays π for h steps; then, from whatever state t ∈ SM,G it arrived
at, it resets its memory to λt and plays π for a further h steps, and so on. Fix any MD strategy of Player �, and a
BSCC B of the finite induced DTMC D = Gπh,σ. Given a state s ∈ S M,G, let s̃ = (s, λs, n) be the corresponding
state of D (where n is the only memory element of σ). Note that by definition of πh, a state of the form s̃ with
s ∈ SM,G is seen every h steps. In particular B must contain at least one state s̃0 with s0 ∈ SM,G. By Remark 6,
we then have PD(mp(�r) = mp(�r)(B)) = 1, so it suffices to find a lower-bound for mp(�r)(B), which is equivalent
to find a lower-bound for limN→∞ 1

N+1ED,s̃0 [rewN(�r)]. We have constructed πh so that every h steps a state in SM,G
is encountered, and hence it holds, for every k ≥ 0, that ED,s̃0 [rewkh(�r)] ≥ k · mins∈SM,G ED,s̃[rewh(�r)]. From a state
s ∈ SM,G, with probability less than ph,σ, the reward accumulated is at least −hρ∗, where ρ∗ = maxs∈SG,i |ri(s)|. Further,
with probability greater than 1 − ph,σ the reward accumulated is at least −hε/2. Therefore, for every state s ∈ SM,G,
ED,s̃[rewh(�r)] ≥ −ph,σρ

∗ − (1 − ph,σ)hε/2 ≥ −phρ
∗ − hε/2. Hence, ED,s̃[rewkh(�r)] ≥ −kh(phρ

∗ + ε/2). Dividing
by kh + 1 and letting k go towards infinity, we get that ED,s̃0 [mp(�r)] = limk

1
kh+1ED,s̃0 [rewkh(�r)] ≥ −phρ

∗ − ε/2.
We therefore have, for every BSCC B of D, that mp(�r)(B) ≥ −phρ

∗ − ε/2, and hence, by Remark 7, Player ♦
38

s0 s1 s2 sn sn+1

(−20, 0)

(0,−20)

a

b

(−21, 0)

(0,−21)

a

b

(−2n, 0)

(0,−2n)

a

b

(2n+1 − 1, 0)
a

(0, 2n+1 − 1)
b

Figure B.15: Finite-memory SU strategies are exponentially more succinct than finite-memory DU strategies for Pmp(�r)(�0).

achieves Pmp(�r + phρ
∗ + ε/2)(�0) against all MD Player � strategies. Then, by Theorem 3, Player ♦ achieves

Pmp(�r + phρ
∗ + ε/2)(�0) against all Player � strategies. Since ph → 0, we can find h large enough so that phρ

∗ ≤ ε/2,
and hence have Pmp(�r + ε)(�0) against every σ.

Appendix B.2. Proof of Proposition 6

Proof. The proof method is based on similar results in [16, 57]. Consider the game G in Figure B.15 with objective
Pmp(�r)(0). From s0, when Player � chooses a sequence w of actions with |w| ≤ n + 1, the total rewards are shifted
by the vector −(αw, 2|w| − 1 − αw), where αw

def
=

∑|w|
j=1 δw j=a2 j−1 is the number corresponding to the binary word w

represented with the least significant bit first, with a coding for 1 and b for 0.

Exponential memory DU strategy. We show that there is a winning DU strategy π for Player ♦ with exponential
memoryM def

=
⋃n+1

k=1{a, b}k, which at state sn+1 plays the distribution νw defined by νw(a) def
=

αw

2n+1−1 and νw(b) def
= 1−νw(a),

where w ∈ M is the current memory, determining αw. This strategy compensates the shift incurred while going through
the Player � states, and hence, for every loop, the expected total reward is (0, 0). Thus also the expected mean-payoff
is (0, 0). We now show that the almost sure mean-payoff is (0, 0). As the strategy π has finite memory, the induced PA
Gπ is finite, and it suffices to consider MD strategies for Player � in Gπ, cf. Lemma 1. Let Ri be the random variable
equals to the total reward of the ith loop. The random variables (Ri)i≥0 are independent identically distributed and of
expectation zero, and we apply the strong law of large numbers to obtain that (1/N)

∑N
i=0 Ri converges almost surely

towards the common mean 0. Hence, π is winning for almost sure convergence.

Linear memory SU strategy. We now show how the distribution νw can be simulated by an SU strategy π that
contains only 2(n + 1) memory elements. LetM def

=
⋃n+1

i=0 {ai, bi}, and let πc(sn+1, ln+1) def
= l for l ∈ {a, b}, that is, li is the

memory at state si corresponding intuitively to the intention of Player ♦ to play the action l.
We denote by P(li|w) the probability of Player ♦ being in memory li after having read the sequence w of length

i, starting from s0. We now inductively define a memory update function such that, for i ≤ n + 1 and w ∈ {a, b}i,
P(ai|w) = αw

2i−1 (and P(bi|w) = 1 − P(ai|w)), so that, in particular, when i = n + 1, Player ♦ chooses the next move
according to the distribution νw. In the base case (when i = 0 and w is the empty word), P(a0|w) = 1 necessitates that
the initial memory as well as the memory when returning after each loop to s0 is πd(s0) def

= πu(ln+1, l
′) def
= a0.

When going from si to si+1 via an action q, the memory li ∈ {ai, bi} in si is updated to l′i+1 in si+1, under the
condition

P(l′i+1|wq) = P(ai|w) · πu(ai, q)(l′i+1) + P(ai|w) · πu(bi, q)(l′i+1). (B.1)

Taking l′ = a and taking q to be a or b in (B.1) gives as necessary conditions

P(ai+1|wa) =
αw + 2i

2i+1 − 1
=
αw

2i − 1
· πu(ai, a)(ai+1) +

(
1 − αw

2i − 1

)
· πu(bi, a)(ai+1) (B.2)

P(ai+1|wb) =
αw

2i+1 − 1
=
αw

2i − 1
· πu(ai, a)(ai+1) +

(
1 − αw

2i − 1

)
· πu(bi, b)(ai+1); (B.3)

Taking l′ = b in (B.1) gives symmetric conditions.

39

defining U(i)

backward
U(0)U(1)· · ·U(k)U(k+1)· · ·U(k+p−1)

U
(k+p,k)
E is stochastic

defining P[m] forward,
and looping

P[0] P[1] · · · P[n] · · · P[n+p−2] P[n+p−1]

= = =

Figure B.16: Matrices U(i) and P[m] to define the ultimately periodic matrix based strategy for Player � to spoil EE(r − ε) in the proof of
Proposition 5.

We now define the memory update function according to these conditions. Define πu(ai, a) def
= ai+1 and πu(bi, b) def

=

bi+1, following the intuition that there is no need to change the intention to play a or b, corresponding to the current
memory ai and bi, respectively, when the intention is followed. Further, using the conditions in (B.2), we obtain, for
l, l̄ ∈ {a, b} with l̄ � l that πu(li, l̄)(li+1) def

= 2i−1
2i+1−1 and πu(li, l̄)(l̄i+1) def

= 2i

2i+1−1 . We have thus defined π so that at sn+1 the
choices it made were according to νw. Then, as shown above, this strategy is winning. Moreover, π contains 2(n + 1)
memory elements, and is therefore exponentially smaller than the DU strategy described above. Note that this strategy
could have been described with only two memory elements a and b but the strategy would still need a linear space to
encode the memory updates (as distinct game transitions lead to distinct updating rules).

No sub-exponential DU strategy. We show that every finite DU strategy achieving Pmp(�r)(�0) requires at least
exponential memory. Consider a finite DU strategy π with less than 2n+1 − 1 memory elements. We show that it
loses against some finite strategy σ. For every memory element m ∈ M, there exist at least two distinct sequences
w1
m and w2

m such that the memory updated from m is the same after seeing either w1
m or w2

m, denoted f (m), and such
that rew(w1

m) ≥ rew(w2
m) + 1 for r1. Consider the finite memory strategy σ1 (resp. σ2) that simulates the deterministic

memory of π and plays the actions in w1
m (resp. w2

m) from s0 and memory m. The strategy π reacts to f (m) at
state sn+1, so the rewards associated to w1

m or w2
m are not compensated. Let Di

def
= Gπ,σi

. We extend the reasoning
to k loops as follows. For pairwise associated sequences wi = wi

m1
l1wi
m2

l2 · · ·wi
mk

lk with i ∈ {1, 2}, it holds that
rew(r1)(w1) ≥ rew(r1)(w2) + k and PD1 (w1) = PD2 (w2). Hence, the average rewards in the two DTMCs are separated
by 1/L, where L is the length of a loop. Hence, if π wins against σ1, then PD1 (mp(r1) = 0) = PD1 (mp(r2) = 0) = 1,
and hence, PD2 (mp(r1) ≤ −1/L) = 1. The strategy π loses against σ1 or σ2, which concludes the proof.

Appendix B.3. Proof of Proposition 5

The proof uses notations on matrix and vectors that we introduce now. We recall that we use boldface notation for
vectors over the state space; in particular, given a scalar a, we write a for the vector with a in each component. With
this notation a one-dimensional reward structure r is represented by the vector r whose sth component is r(s). We
use the notation [v]s to refer to the sth component vs of a vector v. and use the notation [A]s,t to refer to the sth row
and tth column of a matrix A. We use the induced matrix norm of A defined by ‖A‖∞ def

= max
1≤i≤m

∑n
j=1 |Ai j|. This norm is

sub-multiplicative, i.e. ‖AB‖∞ ≤ ‖A‖∞ ‖B‖∞. Given a vector v with entries indexed by the state space S , we denote by
vE the vector with entries indexed by the subset E ⊆ S , such that [vE]s = vs for all s ∈ E. Similarly, given a matrix A

with entries indexed by a set S , we denote by AE,E′ the |E| × |E′| submatrix of A with entries indexed by E, E′ ⊆ S ,
such that [AE,E′]s,t = As,t for (s, t) ∈ E×E′. For a state s ∈ S and E ⊆ S , we write As,E instead of A{s},E and AE instead
of AE,E . We denote by IS the |S | × |S | identity matrix with entries indexed by S . A square matrix A with nonnegative
real entries is (right) stochastic if

∑
t As,t = 1 for all rows s of A.

Proof. The proof is as follows. For k large enough and for states in S∞, there is no cut-off used to define uk, and hence
uk satisfies the same linear equations as the expected non-truncated energy ek, which we proceed to express in terms
of matrices. We then construct a finite memory Player � strategy from the sequence uk and the associated matrices,

40

so that the expected energy with respect to the reward r is bounded. By operating with the reward r − ε, we substract
−ε at each step, and so the expected energy goes to −∞, falsifying EE(r − ε).

Let k0 be the least integer such that, for all k ≥ k0, uk
s < 0 for every s ∈ S∞. For k ≥ 0 and s ∈ S�, let σk(s) be a

successor of s, for which the minimum is attained, that is, uk+1
s = min{0, r(s) + uk

σk(s)}. Let U(k) be the S × S matrix
for M defined by

U
(k)
s,t =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 if s ∈ S� ∧ t = σk(s)
Δ(s, t) if s ∈ S©
0 otherwise,

for all s, t ∈ S . Let U(j,i) be the matrix product U(j−1) · U(j−2) · · · · · U(i) for j > i, and let U(i,i) = I (the identity). We
use the following block decomposition of the matrix U(k)

U(k) =

⎛⎜⎜⎜⎜⎝ U
(k)
S∞ U

(k)
S∞,S fin

0 U
(k)
S fin

⎞⎟⎟⎟⎟⎠ . (B.4)

The zero block in the lower left corner of U(k) arises because all successors of states in S fin are in S fin. In particular,
U

(j,i)
S∞ = U

(j−1)
S∞ · U

(j−2)
S∞ · · · · · U

(i)
S∞ .

Remark 8. For every k ≥ k0, it holds that uk+1
S∞ = rS∞ + [U(k) · uk]S∞ .

We now proceed to show Proposition 5 as a consequence of Lemmas 17–22.

Lemma 17. For every l ≥ 0, there exists a constant bl ≥ 0, such that, for every k ≥ k0, it holds that ‖uk+l
S∞ ‖∞ ≤

‖U(k+l,k)
S∞ ‖∞ · ‖uk

S∞‖∞ + bl.

Proof. We show the following more general statement by induction:

uk+l
S∞ ≥ U

(k+l,k)
S∞ · uk

S∞ + a − lρ∗, (B.5)

where a and ρ∗ are the constant vector with equal components a
def
= mins∈S fin u∗

s and ρ∗ def
= maxs∈S |r(s)|, respectively.

The base case, for l = 0, is satisfied. Now assume that the result is true for some index l, and we show that it
implies that it is true for l + 1. Recall that for k ≥ k0 and s ∈ S∞, there is no cut-off of positive values in uk

s. We thus
obtain

uk+l+1
S∞ = rS∞ + [U(k+l) · uk+l]S∞ (Remark 8)

= rS∞ + U
(k+l)
S∞ · uk+l

S∞ + U
(k+l)
S∞,S fin

· uk+l
S fin

(by (B.4))

≥ −ρ∗ + U
(k+l)
S∞ · uk+l

S∞ + U
(k+l)
S∞,S fin

· a (definition of a and ρ∗)

≥ −ρ∗ + U
(k+l)
S∞ · (U(k+l,k)

S∞ · uk
S∞ + a − lρ∗) + U

(k+l)
S∞,S fin

· a

(induction hypothesis)

≥ U
(k+l+1,k)
S∞ · uk

S∞ + (U(k+l)
S∞ + U

(k+l)
S∞,S fin

) · a − (l + 1)ρ∗ (rearranging)

≥ U
(k+l+1,k)
S∞ · uk

S∞ + a − (l + 1)ρ∗. (U(k+l) is stochastic)

It now suffices to define bl
def
= a − lρ∗, and take the norm in (B.5):

‖uk+l
S∞ ‖∞ = max

s∈S∞
(−uk+l

s) (norm)

≤ max
s∈S∞

(U(k+l,k)
S∞ · (−uk

S∞) + bl) (by (B.5))

= ‖U(k+l,k)
S∞ · (−uk

S∞)‖∞ + bl

≤ ‖U(k+l,k)
S∞ ‖∞ · ‖uk

S∞‖∞ + bl. (sub-multiplicativity)

41

Lemma 18. Let b ≥ 0, and let (xm)m∈N and (cm)m∈N be non-negative real sequences. If xm → ∞ as m → ∞, and, for

every m ≥ 0, xm+1 ≤ cmxm + b and cm ≤ 1, then it holds that supm≥0 cm = 1.

Proof. Assume toward a contradiction that there exists θ < 1 such that, for every m, cm ≤ θ. As xm → ∞, there
exists m0 such that, for every m ≥ m0, it holds that xm > b/(1 − θ), and hence that xm+1/xm ≤ cm + b/xm <
θ + b/(b/(1 − θ)) = 1. This yields that, from the index m0, the sequence (xm)m≥m0 is decreasing, and thus cannot go to
+∞, a contradiction.

Lemma 19. If S ∞ � ∅, then there exists a set E ⊆ S∞ and indices j > i ≥ k0 such that U
(i, j)
E is stochastic.

Proof. Given a subset of states A ⊆ S , and a S × S stochastic matrix P, we define Reach(A, P) def
= {s′ | ∃s ∈

A . Ps,s′ > 0}. Note that PE is stochastic if and only if Reach(E, P) ⊆ E, and further that Reach(Reach(A, P), P′) =
Reach(A, P · P′). Let l = 2|S |, s ∈ S and k ∈ N. Consider the sets Reach({s},U(k+l,k+l)), Reach({s},U(k+l,k+l−1)), . . .,
Reach({s},U(k+l,k)). By the pigeonhole principle, there are at least two indices i, j with k ≤ i < j ≤ k + l such that
Reach({s},U(k+l, j)) = Reach({s},U(k+l,i)), and we denote this common set by Es,k. We thus have that

Reach(Es,k,U
(j,i)) = Reach(Reach({s},U(k+l, j)),U(j,i))

= Reach({s},U(k+l, j) · U(j,i))

= Reach({s},U(k+l,i))
= Es,k.

Hence U
(j,i)
Es,k

is stochastic. It now suffices to prove that Es,k ⊆ S∞ for some s ∈ S∞ and k ≥ k0. Assume for the
sake of contradiction that Es,k ∩ S fin � ∅ for every s ∈ S∞ and k ≥ k0. By definition of Es,k there exists i such that
Es,k = Reach({s},U(k+l,i)) and hence such that U

(k+l,i)
s,S fin

� 0. Now recall that U
(i,k)
S fin

is stochastic, since every successor
of a state in S fin is in S fin. We deduce that U

(k+l,k)
s,S fin

= U
(k+l,i)
s,S fin

· U
(i,k)
S fin
� 0. The matrix U(k+l,k) is the product of l matrices,

each of which has entries either zero or greater than pmin, the minimal probability on edges of the PA M. Therefore,
coefficients of U(k+l,k) are either zero or greater than pl

min, and so ‖U(k+l,k)
s,S fin

‖∞ ≥ pl
min. Since U(k+l,k) is stochastic, its

row-sum are equal to one, that is,
∑

s′∈S fin
U

(k+l,k)
s,s′ +

∑
s′∈S∞ U

(k+l,k)
s,s′ = 1, for every s ∈ S and k ≥ 0. This implies that∑

s′∈S∞ U
(k+l,k)
s,s′ ≤ 1− pl

min, for every s ∈ S and k ≥ 0. We let cm
def
= ‖U(k0+lm+l,k0+lm)

S∞ ‖∞, and have by the above discussion

that supm cm ≤ 1 − pl
min < 1, to which we now derive a contradiction. Let xm

def
= ‖uk0+lm

S∞ ‖∞, for which we have, by
Lemma 17, that xm+1 ≤ cm · xm + bl. We now use Lemma 18 to obtain supm cm = 1, a contradiction.

We now define Player � strategies and the expected energies they induce in terms of matrices. We consider
ultimately periodic sequences of matrices that after a finite prefix n keep repeating the same p elements in a loop.
Formally, an ultimately periodic sequence (P[m])m∈N with prefix n and period p is such that the mth element is equal
to the element of index m mod (n, p) (that is, P[m] = P[m mod (n,p)]), where

m mod (n, p) def
=

⎧⎪⎪⎨⎪⎪⎩
m if m ≤ n + p − 1
n + (m − n mod p) otherwise.

A stochastic matrix P conforms to M if, for every s ∈ S © and all s′ ∈ Δ(s), it holds that Ps,s′ = Δ(s, s′). We
define a finite strategy by an ultimately periodic sequence of matrices (P[k])k∈N that conform to M: the memory is a
counter m ≤ n + p that is updated at every step from m to m + 1 mod (n, p); and in state s and memory m the choice
function selects s′ with probability P[m]

s,s′ . To express several steps of the strategy, we introduce the interval matrices
P[m,m+l] = P[m] · · · P[m+l−1] with P[m,m] = IS , and the corresponding cumulative matrices P̂[m,m+l] =

∑l−1
q=0 P[m,m+q] with

P̂[m,m] = 0.
For every step k ≥ 0 and memory m, we define a vector ek

(m)(r), where the entry for s is defined as ek
s,m in the PA

with reward structure r, that is, the expected energy for r after k steps at state (s,m) of the induced DTMC.

Lemma 20. Given a strategy based on an ultimately periodic matrix with prefix n and period p, it holds that

el
(m mod (n,p))(r) = P̂[m,m+l] · r, for all l ≥ 0 and m ≥ 0.

42

Proof. We show this statement by induction on l. The base case for l = 0 is satisfied. Now assume the statement
holds for l, and we show for l+ 1. As the strategy with memory m mod (n, p) plays according to the matrix P[m], and
increments its memory to m + 1 mod (n, p), it holds that

el+1
(m mod (n,p))(r) = r + P[m] · el

(m+1 mod (n,p))(r)

= P[m] · P̂[m+1,m+l+1] · r

= P̂[m,m+l+1] · r.

We now show that the strategy based on ultimately periodic matrices is able to decrease the expected energy in the
periodic phase by a nonzero amount every p number of steps.

Lemma 21. Given a strategy based on an ultimately periodic matrix with prefix n and period p, and a set E such that

A = P[n,n+p]
E is stochastic, then, for all j ≥ 0, it holds that [e jp

(n)(r − ε)]E =
∑ j−1

k=0 Ak · [P̂[n,n+p] · r]E − jpε.

Proof. Note first that P[n,n+ jp] = (P[n,n+p]) j, that P̂[n,n+ jp] · 1 = jp, and that P̂[n,n+ jp] =
∑ j−1

k=0(P[n,n+p])k · P̂[n,n+p]. Since
the restriction of P[n,n+p] to the set E is stochastic, it holds, for every vector x, that [P[n,n+p] · x]E = P[n,n+p]

E · xE . We
apply Lemma 20 with l = jp and m = n, and thus get, for all j ≥ 0, that

[e jp

(n)(r − ε)]E = [P̂[n,n+ jp] · (r − ε)]E

=

⎡⎢⎢⎢⎢⎢⎢⎣
j−1∑
k=0

(P[n,n+p])k · P̂[n,n+p] · r − jpε

⎤⎥⎥⎥⎥⎥⎥⎦
E

=

j−1∑
k=0

(P[n,n+p]
E)k · [P̂[n,n+p] · r]E − jpε.

We now describe a situation where the cut-off of positive values in the definition of uk does not occur.

Lemma 22. For k ≥ k0, and E ⊆ S∞ such that U
(k+p,k)
E is stochastic,

uk+p
E = [Û(k+p,k) · r]E + U

(k+p,k)
E · uk

E . (B.6)

Proof. We show, by induction on l, the following more general statement: for all l ≥ 0, k ≥ k0, and E, E′ ⊆ S ∞ such
that E′ = Reach(E,U(k+l,k)), it holds that

uk+l
E = [Û(k+l,k) · r]E + U

(k+l,k)
E,E′ · uk

E′ .

The base case for l = 0 is straightforward. Now suppose that the result holds for l, and we show it for l + 1.
Let k ≥ k0 and E, E′ ⊆ S ∞ such that E′ = Reach(E,U(k+l+1,k)), and let E′′ = Reach(E,U(k+l+1,k+1)). Note that
Reach(E′′,U(k)) = E′ ⊆ S∞, and hence that E′′ ⊆ S∞, since every predecessor of a state in S ∞ is in S∞. As k+1 ≥ k0
and E′′ ⊆ S ∞, it holds that uk+1

E′′ = rE′′ + U
(k+1)
E′′,E′uk

E′ , and hence we can conclude the proof by

uk+l+1
E = [Û(k+l+1,k+1) · r]E + U

(k+l+1,k+1)
E,E′′ · uk+1

E′′

= [Û(k+l+1,k+1) · r]E + U
(k+l+1,k+1)
E,E′′ · rE′′ + U

(k+l+1,k+1)
E,E′′ · U

(k+1)
E′′,E′ · uk

E′

= [Û(k+l+1,k) · r]E + U
(k+l+1,k)
E,E′ · uk

E′ ,

where the first equality is due to the induction hypothesis.

We can now complete the proof of Proposition 5. We assume that S ∞ � ∅. By Lemma 19, there exists a set
E ⊆ S∞, and indices k0 ≤ k < k + p, such that Reach(E,U(k+p,k)) = E. By Lemma 22, it holds that uk+p

E = y + A · uk
E

with y = [Û(k+p,k) · r]E and A = U
(k+p,k)
E .

We define Player � strategy σ based on ultimately periodic matrices U(k+p), . . ., U(k+1) (involved in the defi-
nition of A). The prefix of this strategy ensures that the set E is reachable from the initial states, and hence that

43

the states of E are in the induced DTMC Mσ. We let P[0], . . . P[n−1] be matrices that conform to M, such that
E ∩ Reach(supp(ς), P[0,n−1]) � ∅; for instance, we can take P[i] to be the matrix corresponding to choosing suc-
cessors in Player � states with uniform probability. Then we define the periodic phase with p matrices by letting
P[n+i] = U(k+p−i) for 0 ≤ i ≤ p − 1 (see Figure B.16).

Note that P[n,n+p] = U(k+p,k) and y def
= [Û(k+p,k)·r]E = [P̂[n,n+p]·r]E . Further, for states s ∈ E∩Reach(supp(ς), P[0,n−1]),

we have that the state (s, n) is in the induced DTMC Mσ. We now show that e
jp

(s,n) → −∞ as j → ∞, and hence

that the strategy σ spoils EE(r − ε). From Lemma 21 we have [e jp

(n)(r − ε)]E =
∑ j−1

k=0 Ak · y − jpε. It remains to

show that the sequence
∑ j−1

k=0 Ak · y is upper-bounded, in order to have convergence of e jp

(s,n) toward −∞. We have
y = uk+p

E − A · uk
E ≤ (I − A) · uk

E , and thus

⎛⎜⎜⎜⎜⎜⎜⎝
j−1∑
i=0

Ai

⎞⎟⎟⎟⎟⎟⎟⎠ · y ≤
⎛⎜⎜⎜⎜⎜⎜⎝

j−1∑
i=0

Ai

⎞⎟⎟⎟⎟⎟⎟⎠ · (I − A) · uk
E = (I − Aj) · uk

E ≤ −Aj · uk
E ≤ ‖uk

E‖∞ · 1,

where we use for the last inequality that ‖Aj‖∞ = 1, since Aj is stochastic.

Appendix B.4. Proof of Lemma 4

Proof. Fix a Player � strategy σ for M. We first show by induction on k that uk
s ≤ ek

s,m for every s and m. The base
case for k = 0 is satisfied as ek

s,m = uk
s = 0. Now assume that uk

s ≤ ek
s,m holds for some k and for every s, m, and we

show it holds for k + 1. In each Player � state s, we have

uk+1
s ≤ r(s) + min

t∈Δ(s)
uk

t (definition)

≤ r(s) +
∑

(t,m′)∈Δσ(s,m)

Δσ((s,m), (t,m′))uk
t

≤ r(s) +
∑

(t,m′)∈Δσ(s,m)

Δσ((s,m), (t,m′))ek
t,m′ (induction hypothesis)

= ek+1
s,m . (definition)

Since Player � can falsify EE(r), for every v0 there is (s,m) such that ek
s,m ≤ v0 and hence u∗

s ≤ uk
s ≤ ek

s,m ≤ v0. As M
is finite and v0 can be taken arbitrary low, it means that there is one state for which u∗

s = −∞, and thus S∞ � ∅.

Appendix B.5. Proof of Lemma 5

Proof. Instead of proving ∀σ .Gπ,σ |= ψ ⇒ ∀σ .Gπ,σ |= ϕ, we prove the stronger statement ∀σ . (Gπ,σ |= ψ ⇒ Gπ,σ |=
ϕ). Fix finite strategies π and σ. Let D = Gπ,σ, which is a finite DTMC. By Lemma 14, the limit limN→∞ 1

N+1 rewN(�r)
almost surely exists. For every N and path λ, we have | 1

N+1 rewN(�r)(λ)| ≤ maxs∈SD |�r(s)|, where the maximum is taken
componentwise, and so we have

ED,s
[

lim
N→∞

1
N+1 rewN(�r)

]
= lim

N→∞ED,s
[

1
N+1 rewN(�r)

]
(B.7)

by the Lebesgue dominated convergence theorem.

Proof of (i). By Theorem 3 it suffices to consider MD Player � strategies. Assume that EE(�r) is satisfied. Fix a
finite shortfall �v0 such that, for all s ∈ SD, it holds that

∀N ≥ 0 .ED,s[rewN(�r)] ≥ �v0 (by assumption)

∀N ≥ 0 .ED,s[1
N+1 rewN(�r)] ≥ �v0

N+1 (dividing by N + 1)

lim
N→∞ED,s

[
1

N+1 rewN(�r)
]
≥ 0 (taking limits)

ED,s
[

lim
N→∞

1
N+1 rewN(�r)

]
≥ 0. (by (B.7))

44

From Lemma 14, when s is in a BSCC B of D (that is, PD,s(FB) = 1), we have mp(�r)(B) = ED,s[limN→∞ 1
N+1 rewN(�r)].

Therefore, for every BSCC B, mp(�r)(B) ≥ �0. Thus, again by Lemma 14, Pmp(�r)(�0) is satisfied.

Proof of (ii). Assume π is DU, and so, by Proposition 6, it suffices to consider finite Player � strategies. Fix
ε > 0. Assume that D |= Pmp(�r)(�0), and so, by Lemma 14, rew(�r)(B) ≥ 0 for every BSCC B of D. Thus, for all
states s ∈ SD, we have

lim
N→∞ED,s[1

N+1 rewN(�r)] ≥ �0 (by (B.7))

∃Nε,s ≥ 0 .∀N ≥ Nε,s .ED,s[1
N+1 rewN(�r)] ≥ −�ε (definition of limit)

∀N ≥ 0 .ED,s[rewN(�r)] ≥ −(N + 1) · �ε + �vs
0

(fixing Nε,s and letting vs
0,i

def
= min

N≤Nε,s
ED,s[rewN(ri)])

∀N ≥ 0 .ED,s[rewN(�r + ε)] ≥ �vs
0 ≥ �v0. (letting v0,i

def
= min

s∈SD
vs

0,i)

Since �v0 is finite, D satisfies EE(�r + �ε).

Appendix B.6. Proof of Proposition 8

We first recall concepts about fixpoints from [23]. Given a partially ordered set C with a partial order #, and a set
Y ⊆ C, an element x ∈ C is an upper bound of Y if y # x for all y ∈ Y , and the supremum of Y is its least upper bound,
written sup Y . Given a map Φ : C → C, we say that x ∈ C is a fixpoint of Φ if Φ(x) = x. We write fix(Φ) for the least
fixpoint of Φ.

A nonempty subset D of an ordered set C is directed if, for every finite subset F ⊆ D, an upper bound of F is in
D. An ordered set C is a complete partially ordered set (CPO) if sup D exists for each directed subset D of C, and C
has a bottom element ⊥, which is the least element with respect to the order #. A map Φ : C → C over a CPO C is
Scott-continuous if, for every directed set D in C, Φ(sup D) = supΦ(D). By Lemma 3.15 in [23], every continuous
map is order-preserving, meaning that Φ(x) # Φ(y) for all x, y ∈ C such that x # y.

Theorem 18 (Theorem 4.5 (ii) in [23], Kleene fixpoint theorem). Let C be a CPO, and let Φ : C → C be a Scott-

continuous map. The least fixpoint fix(Φ) exists and is equal to supk≥0Φ
k(⊥).

We now give more details on the set CM and show that it is a CPO. For D ⊆ CM , the supremum sup D is defined
via [sup{X ∈ D}]s

def
=

⋂
X∈D Xs for all s ∈ S . The intersection of convex, closed, M-downward-closed sets is itself

convex, closed, and M-downward-closed, and so sup D ∈ CM for any directed set D. Hence, CM is a CPO.

Proof. The properties claimed in the proposition are consequences of Scott continuity of FM and the Kleene fixpoint
theorem, (Theorem 18). To show Scott continuity, it is sufficient to show that, for every countable directed set D, we
have that [FM(sup D)]s = sup([FM(D)]s) for all s ∈ S . Take any countable directed set D = {Xk ∈ CM | k ≥ 0} ⊆ CM ,
and any s ∈ S . We first show intermediate results about this directed set D.

Lemma 23. For finite T ⊆ S , conv(
⋃

t∈T

⋂
k≥0 Xk

t) =
⋂

k≥0 conv(
⋃

t∈T Xk
t).

Proof. We first define Yk def
= conv(

⋃
t∈T Xk

t), and let Y∞ def
=

⋂
k≥0 Yk. The sets Xk

t are compact and convex, and so their
convex hull Yk is also compact and convex, by Theorem 17.2 in [51]. Moreover, Yk is M-downward closed, and so,
for every k, Yk ∈ Pc,M .

We now show the equality of the lemma. For the ⊆ direction, take �y ∈ conv(
⋃

t∈T

⋂
k≥0 Xk

t). Then �y =
∑

t∈T μ(t) · �xt

for some distribution μ ∈ D(T) and some �xt ∈ ⋂
k≥0 Xk

t . Hence, for every k, �y ∈ Yk, and so �y ∈ Y∞.
For the ⊇ direction, take �y∞ ∈ Y∞. We note that, for every k ≥ 0, �y∞ =

∑
t∈T μk(t) · �xk

t for some distribution
μk ∈ D(T) and some vector �xk

t ∈ Xk
t . The sets Xk are in Pc,M , and thus compact, and so one can extract a subsequence

of indices ik such that μik and �xik
t converge toward limits, which we respectively denote μ and �xt for every t ∈ T .

Moreover, limk→∞ �xik
t = �xt ∈ Yl

t for every l ≥ 0 as Yl is compact. Hence, �xt ∈ ⋂
k≥0 Xk

t for every t and we conclude
�y∞ =

∑
t∈T μ(t) · �xt ∈ conv(

⋃
t∈T

⋂
k≥0 Xk

t).

Lemma 24. For finite T ⊆ S ,
⋂

t∈T

⋂
k≥0 Xk

t =
⋂

k≥0
⋂

t∈T Xk
t .

45

Proof. Straightforward reordering of countable intersections.

Lemma 25. For finite T ⊆ S ,
∑

t∈T μ(t) × ⋂
k≥0 Xk

t =
⋂

k≥0
∑

t∈T μ(t) × Xk
t .

Proof. The ⊆ direction is straightforward. For the ⊇ direction, take �x ∈ ⋂
k≥0

∑
t∈T μ(t) × Xk

t , and so, for all k ≥ 0,
there exist vectors �xk

t ∈ Xk
t for t ∈ T , such that �x =

∑
t∈T μ(t) · �xk

t . We extract a subsequence of indices ik such that �xik
t

tends to a limit �xt, which necessarily lies in
⋂

k≥0 Xk
t , by the same arguent as in Lemma 24. Hence �x =

∑
t∈T μ(t)�xt ∈∑

t∈T μ(t) × ⋂
k≥0 Xk

t .

We now continue the proof of Proposition 8 by considering three cases. For s ∈ S♦, we have

[FM(sup(D))]s
def
= BoxM ∩ dwc(�r(s) + conv(

⋃
t∈Δ(s)

⋂
k≥0 Xk

t))
= BoxM ∩ dwc(�r(s) +

⋂
k≥0 conv(

⋃
t∈Δ(s) Xk

t)) (Lemma 23)
=

⋂
k≥0(BoxM ∩ dwc(�r(s) + conv(

⋃
t∈Δ(s) Xk

t)))
def
= [sup FM(D)]s.

For s ∈ S �, we have

[FM(sup(D))]s = BoxM ∩ dwc(�r(s) +
⋂

t∈Δ(s)
⋂

k≥0 Xk
t)

= BoxM ∩ dwc(�r(s) +
⋂

k≥0
⋂

t∈Δ(s) Xk
t) (Lemma 24)

=
⋂

k≥0(BoxM ∩ dwc(�r(s) +
⋂

t∈Δ(s) Xk
t))

def
= [sup FM(D)]s.

Finally, for s ∈ S ©, we have

[FM(sup(D))]s
def
= BoxM ∩ dwc(�r(s) +

∑
t∈Δ(s) Δ(s, t) × ⋂

k≥0 Xk
t)

= BoxM ∩ dwc(�r(s) +
⋂

k≥0
∑

t∈Δ(s) Δ(s, t) × Xk
t) (Lemma 25)

=
⋂

k≥0(BoxM ∩ dwc(�r(s) +
∑

t∈Δ(s) Δ(s, t) × Xk
t))

def
= [sup FM(D)]s.

This concludes the proof of Scott continuity for FM . Then, by Theorem 18, the least fixpoint exists, and is equal
to fix(FM) =

⋂
k≥0 Fk

M(⊥M).

Appendix B.7. Proof of Proposition 9

Proof. We first show two intermediate lemmas. In Lemma 26, we show that we can consider the fixpoints fix[FM,M]s

for a PA M, and in Lemma 27 we reduce the problem to the study of one-dimensional expected truncated energy,
which we used earlier in Proposition 5 and Lemma 4.

Lemma 26. Given a game G, a DU strategy π and a constant M, if [fix(FM,Gπ)]s � ∅ for all s ∈ S Gπ , then [fix(FM,G)]s �
∅ for every s ∈ supp(ς).

Proof. We first describe how to compare elements of the CPOs CM,G and CM,Gπ associated with FM,Gπ and FM,G,
respectively. Given X ∈ CM,G and Y ∈ CM,Gπ we say that Y $ X if the following conditions are satisfied:

⎧⎪⎪⎨⎪⎪⎩
Y(s,m) ⊆ Xs for (s,m) ∈ S Gπ with s ∈ S� ∪ S ©;∑

s′∈Δ(s) πc(s,m)(s′)Y((s,s′),m) ⊆ Xs for s ∈ S♦ and m such that ((s, s′),m) ∈ S Gπ for some s′ ∈ S©

We now show that fix(FM,Gπ) $ fix(FM,G). Recall that fix(FM,Gπ) = ∩k∈NYk and fix(FM,G) = ∩k∈NXk where
Yk def
= Fk

M,Gπ (⊥M) and Xk def
= Fk

M,Gπ (⊥M). It hence suffices to show by induction that, for every k ∈ N, Yk $ Xk.

46

For k = 0, the property holds as all sets involved are equal to BoxM . We now assume that the property is proved at
rank k − 1 and show that it holds at rank k.

Let s ∈ S ♦ and m such that ((s, s′),m) ∈ S Gπ for some s′ ∈ S©. It holds that

∑
s′∈Δ(s)

πc(s,m)(s′)Yk
((s,s′),m) =

∑
s′∈Δ(s)

πc(s,m)(s′)BoxM ∩ dwc
(
�r(s) + Yk−1

(s′,πu(m,s′))

)

⊆
∑

s′∈Δ(s)

πc(s,m)(s′)BoxM ∩ dwc
(
�r(s) + Xk−1

s′
)

⊆ conv

⎛⎜⎜⎜⎜⎜⎜⎝
⋃

s′∈Δ(s)

BoxM ∩ dwc
(
�r(s) + Xk−1

s′
)⎞⎟⎟⎟⎟⎟⎟⎠

= Xk
s .

Let (s,m) ∈ Gπ with s ∈ S�. It holds that

Yk
(s,m) = BoxM ∩ dwc

⎛⎜⎜⎜⎜⎜⎜⎝�r(s) +
⋂

t∈Δ(s)

Yk−1
(t,πu(m,t))

⎞⎟⎟⎟⎟⎟⎟⎠

⊆ BoxM ∩ dwc

⎛⎜⎜⎜⎜⎜⎜⎝�r(s) +
⋂

t∈Δ(s)

Xk−1
t

⎞⎟⎟⎟⎟⎟⎟⎠
= Xk

s .

Let (s,m) ∈ Gπ with s ∈ S©. It holds that

Yk
(s,m) = BoxM ∩ dwc

(
�r(s) + E1 + E2

)
where

E1
def
=

∑
s′∈Δ(s)∩S�

μ(s′)Yk−1
(s′,πu(m,s′))

and
E2

def
=

∑
s′∈Δ(s)∩S♦

μ(s′)
∑

s′′∈Δ(s′)

πc(s′, πu(m, s′))(s′′)Yk−1
(s′ s′′,πu(m,s′)).

Applying the induction hypothesis yields

Yk
s,m ⊆ BoxM ∩ dwc

⎛⎜⎜⎜⎜⎜⎜⎝�r(s) +
∑

s′∈Δ(s)

μ(s′)Xk−1
s′

⎞⎟⎟⎟⎟⎟⎟⎠ = Xk
s .

We have shown by induction that, for every k ∈ N, Yk $ Xk. Thus fix(FM,Gπ) $ fix(FM,G). The conclusion of the
lemma follows.

Lemma 27. Given a PA M with rewards �r and a state s, if fix[FM,M]s = ∅ for every M < ∞, then there exists i such

that u∗
s = −∞ for the reward ri.

Proof. Fix a PA M = 〈S , (S �, S©), ς,A, χ,Δ〉. We prove the lemma by contraposition: given a state s0, we assume
that u∗s0

> −∞ for rewards ri for all i, and show that there is an M for which fix[FM,M]s0 � ∅. We consider a multi-
dimensional version of the truncated energy sequence defined in (2), and get that the fixpoint of the multi-dimensional
truncated energy, as k → ∞, is

�u∗
s =

⎧⎪⎪⎨⎪⎪⎩
min(�0,�r(s) +mint∈Δ(s) �u

∗
t) if s ∈ S�

min(�0,�r(s) +
∑

t∈Δ(s)Δ(s, t)�u∗
t if s ∈ S©,

47

where the minima are taken componentwise.
Observe that, for a state s, if �u∗

s has no infinite coordinate, then neither do its successors. As all states of the PA
are reachable from the initial state, then for every state s, �u∗

s has no infinite coordinate. Therefore, there is a global
bound M, such that �u∗

s ∈ BoxM for every s. We now show that Y ∈ CM , defined by Ys
def
= BoxM ∩ dwc(�u∗

s), is a fixpoint
of FM,M, and hence that the least-fixpoint of FM,M is non-empty. Taking the downward-closure gives

dwc(�u∗
s) =

⎧⎪⎪⎨⎪⎪⎩
R≤0 ∩ (�r(s) +

⋂
t∈Δ(s) dwc(�u∗

t)) if s ∈ S�
R≤0 ∩ (�r(s) +

∑
t∈Δ(s) Δ(s, t) × dwc(�u∗

t)) if s ∈ S©,

and hence

Ys =

⎧⎪⎪⎨⎪⎪⎩
BoxM ∩ (�r(s) +

⋂
t∈Δ(s) dwc(�u∗

t)) if s ∈ S�
BoxM ∩ (�r(s) +

∑
t∈Δ(s) Δ(s, t) × dwc(�u∗

t)) if s ∈ S©.

Since �u∗
t ∈ BoxM , Yt is nonempty, and we have

�r(s) +
⋂

t∈Δ(s) dwc(�u∗
t) = dwc(�r(s) +

⋂
t∈Δ(s) Yt) for s ∈ S�

�r(s) +
∑

t∈Δ(s) Δ(s, t) × dwc(�u∗
t) = dwc(�r(s) +

∑
t∈Δ(s) Δ(s, t) × Yt) for s ∈ S©.

This implies that Y = FM,M(Y), and hence that fix[FM,M]s0 � Ys0 . We thus conclude from Ys0 � ∅ that fix[FM,M]s0 �
∅.

We can now conclude the proof of Proposition 9. Fix a game G and ε > 0. We show the contrapositive: if, for
every M, [fix(FM,G)]s = ∅ for some s ∈ supp(ς), then EE(�r − ε) is not achievable by a finite strategy (against finite
strategies). Assume that, for every M, [fix(FM,G)]s = ∅, for some s ∈ supp(ς), and let π be an arbitrary finite DU
strategy. By Lemma 26, [fix(FM,Gπ)]s = ∅ for some s ∈ S Gπ . Thus by Lemma 27 there is a dimension i such that
u∗

s = −∞ for some s ∈ S Gπ for the reward ri, and hence S∞ � ∅. We conclude, using Proposition 5, that Player � can
spoil EE(r− ε) in the PA Gπ. We have thus shown the contrapositive, that is, there is no winning strategy for Player ♦
to achieve EE(�r − ε), whenever, for every M, [fix(FM,G)]s = ∅ for some s ∈ supp(ς).

Appendix B.8. Proof of Proposition 10

The proof we use a Ramsey like theorem (Theorem 19). We first recall the necessary definitions. A graph

G = (V, E) consists of a finite set V of nodes and a set E ⊆ V × V of edges. A graph is linearly-ordered complete,
if for some strict linear order $ on V , (v,w) ∈ E if and only if v $ w. An n-colouring of a graph (V, E) is a function
E → {1, . . . , n}, assigning one of n possible colours to each edge. A monochromatic directed path of length N is a
sequence of nodes v1, . . . , vN such that (vi, vi+1) ∈ E for all 1 ≤ i < N, and such that each node vi is assigned the same
colour.

Theorem 19 (Theorem 4.5.2 of [53]). Let G = (V, E) be a linearly-ordered complete graph over m nodes, with an

n-colouring of its edges. Then G contains a monochromatic directed path of length % √m/n − 2' − 1.

We first consider a single state in Lemma 28, and then use an inductive argument on the number of states to find
the bound for all states in Proposition 10.

Lemma 28. Let (Yk)k∈N be a sequence over Pc,M that is non-decreasing for �. For every I ⊆ N such that |I| ≥ k∗ def
=

n · ((�M
ε
� + 1)2 + 2), there exists k ∈ I such that Yk+1 + ε � Yk.

Proof. Fix a sequence (Yk)k∈N non-decreasing for �, and fix I ⊆ N such that |I| ≥ k∗. We assume towards a contradic-
tion that for every k ∈ I, Yk+1 + ε �� Yk. Consider the linearly-ordered complete graph over nodes I, and with edges
(j, k) for j < k and j, k ∈ I. We define below an n-colouring c of this graph where colours represent dimensions of the
M-polyhedrals, see Figure B.17 (b). Note first that, if two sets satisfy B �� A, then there exists �x ∈ A \ dwc(B). Hence,
the hypothesis Yk+1 + ε �� Yk for every k ∈ I implies the existence of a sequence (�xk)k∈I ∈ Yk \dwc(Yk+1 + ε) of points,
illustrated in Figure B.17 (a). We show that, for all j < k, there exists a coordinate c(j, k) for which x

j

c(j,k) − xk
c(j,k) > ε

and define c(j, k) as the colour of the edge (j, k). Assume otherwise, that is, �x j−�ε ≤ �xk for j < k. Then �x j−�ε ∈ dwc(Yk),

48

Yk

Yk+1+ε

Yk+1

�xk

r1

r2

−M

−M

(a) The hatched region is Yk ∩ (BoxM\dwc(Yk+1 + ε)), where �xk

has to lie.

�x0

�x1

�x2

�x3

�x4...

ε

r1

r2

−M

−M

(b) The red (solid) and blue (dashed) arrows represent distance
greater than ε in dimensions r1 and r2 resp.

Figure B.17: Illustrations for Lemma 28 for two dimensions r1 and r2.

and, since Yk � Y j+1, we deduce �x j ∈ dwc(Y j+1 + �ε), a contradiction to the definition of the sequence (�xk)k≤m. By
Theorem 19, there exists a monochromatic path j1 → j2 → · · · → jl of length l = % √|I|/n − 2' − 1 ≥ �M

ε
�, and thus

by denoting c the colour of this path it holds that x
j1
c > x

j2
c + ε > . . . > x

jl
c + lε ≥ −M + M

ε
ε ≥ 0, a contradiction.

Lemma 29. Let U be a finite set, let P be a predicate over U × N, and let K be a positive integer. The implication

“P1 ⇒ P2” holds, where

P1 “For every s ∈ U and every I ⊆ N such that |I| ≥ K, there exists i ∈ I, such that P(s, i) holds.”

P2 “For every I ⊆ N such that |I| ≥ K |U |, there exists i ∈ I such that, for every s ∈ U, P(s, i) holds.“

Proof. We show the result by induction on the cardinality of U. If U is empty the result is true. Now assume that
the implication “P1 ⇒ P2” holds for sets U′ of cardinality c, and let U = U′ ∪ {t} be of cardinality c + 1. Let P be a
predicate over U ×N and let K be a positive integer, such that P1 is satisfied for U. Let I ⊆ N such that |I| ≥ K |U |. We
want to find an index i such that P(s, i) holds for all s ∈ U. We partition I into K parts I1, . . . , IK , each containing at
least K |U |−1 elements. Since P1 is satisfied for U, it is also satisfied for U \ {t}, and so, by the induction hypothesis, for
every Ik there is an index ik ∈ Ik such that, for every s ∈ U \ {t}, P(s, ik) holds. The set {i1, . . . , iK} contains K elements
and hence we can apply P1 (which holds for U by assumption), and extract one i such that also P(t, i) is true. Hence,
i is such that for every s ∈ U, P(s, i) is true, concluding the induction step.

We can now conclude the proof of Proposition 10.
Fix M and ε > 0. Let G be a game with state space S . Let (Xk)k≥0 be a sequence over CM that is non-decreasing

for �. We apply Lemma 29 with U = S , K = k∗, and with the predicate Xk+1
s + ε � Xk

s for P, noting that P1 is satisfied
by Lemma 28, and that P2 is the statement we set out to prove.

Appendix B.9. Proof of Lemma 6

Proof. Let X ∈ CM such that FM(X) + ε � X and [FM(X)]s � ∅ for every s ∈ supp(ς). We now show that the strategy
constructed in Section 3.4.2 is well-defined. First note that s ∈ TX for every s ∈ supp(ς), and, if s ∈ TX ∩ (S � ∪ S ©),
then, for every t ∈ succ(s), [FM(X)]t + ε � Xt � ∅, and hence t ∈ TX .

49

For any s ∈ TX , depending on the type of s (i.e. Player ♦, Player �, or move), we define an auxiliary set Ys

without the cut-off by BoxM . We then show that we can find the required distributions α and β, and the extreme points
for every point in Ys, and prove that for all extreme points �p of Xs we have �p − ε in Ys for k ≥ 0, allowing us to show
well-definedness of the strategy. Take s ∈ TX .

• Case s ∈ S ♦. Let Ys
def
= �r(s) + conv(

⋃
t∈Δ(s)∩TX

Xt). Take any �p ′ ∈ Ys. There are distributions α ∈ D(Δ(s) ∩ TX),
βt ∈ D([1, n]), and points �q t

i ∈ C(Xt) for t ∈ Δ(s) ∩ TX , such that
∑

t α(t) · ∑i β
t(i) · �q t

i ≥ �p ′ − �r(s).

• Case s ∈ S �. Let Ys
def
= dwc(�r(s) +

⋂
t∈Δ(s) Xt). Take any �p ′ ∈ Ys. For any t ∈ Δ(s), there are distributions

βt ∈ D([1, n]) and points �q t
i ∈ C(Xt) such that

∑
i β

t
i · �q t

i ≥ �p ′ − �r(s).

• Case s = (a, μ) ∈ S©. Let Ys
def
= �r(s) +

∑
t∈supp(μ) μ(t) × Xt. Take any �p ∈ Ys. Due to the Minkowski sum, there

are distributions βt ∈ D([1, n]) and points �q t
i ∈ C(Xt) such that

∑
t∈supp(μ) μ(t) · ∑i β

t
i · �q t

i ≥ �p ′ − �r(s).

Note that, if two sets satisfy A � B, they also satisfy A − ε � B − ε. We have FM(X) + ε � X, and so dwc(Ys) ∩
BoxM = [FM(X)]s � Xs − �ε, for all s ∈ TX . Then, for any point �p ∈ C(Xs), it holds that �p − ε ∈ dwc(Ys) ∩ BoxM .
Hence, we can find for �p ′ = �p − �ε the corresponding distributions and extreme points to construct the strategy π.

Now we show that π achieves EE(�r + �ε) against Player � finite strategies. Let σ be a finite Player � strategy,
let D def

= Gπ,σ, and let s0 be a state of D, which has the form s0 = (so, (so, �p0), n), where (so, �p0) is the memory
of Player ♦. We show that ED,so

[rewN(�r)] ≥ �p0 − Nε. For this we show that the memory of π is always above
�p0 − ED,so

[rewN(�r)] − Nε, and, since this memory is always non-positive, we get the desired result.
Let YN : ΩD → R

n be the random variable that assigns the vector �p to a path λ = s0s1 . . . for which sN =

(s, (s, �p), n). Since ED,s0 [YN] ≤ �0 for all N ≥ 0, it is sufficient to show, for all s0, that

ED,s0 [YN] ≥ �p0 − ED,s0 [rewN(�r)] − N · ε (B.8)

in order to conclude that ED,s0 [rewN(�r)] ≥ �0, and thus that D satisfies EE(�r + �ε).
We show (B.8) by induction on the length N of pathsΩD. In the base case, for N = 0, we have ED,s0 [Y0] = �p0, cor-

responding to the memory at the initial state s0. For the induction step, assume that ED,s0 [YN] ≥ �p0 −ED,s0 [rewN(�r)]−
Nε. Let WN be the set of all finite paths of length N in D, and we use the notation λ′ = λ(s, (s, �pλ′), n) for paths
λ′ ∈ ΩD,N . We have

ED,s0 [YN+1|λ′] =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
t πc(s, (s, �pλ′))(t) · ∑�q πu((s, �pλ′), t)(t, �q) · �q if s ∈ S♦∑
t σc(s, n)(t) · ∑�q πu((s, �pλ′), t)(t, �q) · �q if s ∈ S�∑
t μ(t) · ∑�q πu(m, t)(t, �q) · �q if s = (a, μ) ∈ S©.

Therefore, by definition of πu and πc we have

ED,s0 [YN+1|λ′] ≥ �pλ′ − �r(s) − ε. (B.9)

Further, evaluating expectations over paths of WN yields

ED,s0 [rewN+1(�r)] − ED,s0 [rewN(�r)] =
∑
λ′∈WN

�r(s) · PD,s0 (λ′) (B.10)
ED,s0 [YN] =

∑
λ′∈WN

PD,s0 (λ′) · �pλ′ . (B.11)

We can now conclude our induction step to establish (B.8) as follows:

ED,s0 [YN+1] =
∑
λ′∈WN

ED,s0 [YN+1|λ′] · PD,s0 (λ′) (law of total probability)
≥ ∑

λ′∈WN
(�pλ′ − �r(s) − ε) · PD,s0 (λ′) (by equation (B.9))

= ED,s0 [YN] − (ED,s0 [rewN+1(�r)] − ED,s0 [rewN(�r)]) − ε
(by equations (B.10) and (B.11))

≥ �p0 − ED,s0 [rewN+1(�r)] − (N + 1) · ε. (induction hypothesis)

50

Appendix C. Proofs of results of Section 4

Appendix C.1. Proof that expected ratio rewards are globally-bounded

Lemma 30. ratio(r/c) is integrable and globally bounded by B
def
= maxS r(s)/cmin.

Proof. Fix two strategies π, σ. The function |ratio(r/c)| is non-negative and measurable, so the quantity
E
π,σ
G (|ratio(r/c)|) is well-defined in R≥0 ∪ {+∞}. We show that this quantity is finite and bounded by B independently

of π, σ. We let ρ∗ = maxS r(s) and use that, for every N, rewN (r)
N+1 ≤ ρ∗. Hence,

E
π,σ
G (|ratio(r/c)|) = E

π,σ
G

(
limN→∞

|rewN(r)(λ)|
1 + rewN(c)(λ)

)
≤ ρ∗Eπ,σG

(
limN→∞

N + 1
1 + rewN(c)(λ)

)
.

Note that for a sequence (xN)N≥0 of positive numbers it holds that

limN→∞
1
xN

=
1

limN→∞xN

≤ 1
limN→∞xN

.

This implies that almost surely

limN→∞
N + 1

1 + rewN(c)(λ)
≤ 1

limN→∞
(

1+rewN (c)(λ)
N+1

) = 1
mp(c)(λ)

≤ 1
cmin
.

Hence, Eπ,σG (|ratio(r/c)|) ≤ maxS r(s)/cmin as expected.

Appendix C.2. Proof of Theorem 9

Proof. Consider �u ∈ Pareto(ψ), then the vector �u − ε/4 is achievable. Using Theorem 8, there exists a vector �y ∈ R
N

with every �yi non-negative and non-null such that
∧n

i=1 E
π,σ
G [�yi · ��i] ≥ �yi · (�ui − ε/4) is achievable. Up to dividing each

�yi by ‖�yi‖∞ we assume that ‖�yi‖∞ = 1. Let �x be such that �x − ε/(4B) ≤ �y ≤ �x and such that each coordinate of �x is
multiple of ε/(4B). It remains to show that

∧n
i=1 E

π,σ
G [�xi · ��i] ≥ �xi ·�ui − ε and that �x ∈ Grid. Fix i ≤ n, we first note that

|(�xi − �yi) · ��i| ≤ ‖�xi − �yi‖∞B ≤ ε/4. Hence

|Eπ,σG [(�xi − �yi) · ��i]| ≤ E
π,σ
G [|(�xi − �yi) · ��i|] ≤ E

π,σ
G [ε/4] = ε/4.

and then

E
π,σ
G [�xi · ��i] ≥ E

π,σ
G [�yi · ��i] − ε/4

≥ �yi · (�ui − ε/4) − ε/4
≥ (�xi − ε/(4B)) · (�ui − ε/4) − ε/4
≥ �xi · �ui − (ε/4)(‖�xi‖∞ + ‖�ui‖∞/B) − ε/4
≥ �xi · �ui − ε.

The last inequality is justified by ‖�ui‖∞ ≤ B and ‖�xi‖∞ ≤ ‖�yi‖∞ + ε/(4B) ≤ 1 + ε/(4B) ≤ 2. It also holds that
‖�xi‖∞ ≥ ‖�yi‖∞ − ε/(4B) ≥ 1 − ε/(4B), and hence �x ∈ Grid.

Appendix C.3. Proof of Theorem 10

Proof. Take �u an approximable target for
∧n

i=1
∨m

j=1 E[�i, j] ≥ ui, j. Then we apply Theorem 9 with ε/2. Thus one
can find a weight vector �x ∈ Grid such that �x ·n (�u − ε/2) ∈ Pε/2(�x). For every i, �xi has a positive component which
is at least ε/(8B), and hence �x ·n ε/2 ≥ ε′, where we define ε′ def

= ε2/(16B). By assumption, one can synthesise an
ε′-optimal strategy π for E(�x ·n ��)(�x ·n (�u − ε/2)), meaning that π is winning for �x ·n (�u − ε/2) − ε′. By definition of ε′
it holds that �x ·n (�u − ε/2) − ε′ ≥ �x ·n (�u − ε/2) − �x ·n ε/2 = �x ·n (�u − ε). Thus, π is winning for E(�x ·n ��)(�x ·n (�u − ε)),
and hence for

∧n
i=1

∨m
j=1 E[�i, j] ≥ ui, j − ε.

51

Appendix C.4. Proof of Theorem 11

Proof. By Proposition 2 and Remark 3, ϕ�x implies
∧n

i=1 E(ratio(�xi · �ri/ci)) ≥ �xi · �ui. We need to consider only pairs
of finite strategies as the statements are for finite Player ♦ strategies winning against finite Player � strategies (we
recall that ϕ�x is Player �-positional by Theorem 3). Fix two finite strategies π, σ, then the induced DTMC Gπ,σ is
finite. Hence, by Proposition 13, ratio(�xi · �ri/ci) = �xi · ratio(�ri/ci) and then E

π,σ
G (ratio(�xi · �ri/ci) = E

π,σ
G (�xi · ratio(�ri/ci).

Now we can apply Theorem 8 and deduce that π is winning for ψ against finite strategies whenever it is winning for
ϕ�x, where cmin is a bound such that for every i it holds that mp(ci) ≥ cmin almost surely under any pair of strategies.
Let ε > 0 and ε′ def

= ε · cmin · min(�xi · �xi/‖�xi‖∞). Let π, σ be two finite strategies. Now, note that almost surely
ε′ ≤ (�xi · �xi) · mp(ci) · ε/‖�xi‖∞. Hence mp(�xi ·�ri − (�xi · �ui)ci) ≥ −ε′ implies mp(�xi ·�ri − (�xi · (�ui − (ε/‖�xi‖∞)�xi))ci) ≥ 0.
Thus, if π is ε′-optimal for ϕ�x then it is winning for ψwith the targets ui, j−(xi, j/‖�xi‖∞) ·ε, and hence with the ε-optimal
targets ui, j − ε.

Appendix C.5. Proof of Lemma 8

Proof. If Pmp(�r)(�0) then Emp(�r)(�0) by Remark 3. We show the other direction by contraposition. If Pmp(�r)(�0)
does not hold in a PA M with a single MEC, then there exists a finite strategy σ such that PσM(mp(ri) < 0) > 0 for
some i. By Lemma 14, there exists a BSCC B in the induced DTMC Mσ such that mp(r)(B) < 0. By Lemma 2,
the set of states of the PA corresponding to the BSCC, formally given by BM

def
= {s | ∃m . (s,m) ∈ B}, is reachable

with probability one by an MD strategy from all states in M. Hence, the strategy σ′ that first reaches BM and
then plays as σ to form the BSCC B is finite and induces a DTMC with a single BSCC B′ in which the mean-
payoff is mp(r)(B′) = mp(r)(B) < 0. By Lemma 14, we have P

σ′
M(mp(r) = mp(r)(B)) = P

σ′
M(FB) = 1. Thus

P
σ′
M(mp(r) < 0) = 1, and hence E

σ
M[mp(ri)] < 0. We conclude that Emp(�r)(�0) does not hold when Pmp(�r)(�0) does

not.

Appendix C.6. Proof of Lemma 9

Proof. We first show that in the definition of �zE
i

def
= mint∈S E infσ EσE,t[mp(ri)], the minimum is reached for every state

of the MEC.

Lemma 31. Given a MEC E, and an index i, the value infσ EσE,t[mp(ri)] does not depend on t, and is hence equal to

�zE
i .

Proof. Consider two states t, t′ of a MEC E. Consider a strategy σ in the PA Et. Consider the strategy σ′ in Et′ that
first plays memoryless deterministic to reach t with probability 1 (it is possible in a MEC) and then switches to σ as
soon as t is reached for the first time. Then E

σ′
E,t′ [mp(ri)] = E

σ
E,t[mp(ri)]. Hence, for every t, t′, infσ′ Eσ

′
E,t′ [mp(ri)] ≤

infσ EσE,t[mp(ri)]. Reversing role of t, t′ leads to an equality.

We can now proceed to the proof of Lemma 9.
Let σ be an arbitrary Player � strategy. Given a MEC E = (S E,ΔE), we denote by E(k) the set of paths that

stay forever in E after the first k steps, and define E(∞) = ∪kE(k). We define the distributions γk(E) def
= P

π,σ
G (E(k)) and

γ(E) def
= P

π,σ
G (E(∞)). Note that (E(k)

≥0 is a non-decreasing sequence with respect to ⊆, and hence γk(E) is a non-decreasing
sequence that converges towards γ(E). By Theorem 3.2 of [24], with probability 1, the (player and stochastic) states
seen infinitely often along a path form an end component, and hence are included in a MEC. Since MECs are disjoint,
a further consequence is that

∑
E γ(E) = 1.

Now fix δ > 0. Consider, for every state s that is in some MEC E, and every δ > 0, a δ-optimal strategy σs,δ, that
is, such that Eσs,δ

M,s[mp(�r)] ≤ �zE
+ δ (which exists due to Lemma 31). Consider the strategy σk,δ that plays as σ for the

k first steps, and then switches to the δ-optimal strategy σs,δ if it is at a state s in some MEC, or plays arbitrarily if not
in a MEC. Hence, it holds that

�0 ≤ E
σk,δ

M [mp(�r)] ≤
∑
E

∑
s∈S E

P
σ
M(F=k {s}) · Eσs,δ

M,s[mp(�r)] + (1 −
∑
E

P
σ
M(F=k S E))ρ∗],

52

where the second term is an upper bound on the reward contributed by the paths that are not in a MEC after k steps.
We define pk(E) def

= P
σ
M(F=k S E) =

∑
s∈S E P

σ
M(F=k {s}), and have that

�0 ≤
∑
E

pk(E)(�zE
+ δ) + (1 −

∑
E

pk(E))ρ∗. (C.1)

We now show that pk(E) → γ(E) for every E. Indeed, it holds that

γk(E) ≤ pk(E) ≤ 1 −
∑
E′�E

pk(E′) ≤ 1 −
∑
E′�E
γk(E′),

and the outermost terms converge to the same limit γ(E) = 1 − ∑
E′�E γ(E′), and hence so does the inner term pk(E).

Finally, we let k → +∞ and δ→ 0 in (C.1) to obtain the desired result �0 ≤ ∑
E∈E γ(E)�zE

.

Appendix C.7. Proof of Lemma 10

Proof. “Only if” direction. Assume G is CM. Fix a finite DU Player ♦ strategy π, and let E = (S E,ΔE) be a MEC
of Gπ. It suffices to show that there exists an IC H such that SH ⊆ S G,E, since by the CM property S H is reachable
almost surely. We first build a pair H′ = (S ′,Δ′) that satisfies properties (ii) and (iii). For this we define S ′ and
Δ′ by deleteting the memory component of each element of S E and ΔE, respectively. Formally, S ′ = S G,E and Δ′ is
the set of transitions (s, s′) for which there is a transition of ΔE of the form ((s,m), (s′,m′)), (((s, s′),m), (s′,m′)) or
((s,m), ((s, s′),m′)). It is easy to see that (ii) and (iii) hold. We now remove all but one choice per Player ♦ state in
H′, and obtain a subgame H′′ of G, which corresponds to an MDP as Player ♦ has no longer any choice. Since we
remove only Player ♦ choices, H′′ still satisfies (ii). A corollary of Lemma 2.2 of [12] is that every bottom strongly
connected component (g-BSCC) in the graph of an MDP is a MEC. We can thus take a g-BSCC in the graph of H′′,
which corresponds to a MEC, and thus an IC H of G.

“If” direction. Assume that, for every finite DU Player ♦ strategy π, for every MEC E of Gπ, S G,E is almost surely
reachable from every state of G. Take any IC H in G. Hence, for any π′, Hπ′ forms a single MEC E. Take the strategy
π that plays arbitrarily outside of H , and plays π′ upon reaching H . Then E is also a MEC in Gπ. By assumption,
S G,E is almost surely reachable from every state of G. Since S G,E = S H , S H is almost surely reachable from every
state of G, and hence G is CM.

Appendix C.8. Proof of Lemma 11

Lemma 34 below ensures that we can safely interchange the quantification over σ, t, and N used to define �zE.
That means that, for every ε, there exists an N such that rewN−1(�r)

N
stays above the threshold �zE − ε, independently of

the Player � strategy and of the state considered as starting state.
We first show two following technical lemmas.

Lemma 32. Let D be a DTMC, let b ≥ 0, let (cK)K∈N be a sequence of positive reals, and let (XK)K∈N, (YK)K∈N,

(ZK)K∈N be sequences of real-valued random variables on ΩD such that ZK ≥ 0, |XK | ≤ b · cK, and |YK | ≤ b · ZK. Then∣∣∣∣∣∣ED
[

XK + YK

cK + ZK

]
− ED

[
XK

cK

]∣∣∣∣∣∣ ≤
2b

cK

ED[ZK].

Proof. From the assumptions of the lemma, we obtain∣∣∣∣∣∣ED
[

XK + YK

cK + Zk

]
− ED

[
XK

cK

]∣∣∣∣∣∣ =
∣∣∣∣∣∣ED

[
YK

cK + ZK

]
− ED

[
XK · ZK

cK(cK + ZK)

]∣∣∣∣∣∣
≤ ED

[|YK |
cK + ZK

]
+ ED

[|XK | · ZK

cK(cK + ZK)

]

≤ ED
[
b · ZK

cK

]
+ ED

⎡⎢⎢⎢⎢⎣b · cK · ZK

c2
K

⎤⎥⎥⎥⎥⎦
≤ 2b

cK

ED[ZK].

53

Lemma 33. Let G be a game with states S and with minimum non-zero probability pmin. For any s, t ∈ S such that t

is reachable from s almost surely, the expected number of steps to reach t from s with an MD strategy is bounded from

above by |S | · p−|S |
min .

Proof. After |S | steps, t is reached from s with probability at least p∗ def
= p|S |

min, Thus, the expected number of steps to
reach S H from s is upper bounded by Ntrans

def
= |S |p∗ + 2|S |p∗(1 − p∗) + 3|S |p∗(1 − p∗)2 + · · · = |S |/p∗.

Lemma 34. For every MEC E of a finite PA with rewards �r, it holds that

limN→∞ min
t∈S E

inf
σ
E
σ
E,t

[
rewN−1(�r)

N

]
≥ �zE
.

Proof. Fix a MEC E = (S E,ΔE) of a finite PA M = 〈S , (S�, S©), ς,A, χ,Δ〉. Denote by pmin the minimum non-zero
probability in M, and let ρ∗ def

= maxs∈S ,i |ri(s)|. Assume toward a contradiction that there exists δ > 0 and i such that

limN→∞ min
t∈S E

inf
σ
E
σ
E,t

[
rewN−1(ri)

N

]
< zE

i − δ.

In particular, we can fix N ≥ %2ρ∗|S E|p−|S E|
min δ

−1', t ∈ S E, and σ, such that

E
σ
E,t

[
rewN−1(r)

N

]
< zE

i − δ.

We show that there exists a strategy σ′ such that Eσ
′

E,t[mp(�ri)] < zE
i , that is, it contradicts the definition of zE

i .
From Lemma 33, we have that |S E| · p−|S E|

min is an upper bound for the expected number of steps to reach t from s for
MD strategies. We construct the strategy σ′ as follows. Starting from t, σ′ plays in the first phase the first N steps of
σ, then plays in the second phase an MD strategy to reach t, and then repeats ad infinitum the two previous phases.
For a path λ, we let N(K)(λ) be the index of the beginning of the Kth loop, and +∞ if λ contains no loops. We have

E
σ′
E,t[mp(ri)] = E

σ′
E,t

[
limk→∞

1
k + 1

rewk(ri)
]

(definition)

≤ E
σ′
E,t

[
limK→∞

1
N(K) + 1

rewN(K)
(ri)

]
(sub-sequence)

≤ limK→∞E
σ′
E,t

[
1

N(K) + 1
rewN(K)

(ri)
]

(Fatou’s Lemma)

For a path λ, we denote by cK(λ) − 1 def
= NK (resp. ZK(λ)) the total cumulated steps in the first phase (resp. second

phase) during the first K loops. We denote by XK(λ) (resp. YK(λ)) the respective cumulated reward of ri. We have
E
σ′
E,t

[
1

N(K)+1 rewN(K)
(ri)

]
def
= E

σ′
E,t

[
XK+YK

cK+ZK

]
, and so from Lemma 32 we obtain

E
σ′
E,t

[
1

N(K) + 1
rewN(K)

(ri)
]
≤ E

σ′
E,t

[
XK

cK

]
+

2ρ∗

cK

E
σ′
E,t[ZK]. (C.2)

We now consider the two terms on the right-hand side of (C.2). By definition of σ′ in the first phase, the first term
equals K

1+KN
E
σ
E,t

[
rewN−1(ri)

]
. The second term is upper-bounded by δ, since

(2ρ∗/cK)Eσ
′

E,t[ZK] ≤ (2ρ∗/KN)K|S E|p−|S E|
min = 2ρ∗|S E|p−|S E|

min /N ≤ δ.
We can now conclude

E
σ′
E,t[mp(ri)] ≤ limK→∞

K

1 + KN
E
σ
E,t[rewN−1] + δ =

1
N
E
σ
E,t[rewN−1] + δ < uE

i .

This contradicts the definition of uE
i and the proof is complete.

54

We can now prove Lemma 11.

Proof. Let E be the set of L MECs El of Gπl

, indexed by l. We show that the strategy π constructed in Definition 7,
with appropriately chosen step counts Nl, satisfies the lemma, that is, it approximates γ. Throughout the proof, we
refer to the strategy π, keeping the step counts as parameters. From Lemma 10, every MEC is almost surely reachable
in G from any state s. Thus, we have an upper bound N� = |S | · p∗ on the mean time spent between two MECs. For
every l, we define Al such that, for every Nl ≥ Al, mint∈S El

infσ EσEl,t

[
rewNl−1(�r)

]
≥ Nl(�z

El − ε/3), which exists by

virtue of Lemma 34. We now define the step counts for π by Nl
def
= %hγ(El)', and let N

def
=

∑L
l=1 Nl with h chosen such

that

(h1) for every l, Nl ≥ Al;

(h2) 1/h ≤ ε/(3 ∑L
l=1 ‖�zEl‖∞);

(h3) (Lγ(El) + 1)/(h − L) ≤ ε/(3 ∑
l ‖�zEl‖∞); and

(h4) 1
N

2ρ∗LN� ≤ ε/3.

For an infinite path λ, we let N(K)(λ) be the index of the beginning of the Kth loop, or +∞ if λ has fewer than K

loops. For every finite DU strategy σ, it holds for almost every path λ that N(K)(λ) is finite for all K, and thus
limk→∞ 1

k+1 rewk(�r)(λ) = limK→∞ 1
N(K)+1 rewN(K)

(�r)(λ). Hence,

E
π,σ
G

[
mp(�r)

]
= E

π,σ
G

[
lim
k→∞

1
k + 1

rewk(�r)
]

(definition)

= E
π,σ
G

[
lim

K→∞
1

N(K) + 1
rewN(K)

(�r)
]

(almost sure equality)

= lim
K→∞E

π,σ
G

[
1

N(K) + 1
rewN(K)

(�r)
]
. (Lebesgue’s theorem)

For a path λ ∈ ΩD, we denote by cK − 1 def
= NK (resp. Zk(λ)), the total cumulated time spent on the MEC phase (resp.

inter-MEC phase) during the first K loops. We denote by XK(λ) (resp. YK(λ)) the respective cumulated reward. We
are interested in the limit when K → ∞ of

E
π,σ
G

[
1

N(K) + 1
rewN(K)

]
= E

π,σ
G

(
XK + YK

cK + ZK

)
,

and from Lemma 32 we therefore get that

E
π,σ
G

[
1

N(K) + 1
rewN(K)

]
≥ E

π,σ
G

(
XK

cK

)
− 2ρ∗

cK

E
π,σ
G (ZK). (C.3)

We let Xl,k(λ) be the reward accumulated in the lth MEC phase during the kth loop, and thus have XK =
∑K−1

k=0
∑L

l=1 Xl,k.
By virtue of (h1), Nl ≥ Al, and hence it holds that Eπ,σG [Xl,k] ≥ Nl(�z

El − 1
3ε). Therefore,

E
π,σ
G

(
XK

cK

)
=

1
1 + KN

K−1∑
k=0

L∑
l=1

E
π,σ
G [Xl,k]

≥ 1
1 + KN

K−1∑
k=0

L∑
l=1

Nl(�z
El − 1

3
ε)

≥ K

1 + KN

L∑
l=1

Nl�z
El − 1

3
ε.

55

Taking the limit, we get

lim
K→∞E

π,σ
G

(
XK

cK

)
≥

L∑
l=1

Nl

N
�zEl − 1

3
ε

≥
L∑

l=1

γ(El)�z
El −

L∑
l=1

∣∣∣∣∣γ(El) − Nl

N

∣∣∣∣∣ ‖�zEl‖∞ − 1
3
ε

Note that
Nl

N
≥ hγ(El) − 1∑L

l′=1 hγ(El′)
≥ γ(El) − 1

h
,

and that
Nl

N
≤ hγ(El) + 1∑L

l′=1(hγ(El′) − 1)
=

hγ(El) + 1
h − L

= γ(Ei) +
1

h − L
(Lγ(El) + 1).

Using condition (h2) and (h3) on h, we get
∣∣∣γ(El) − Nl

N

∣∣∣ ≤ ε/(3 ∑L
l′=1 ‖�uEl′ ‖), and hence

lim
K→∞E

π,σ
G

(
XK

cK

)
≥

L∑
l=1

γ(El)�z
El − 2

3
ε. (C.4)

We now upper-bound the absolute value of the second term of (C.3) using

2ρ∗

cK

E
π,σ
G (ZK) ≤ 2ρ∗

KN
KLN� =

1
N

2ρ∗LN� ≤ ε/3, (C.5)

where the last inequality comes from condition (h4) on h, and hence on N. Applying the bounds (C.4) and (C.5) to
(C.3), we obtain

E
π,σ
G [mp(�r)] ≥

L∑
l=1

γ(El)�z
El − ε.

Appendix D. Proofs of results of Section 5

Appendix D.1. Proof of Lemma 12

Proof. Let M = 〈S , (S�, S©), ς,A, χ,Δ〉, M′ = 〈S ′, (S ′
�, S

′
©), ς′,A′, χ′,Δ′〉, and σ = 〈N, σc, σu, σd〉. We construct

an SU strategy σ′ that simulates σ applied to M by keeping the current state in M and the memory of σ in its own
memory. The functional simulation ensures that every path of Mσ corresponds to a path in (M′)σ′ , and so after seeing
memory (s,m) the strategy σ′ picks the next move that σ would pick in state s with memory m. Our aim is to show
that the trace distributions of (M′)σ′ and Mσ are equivalent. We formally let σ′ def

= 〈N′, σ′c, σ′u, σ′d〉, where we define

N′ def
= N × S , and where, for all (m, s), (n, (a, μ)), (o, t) ∈ N′ and all s′

a−→′μ′ in M′, such that s′ = F (s), μ′ = F (μ),
t′ = F (t) ∈ supp(μ′), we define

σ′d(s′)((m, s)) def
= σd(s)(m) · ς(s)

ς′(s′)

σ′u((m, s), (a, μ′))((n, (a, μ))) def
=
σu(m, (a, μ))(n)
σ′c(s′, (m, s))(a, μ′)

(D.1)

σ′u((n, (a, μ)), t′)((o, t)) def
= σu(n, t)(o) · μ(t)

μ′(t′)
(D.2)

σ′c(s′, (m, s))(a, μ′) def
=

∑
F (μ)=μ′ σc(s,m)(a, μ).

Denote by PD(m, λ) def
= PD(λ) · dλ(m) the probability of the path λ and the memory m after seeing λ. A functional

simulation F must be defined for the reachable states of M, and so it extends inductively to a total function on

56

paths of M by defining F (λ(a, μ)s) def
= F (λ)(a,F (μ))F (s). We now show by induction on the length of paths that

P
σ′
M′ ((m, s), λ′) = P

σ
M(m, λ) if F (λ) = λ′, and P

σ′
M′ ((m, s), λ′) = 0 otherwise.

For the base case, for any (m, s) ∈ N′ and s′ ∈ S ′ such that s′ = F (s), we have that P
σ′
M′ ((m, s), s′) =

ς′(s′) · σ′d(s′, (m, s)) = σd(s)(m) · ς(s) = P
σ
M(m, s); if, on the other hand, s′ � F (s) then σ′d(s′, (m, s)) = 0, and

so P
σ′
M′ ((m, s), s′) = 0.
For the induction step, assume the equality holds for λ ∈ Ωfin

M and λ′ ∈ Ωfin
M′ , and we consider paths λ(a, μ)t ∈ Ωfin

M
and λ′(a, μ′)t′ ∈ Ωfin

M′ . We have that

P
σ′
M′ ((o, t), λ′(a, μ′)t′) =

∑
(m,last(λ)),(n,(a,μ))∈N′

P
σ′
M′ ((m, s), λ′) · p1 · p2,

where
p1 = σ

′
c(last(λ′), (m, last(λ)))(a, μ′) · σ′u((m, last(λ)), (a, μ′))((n, (a, μ)))

p2 = μ
′(t′) · σ′u((n, (a, μ)), t′)((o, t′)).

We consider first the case where F (λ(a, μ)t) � λ′(a, μ′)t′: if F (λ) � λ′, then from the induction hypothesis
P
σ′
M′ ((m, s), λ′) = 0; and if F ((a, μ)t) � (a, μ′)t′, then p2 = 0 from (D.2). Now suppose that F (λ(a, μ)t) = λ′(a, μ′)t′.

From (D.1) we have that p1 = σu(m, (a, μ))(n) and from (D.2) we have that p2 = μ(t) · σu(n, t)(o). Applying the
induction hypothesis, we conclude the induction, since

P
σ′
M′ ((o, t), λ′(a, μ′)t′) =

∑
m,n∈N

P
σ
M(m, λ) · σu(m, (a, μ))(n) · μ(t) · σu(n, t)(o)

= P
σ
M(o, λ(a, μ)t).

We thus have

P̃
σ′
M′ (w) =

∑
λ′∈paths(w)

(m,s)∈N′

P
σ′
M′ ((m, s), λ′) =

∑
λ′∈paths(w)
F (λ)=λ′
m∈N

P
σ
M(m, λ) ∗

=
∑

λ∈paths(w)

P
σ
M(λ) def

= P̃
σ
M(w).

where the equation marked with ∗ is a consequence of trace(λ) = trace(F (λ)). Thus, σ′ and σ induce the same trace
distribution, and ϕ, which is defined on traces, satisfies (M′)σ′ |= ϕ⇔ Mσ |= ϕ.

Appendix D.2. Proof of Lemma 13

Proof. Following Remark 5, we assume w.l.o.g. that the strategies are DU strategies. We construct a functional
simulation by viewing states in the induced PA M = (‖i∈I Gi)‖i∈Iπ

i

as derived from the paths of the composed game
G = (‖i∈I Gi). These paths are projected to components Gi and then assigned a corresponding state in the induced
PA (Gi)π

i

. Due to the structure imposed by compatibility, moves chosen at Player ♦ states in Gi can be translated to
moves in the composition M′ =‖i∈I (Gi)π

i

.
Denote the induced PA by M = 〈S , (S�, S©), ς,A, χ,Δ〉, and the composition of induced PAs by

M′ = 〈S ′, (S ′
�, S

′
©), ς′,A, χ′,Δ′〉. We define a partial function F : S → S ′, and then show that it is a functional

simulation. We use �γ to stand for both Player � states �s and Player ♦ state-move tuples (�s, (a, �μ)) of the game G, as
occurring in the induced PA M (see Definition 6). We write

[�γ]i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
si if �γ = �s ∈ S �
(si, (a, μi)) if �γ = (�s, (a, �μ)) and Gi is involved in �s

a−→ �μ
si if �γ = (�s, (a, �μ)) and Gi is not involved in �s

a−→ �μ,

We define F by [F (�γ,�d)]i = (γi, di) for all reachable states (�γ,�d) ∈ S of M, and all i ∈ I. We now show that F is
a functional simulation.

Case (F1). We show that F (ς) = ς′. Note that, due to the normal form, the initial distribution ς of M only
maps to states of the form S � ×M, and the initial distribution ς′ of M′ only maps to states of the form

∏
i∈I S i

� ×
57

Mi. For such states (�s,�d) ∈ S� × M, we have [F (�s,�d)]i = (si, di), and so F (ς)((s1, d1), (s2, d2), . . .) = ς(�s,�d) =
ς′((s1, d1), (s2, d2), . . .).

Case (F2). Consider a transition (�γ,�d)
a−→ μ�γ,�d of the induced PA, M = G‖i∈Iπ

i

where μ�γ,�d(�γ
′,�d′) def

= Δπ((�γ,�d), (�γ′,�d′)).

It is induced from a transition �s
a−→ �μ of the game composition G. For each involved component Gi, we apply

the strategy πi separately, and obtain that, for each transition si a−→iμi in Gi, the transition (γi, di)
a−→ μγi,di (where

μγi,di (γ′, d′) = Δπ
i

((γi, di), (γ, d′))) is in the induced PA (Gi)π
i

. Then, composing the induced PAs (Gi)π
i

yields a transi-
tion F (�γ,�d)

a−→′ν in M′, where ν is not null on element F (γ+, d+) only if γi = γi
+ and di = di+ for the component not

involved and di+ = π
i
u(di, (a, μi)) for the involved component. On such elements it holds that

ν(F (�γ+, �d+)) =
∏

i∈Γ(�d, �γ+)

μπ
i

γi,di
(γi
+, d

i
+) (Definition 9)

= F (μ�γ,�d)(F (�γ+, �d+)). (definition of F)

We thus have that F (�γ,�d)
a−→′F (μ�γ,�d) is in M′, concluding the proof of (F2).

58

