Accepted Manuscript

Compositional Strategy Synthesis for Stochastic Games with Multiple Objectives

N. Basset, M. Kwiatkowska, C. Wiltsche

PII: S0890-5401(17)30167-0

DOI: http://dx.doi.org/10.1016/j.ic.2017.09.010

Reference: YINCO 4324

To appear in: Information and Computation

Received date: 1 March 2016 Revised date: 22 December 2016



Please cite this article in press as: N. Basset et al., Compositional Strategy Synthesis for Stochastic Games with Multiple Objectives, *Inf. Comput.* (2017), http://dx.doi.org/10.1016/j.ic.2017.09.010

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Compositional Strategy Synthesis for Stochastic Games with Multiple Objectives

N. Basset^a, M. Kwiatkowska^{a,*}, C. Wiltsche^a

^aDepartment of Computer Science, University of Oxford, United Kingdom

Abstract

Design of autonomous systems is facilitated by automatic synthesis of controllers from formal models and specifications. We focus on stochastic games, which can model interaction with an adverse environment, as well as probabilistic behaviour arising from uncertainties. Our contribution is twofold. First, we study long-run specifications expressed as quantitative multi-dimensional mean-payoff and ratio objectives. We then develop an algorithm to synthesise ε -optimal strategies for conjunctions of almost sure satisfaction for mean payoffs and ratio rewards (in general games) and Boolean combinations of expected mean-payoffs (in controllable multi-chain games). Second, we propose a compositional framework, together with assume-guarantee rules, which enables winning strategies synthesised for individual components to be composed to a winning strategy for the composed game. The framework applies to a broad class of properties, which also include expected total rewards, and has been implemented in the software tool PRISM-games.

1. Introduction

Game theory has found versatile applications in the past decades, in areas ranging from artificial intelligence, through modelling and analysis of financial markets, to control system design and verification. The game model consists of an arena with a number of positions and two or more players that move a token between positions, sometimes called *games on graphs* [27]. The rules of the game determine the allowed moves between positions, and a player's winning condition captures which positions or sequences of positions are desirable for the player. When a player decides on a move, but the next position is determined by a probability distribution, we speak of a *stochastic game* [55]. Since stochastic games can model probabilistic behaviour, they are particularly attractive for the analysis of systems that naturally exhibit uncertainty.

In this article we focus our attention on the development of correct-by-construction controllers for autonomous systems via the synthesis of strategies that are *winning* for turn-based zero-sum stochastic games. When designing autonomous systems, often a critical element is the presence of an uncertain and adverse environment. The controllable parts are modelled as Player \Diamond , for which we want to find a strategy, while the non-cooperative behaviour of the environment is modelled as Player \Box . Modelling that Player \Box tries to spoil winning for Player \Diamond expresses that we do not make any assumptions on the environment, and hence a winning strategy for Player \Diamond has to be winning against all possible behaviours of the environment. We take the view that stochasticity models uncertain behaviour where we know the prior distribution, while nondeterminism models the situation where all options are available to the other player.

In addition to probabilities, one can also annotate the model with *rewards* to evaluate various quantities, for example profit or energy usage, by means of expectations. Often, not just a single objective is under consideration, but several, potentially conflicting, objectives must be satisfied, for example maximising throughput and minimising latency of a network. In our previous work [20, 21], we studied *multi-objective* expected total reward properties for stochastic games with certain terminating conditions. Expected total rewards, however, are unable to express *long-run*

^{*}Corresponding author

 $[\]label{lem:email$

average (also called mean-payoff) properties. Another important class of properties are *ratio* rewards [62], with which one can state, e.g., speed (distance per time unit) or fuel efficiency (distance per unit of fuel). In this paper we extend the repertoire of reward properties for stochastic games by considering winning conditions based on long-run average and ratio rewards, both for expectation and almost sure satisfaction semantics. These can be expressed as single or multi-objective properties with upper or lower *thresholds* on the expected target reward to be achieved, for example "the average energy consumption does not exceed 100 units per hour almost surely", or "the expected number of passengers transported is at least 100 per hour, while simultaneously ensuring that the expected fuel consumption is at most 50 units per hour". Multi-objective properties allow us to explore trade-offs between objectives by analysing the Pareto curve. The difficulty with multi-objective strategy synthesis compared to verification is that the objectives cannot be considered in isolation, but the synthesised Player \Diamond strategy has to satisfy all simultaneously. Another issue is that monolithic strategy synthesis may be computationally infeasible, as a consequence of algorithmic complexity bounds [16, 21].

We thus formulate a *compositional* framework for strategy synthesis, which allows us to derive a strategy for the composed system by synthesising only for the (smaller) individual components; see e.g. [13] for an approach for non-stochastic systems. To this end we introduce a game composition operation (\parallel), which is closely related to that of probabilistic automata (PAs) in the sense of [54]. PAs correspond to stochastic games with only one player present, and can be used (i) for *verification*, to check whether *all* behaviours satisfy a specification (when only Player \square is present), and (ii) for *strategy synthesis*, to check whether *exists* a strategy giving rise to behaviors satisfying a specification (when only Player \lozenge is present) [40]. In verification, the nondeterminism that is present in the PA models an adverse, uncontrollable, environment. By applying a Player \lozenge strategy to a game to resolve the controllable nondeterminism, we are left with a PA where only uncontrollable nondeterminism for Player \square remains. This observation allows us to reuse rules for compositional PA verification, such as those in [39], to derive synthesis rules for games. Similarly to [39], which employs multi-objective property specifications to achieve compositional verification of PAs, multi-objective properties are crucial for compositional strategy synthesis, as elaborated below.

In our framework, we assume that the designer provides games $\mathcal{G}^1, \mathcal{G}^2, \ldots$ representing components of a larger system, which is modelled as their composition $\mathcal{G} = \mathcal{G}^1 \parallel \mathcal{G}^2 \parallel \cdots$. By giving a local specification φ^i for each component game \mathcal{G}^i , we deduce global specifications φ for the composed game \mathcal{G} , so that, given local strategies π^i achieving the respective specifications φ^i , the global specification φ is satisfied in \mathcal{G} by applying the local strategies. We deduce the global specifications independently of the synthesised strategies, by instead deducing the global specification φ from the local specifications φ^i using compositional verification rules, that is, rules for systems without controllable nondeterminism (such as PAs) to determine whether φ holds for all strategies given that, for each component \mathcal{G}^i , φ^i holds for all strategies. In Theorem 15 we show that, whenever there is a PA verification rule deducing φ from φ^i , then there is a corresponding synthesis rule for games, justifying the use of local strategies for φ^i in the composed game \mathcal{G} to achieve φ . The compositional synthesis problem is thus reduced to finding the local strategies π^i achieving φ^i , which is the classical monolithic strategy synthesis question from (quantitative) objectives that are compatible with the composition rules. By allowing general Boolean combinations of objectives, we can, for example, synthesise for one component a strategy satisfying an objective φ^A , and for a second component a strategy that satisfies an objective φ^G under the assumption φ^A , that is, the implication $\varphi^A \to \varphi^G$, so that the global specification that these strategies satisfy is φ^G .

Contributions. The paper makes the following main contributions.

- Section 3: We show that the strategy synthesis problem for conjunctions of almost sure mean payoffs, which maintain several mean payoffs almost surely above the corresponding thresholds, is in co-NP (Corollary 2) and present a synthesis algorithm for ε -optimal strategies (Theorem 7).
- Section 4: For expectation objectives, we show how to reduce synthesis problems for Boolean combinations to those for conjunctions (Theorem 8), which allows us to obtain ε -optimal strategies for Boolean combinations of expected mean-payoff objectives (Theorem 14) in a general class of *controllable multi-chain (CM) games* that we introduce.
- Section 5: We develop a composition of stochastic games that synchronises on actions, together with composition rules that allow winning strategies synthesised for individual components to be composed to a winning strategy for the composed game (Theorem 15).

Previous Work. Preliminary versions of this work appeared as [4] for synthesis of ε -optimal strategies for multiobjective mean payoff, and as [5] for the compositional framework. We additionally draw inspiration for Boolean combinations from [20]. By introducing controllable multichain games, we can synthesise Boolean combinations of long-run objectives, which allows more general assume-guarantee rules than in [5, 4]. Further, due to our decision procedure, we can present the semi-algorithm of [4] as an algorithm.

The techniques presented here have been implemented in the tool PRISM-games 2.0 [41], a new release of PRISM-games [18]. The implementation supports compositional assume-guarantee synthesis for long-run properties studied here, as well as total expected reward properties of [20, 21]. PRISM-games has been employed to analyse several case studies in autonomous transport and energy management, including human-in-the-loop UAV mission planning, to compute optimal Pareto trade-offs for a UAV performing reconnaissance of roads, reacting to inputs from a human operator [29], and autonomous urban driving, to synthesise strategies to steer an autonomous car through a village, reacting to its environment such as pedestrians or traffic jams [21], both for conjunctions of expected total rewards. Compositional assume-guarantee synthesis techniques described in this paper were applied to generate a strategy that maximises uptime of two components in an aircraft electrical power network, reacting to generator failures and switch delays, for a conjunction of almost-sure satisfaction of ratio rewards [4]; and to control the temperature in three adjacent rooms, reacting to the outside temperature and whether windows are opened, for Boolean combinations of expected ratios [64]. For more information we refer the reader to [64, 57, 59, 38] and references therein.

1.1. Related Work

Multi-objective strategy synthesis. Our work generalises multi-objective strategy synthesis for MDPs by introducing nondeterminism arising from an adversarial environment. Previous research on multi-objective synthesis for MDPs discusses PCTL [3], total discounted and undiscounted expected rewards [63, 15, 31], ω -regular properties [28], expected and threshold satisfaction of mean-payoffs [6, 14], percentile satisfaction of mean-payoffs [50, 14], as well as conditional expectations for total rewards [1]; recent work on mixing types of objectives appeared in [10, 49].

In contrast to the case for MDPs, synthesis for games needs to take into account the uncontrollable Player \square . For non-stochastic games, multi-objective synthesis has recently been discussed in the context of mean-payoff and energy games [8, 11], for mean-payoffs and parity conditions [16, 9], and robust mean-payoffs [60]. Non-zero-sum games in the context of assume-guarantee synthesis arise in [13]. For stochastic games, PCTL objectives are the subject of [7]. The special case of precisely achieving a total expected reward is discussed in [19], which is extended to Boolean combinations and LTL specifications for stopping games in [20, 21, 57]. Under stationary strategies and recurrence assumptions on the game, [56] approximate mean-payoff conjunctions. Non-zero-sum stochastic games for more than two players, where each player has a single discounted expected total reward objective, are discussed in [43].

Since this paper was submitted, [17] have also shown that the strategy synthesis decision problem for multiple almost sure long-run average objectives is in co-NP. In contrast with [17], in this paper we also formulate an algorithm to construct a strategy, if it exists, where stochastically updated memory strategies are generated, which can yield exponentially more compact representations than deterministically updated strategies used in [17]. Further, we identify a general class of games for which the synthesis algorithm can be extended to arbitrary Boolean combinations of expected mean-payoff objectives.

Stochastic games with shift-invariant objectives. To formulate our decision problem for almost-sure satisfaction of conjunctions of mean-payoff objectives (Corollary 2), we rephrase this multi-objective property in terms of shift-invariant winning condition studied in [34] and [35]. These papers state general properties about qualitative determinacy (there is always a winner) and half-positionality (one player needs only memoryless deterministic strategies) for a general class of games, in which the winning condition (possibly multi-objective) is shift-invariant. [34] also consider the problem of satisfaction probability being above an arbitrary given threshold, which is more general than the problem of almost-sure satisfaction considered here. In fact, [34] explain how to solve the former problem using an oracle for the latter, but were not concerned with synthesis nor ε -optimal winning strategies. We believe that ideas could be borrowed from [34] to extend our synthesis algorithm from almost sure satisfaction to arbitrary threshold satisfaction.

Compositional modelling and synthesis. Our compositional framework requires a notion of parallel composition of components, so that composing winning strategies of the components yields a winning strategy for the composition. Several notions of parallel composition of non-stochastic games have been proposed, for example [33], but player

identity is not preserved in the composition. In [32] the strategies of the components have to agree in order for the composed game not to deadlock. Similarly, the synchronised compositions in [44] and [45] require the local strategies to ensure that the composition never deadlocks.

Composition of probabilistic systems is studied for PAs in [54], where, however, no notion of players exists. Compositional approaches that distinguish between controllable and uncontrollable events include [26] and probabilistic input/output automata (PIOA) [22]. However, when synthesising strategies concurrent games have to be considered, as there is no partitioning of states between players. In contrast, we work with turn-based games and define a composition that synchronises on actions, similarly to that for PAs [54]. This is reminiscent of single-threaded interface automata (STIA) [25] that enforce a partition between *running* and *waiting* states, which we here interpret as Player \Diamond and Player \Box respectively.

The problem of synthesising systems from components whose composition according to a fixed architecture satisfies a given global LTL specification is undecidable [46]. Strategies in the components need to accumulate sufficient knowledge in order to make choices that are consistent globally, while only being able to view the local history, as discussed in [37]. In our setting, each strategy is synthesised on a single component, considering all other components as black boxes, and hence adversarial. Assume-guarantee synthesis is a convenient way of encoding assumptions on other components and the overall environment in the local specifications; see [13] for a formulation as non-zero-sum non-stochastic games.

2. Preliminaries

In this section we introduce notations and definitions for stochastic games, their strategies and winning conditions. We work with two representations of strategies, (standard) deterministic update and stochastic update of [6], and prove that they are equally powerful if their memory size is not restricted. We then define strategy application and discuss behaviour of stochastic games under strategies. In particular, we define the induced probabilistic automata and Markov chains obtained through strategy application. First, we give general notation used in the article and refer to [51, 52] for basic concepts of topology and probability theory.

Probability distributions. A distribution on a countable set Q is a function $\mu: Q \to [0,1]$ such that $\sum_{q \in Q} \mu(q) = 1$; its *support* is the set $\sup(\mu) \stackrel{\text{def}}{=} \{q \in Q \mid \mu(q) > 0\}$. We denote by $\mathsf{D}(Q)$ the set of all distributions over Q with finite support. A distribution $\mu \in \mathsf{D}(Q)$ is Dirac if $\mu(q) = 1$ for some $q \in Q$, and if the context is clear we just write q to denote such a distribution μ .

The vector space \mathbb{R}^n . When dealing with multi-objective queries comprising n objectives, we operate in the vector space \mathbb{R}^n of dimension n over the field of reals \mathbb{R} , one dimension for each objective, and consider optimisation along n dimensions. We use the standard vector dot product (\cdot) and matrix multiplication. We use the uniform norm $\|\vec{x}\|_{\infty} \stackrel{\text{def}}{=} \max_{i=1..n} |x_i|$ and the corresponding notion of distance between vectors. For a set $X \subseteq \mathbb{R}^n$, we denote by conv(X) its convex hull, that is, the smallest convex set containing X. We use the partial order on \mathbb{R}^n defined for every $\vec{x}, \vec{y} \in \mathbb{R}^n$ by $\vec{x} \leq \vec{y}$ if, for every $1 \leq i \leq n$, $x_i \leq y_i$. The downward closure of a set X is defined as $\text{dwc}(X) \stackrel{\text{def}}{=} \{\vec{y} \in \mathbb{R}^n \mid \exists \vec{x} \in X . \vec{x} \leq \vec{y}\}$. An extreme point of a convex set Y is a point of Y that cannot be obtained as a convex combination of points other than itself. We denote by C(X) the set of extreme points of dwc(X) for a closed convex set X. For instance, in Figure 4, the thick segment between the two points \vec{v}_0 and \vec{v}_1 is the convex hull of $\{\vec{v}_0, \vec{v}_1\}$. The set of extreme points of this segment is $\{\vec{v}_0, \vec{v}_1\}$, and the downward closure of the convex hull is the grey set.

2.1. Stochastic Models

We define stochastic games and discuss their relationship to probabilistic automata in the sense of [54].

2.1.1. Stochastic games

Primarily, we consider turn-based action-labelled stochastic two-player games (henceforth simply called *games*), which distinguish two types of nondeterminism, each controlled by a separate player. Player \Diamond represents the controllable part for which we want to synthesise a strategy, while Player \Box represents the uncontrollable environment.

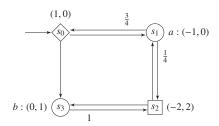


Figure 1: An example game. Moves and states for Player \Diamond and Player \Box are respectively shown as \bigcirc , \Diamond and \Box . States are annotated with a two-dimensional reward structure (see Section 2.3.1) used in Example 3. Moves (also called stochastic states) are labelled with actions.

Definition 1. A game G is a tuple $\langle S, (S_{\diamondsuit}, S_{\square}, S_{\bigcirc}), \varsigma, \mathcal{A}, \chi, \Delta \rangle$, where S is a nonempty, countable set of states partitioned into Player \diamondsuit states S_{\diamondsuit} , Player \square states S_{\square} , and stochastic states S_{\bigcirc} ; $\varsigma \in D(S_{\diamondsuit} \cup S_{\square})$ is an initial distribution; \mathcal{A} is a set of actions; $\chi: S_{\bigcirc} \to \mathcal{A} \cup \{\tau\}$ is a (total) labelling function; and $\Delta: S \times S \to [0,1]$ is a transition function, such that $\Delta(s,t) = 0$ for all $s,t \in S_{\diamondsuit} \cup S_{\square}$, $\Delta(s,t) \in \{0,1\}$ for all $s \in S_{\diamondsuit} \cup S_{\square}$ and $t \in S_{\bigcirc}$, and $\sum_{t \in S_{\diamondsuit} \cup S_{\square}} \Delta(s,t) = 1$ for all $s \in S_{\bigcirc}$.

We call $S_{\Diamond} \cup S_{\Box}$ the *player states*. Define the *successors* of $s \in S$ as $\Delta(s) \stackrel{\text{def}}{=} \{t \in S \mid \Delta(s, t) > 0\}$. For a stochastic state s, we sometimes write $s = (a, \mu)$ (called *move*), where $a \stackrel{\text{def}}{=} \chi(s)$, and $\mu(t) = \Delta(s, t)$ for all $t \in S$. For a player state s and a move (a, μ) , if $\Delta(s, (a, \mu)) > 0$ we write $s \stackrel{a}{\longrightarrow} \mu$ for the *transition* labelled by $a \in \mathcal{A} \cup \{\tau\}$, called an a-transition. The action labels $a \in \mathcal{A}$ on transitions model observable behaviours, whereas τ can be seen as internal: it is not synchronised in the composition that we formulate in this paper. A move (a, μ) is *incoming* to a state t if $\mu(t) > 0$, and is *outgoing* from a state s if $s \stackrel{a}{\longrightarrow} \mu$.

We remark that we work with *finite* games; more precisely, all our statements are for finite stochastic games, except for the induced PAs which may be infinite. In the rest of this paper, if not explicitly stated otherwise, we assume that games have no deadlocks, that is, $|\Delta(s)| \ge 1$ for every $s \in S$.

A path $\lambda = s_0 s_1 s_2 \dots$ is a (possibly infinite) sequence of states such that, for all $i \geq 0$, $\Delta(s_i, s_{i+1}) > 0$. Note that paths of games alternate between player and stochastic states. Given a finite path $\lambda = s_0 s_1 \dots s_N$, we write last(λ) = s_N , and write $|\lambda| = N + 1$ for the length of λ . We denote the set of finite (infinite) paths of a game \mathcal{G} by $\Omega_{\mathcal{G}}^{\text{fin}}$ ($\Omega_{\mathcal{G}}^{\text{fin}}$), and by $\Omega_{\mathcal{G}, \Diamond}^{\text{fin}}$ ($\Omega_{\mathcal{G}, \Box}^{\text{fin}}$) the set of finite paths ending in a Player \Diamond (Player \Box) state. A state t is called *reachable* from a set of states A if there exists a finite path $\lambda = s_0 s_1 \dots s_N$ with $s_0 \in A$ and $s_N = t$.

A finite (infinite) trace is a finite (infinite) sequence of actions. Given a path λ , its trace $trace(\lambda)$ is the sequence of actions that label moves along λ , where we elide τ . Formally, $trace(s_0s_1...) = trace(s_0) \cdot trace(s_1) \cdots$ where $trace(s) = \chi(s)$ if $s \in S_{\bigcirc}$ and $\chi(s) \neq \tau$, and $trace(s) = \epsilon$ otherwise, where ϵ is the empty trace, that is, the neutral element for concatenation of traces. We write \mathcal{A}^* (resp. \mathcal{A}^{ω}) for the set of finite (resp. infinite) sequences over \mathcal{A} .

Example 1. Figure 1 shows a stochastic game, where Player \lozenge and Player \square states are respectively shown as \lozenge and \square , and moves as \bigcirc . A path of the game is $s_0s_1s_0s_3s_2s_3$ and its trace is abb.

2.1.2. Probabilistic automata

If $S_{\Diamond} = \emptyset$ then the game a *probabilistic automaton* (PA) [54], which we write as $\langle S, (S_{\square}, S_{\bigcirc}), \varsigma, \mathcal{A}, \chi, \Delta \rangle$. An example PA is shown in Figure 2. The model considered here is due to Segala [54], and should not be confused with Rabin's probabilistic automata [48]. Segala's PAs have strong compositionality properties, as discussed in [58]. These compositionality properties are partly due to the fact that PAs are allowed to have several moves associated to each action, as is common in process algebras, in contrast to Markov decision processes (MDPs)¹. Note, however, that a PA can be viewed as essentially the same object as an MDP, because action labels are attached to stochastic states and thus selecting an action corresponds to selecting a stochastic state. Two arbitrary stochastic states are distinguishable

¹A Markov decision process (MDP) is a PA where, for every state s of the single player and action a, there is at most one stochastic state labelled by a that is a successor of s.

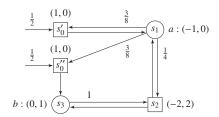


Figure 2: An example PA.

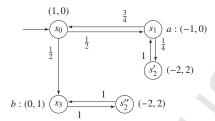


Figure 3: An example DTMC. The labelling function is partial: only s_1 and s_3 have labels.

even if they are labelled by the same action. Therefore, many concepts and results stated for MDPs automatically transfer to PAs.

An end component (EC) is a sub-PA that is closed under the transition relation and strongly connected. Formally, an EC \mathcal{E} of a PA \mathcal{M} is a pair $(S_{\mathcal{E}}, \Delta_{\mathcal{E}})$ with $\emptyset \neq S_{\mathcal{E}} \subseteq S$ and $\emptyset \neq \Delta_{\mathcal{E}} \subseteq \Delta$, such that (i) for all $s \in S_{\mathcal{E}} \cap S_{\mathcal{O}}$, $\sum_{t \in S_{\square}} \Delta_{\mathcal{E}}(s,t) = 1$; (ii) for all $s \in S_{\mathcal{E}}$, $\Delta_{\mathcal{E}}(s,t) > 0$ only if $t \in S_{\mathcal{E}}$; and (iii) for all $s,t \in S_{\mathcal{E}}$, there is a finite path $s_0 s_1 \ldots s_l \in \Omega_{\mathcal{M}}^{\text{fin}}$ within \mathcal{E} (that is, $s_i \in S_{\mathcal{E}}$ for all $0 \leq i \leq l$), such that $s_0 = s$ and $s_l = t$. An end component is a maximal end component (MEC) if it is maximal with respect to the pointwise subset ordering. For instance, the PA of Figure 2 is a MEC. There are three ECs, the PA itself, the PA without the transition from s_2 to s_3 , and the EC formed by states s_2 , s_3 and transitions between these two states.

2.1.3. Discrete-time Markov chains

In contrast to games and PAs, the discrete-time Markov chain model contains no nondeterminism.

Definition 2. A discrete-time Markov chain (DTMC) \mathcal{D} is a tuple $\langle S, \varsigma, \mathcal{A}, \chi, \Delta \rangle$, where S is a nonempty, countable set of states, $\varsigma \in D(S)$ is an initial distribution on states, \mathcal{A} is a finite alphabet of actions, $\chi : S \to \mathcal{A}$ is a partial labelling function and Δ is a transition function such that $\sum_{t \in S} \Delta(s, t) = 1$.

An example DTMC is shown in Figure 3.

Note that, as opposed to games and PAs, there are no player states in DTMCs but only stochastic states. The labelling function is partial to allow for states that correspond to stochastic states of a game, which are labelled, as opposed to states that correspond to player states of a game, which are unlabelled (see Example 2 below). Note also that DTMCs cannot have deadlocks.

Paths and traces of DTMCs are defined as for games, where the set of finite (infinite) paths is denoted by $\Omega_{\mathcal{D}}^{\text{fin}}$ (resp. $\Omega_{\mathcal{D}}$).

2.2. Strategies

Nondeterminism for each player is resolved by a strategy, which keeps internal memory that can be updated stochastically. For the remainder of this section, fix a game $\mathcal{G} = \langle S, (S_{\Diamond}, S_{\Box}, S_{\bigcirc}), \varsigma, \mathcal{A}, \chi, \Delta \rangle$.

Definition 3. A strategy π of Player \lozenge is a tuple $(\mathfrak{M}, \pi_c, \pi_u, \pi_d)$, where \mathfrak{M} is a countable set of memory elements; $\pi_c : S_{\lozenge} \times \mathfrak{M} \to D(S_{\bigcirc})$ is a choice function s.t. $\pi_c(s, \mathfrak{m})(a, \mu) > 0$ only if $s \xrightarrow{a} \mu$; $\pi_u : \mathfrak{M} \times S \to D(\mathfrak{M})$ is a memory

update function; and $\pi_d: S_{\Diamond} \cup S_{\Box} \to D(\mathfrak{M})$ is an initial distribution on \mathfrak{M} . A strategy σ of Player \Box is defined analogously.

We will sometimes refer to Player \Diamond strategy as a *controller*. For a given strategy, the game proceeds as follows. It starts in a player state with memory sampled according to the initial distribution. Every time a (stochastic) state s is entered, both players update their current memory \mathfrak{m} and \mathfrak{n} according to these states; the updated memory elements \mathfrak{m}' and \mathfrak{n}' are randomly chosen according to $\mathfrak{m}' \mapsto \pi_{\mathfrak{u}}(\mathfrak{m}, s)(\mathfrak{m}')$ and $\mathfrak{n}' \mapsto \pi_{\mathfrak{u}}(\mathfrak{n}, s)(\mathfrak{n}')$. Once the memory is updated, if s is a stochastic state then the next state is picked randomly according to the probability $t \mapsto \Delta(s, t)$; otherwise, s is a player state and the next stochastic state t is chosen according to the distribution $\pi_{\mathfrak{c}}(s, \mathfrak{m}')$ when $s \in S_{\Diamond}$, and according to $\sigma_{\mathfrak{c}}(s, \mathfrak{n}')$ if $s \in S_{\Box}$.

If the memory update function maps to Dirac distributions, we speak of *deterministic memory update* (DU) strategies, and sometimes use the alternative, equivalent, formulation² where $\pi:\Omega^{fin}_{\mathcal{G},\diamondsuit}\to \mathsf{D}(\mathcal{S}_{\bigcirc})$ is a function such that $\pi(\lambda)(a,\mu)>0$ only if $\mathsf{last}(\lambda)\stackrel{a}{\longrightarrow}\mu$ for all $\lambda\in\Omega_{\mathcal{G},\diamondsuit}$ (and symmetrically for Player \square). If we want to emphasise that memory might not be deterministically updated, we speak of *stochastic memory update* (SU) strategies. A *finite memory strategy* is a strategy for which the set of memory elements \mathfrak{M} is finite. Finite memory DU (SU) strategies are abbreviated by FDU (FSU). If a DU strategy can be represented with only one memory element and its choice functions maps to a Dirac distribution in every state, it is called *memoryless deterministic* (MD).

2.2.1. Strategy application

Definition 4. Given a game $G = \langle S, (S_{\Diamond}, S_{\Box}, S_{\bigcirc}), \varsigma, \mathcal{A}, \chi, \Delta \rangle$, Player \Diamond strategy π and Player \Box strategy σ , we define the induced DTMC $G^{\pi,\sigma} = \langle S', \varsigma', \mathcal{A}, \chi', \Delta' \rangle$, where $S' \subseteq S \times \mathfrak{M} \times \mathfrak{N}$ is defined as the set of reachable states from $\operatorname{Supp}(\varsigma')$ through Δ' defined as follows. For every $s \in \operatorname{Supp}(\varsigma)$, $\varsigma'(s,\mathfrak{m},\mathfrak{n}) = \pi_d(s)(\mathfrak{m})\pi_d(s)(\mathfrak{n})$ and Δ' is such that

$$\Delta'((s,\mathfrak{m},\mathfrak{n}),(s',\mathfrak{m}',\mathfrak{n}')) = \pi_{u}(\mathfrak{m},s')(\mathfrak{m}') \cdot \sigma_{u}(\mathfrak{n},s')(\mathfrak{n}') \cdot \begin{cases} \pi_{c}(s,\mathfrak{m})(s') & \text{if } s \in S_{\Diamond} \\ \sigma_{c}(s,\mathfrak{n})(s') & \text{if } s \in S_{\Box} \\ \Delta(s,s') & \text{if } s \in S_{\bigcirc} \end{cases}$$
 (1)

The labelling function χ' is defined by $\chi'(s, \mathfrak{m}, \mathfrak{n}) = \chi(s)$ for every $s \in S_{\bigcirc}$.

The first two terms of the right-hand side of (1) correspond to the memory updates, while the last term corresponds to the probability of moving from one state to another depending on the type of the current state.

Note that paths of the induced DTMC include memory. We introduce a mapping $path_{\mathcal{G}}((s_0, \mathfrak{m}_0, \mathfrak{n}_0) \cdots (s_n, \mathfrak{m}_n, \mathfrak{n}_n)) = s_0 \cdots s_n$ to retrieve paths of the game from paths of the induced DTMC.

Example 2. Figure 3 shows the induced DTMC from the stochastic game of Figure 1 by the two strategies described below. The Player \lozenge strategy is memoryless (let m its single memory element); it randomises amongst the successors of s_0 with the same probability $\frac{1}{2}$. The Player \square strategy decides in state s_2 to go to the state visited just before entering s_2 . It hence requires only two memory elements, n and n'. The current memory element is always n except when s_2 is chosen from s_3 , where it is updated to n'. For the sake of readability we denote by s_i the state (s_i, m, n) for $i \neq 2$, by $s_2' = (s_2, m, n')$ and $s_2'' = (s_2, m, n)$. For instance, $path_G(s_0s_1s_0s_3s_2's_3) = s_0s_1s_0s_3s_2s_3$.

Similarly, given a PA \mathcal{M} and a Player \square strategy σ , one can define an induced DTMC \mathcal{M}^{σ} and a mapping path \mathcal{M} , where a generic path of the induced PA is of the form $\kappa = (s_0, \mathfrak{n}_0) \cdots (s_n, \mathfrak{n}_n)$ and is mapped to path $\mathcal{M}(\kappa) \stackrel{\text{def}}{=} s_0 \cdots s_n$. Note that the maps path \mathcal{M} and path $\mathcal{M}(\kappa) \stackrel{\text{def}}{=} s_0 \cdots s_n$.

We define the (standard) probability measure on paths of a DTMC $\mathcal{D} = \langle S, \varsigma, \mathcal{A}, \chi, \Delta \rangle$ in the following way. The *cylinder set* of a finite path $\lambda \in \Omega_{\mathcal{D}}^{\text{fin}}$ (resp. trace $w \in \mathcal{A}^*$) is the set of infinite paths (resp. traces) with prefix λ (resp. w). For a finite path $\lambda = s_0 s_1 \dots s_n \in \Omega_{\mathcal{D}}^{\text{fin}}$ and a distribution $\vartheta \in \mathsf{D}(S)$, we define $\mathbb{P}_{\mathcal{D},\vartheta}(\lambda)$, the measure of its cylinder set weighted by the distribution ϑ , by $\mathbb{P}_{\mathcal{D},\vartheta}(\lambda) \stackrel{\text{def}}{=} \vartheta(s_0) \prod_{i=0}^{n-1} \Delta(s_i, s_{i+1})$. If $\vartheta = \varsigma$, i.e. the initial distribution, we omit it and just write $\mathbb{P}_{\mathcal{D}}$. Given a PA \mathcal{M} and a strategy σ , one can define for every path λ the measure of its cylinder set by

²This formulation is typically used in papers on (stochastic) games. Our formulation in Definition 3 was originally given in [6] (for MDPs). We show that the two formulations are equivalent in Proposition 1.

 $\mathbb{P}^{\sigma}_{\mathcal{M}}(\lambda) \stackrel{\text{def}}{=} \sum_{\{\lambda' \mid \mathsf{path}_{\mathcal{M}}(\lambda') = \lambda\}} \mathbb{P}_{\mathcal{M}^{\sigma}}(\lambda'). \text{ Similarly, given a game } \mathcal{G} \text{ and a pair of strategies } \pi, \sigma, \text{ define for every path } \lambda \text{ the measure } \mathbb{P}^{\pi,\sigma}_{\mathcal{G}}(\lambda) \stackrel{\text{def}}{=} \sum_{\{\lambda' \mid \mathsf{path}_{\mathcal{G}}(\lambda') = \lambda\}} \mathbb{P}_{\mathcal{G}^{\pi,\sigma}}(\lambda').$

We introduce the remaining definitions for a generic model (game, PA or DTMC) together with the probability measure $\mathbb P$ on its paths. Given a finite trace w, paths(w) denotes the set of minimal finite paths with trace w, i.e. $\lambda \in \text{paths}(w)$ if $\text{trace}(\lambda) = w$ and there is no path $\lambda' \neq \lambda$ with $\text{trace}(\lambda') = w$ and λ' being a prefix of λ . The measure of the cylinder set of w is $\mathbb{P}(w) \stackrel{\text{def}}{=} \sum_{\lambda \in \text{paths}(w)} \mathbb{P}(\lambda)$, and we call \mathbb{P} the *trace distribution* induced by \mathbb{P} . The measures uniquely extend to infinite paths due to Carathéodory's extension theorem. We denote by $\mathbb{E}[\vec{\rho}]$ the expectation wrt \mathbb{P} of a measurable function $\vec{\rho}$ over infinite paths, that is, $\int \vec{\rho}(\lambda)d\mathbb{P}(\lambda)$, and use the same subscript and superscript notation for \mathbb{E} and \mathbb{P} , for instance $\mathbb{E}_{\mathcal{D},\vartheta}$ denotes expectation wrt $\mathbb{P}_{\mathcal{D},\vartheta}$.

Given a subset $T \subseteq S$, let $\mathbb{P}(\mathsf{F}^{=k} T) \stackrel{\text{def}}{=} \sum \{\mathbb{P}(\lambda) \mid \lambda = s_0 s_1 \dots s.t. \ s_k \in T \land \forall i < k \cdot s_i \notin T\}$ the probability to reach T in exactly k steps, and by $\mathbb{P}(\mathsf{F} T) \stackrel{\text{def}}{=} \sum \{\mathbb{P}(\lambda) \mid \lambda = s_0 s_1 \dots s.t. \ \exists i \cdot s_i \in T\}$ the probability to eventually reach T.

2.2.2. Determinising strategies

In this section we show that SU and DU strategies are equally powerful if the memory size is not restricted (Proposition 1). The memory elements of the determinised strategies are distributions over memory elements of the original strategy. Such distributions can be interpreted as the *belief* the other player has about the memory element, knowing only the history and the rules to update the memory, while the actual memory based on sampling is kept secret. The term belief is inspired by the study of partially observable Markov decision processes. At any time, the belief attributes to a memory element m the probability of m under the original strategy given the history.

Definition 5. Given an SU strategy $\pi = \langle \mathfrak{M}, \pi_c, \pi_u, \pi_d \rangle$, we define its determinised strategy $\bar{\pi} = \langle \mathfrak{D}(\pi), \bar{\pi}_c, \bar{\pi}_u, \bar{\pi}_d \rangle$, where $\mathfrak{D}(\pi) \subseteq D(\mathfrak{M})$ is a countable set called the belief space defined as the reachable beliefs from the initial beliefs $\bar{\pi}_d(s)$ under belief updates $\bar{\pi}_u$ along paths of the game defined as follows. The initial belief in a state is the initial memory distribution in this state:

$$\bar{\pi_d}(s) \stackrel{\text{def}}{=} \pi_d(s).$$

Any belief b is updated according to a state s' as follows:

$$ar{\pi_{\mathcal{U}}}(\mathfrak{d},s')(\mathfrak{m}') \stackrel{\mathrm{def}}{=} \sum_{\mathfrak{m} \in \mathfrak{M}} \mathfrak{d}(\mathfrak{m}) \cdot \pi_{\mathcal{U}}(\mathfrak{m},s')(\mathfrak{m}').$$

The choice of a state s' is made according to a belief δ as follows:

$$\bar{\pi_c}(s, \delta)(s') \stackrel{\text{def}}{=} \sum_{m \in \mathfrak{M}} \delta(m) \pi_c(s, m)(s').$$

Note that determinising a finite memory SU strategy can lead to either a finite or an infinite memory DU strategy. We can now state the main result of this section, namely, that the original and the determinised strategy give exactly the same semantics. They are indistinguishable from the Player \square viewpoint.

Proposition 1. Given a game \mathcal{G} and two strategies π , σ , it holds that $\mathbb{P}_{\mathcal{G}}^{\pi,\sigma} = \mathbb{P}_{\mathcal{G}}^{\bar{\pi},\sigma}$, where $\bar{\pi}$ is the determinisation of π .

This proposition is proved in Appendix A.1. We do not need to consider the determinisation of Player \square strategies. Note, however, that it could be defined in the same way, and using Proposition 1 twice (once for each player) yields $\mathbb{P}_{G}^{\pi,\sigma} = \mathbb{P}_{G}^{\bar{\pi},\bar{\sigma}}$.

2.3. Winning Conditions

2.3.1. Rewards and long-run behaviours

Since we are interested in quantitative analysis, we annotate games with quantities that can represent, for example, resource usage. We refer to such quantities as rewards. Average rewards (aka. mean-payoff) measure the long-run average of such quantities along paths. We also allow ratio rewards, originally defined for MDPs in [62], which measure the long-run behaviour of the ratio of two rewards. For instance, if a game models a car driving along a route, then one can model fuel consumption per time unit using ratio of the rewards that compute the quantity of fuel consumption and the time spent on the route.

Formally, a *reward structure* of a game \mathcal{G} is a function $r:S\to\mathbb{R}$; it is *defined on actions* $\mathcal{A}_r\subseteq\mathcal{A}$ if $r(a,\mu)=r(a,\mu')$ for all moves $(a,\mu),(a,\mu')\in S_{\bigcirc}$ such that $a\in\mathcal{A}_r$, and r(s)=0 otherwise. r straightforwardly extends to induced DTMCs via $r(s)=r(\text{path}_{\mathcal{G}}(s))$ for $s\in S_{\mathcal{G}^{n,\sigma}}$. For a path $\lambda=s_0s_1\ldots$ (of a game or DTMC) and a reward structure r, we define $\text{rew}^N(r)(\lambda)\stackrel{\text{def}}{=}\sum_{i=0}^N r(s_i)$, reward for N steps, and similarly for traces if r is defined on actions. Given another reward c that takes non-negative values, we similarly define $\text{ratio}^N(r/c)(\lambda)\stackrel{\text{def}}{=}\sum_{i=0}^N r(s_i)/(1+\sum_{i=0}^N c(s_i))$. For a game (or DTMC) equipped with a reward structure r and a path λ , the *average reward (mean-payoff)* of λ is

$$mp(r)(\lambda) \stackrel{\text{def}}{=} \underline{\lim}_{N \to \infty} \frac{1}{N+1} rew^{N}(r)(\lambda)$$

where $\underline{\lim}$ denotes limit inferior. Further, given a reward structure c that takes non-negative values, the *ratio reward* of the path λ is

$$\mathsf{ratio}(r/c)(\lambda) \stackrel{\text{def}}{=} \mathsf{lim}_{N \to \infty} \mathsf{ratio}^N(r/c)(\lambda) \in \mathbb{R} \cup \{+\infty\}.$$

Note that the ratio reward can be infinite for paths along which c is null too often. This does not cause difficulties if the probability of these problematic paths is zero. We say that c is a *weakly positive* reward structure if it is non-negative and there exists $c_{\min} > 0$ such that $\mathbb{P}_{\mathcal{G}}^{\pi,\sigma}(\mathsf{mp}(c) > c_{\min}) = 1$ for all π and σ . If c is weakly positive then $|\mathsf{ratio}(r/c)(\lambda)|$ is almost surely bounded by $\max_{s \in S} |r(s)|/c_{\min}$. This result is proved in Appendix C.1. In the following, we only consider ratio rewards $\mathsf{ratio}(r/c)$ for which c is weakly positive. We use $\underline{\lim}$ in the definition of mean-payoff and ratio rewards because the limit may not be defined.

Mean-payoff and ratio rewards with $\overline{\text{lim}}$ (limit superior) may also be useful and are denoted by $\overline{\text{mp}}$ and $\overline{\text{ratio}}$ (see further discussions in Remark 1 below).

Example 3. Let r and c be the first and second component of the reward structure of the game shown in Figure 1. The reward structure c is weakly positive because, under every pair of strategies, s_2 or s_3 are visited with positive frequency. In the induced DTMC shown in Figure 3, every path λ that begins with $s_0s_1s_0s_3s_2''s_3$ has cumulative rewards after 6 steps equal to $rew^6(r)(\lambda) = r(s_0) + r(s_1) + r(s_0) + r(s_3) + r(s_2'') + r(s_3) = 1 + (-1) + 1 + 0 + (-2) + 0 = -1$ and $rew^6(c)(\lambda) = 4$, leading to a ratio of $ratio^6(r/c)(\lambda) = -1/5$ after 6 steps.

Given reward structures r and r', define the reward structure r + r' by $(r + r')(s) \stackrel{\text{def}}{=} r(s) + r'(s)$ for all $s \in S$, and, given $v \in \mathbb{R}$, define r + v by $(r + v)(s) \stackrel{\text{def}}{=} r(s) + v$ for all $s \in S$.

If a DTMC \mathcal{D} has a finite state space, the limit inferior ($\underline{\text{lim}}$) and the limit superior ($\overline{\text{lim}}$) of the average and ratio rewards can be replaced by the true limit, as it is almost surely defined (see Lemma 14 and 15 in Appendix A.2). Ratio rewards ratio(r/c) generalise average rewards mp(r) since, to express the latter, we can let c(s) = 1 for all states s of G, see [62].

2.3.2. Specifications and objectives

A specification φ on a model (game, PA, or DTMC) is a predicate on its path distributions. We call a Player \Diamond strategy π winning for φ in \mathcal{G} if, for every Player \Box strategy σ , $\mathbb{P}_{\mathcal{G}}^{\pi,\sigma}$ satisfies φ . Dually, we call a Player \Box strategy σ spoiling for φ in \mathcal{G} if, for every Player \Diamond strategy π , $\mathbb{P}_{\mathcal{G}}^{\pi,\sigma}$ does not satisfy φ . We say that φ is achievable if a Player \Diamond winning strategy exists, written $\mathcal{G} \models \varphi$. A specification φ on a PA \mathcal{M} is satisfied if, for every Player \Box strategy σ , $\mathbb{P}_{\mathcal{M}}^{\sigma}$ satisfies φ , which we write $\mathcal{M} \models \varphi$. A specification φ on a DTMC \mathcal{D} is satisfied if $\mathbb{P}_{\mathcal{D}}$ satisfies φ , which we write $\mathcal{D} \models \varphi$. A specification φ is defined on traces of \mathcal{F} if $\varphi(\widetilde{\mathbb{P}}) = \varphi(\widetilde{\mathbb{P}}')$ for all \mathbb{P} , \mathbb{P}' such that $\widetilde{\mathbb{P}}(w) = \widetilde{\mathbb{P}}'(w)$ for all traces $w \in \mathcal{F}^*$. We consider the following objectives, which are specifications with single-dimensional reward structures.

Semantics	Reward	Syntax	Definition
(a.s.) satisfaction	mean payoff	Pmp(r)(v)	$\mathbb{P}(mp(r) \ge v) = 1$
(a.s.) satisfaction	ratio	Pratio $(r/c)(v)$	$\mathbb{P}(ratio(r/c) \ge v) = 1$
expectation	mean payoff	Emp(r)(v)	$\mathbb{E}[mp(r)] \ge v$
expectation	ratio	Eratio $(r/c)(v)$	$\mathbb{E}[ratio(r/c)] \ge v$

Note that, when inducing a DTMC, the reward structure is carried over and the mean-payoff and ratio reward are not affected; hence, specifications defined for games are also naturally carried over to the induced models. In

particular, a Player \Diamond strategy π of a game \mathcal{G} is winning for a specification φ if and only if, for every Player \square strategy σ , $\mathcal{G}^{\pi,\sigma} \models \varphi$. The same remark holds for induced PAs \mathcal{G}^{π} defined in Section 2.5 below.

The objective $\mathsf{Pmp}(r)(v)$ (resp. $\mathsf{Emp}(r)(v)$) is equivalent to $\mathsf{Pmp}(r-v)(0)$ (resp. $\mathsf{Emp}(r-v)(0)$), i.e. with the rewards shifted by -v. Hence, we will mainly consider the target 0 without loss of generality. An objective with target v is ε -achievable for a given $\varepsilon > 0$ if the objective is achievable with target $v - \varepsilon$ by some strategy, which we call ε -optimal. A target is approximable if it is ε -achievable for every $\varepsilon > 0$.

Remark 1. We mainly consider maximizing a reward (or ensuring that it is above a threshold) in the worst case scenario, and therefore work with the operator $\underline{\lim}$ rather than $\underline{\lim}$. On the other hand, when we wish to minimise a reward, we need to use the operator $\underline{\lim}$. Thus, we are also interested in objectives of the form $\mathbb{P}(\overline{mp}(r) \leq v) = 1$, $\mathbb{P}(\overline{ratio}(r/c) \leq v) = 1$, $\mathbb{E}[\overline{mp}(r)] \leq v$ and $\mathbb{E}[\overline{ratio}(r/c)] \leq v$, where the definitions of \overline{mp} and \overline{ratio} are obtained from the definitions of \overline{mp} and ratio by replacing $\underline{\lim}$ by $\overline{\lim}$. These objectives are respectively equivalent to Pmp(-r)(-v), Pratio(-r/c)(-v), Emp(-r)(-v) and Eratio(-r/c)(-v), and hence treated in our framework.

Remark 2. In this paper we also consider negation of expectation objectives: for example, $\neg(\mathbb{E}[mp(r)] \geq v)$ is equivalent to $\mathbb{E}[mp(r)] < v$ and to $\mathbb{E}[\overline{mp}(-r)] > -v$. Note that the goal is no longer to maximise the $\underline{\lim}$ operator, but rather to minimise it (which could be rephrased as maximising $\overline{\lim}$). We do not directly address this goal but instead use the following fact: a strategy that achieves Emp(-r)(-v) is ε -optimal for $\neg \text{Emp}(r)(v)$, for every $\varepsilon > 0$. This follows from the inequalities $\mathbb{E}[\overline{mp}(-r)] \geq \mathbb{E}[mp(-r)] \geq -v > -v - \varepsilon$. We do not consider negating almost-sure satisfaction objectives here.

Additionally, we consider *expected energy (EE) objectives*, which we use as an auxiliary tool in strategy synthesis. A DTMC \mathcal{D} satisfies the EE objective EE(r) if there exists a finite *shortfall* v_0 , such that, for every state s of \mathcal{D} , $\mathbb{E}_{\mathcal{D},s}[\text{rew}^N(r)] \ge v_0$ for all $N \ge 0$.

We recall known results about strategies in PAs and games.

Lemma 1 (Theorem 9.1.8 in [47]). In finite PAs, MD strategies suffice to achieve single-dimensional Emp objectives.

Given a game \mathcal{G} , a set $A \subseteq S$ is called Player \lozenge almost surely reachable from a state $s \in S$ if there is a strategy π of Player \lozenge such that, for every strategy σ of Player \square , the probability in the DTMC induced by π and σ that a state of A is reached is 1.

Lemma 2 (see Section 2.1.1 of [36]). Given a game G, and a set $A \subseteq S$, the set of states A' from which A is Player \Diamond almost surely reachable is computable in polynomial time. Moreover, an MD strategy π reaching almost surely A from any state of A' is computable in polynomial time.

2.3.3. Multi-objective queries and their Pareto sets

A multi-objective query (MQ) φ is a Boolean combination of objectives and its truth value is defined inductively on its syntax. Given an MQ with n thresholds $v_1, v_2, \ldots v_n$, call $\vec{v} = (v_1, v_2, \ldots, v_n)$ the target vector. Denote by $\varphi[\vec{x}]$ the MQ φ , where, for all i, the bound v_i is replaced by x_i . An MQ φ is a conjunctive query (CQ) if it is a conjunction of objectives. The notation Pmp(\vec{r})(\vec{v}), Emp(\vec{r})(\vec{v}) stands for the CQ $\bigwedge_{i=1}^n \text{Pmp}(r_i)(v_i)$ and $\bigwedge_{i=1}^n \text{Emp}(r_i)(v_i)$, respectively. The notation Pratio(\vec{r} / \vec{c})(\vec{v}), Eratio(\vec{r} / \vec{c})(\vec{v}) stands for the CQ $\bigwedge_{i=1}^n \text{Pratio}(r_i/c_i)(v_i)$ and $\bigwedge_{i=1}^n \text{Eratio}(r_i/c_i)(v_i)$, respectively. We write $\vec{\varepsilon}$ to denote the vector $(\varepsilon, \varepsilon, \ldots, \varepsilon)$, and, if the context is clear, we use ε instead of $\vec{\varepsilon}$.

The Pareto set Pareto(φ) of an MQ φ is the topological closure of the set of achievable vectors. Alternatively, this set can be defined as the set of approximable target vectors. For instance, Pareto(Pmp(\vec{r})) denotes the set of vectors \vec{v} such that, for every $\varepsilon > 0$, there is a strategy that achieves Pmp(\vec{r})($\vec{v} - \vec{\varepsilon}$). We denote by Pareto_{FDU}(φ) the subset of Pareto(φ) concerning achievability by an FDU strategy.

In some of our results, we consider only finite memory adversaries. We denote by $Pareto_{FDU,FSU}(\varphi)$ the topological closure of the set of vectors achievable against FSU strategies by FDU strategies. Note that a Pareto set is equal to its downward closure for the objectives we consider. More precisely, we distinguish three regions in a Pareto set, the interior of the Pareto set where vectors are achievable; the boundary of a Pareto set, usually called the *Pareto frontier*, where vectors are approximable but may not be achievable; and the complement of the Pareto set, where vectors are not achievable.

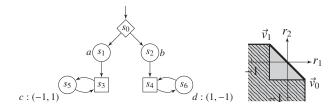


Figure 4: Left: A game; omitted rewards on s_0 , s_1 , s_2 , s_3 and s_4 are null. Right: Pareto sets for Pmp (hashed) and Emp (grey). For $p \in [0, 1]$, let π_p be the Player \diamondsuit strategy that in s_0 chooses s_1 with probability p and s_2 with probability 1-p. Every Player \diamondsuit strategy is of the form π_p for some $p \in [0, 1]$. Strategy π_1 induces only the single path $s_0s_1(s_3s_5)^\omega$. The vector of mean-payoff of this path is $\vec{v}_1 \stackrel{\text{def}}{=} (-1/2, 1/2)$. Hence π_1 achieves Pmp(\vec{r})(\vec{v}_1). Similarly, π_0 achieves Pmp(\vec{r})(\vec{v}_0) with $\vec{v}_0 \stackrel{\text{def}}{=} (1/2, -1/2)$. The thick segment is the convex hull of $\{\vec{v}_0, \vec{v}_1\}$, which consists of points $\vec{v}_p \stackrel{\text{def}}{=} p\vec{v}_1 + (1-p)\vec{v}_0$ for $p \in [0, 1]$. For $p \in (0, 1)$, π_p achieves Emp(\vec{r})(\vec{v}_p) but it achieves only Pmp(\vec{r})(min(\vec{v}_1, \vec{v}_0)).

Remark 3. For every game, reward structure r and target \vec{v} , if a strategy π is winning for $\mathsf{Pmp}(\vec{r})(\vec{v})$ then it is winning for $\mathsf{Emp}(\vec{r})(\vec{v})$. In particular, $\mathsf{Pareto}(\mathsf{Pmp}(\vec{r})) \subseteq \mathsf{Pareto}(\mathsf{Emp}(\vec{r}))$ and $\mathsf{Pareto}_{\mathsf{FDU}}(\mathsf{Pmp}(\vec{r})) \subseteq \mathsf{Pareto}_{\mathsf{FDU}}(\mathsf{Emp}(\vec{r}))$ but the converse inclusions do not hold in general. The same remark holds when replacing mean-payoff by ratio rewards.

Indeed, given a probability distribution on paths, if the mean payoff is almost surely above a threshold then the expected mean payoff is also above this threshold, leading to the inclusion claimed. Figure 4 provides an example where the inclusion is strict.

The following Proposition states that Pratio and Pmp are inter-reducible.

Proposition 2. A strategy π is winning for Pratio $(\vec{r}/\vec{c})(\vec{v})$ if and only if it is winning for Pmp $(\vec{r}-\vec{v}\bullet\vec{c})(0)$ where, for every dimension i and state s, $[\vec{r}-\vec{v}\bullet\vec{c}]_i(s)=r_i(s)-v_ic_i(s)$.

This proposition is proved in Appendix A.3.

2.3.4. Problem statement

We are mainly interested in the following *synthesis problem*: given a quantitative specification φ , an approximable target vector and a positive real ε , synthesise an ε -optimal strategy for this vector. To obtain achievable specifications, we are also interested in (under-approximating) the Pareto set to provide a choice of approximable targets as input to the synthesis problem. Specifically, we seek to compute, for every $\varepsilon > 0$, ε -tight under-approximations of Pareto sets where, given two subsets X, Y of \mathbb{R}^n , X is an ε -tight under-approximation of Y if $Y \subseteq X$ and for every $x \in X$ there is $y \in Y$ such that $||x - y||_{\infty} \le \varepsilon$.

2.4. A running example

In this section we introduce a running example that we refer to throughout the paper, indicated by the subscript re, as in "Example_{re} 9." Consider a plant producing widgets, with the objective to produce the maximum number of widgets, while minimising the resource requirements. We consider a plant and a supervisor that operate in parallel, and communicate with each other over a channel. The communication channel is modelled via synchronisation of actions, and it allows serial communication, arbitrated by a scheduler. The environment of the plant monitors the quality of the raw materials available. The plant and supervisor are modelled as stochastic games, shown in Figure 5, and explained in the following.

We model the plant as \mathcal{G}_{re}^2 . In state t_1 the plant is producing widgets, since the action b is enabled. The raw materials might be of imperfect quality, and so, after a widget is produced, the plant may enter the idle state t_2 , where additional post-processing on the widget is performed. With some probability, however, the widget is ok, and the plant returns to state t_1 and is ready to produce the next widget. The probability of low-quality raw materials is anywhere between $\frac{1}{2}$ and 1, and so we model this by Player \Box choosing a distribution that randomises between the moves in state t_1 . Once state t_2 is entered, there is a τ -transition present in the model to allow the scheduler to arbitrate the communication channel. If state t_0 is entered, the plant can either decide to resume widget production using the q_2 action, or it can decide to cool down with some probability, using the a action.

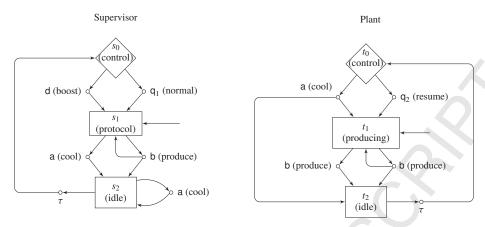


Figure 5: Example games $\mathcal{G}_{\text{re}}^1$ (left) and $\mathcal{G}_{\text{re}}^2$ (right). Distributions in stochastic states are uniform. The rewards are (1,0,0,1) for a, (0,1,1,1) for b, and (0,1,0,0) for d, where the three first components correspond to reward structures r_1, r_2, r_3 and the fourth corresponds to c.

The supervisor is modelled as \mathcal{G}_{re}^1 . In state s_1 , the protocol for widget production is enforced by allowing only certain sequences of cooling and production: cooling is always allowed, but a sequence of producing n widgets is allowed only with probability $\frac{1}{2^n}$, in order to prevent overheating of the plant. State s_2 has the a action enabled in order to listen on the communication channel, and the outgoing τ -transition allows channel arbitration by the scheduler. Once in state s_0 , the supervisor can decide to resume production normally using the q_1 action, or boost production by one widget by simply inserting a widget with the d action.

We define reward structures for our running example, based on the properties outlined above. The reward structure c used for ratios of rewards advances time when cooling and producing, that is, c(a) = c(b) = 1. We define \vec{r} to express the quantities that we want to optimise. To minimise the cooling, we let $r_1(a) = 1$; to maximise the number of widgets produced, we let $r_2(b) = r_2(d) = 1$; and to minimise the required resources during production, we let $r_3(b) = 1$. We use Eratio $(-r_1/c)(-v_1)$ in the local specifications, in particular, to establish an assume-guarantee contract between the components. The global specification for \mathcal{G}_{re} is

$$\varphi_{\text{re}} = \text{Eratio}(r_2/c)(v_2) \wedge \text{Eratio}(-r_3/c)(-v_3),$$

meaning that we want to maximise the number of widgets produced, and minimise the amount of resources required (see Remark 2). Locally, we consider the specifications

$$\varphi_{\text{re}}^1 = \text{Eratio}(-r_1/c)(-v_1) \rightarrow \text{Eratio}(r_2/c)(v_2),$$

$$\varphi_{\text{re}}^2 = \text{Eratio}(-r_1/c)(-v_1) \wedge \text{Eratio}(-r_3/c)(-v_3),$$

for \mathcal{G}_{re}^1 and \mathcal{G}_{re}^2 , respectively, where we use the objective to minimise cooling as a contract between the components.

2.5. A Two-Step Semantics for Stochastic Games

PAs arise naturally from games when one considers fixing only the Player \Diamond strategy, and then checking against all Player \Box strategies if it is winning. Later in the paper, for instance in Theorem 15, we will show how to automatically lift results from the PA (and MDP) world to the game domain (from the literature or proved here). For this, we will need to map strategies of the induced PA to Player \Box strategies of the original game. To facilitate the lifting, we adopt a two-step semantics defined as follows. In the first step we apply a Player \Diamond strategy to a game, leading to an induced PA. Then, in the second step, we apply a Player \Box strategy to the induced PA, resulting in a probability measure that is the same as that obtained by applying both strategies simultaneously (Proposition 3).

2.5.1. First step: inducing the PA

We consider a DU Player \Diamond strategy π (note that this is without loss of generality by Proposition 1). The induced PA \mathcal{G}^{π} essentially corresponds to the game where π has been applied. The memory of Player \Diamond is encoded in the

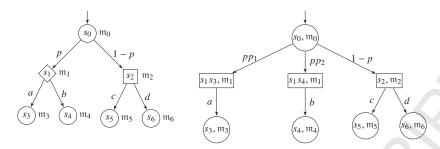


Figure 6: Stochastic game \mathcal{G} (left) and induced PA \mathcal{G}^{π} (right). Memory elements are represented on the right of each state of the game, and encoded in the states of the PA. At s_1 with memory \mathfrak{m}_1 , the strategy π plays a and b with probability p_1 and p_2 , respectively.

states of the induced PA as depicted in Figure 6. To allow alternation between stochastic and Player \square states in the induced PA, we transform each Player \lozenge state s' into several Player \square states, each of the form (s', s''), corresponding to the choice of $s'' \in S_{\square}$ as a successor of s'. Any incoming transition $s \to s'$ of the game is thus replaced by several transitions in the PA, each of the form $s \to (s', s'')$ with probability given as a product of $\Delta(s, s')$ and the probability of s'' given by $\pi_{\mathbb{C}}$ in s'. Formally, the induced PA is defined as follows.

Definition 6. Let $G = \langle S, (S_{\Diamond}, S_{\Box}, S_{\bigcirc}), \varsigma, \mathcal{A}, \chi, \Delta \rangle$ be a game and let π be a Player \Diamond DU strategy. The induced PA G^{π} is $\langle S', (S'_{\Box}, S'_{\bigcirc}), \varsigma', \mathcal{A}, \chi', \Delta' \rangle$, where $S'_{\Box} \subseteq (S_{\Box} \cup S_{\Diamond} \times S_{\bigcirc}) \times \mathfrak{M}$ and $S'_{\bigcirc} \subseteq S_{\bigcirc} \times \mathfrak{M}$ are defined inductively as the reachable states from the initial distribution ς' , defined by $\varsigma'(s, \pi_d(s)) = \varsigma(s)$; and through the transition relation Δ' defined as follows. Given states $\mathfrak{s} \in S'$ of the form $(\mathfrak{s}, \mathfrak{m})$ and $\mathfrak{t} \in S'$ of the form $(\mathfrak{t}, \mathfrak{m}')$ or $((\mathfrak{t}, \mathfrak{t}'), \mathfrak{m}')$, $\Delta'(\mathfrak{s}, \mathfrak{t})$ is not null only if $\mathfrak{m}' = \pi_U(\mathfrak{m}, \mathfrak{t})$ and is defined by

$$\Delta'(\mathfrak{s},\mathfrak{t}) \stackrel{\text{def}}{=} \Delta(s,t) \cdot \left\{ \begin{array}{ll} \pi_{c}(t,\mathfrak{m}')(t') & \textit{if } t \stackrel{\text{def}}{=} (t,t') \in S_{\lozenge} \times S_{\bigcirc}; \\ 1 & \textit{otherwise} \end{array} \right.$$

Every state of the form $((s, s'), \mathfrak{m})$ has only one successor (thus taken with probability 1), which is $(s', \pi_u(\mathfrak{m}, s'))$. The labelling function is defined by $\chi'(s) = \chi(s)$ for $s \in S_{\bigcirc}$.

Example 4. Figure 2 shows the PA induced from the game of Figure 1 by the memoryless strategy that randomises in s_0 between s_1 and s_3 with the same probability $\frac{1}{2}$, as in Example 2. The single memory element m is omitted for the sake of readability and states $((s_0, s_1), \mathfrak{m})$, $((s_0, s_3), \mathfrak{m})$ are called s'_0 and s''_0 respectively.

Remark 4. The induced PA corresponding to a finite DU strategy has a finite state space, which was not the case with the definition of [5]. We rely on this fact to prove numerous results in the paper.

2.5.2. Second step: inducing the DTMC

Given a game \mathcal{G} and a DU strategy π , every strategy σ of the induced PA \mathcal{G}^{π} induces a DTMC $(\mathcal{G}^{\pi})^{\sigma}$. One can define a mapping, still denoted by $\mathsf{path}_{\mathcal{G}}$, from paths of this DTMC to the game. Formally, every state of the DTMC is of the form $((s, \mathfrak{m}), \mathfrak{n})$ or $(((s, s'), \mathfrak{m}), \mathfrak{n})$, which is mapped by $\mathsf{path}_{\mathcal{G}}$ to s.

An associated probability measure can thus be defined by

$$\mathbb{P}_{\mathcal{G}}^{(\pi,\sigma)}(\lambda) \stackrel{\text{\tiny def}}{=} \sum \{ \mathbb{P}_{(\mathcal{G}^{\pi})^{\sigma}}(\lambda') \mid \mathsf{path}_{\mathcal{G}}(\lambda') = \lambda \},$$

called the two-step semantics.

The two-step semantics is justified by Proposition 3, showing equivalence with the original semantics of Definition 4.

Proposition 3 (Equivalence of semantics). The two-step semantics is equivalent to the semantics of the game of Definition 4 in the following sense. Let G be a game and π a DU strategy, then for every strategy σ in G (resp. σ' in G^{π}) one can build a strategy σ' in G^{π} (resp. σ in G) such that $\mathbb{P}_{G}^{\pi,\sigma'} = \mathbb{P}_{G}^{(\pi,\sigma')}$. Moreover, if π has finite memory, then σ has finite memory if and only if σ' has finite memory.

To build a Player \square strategy σ in a game from a strategy σ' in the induced PA, it suffices to simulate the deterministic memory of π (available from the state of the induced PA) in the memory of σ . If the strategies π and σ' are finite then so is the memory of σ . The other direction is straightforward; if σ is a strategy in a game, then one can use it in an induced PA without even taking care of the memory of π .

3. Conjunctions of Pmp Objectives

In this section we consider conjunctions of Pmp objectives, which maintain several mean payoffs almost surely above the corresponding thresholds. We first show in Corollary 2 that we can decide which player wins in co-NP time. Next, to synthesise strategies, we introduce a reduction to expected energy (EE) objectives in Lemma 5. We then construct succinct ε -optimal finite SU strategies in Theorem 7.

3.1. Decision Procedures

In this section we present our decidability result of the achievability problem for Pmp CQs, based on a general class of objectives defined via *shift-invariant submixing* functions. A function $\varrho: \Omega_{\mathcal{G}} \to \mathbb{R}$ is *shift-invariant* if $\forall \kappa \in \Omega_{\mathcal{G}}^{fin}, \lambda \in \Omega_{\mathcal{G}} \cdot \varrho(\kappa\lambda) = \varrho(\lambda)$. A function $\varrho: \Omega_{\mathcal{G}} \to \mathbb{R}$ is *submixing* if, for all $\kappa, \kappa', \lambda \in \Omega_{\mathcal{G}}$ such that λ is an interleaving of κ and κ' , it holds that $\varrho(\lambda) \leq \max\{\varrho(\kappa), \varrho(\kappa')\}$. Given a measurable function ϱ , we write $P(\varrho)$ for the objective $\mathbb{P}(\varrho \geq 0) = 1$.

We obtain a co-NP algorithm by studying the strategies Player \square needs to win for Pmp objectives against Player \lozenge , and using that the games are qualitatively determined for Pmp objectives. We have from [35] that MD strategies suffice for Player \lozenge to win for single-dimensional shift-invariant submixing functions.

Theorem 1 (Theorem V.2 of [35]). Let \mathcal{G} be a game, let $\varrho : \Omega_{\mathcal{G}} \to \mathbb{R}$ be measurable, shift-invariant and submixing. Then Player \square has an MD strategy $\tilde{\sigma}$ such that $\inf_{\pi} \mathbb{E}_{\mathcal{G}}^{\pi,\tilde{\sigma}}[\varrho] = \sup_{\sigma} \inf_{\pi} \mathbb{E}_{\mathcal{G}}^{\pi,\sigma}[\varrho]$.

Further, a game G with specification φ is *qualitatively determined* if either Player \Diamond has a winning strategy, or Player \Box has a spoiling strategy. It is called Player \Box -positional if the following implication holds: if Player \Box has a spoiling strategy then it has an MD spoiling strategy.

Theorem 2 (Theorem 7 of [34]). Stochastic games with shift-invariant winning condition are qualitatively determined.³

Given a measurable subset A of $\Omega_{\mathcal{G}}$, we denote by 1_A its indicator function, that is, $1_A(\lambda) \stackrel{\text{def}}{=} 1$ if $\lambda \in A$ and 0 otherwise

Lemma 3. Let $\varrho_1, \ldots, \varrho_n$ be shift-invariant submixing functions, and let $A \stackrel{\text{def}}{=} \{\lambda \mid \exists i . - \varrho_i(\lambda) < v_i\}$. The function 1_A is shift-invariant and submixing.

Proof. Since ϱ_i is shift-invariant for all i, also 1_A is shift-invariant. We now show that 1_A is submixing. Let $\lambda, \kappa, \kappa' \in \Omega_{\mathcal{G}}$ such that λ is an interleaving of κ and κ' . If $1_A(\kappa) = 1$ or $1_A(\kappa') = 1$ then $1_A(\lambda) \leq \max\{1_A(\kappa), 1_A(\kappa')\}$. Otherwise, $1_A(\kappa) = 1_A(\kappa') = 0$, that is, $-\varrho_i(\kappa) \geq \nu_i$ and $-\varrho_i(\kappa') \geq \nu_i$ for all i. Since ϱ_i is submixing, $\varrho_i(\lambda) \leq \max\{\varrho_i(\kappa), \varrho_i(\kappa')\}$, for all i. Then, for all i, $\nu_i \leq \min\{-\varrho_i(\kappa), -\varrho_i(\kappa')\} \leq -\varrho_i(\lambda)$. Thus, $1_A(\lambda) = 0 \leq \max\{1_A(\kappa), 1_A(\kappa')\}$ as expected.

Theorem 3. A game \mathcal{G} with specification $P(-\vec{\varrho})$, where $\varrho_1, \ldots, \varrho_n$ are shift-invariant submixing functions, is Player \square -positional.

Proof. Assume that Player \square has a spoiling strategy σ . It means that for every Player \lozenge strategy π , it holds that $\mathbb{E}^{\pi,\sigma}_{\mathcal{G}}[1_A] > 0$ with A as in Lemma 3. Since, by Lemma 3, 1_A is submixing and shift-invariant, by Theorem 1, there exists an MD Player \square strategy $\tilde{\sigma}$ in \mathcal{G} such that $\forall \pi$. $\mathbb{E}^{\pi,\tilde{\sigma}}_{\mathcal{G}}[1_A] > 0$, concluding the proof. \square

Theorem 4. Let G be a game with a specification φ qualitatively determined and Player \square -positional. If for PAs M with specification φ the problem $\exists \sigma, M^{\sigma} \models \varphi$ is in the time-complexity class A, then the problem $\exists \pi . \forall \sigma . G^{\pi,\sigma} \models \varphi$ is in co-NP if $A \subseteq \text{co-NP}$, and in A if $A \supseteq \text{co-NP}$.

³ This result was originally stated for the weaker assumption of tail conditions, see the discussion in III.B. of [35].

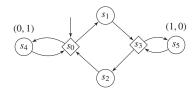


Figure 7: Omitted rewards on s_0 , s_1 , s_2 and s_3 are null. Player \lozenge needs infinite memory to win optimally for $\mathsf{Pmp}(\vec{r})(\frac{1}{4},\frac{1}{4})$, but finite-memory DU strategies are sufficient for ε -optimality for MDPs ([6]) and for stochastic games as we show in Theorem 13 (example taken from [6]).

Proof. By qualitative determinacy, the decision problem of interest is equivalent $\forall \sigma . \exists \pi . \mathcal{G}^{\pi,\sigma} \models \varphi$. The answer is negative exactly if $\exists \sigma . \forall \pi . \mathcal{G}^{\pi,\sigma} \models \neg \varphi$, which is equivalent to deciding whether some MD strategy σ satisfies $\forall \pi . \mathcal{G}^{\pi,\sigma} \models \neg \varphi$. Such an MD spoiling strategy σ can be guessed in polynomial time. To decide $\forall \pi . \mathcal{G}^{\pi,\sigma} \models \neg \varphi$, it suffices to decide its negation $\exists \pi . \mathcal{G}^{\pi,\sigma} \models \varphi$, and this problem is in the class A. The overall complexity is hence the maximum complexity of co-NP and A.

Using Theorems 2 and 3, we obtain the following corollary.

Corollary 1. Let G be game, let $\varrho_1, \ldots, \varrho_n$ be shift-invariant submixing functions, and suppose the problem whether there exists a strategy σ for a PA M such that M^{σ} satisfies $P(-\vec{\varrho})$ is in the time-complexity class A. The problem $\exists \pi . \forall \sigma . G^{\pi,\sigma} \models P(-\vec{\varrho})$ is in co-NP if $A \subseteq \text{co-NP}$, and in A if $A \supseteq \text{co-NP}$.

Applying this to mean payoff and using Theorem 7 of [61] for co-NP hardness, we obtain the following corollary (see also⁴ [17]).

Corollary 2. The Pmp CQ achievability problem is co-NP complete.

Proof. To show that the problem lies in co-NP, we use previous results and the fact that $\exists \sigma$. Pmp(\vec{r})(\vec{v}) is decidable in polynomial time for PAs, by virtue of B.3 of [6]. The problem is already co-NP hard for the subclass of non-stochastic games (Theorem 7 of [61]).

Finally, we consider the complexity of Pareto set computation for Pmp CQs. We approximate the Pareto set of an n-dimensional conjunction, Pmp(\vec{r}), via gridding, by some grid-size ε , the set of targets in the hyperrectangle $\{\vec{v} \in \mathbb{R}^n \mid \forall i. - \rho^* \leq v_i \leq \rho^*\}$, where $\rho^* \stackrel{\text{def}}{=} \max_{i,s \in S} |r_i(s)|$. At every such point \vec{v} in the grid, we call the co-NP decision procedure of Corollary 2, and hence obtain an ε -approximation of the Pareto set by taking the downward closure of the set of achievable points. There are ρ^*/ε sections per dimension, and $2^{|S|}$ strategies to be checked with the polynomial-time oracle of B.3. in [6], and so we obtain the following theorem.

Theorem 5. An ε -approximation of the Pareto set Pareto(Pmp(\vec{r})), for an n-dimensional conjunction of Pmp objectives, can be computed using $O((\rho^*/\varepsilon)^n)$ calls to the co-NP oracle of Corollary 2.

3.2. Finite Memory Strategies

In general, infinite memory might be required to achieve a multi-objective query: in the game in Figure 7, Player \Diamond has to play the transitions between s_0 and s_1 in order to achieve $\mathsf{Pmp}(\vec{r})(\frac{1}{4},\frac{1}{4})$, but can only do so optimally if in the limit these transitions are never played; this fact holds already for MDPs, see [6]. Nevertheless, we are able to show that finite-memory DU strategies are sufficient for ε -optimality for stochastic games, see Theorem 13. For MDPs, this was proved in [6]. We work with SU strategies, which can be exponentially more succinct than DU strategies, and were shown to be equally powerful if the memory is not restricted in Proposition 1.

⁴The hardness result is also stated in [17] (Section 5), which was published after this paper was submitted.

3.2.1. ε -optimality with finite DU Player \Diamond strategies

The following theorem states that Player \Diamond can achieve any target ε -optimally with a finite DU strategy if it is achievable by an arbitrary Player \Diamond strategy.

Theorem 6. Given a game and a multi-dimensional reward structure \vec{r} , then it holds that

$$Pareto(Pmp(\vec{r})) = Pareto_{FDU}(Pmp(\vec{r})).$$

This theorem is proved in Appendix B.1.

3.2.2. Succinctness of SU strategies

We justify our use of SU strategies by showing that they can be exponentially more succinct than DU strategies.

Proposition 4. Finite SU strategies can be exponentially more succinct than finite DU strategies for expected and almost sure mean-payoff.

The proof method is based on similar results in [16, 57]. The proof is included in Appendix B.2.

3.3. Inter-Reduction between Pmp and EE

We demonstrate in this section how strategy synthesis for almost sure mean-payoff objectives reduces to synthesis for expected energy objectives, under ε -optimality. Our use of energy objectives is inspired by [16], where non-stochastic games are considered. We first show that for finite DU strategies of Player \Diamond it is sufficient to consider finite Player \square strategies.

3.3.1. Finite Player \square strategies are sufficient for EE

When Player \Diamond fixes a finite DU strategy π , aiming to satisfy a conjunction of EE objectives, then the aim of Player \Box is to spoil at least one objective in the finite induced PA \mathcal{G}^{π} . This enables us to work with single-dimensional rewards in PAs and DTMCs, depending on whether we fix only one or two strategies.

In the following we use boldface notation for vectors over the state space, reserving the arrow notation for vectors over the reward dimensions. Let $\mathcal{M} = \langle S, (S_{\square}, S_{\bigcirc}), \varsigma, \mathcal{A}, \chi, \Delta \rangle$ be a PA, and let r be a single-dimensional reward structure. For a given Player \square strategy σ , write Δ^{σ} for the transition function of the induced DTMC \mathcal{M}^{σ} . The sequence of *expected non-truncated energies* is inductively defined for all states (s, \mathfrak{m}) of \mathcal{M}^{σ} by $e_{s,\mathfrak{m}}^0 \stackrel{\text{def}}{=} 0$, and, for all k > 0,

$$e_{s,\mathfrak{m}}^k \stackrel{\mathrm{def}}{=} r(s) + \sum_{(t,\mathfrak{m}') \in \Delta^{\sigma}(s,\mathfrak{m})} \Delta^{\sigma}((s,\mathfrak{m}),(t,\mathfrak{m}')) \cdot e_{t,\mathfrak{m}'}^{k-1}.$$

The Player \square strategy σ is spoiling if for every shortfall v_0 there exists a state (s, \mathfrak{m}) and $k \geq 0$ such that $e^k_{s,\mathfrak{m}} \leq v_0$. To witness whether Player \square can spoil, without needing to induce the DTMC \mathcal{M}^{σ} , we also define the sequence $(\mathbf{u}^k)_{k\geq 0}$ of *single-dimensional truncated energy*, parametrised by states of the PA \mathcal{M} . That is, for all states s of \mathcal{M} put $u^0_s \stackrel{\text{def}}{=} 0$, and, for every k > 0, we define

$$u_s^{k+1} \stackrel{\text{def}}{=} \begin{cases} \min(0, r(s) + \min_{t \in \Delta(s)} u_t^k) & \text{if } s \in S_{\square} \\ \min(0, r(s) + \sum_{t \in \Delta(s)} \Delta(s, t) u_t^k) & \text{if } s \in S_{\square}. \end{cases}$$
 (2)

In Player \square states, the minimum over the next states models the worst-case spoiling choice that Player \square can take while in stochastic states, where the prescribed distribution is applied. The cut-off of positive values is made to ensure that $(\mathbf{u}^k)_{\geq 0}$ is a non-increasing sequence that hence converges towards a limit \mathbf{u}^* in $(\mathbb{R}_{\leq 0} \cup \{-\infty\})^{|S|}$. Let S_{fin} (resp. S_{∞}) be the set of states s of \mathcal{M} such that u_s^* is finite (resp. infinitely negative). We now show that $S_{\infty} \neq \emptyset$ witnesses that Player \square can spoil the EE objective with a finite strategy.

Proposition 5. Let \mathcal{M} be a finite PA with a one-dimensional reward structure r. If $S_{\infty} \neq \emptyset$, then Player \square has a finite strategy to spoil $\mathsf{EE}(r-\varepsilon)$, for every $\varepsilon > 0$.

This proposition is proved in Appendix B.3.

Lemma 4. If Player \square can spoil EE(r), in a finite PA with a one-dimensional reward structure r, then $S_{\infty} \neq \emptyset$.

Finally, with the help of Lemma 4 and Proposition 5, we can show that it is sufficient to consider finite memory Player \square strategies for EE objectives.

Proposition 6. Let π be a finite DU Player \lozenge strategy. If π wins for $\mathsf{EE}(\vec{r} - \vec{\varepsilon})$ for some $\varepsilon > 0$ against all finite Player \square strategies, then it wins for $\mathsf{EE}(\vec{r})$ for all Player \square strategies.

Proof. We show the contrapositive. Assume the strategy π loses for $\mathsf{EE}(\vec{r})$ against an arbitrary strategy of Player \square . Then there is a coordinate r of the rewards \vec{r} such that Player \square wins $\mathsf{EE}(r)$ in the induced PA \mathcal{G}^{π} . By Lemma 4 this implies that $S_{\infty} \neq \emptyset$, which by Proposition 5 yields that Player \square spoils $\mathsf{EE}(r-\varepsilon)$, and hence $\mathsf{EE}(\vec{r}-\vec{\varepsilon})$ for every ε , with a finite memory strategy. \square

3.3.2. Transforming between EE and Pmp

We are now ready to show that EE and Pmp objectives are equivalent up to ε -achievability, and the proof is included in Appendix B.5.

Lemma 5. *Given a finite strategy* π *for Player* \Diamond , *the following hold:*

- (i) if π achieves $\mathsf{EE}(\vec{r})$, then π achieves $\mathsf{Pmp}(\vec{r})(\vec{0})$; and
- (ii) if π is DU and achieves $\mathsf{Pmp}(\vec{r})(\vec{0})$, then π achieves $\mathsf{EE}(\vec{r} + \vec{\varepsilon})$ for all $\varepsilon > 0$.

The above reduction to energy objectives enables the formulation of our main method, see Theorem 7 below, for computing strategies achieving $\mathsf{EE}(\vec{r}+\vec{\epsilon})$, and hence, by virtue of Lemma 5(i), deriving ε -optimal strategies for $\mathsf{Pmp}(\vec{r})(\vec{0})$. Lemma 5(ii) guarantees completeness of our method, in the sense that, for any target \vec{v} such that $\mathsf{Pmp}(\vec{r})(\vec{v})$ is achievable, we compute an ε -optimal strategy. If $\mathsf{Pmp}(\vec{r})(\vec{v})$ is not achievable, it is detected by the decision procedure of Corollary 2.

3.4. Strategy Synthesis

This section describes the strategy synthesis method for EE objectives (and hence for Pmp objectives as shown in the previous section) and proceeds as follows. We first describe in Section 3.4.1 how to characterise the set of achievable shortfalls for an EE objective in every state of the game. This set of shortfalls is a collection of convex downward-closed subsets of \mathbb{R}^n (one per state) that we represent using finitely many corner points; this set is obtained via iterating a Bellman operator acting on a collection of subsets of \mathbb{R}^n . The strategy synthesised by our synthesis algorithm for EE objectives, given in Section 3.4.2, uses as memory the corner points that finitely represent the set of achievable shortfalls.

3.4.1. Shortfall computation by iteration of a Bellman operator

Before we introduce the Bellman operator, we outline the construction of the space that it acts on. In a game with a specification consisting of n objectives, we keep a set of n-dimensional real-valued vectors for each of the |S| states and moves, where each such n-dimensional vector \vec{v} intuitively corresponds to an achievable target for multi-dimensional truncated energy.

Formally, the construction is as follows. Given $M \ge 0$ and a set $A \subseteq \mathbb{R}^n$, define the M-downward closure of A by $\mathsf{dwc}(A) \cap \mathsf{Box}_M$, where $\mathsf{Box}_M \stackrel{\mathsf{def}}{=} [-M, 0]^n$. The set of convex closed M-downward-closed subsets of \mathbb{R}^n is denoted by $\mathcal{P}_{c,M}$ and endowed with the partial order \sqsubseteq defined by $A \sqsubseteq B$ if $\mathsf{dwc}(B) \subseteq \mathsf{dwc}(A)$. For a set $X \subseteq (\mathbb{R}^n)^{|S|}$ and state s, we denote by X_s the sth component of X. We define the space $C_M \stackrel{\mathsf{def}}{=} \mathcal{P}_{c,M}^{|S|}$ and endow it with the product partial order \sqsubseteq defined by $Y \sqsubseteq X$ if, for every $s \in S$, $Y_s \sqsubseteq X_s$. The set $\bot_M \stackrel{\mathsf{def}}{=} \mathsf{Box}_M^{|S|}$ is a bottom element for this partial order (that is, for all $X \in C_M$, $\bot_M \sqsubseteq X$). More precisely, we have an algebraic characterisation of C_M as a complete partial order (CPO), whose definition is given in Appendix B.6 (see also [23]).

Proposition 7. (C_M, \sqsubseteq) is a complete partial order.

This proposition is shown in Appendix B.6.

We now define operations on the CPO C_M . Given $A, B \in \mathcal{P}_{c,M}$, let $A + B \stackrel{\text{def}}{=} \{\vec{x} + \vec{y} \mid \vec{x} \in A, \vec{y} \in B\}$ (the *Minkowski sum*). Given $A \in \mathcal{P}_{c,M}$, let $\alpha \times A \stackrel{\text{def}}{=} \{\alpha \cdot \vec{x} \mid \vec{x} \in A\}$ for $\alpha \in \mathbb{R}$, and let $A + \vec{x} \stackrel{\text{def}}{=} \{\vec{x}' + \vec{x} \mid \vec{x}' \in A\}$ for $\vec{x} \in \mathbb{R}^n$. Given $Y \in C_M$, which is a vector of sets, and $\vec{y} \in (\mathbb{R}^n)^{|S|}$, define $[Y + \vec{y}]_s \stackrel{\text{def}}{=} Y_s + \vec{y}$.

The Bellman operator F_M . In games, in order to construct Player \Diamond strategies for EE objectives, we consider the truncated energy for multi-dimensional rewards, which we capture via a Bellman operator $F_{M,\mathcal{G}}$ over the CPO C_M , parameterised by $M \geq 0$. Our operator $F_{M,\mathcal{G}}$ is closely related to the operator for expected total rewards in [20], but here we cut off values outside of Box_M , similarly to the controllable predecessor operator of [16] for computing energy in non-stochastic games. Bounding with M allows us to use a geometric argument to upper-bound the number of iterations of our operator (Proposition 10 below), replacing the finite lattice arguments of [16]. We define the operator $F_{M,\mathcal{G}}: C_M \to C_M$ by

$$[F_{M,\mathcal{G}}(X)]_s \stackrel{\text{def}}{=} \operatorname{Box}_M \cap \operatorname{dwc} \left(\vec{r}(s) + \begin{cases} \operatorname{conv}(\bigcup_{t \in \Delta(s)} X_t) & \text{if } s \in S_{\Diamond} \\ \bigcap_{t \in \Delta(s)} X_t & \text{if } s \in S_{\Box} \\ \sum_{t \in \Lambda(s)} \Delta(s,t) \times X_t & \text{if } s \in S_{\bigcirc} \end{cases},$$

for all $s \in S$. If the game G is clear from context, we write just F_M . The operator F_M computes the expected truncated energy Player \Diamond can achieve in the respective state types. In $s \in S_{\Diamond}$, Player \Diamond can achieve the values in successors (union), and can randomise between them (convex hull). In $s \in S_{\Box}$, Player \Diamond can achieve only values that are in all successors (intersection), since Player \Box can pick arbitrarily. Lastly, in $s \in S_{\bigcirc}$, Player \Diamond can achieve values with the prescribed distribution.

Fixpoint of F_M . A fixpoint of F_M is an element $Y \in C_M$ such that $F_M(Y) = Y$. We show that iterating F_M on \bot_M converges to the least fixpoint of F_M .

Proposition 8. F_M is order-preserving, and the increasing sequence $F_M^k(\bot_M)$ converges to the set $fix(F_M)$ defined by $[fix(F_M)]_s \stackrel{\text{def}}{=} [\bigcap_{k>0} F_M^k(\bot_M)]_s$. Further, $fix(F_M)$ is the unique least fixpoint of F_M .

This proposition is a consequence of Scott continuity of F_M and the Kleene fixpoint theorem. For the proof see Appendix B.6.

Example_{re} **5.** Continuing our running example of Section 2.4, now consider the game \mathcal{G}_{re}^2 with specification $\varphi_{re}^2[(\frac{1}{4},\frac{3}{4})]$. We use Proposition 2 to convert $\varphi_{re}^2[(\frac{1}{4},\frac{3}{4})]$ to the CQ Pmp $(r_1',r_3')(0,0)$ with $r_1'=-r_1+\frac{1}{4}\cdot c$ and $r_3'=-r_3+\frac{3}{4}\cdot c$. The new rewards are hence $r_1'(a)=-\frac{3}{4}$, $r_1'(b)=\frac{1}{4}$, $r_3'(a)=\frac{3}{4}$, $r_3'(b)=-\frac{1}{4}$, and zero otherwise. In Figure 8 we show the fixpoint fix (F_M) for the game \mathcal{G}_{re}^2 equipped with such rewards.

Non-emptiness of the fixpoint. Non-emptiness of the fixpoint of F_M for some M>0 is a sufficient condition for computing an ε -optimal strategy. To show the completeness of our method, stated in Theorem 7 below, we ensure in the following proposition that, when an ε -optimal strategy exists, then the fixpoint of F_M for some M>0 is non-empty.

Proposition 9. For every $\varepsilon > 0$, if $EE(\vec{r} - \vec{\varepsilon})$ is achievable by a finite DU strategy, then $[fix(F_M)]_s \neq \emptyset$ for every $s \in supp(\varsigma)$ for some $M \geq 0$.

This proposition is proved in Appendix B.7.

An ε -approximation of the fixpoint. We approximate $\operatorname{fix}(F_M)$ in a finite number of steps, and thus compute the set of shortfall vectors required for Player \lozenge to win for $\operatorname{EE}(\vec{r}+\vec{\varepsilon})$ given $\varepsilon>0$. By Proposition 8, the fixpoint $\operatorname{fix}(F_M)$ is the limit of $F_M^k(\bot_M)$ as $k\to\infty$. We let $X^k=F_M^k(\bot_M)$. Hence, by applying F_M k times to \bot_M we compute the sets X_s^k of shortfall vectors at state s, so that, for any $\vec{v}_0\in X_s^k$, Player \lozenge can keep the expected energy above \vec{v}_0 during k steps of the game. We illustrate this fixpoint computation in Figure 9: at iteration k, the set X_s^k of possible shortfalls until k steps is computed from the corresponding sets X_t^{k-1} for successors t of s at iteration k-1. The values are restricted to be within Box_M , so that obtaining an empty set at a state s in the value iteration is an indicator of divergence at s. Moreover, given some s > 0, if, after a finite number of iterations s, successive sets s and s satisfy s and s and s and s of s of or every $s \in \operatorname{Supp}(s)$, then we can construct a finite-memory strategy achieving s below).

In the following proposition we state a bound on the number of steps k necessary to obtain $X^{k+1} + \varepsilon \sqsubseteq X^k$.

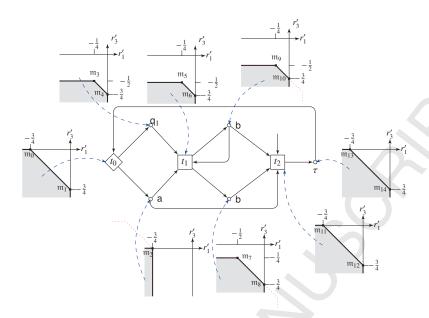


Figure 8: Fixpoint for F_M in \mathcal{G}_{re}^2 of Figure 5 with rewards given in Example 5. Each state s has an associated set $fix(F_M)(s)$ pointed to by the blue (dashed) arrows, we do not show the box Box_M . The corner points are the memory elements of the strategy constructed in Example 6 of Section 3.4.2.

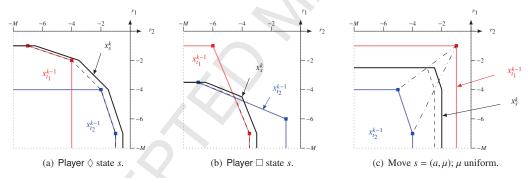


Figure 9: Illustration of the fixpoint computation for a state s with successors t_1 , t_2 , and rewards $r_1(s) = 0.5$ and $r_2(s) = 0$.

Proposition 10. Given M, $\varepsilon > 0$, and a sequence $(X^k)_{k \ge 0}$ over C_M such that $X^k \sqsubseteq X^{k+1}$ for every $k \ge 0$, there exists $k \le k^{**} \stackrel{\text{def}}{=} \left[n((\lceil \frac{M}{\varepsilon} \rceil + 1)^2 + 2) \right]^{|S|}$, such that $X^{k+1} + \varepsilon \sqsubseteq X^k$.

This proposition is proved in Appendix B.8 using Theorem 4.5.2 of [53] on graphs.

3.4.2. The synthesis algorithm

The synthesis algorithm for Pmp CQs (Algorithm 1) computes an SU strategy that is ε -optimal, if it exists, and returns *null* otherwise.

Construction of the strategy. We now show how to construct a strategy π achieving $\mathsf{EE}(\vec{r}+\vec{\epsilon})$ (and hence $\mathsf{Pmp}(\vec{r}+\vec{\epsilon})$) in a game $\mathcal{G} = \langle S, (S_\lozenge, S_\square, S_\bigcirc), \varsigma, \mathcal{A}, \chi, \Delta \rangle$, for a given $\varepsilon \geq 0$, when a constant M and a set $X \in C_M$, such that $F_M(X) + \varepsilon \sqsubseteq X$ and $[F_M(X)]_s \neq \emptyset$ for every $s \in \mathsf{supp}(\varsigma)$, is provided (we will see in Algorithm 1 how such a constant M and set X can be computed). For every state s, X_s is represented with its corner points $\mathsf{C}(X_s)$; they constitute the memory of the strategy in state s.

Denote by $T_X \subseteq S$ the set of states and moves s for which $[F_M(X)]_s \neq \emptyset$. For any state t and point $\vec{q} \in X_t$, there is some $\vec{q}^t \ge \vec{q}$ that can be obtained by a convex combination of extreme points of $C(X_t)$; the strategy we construct uses $C(X_s)$ as memory, randomising to attain the convex combination \vec{q} .

We define $\pi = \langle \mathfrak{M}, \pi_{c}, \pi_{u}, \pi_{d} \rangle$ as follows.

- $\mathfrak{M} \stackrel{\text{def}}{=} \bigcup_{s \in T_v} \{ (s, \vec{p}) \mid \vec{p} \in \mathsf{C}(X_s) \};$
- π_d is defined by $\pi_d(s) = (s, \vec{q}_0^s)$ for any $s \in T_X$ and arbitrary $\vec{q}_0^s \in C(X_s)$;
- The update π_u and next move function π_c are defined as follows: at state s with memory (s, \vec{p}) , for all $t \in \Delta(s)$, pick a vector $\vec{q}^t = \sum_{i=1}^n \beta^t(i) \cdot \vec{q}_i^t$ which is a convex combination of extreme points (i.e. $\vec{q}_i^t \in C(X_t^k)$ for $1 \le i \le n$ and $\beta^t \in D([1, n])$ and a distribution $\alpha \in D(\Delta(s) \cap T_X)$ if $s \in S_{\Diamond}$ such that

for
$$s \in S_{\Diamond}$$
:
$$\sum_{t} \alpha(t) \cdot \vec{q}^{t} \ge \vec{p} - \vec{r}(s) - \vec{\varepsilon}, \tag{3}$$

for
$$s \in S_{\square}$$
: $\vec{q}^t \ge \vec{p} - \vec{r}(s) - \vec{\varepsilon}$ (for all $t \in \Delta(s)$), (4)

for
$$s \in S_{\lozenge}$$
:
$$\sum_{t} \alpha(t) \cdot \vec{q}^{t} \geq \vec{p} - \vec{r}(s) - \vec{\varepsilon}, \tag{3}$$
for $s \in S_{\square}$:
$$\vec{q}^{t} \geq \vec{p} - \vec{r}(s) - \vec{\varepsilon} \text{ (for all } t \in \Delta(s)), \tag{4}$$
for $s \in S_{\bigcirc}$:
$$\sum_{t \in \Delta(s)} \Delta(s, t) \cdot \vec{q}^{t} \geq \vec{p} - \vec{r}(s) - \vec{\varepsilon} : \tag{5}$$

and let, for all $t \in \Delta(s) \cap T_X$,

$$\begin{split} \pi_{\mathsf{U}}((s,\vec{p}),t)(t,\vec{q}_i^t) &\stackrel{\text{def}}{=} \beta^t(i) \quad \text{ for all } i \\ \pi_{\mathsf{C}}(s,(s,\vec{p}))(t) &\stackrel{\text{def}}{=} \alpha(t) \quad \text{ if } s \in S_{\diamondsuit}. \end{split}$$

The left-hand side of inequalities (3), (4) and (5) should be interpreted as an upper bound on the least possible expected memory vector obtained after a transition starting from the current state s with memory (s, \vec{p}) . It is greater than the current memory vector \vec{p} minus the current reward $\vec{r}(s)$ further shifted by $\vec{\varepsilon}$. These equations iterated during N steps show that the sum of the memory vector after N steps and of the cumulative reward rew $^N(\vec{r} + \vec{\epsilon})$ is in expectation greater than -M in all dimensions. As the memory elements are vectors that are non-positive in every dimension, this justifies the satisfaction of $\mathsf{EE}(\vec{r} + \vec{\epsilon})$. This fact is formally stated in the following lemma proved in Appendix B.9.

Lemma 6. For every $\varepsilon \geq 0$, if $F_M(X) + \varepsilon \sqsubseteq X$ and $[F_M(X)]_s \neq \emptyset$ for every $s \in \text{supp}(\varsigma)$, then the strategy π defined above achieves $\mathsf{EE}(\vec{r} + \vec{\varepsilon})$.

Example_{re} 6. In Figure 10 we give the strategy winning for the objective of Example 5 constructed from the fixpoint $fix(F_M)$ shown in Figure 8.

The Algorithm. We can now summarise our synthesis algorithm. Given a game \mathcal{G} , a reward structure \vec{r} with target \vec{v} , and $\varepsilon > 0$, Algorithm 1 computes a strategy winning for $\mathsf{Pmp}(\vec{r})(\vec{v} - \varepsilon)$. The algorithm terminates if the specification is achievable, as a large enough value for M in Box_M exists according to Proposition 9, and, if the specification is not achievable, this is captured by our decision procedure of Corollary 2. Note, however, that before starting the algorithm we do not have an a-priori bound on M.

Theorem 7. Algorithm 1 terminates, returning a finite ε -optimal strategy for $Pmp(\vec{r})(\vec{v})$ if it is achievable, and returning null otherwise.

Proof. The case when $\mathsf{Pmp}(\vec{r} - \vec{v})(\vec{0})$ is not achievable is covered by Corollary 2. Suppose $\mathsf{Pmp}(\vec{r} - \vec{v})(\vec{0})$ is achievable then, by Theorem 6, $\mathsf{Pmp}(\vec{r} - \vec{v} + \frac{\varepsilon}{8})(\vec{0})$ is achievable by a finite DU strategy. By Lemma 5 (ii), the objective $\mathsf{EE}(\vec{r} - \vec{v} + \frac{\varepsilon}{4})$ is achievable by a finite DU strategy. Applying Proposition 9 with $\vec{r}' = \vec{r} - \vec{v} + \frac{\varepsilon}{4} + \varepsilon'$ and $\varepsilon' = \frac{\varepsilon}{4}$, we have that there exists an M such that, for every $s \in \text{supp}(\varsigma)$, $[\text{fix}(F_M)]_s$ is nonempty for the reward structure $\vec{r} - \vec{v} + \frac{\varepsilon}{2}$. The condition in Line 8 is then satisfied. Further, due to the bound M on the size of the box Box_M in the value iteration, the inner loop terminates after a finite number of steps, as shown in Proposition 10. Then, by Lemma 6, the strategy constructed in Line 9 (with degradation factor $\frac{\varepsilon}{2}$ for the reward $\vec{r} - \vec{v} + \frac{\varepsilon}{2}$) satisfies $\mathsf{EE}(\vec{r} - \vec{v} + \vec{\varepsilon})$, and hence, using Lemma 5(i), we have $\mathsf{Pmp}(\vec{r})(\vec{v} - \vec{\varepsilon})$.

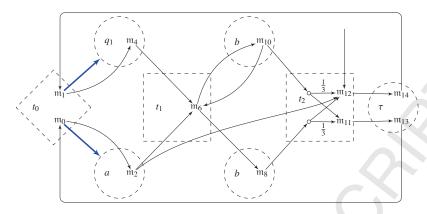


Figure 10: Strategy constructed from the fixpoint in Figure 8, using the memory mapping shown therein. This strategy is winning for the objective $\varphi_{\text{re}}^{c}[(\frac{1}{4},\frac{3}{4})]$ as explained in Example 5. The initial memory element is \mathfrak{m}_{12} . The update function, represented by (black) arrows, uses randomisation when entering t_2 , where for instance $\pi_{\mathfrak{u}}(\mathfrak{m}_{10},t_2)(\mathfrak{m}_{12})=1/3$. In t_0 , the thick (blue) arrows going from memory elements to states represent the choice function, which is non-stochastic in this case.

Algorithm 1 PMP Strategy Synthesis

```
1: function SynthPMP(\mathcal{G}, \vec{r}, \vec{v}, \varepsilon)
             if Corollary 2 for Pmp(\vec{r} - \vec{v})(\vec{0}) yields no then return null;
 2:
 3:
                   Set the reward structure to \vec{r} - \vec{v} + \frac{\varepsilon}{2}; M \leftarrow 2; X \leftarrow \bot_M
 4:
                   while true do
 5:
                         while F_M(X) + \frac{\varepsilon}{2} \not\sqsubseteq X do X \leftarrow F_M(X);
 6:
 7:
                         if [F_M(X)]_s \neq \emptyset for every s \in \text{supp}(\varsigma) then
 8:
                                Construct \pi for \frac{\varepsilon}{2} using Lemma 6; return \pi;
 9:
10:
                                M \leftarrow M^2; X \leftarrow \bot_M;
11.
```

4. Boolean Combinations for Expectation Objectives

In this section we consider Boolean combinations of expectation objectives. First, in Section 4.1 we show how to transform Boolean combinations of a general class of expectation objectives to conjunctions of the same type of objective. Then, in Section 4.2, we show how to synthesise strategies for Emp objectives using Pmp objectives for games with the *controllable multichain* property. These two main results of this section then allow us to synthesise (ε -optimally) strategies for arbitrary Boolean combinations of Emp objectives.

4.1. From Conjunctions to Arbitrary Boolean Combinations

In this section we consider generic expectation objectives of the form $\mathbb{E}[\varrho] \geq u$ and their Boolean combinations. We only require that the function ϱ is integrable, that is, for every pair of strategies π and σ , $\mathbb{E}_{\mathcal{G}}^{\pi,\sigma}[|\varrho|]$ is well-defined and finite. A function ϱ is called *globally bounded* by B if, for every π and σ , $\mathbb{E}_{\mathcal{G}}^{\pi,\sigma}[|\varrho|] \leq B$. Given n integrable functions $\varrho_i:\Omega_{\mathcal{G}}\to\mathbb{R}$ for $1\leq i\leq n$ and a target vector $\vec{u}\in\mathbb{R}^n$, we denote by $\mathsf{E}(\vec{\varrho})(\vec{u})$ the conjunction of objectives $\bigwedge_{i=1}^n\mathbb{E}[\varrho_i]\geq u_i$.

We are mainly interested in the following objectives, expressible in terms of integrable and globally bounded functions.

• The **expected total rewards in stopping games** of [20, 21] For a definition of these objectives, we refer the reader to [20, 21], where a special case of the results of this section was presented.

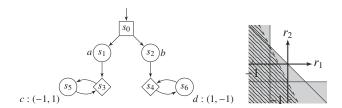


Figure 11: Left: A game with the winning condition $\varphi = \mathbb{E}(\mathsf{mp}(r_1)) \ge u_1 \vee \mathbb{E}(\mathsf{mp}(r_2)) \ge u_2$ (this game can be seen as the game of Figure 4 with the roles of players and signs of rewards inverted). Right: Its Pareto set depicted in grey. The white set is the set U in the proof of Lemma 7. The dashed line is a hyperplane that separates the set U from any vector (u_1, u_2) for which $\mathbb{E}(2\mathsf{mp}(r_1) + \mathsf{mp}(r_2)) \ge 2u_1 + u_2$ is achievable. Such vectors constitute the hashed set.

- The **expected mean-payoff objectives**. A global bound for this objective is $B = \max_{s} |r(s)|$.
- The **expected ratio rewards**. They are particularly well suited to our compositional framework, as they are defined on traces and admit synthesis methods for Boolean combinations. A global bound for $\mathsf{ratio}(r/c)$ is $B = \max_S |r(s)|/c_{\min}$ since $|\mathsf{ratio}(r/c)|$ is almost-surely bounded by B. This result (already claimed in Section 2.3.1) is proved in Appendix C.1.

We establish that Boolean combinations of expectation objectives reduce to conjunctions of linear combinations of expectation objectives. Any Boolean combination of objectives can be converted to conjunctive normal form (CNF), that is, of the form $\bigwedge_{i=1}^{n}\bigvee_{j=1}^{m_i}\mathbb{E}_{\mathcal{G}}^{\pi,\sigma}[\varrho_{i,j}] \geq u_{i,j}$. The total number of objectives is denoted by $\mathcal{N} \stackrel{\text{def}}{=} \sum_{i=1}^{n} m_i$. We denote by \vec{u}_i the vector whose jth component is $u_{i,j}$ for $1 \leq j \leq m_i$ and by $\vec{u} = (\vec{u}_1, \ldots, \vec{u}_n) \in \mathbb{R}^N$ the concatenation of all the \vec{u}_i for $1 \leq i \leq n$. We use the same notational convention for other vectors (e.g. the vector of weights \vec{x} below) and the reward structure $\vec{\rho}$. Given two vectors \vec{u} , $\vec{x} \in \mathbb{R}^N$, we denote by $\vec{x} \cdot \vec{n}$ $\vec{u} \stackrel{\text{def}}{=} (\vec{x}_1 \cdot \vec{u}_1, \cdots, \vec{x}_n \cdot \vec{u}_n)$.

Theorem 8. Let \mathcal{G} be a game, let $\vec{\mathcal{Q}}_i: \Omega_{\mathcal{G}} \to \mathbb{R}^{m_i}$ be integrable functions, and $\vec{u}_i \in \mathbb{R}^{m_i}$, for $1 \leq i \leq n$ and let π be a Player \Diamond strategy. The following propositions are equivalent:

- There exist non-zero weight vectors $\vec{x_i} \in \mathbb{R}_{>0}^{m_i}$ for $1 \le i \le n$ such that π is winning for $E(\vec{x} \cdot_n \vec{Q})(\vec{x} \cdot_n \vec{u})$;
- π is winning for $\psi = \bigwedge_{i=1}^n \bigvee_{j=1}^m \mathbb{E}[\varrho_{i,j}] \ge u_{i,j}$.

Here winning means either winning against all strategies or winning against all finite memory strategies.

The theorem is a straightforward consequence of the following lemma that shows how disjunctions of expectation objectives reduce to single-dimensional expectation objectives.

Lemma 7. Given a game \mathcal{G} , an integrable function $\vec{\varrho}: \Omega_{\mathcal{G}} \to \mathbb{R}^m$, a target $\vec{u} \in \mathbb{R}^m$, and a Player \lozenge strategy π , there is a non-zero vector $\vec{x} \in \mathbb{R}^m$ such that $\varphi = \mathbb{E}^{\pi,\sigma}_{\mathcal{G}}[\vec{x} \cdot \vec{\varrho}] \ge \vec{x} \cdot \vec{u}$ holds for all (finite) σ if and only if $\psi = \bigvee_{j=1}^m \mathbb{E}^{\pi,\sigma}_{\mathcal{G}}[\varrho_j] \ge u_j$ holds for all (finite) σ .

Before proving this lemma, we illustrate it with the help of an example.

Example 7. Consider the game in Figure 11 with the winning condition $\varphi = \mathbb{E}(\mathsf{mp}(r_1)) \geq u_1 \vee \mathbb{E}(\mathsf{mp}(r_2)) \geq u_2$. In this game the mean payoff can be defined with true limit (instead of $\underline{\lim}$) as there are only two paths and the limit exists for these paths (as for the game of Figure 4). Note that the objective of Player \square , $\neg \varphi$, is equivalent to $\mathbb{E}(\mathsf{mp}(-r_1)) \geq -u_1 \wedge \mathbb{E}(\mathsf{mp}(-r_2)) \geq -u_2$, which is the objective of Player \lozenge in the game of Figure 4 (with signs of rewards inverted). The Pareto set of the game is denoted in grey (it can be inferred from the game of Figure 4 by inverting the direction of axis and by changing player roles). The weight vector $(x_1, x_2) = (2, 1)$ yields the objective $\psi = \mathbb{E}(2\mathsf{mp}(r_1) + \mathsf{mp}(r_2)) \geq 2u_1 + u_2$. It is equivalent to the single-dimensional objective $\mathbb{E}(\mathsf{mp}(r)) \geq 2u_1 + u_2$ with $r = 2r_1 + r_2$, that is, r(c) = -1, r(d) = 1 and r is null otherwise. Player \square minimises $\mathbb{E}(\mathsf{mp}(r))$ by choosing to move to s_1 in s_0 , which yields the mean payoff of -1/2. The Pareto set for φ thus contains the half-space of inequality $2u_1 + u_2 \leq -1/2$ (see the hashed set in Figure 11). The same reasoning with weight vectors (1,0), (-1,1) and (0,1) yields the three half-spaces of inequalities $u_1 \leq -1/2$, $u_1 + u_2 \leq 0$ and $u_2 \leq -1/2$, respectively.

We now proceed to the proof of Lemma 7.

Proof. The proof method is based on a similar result in [20]. Fix a strategy π .

"If" direction. Assume π achieves ψ . Let $U \stackrel{\text{def}}{=} \operatorname{upc}(\{\vec{y} \in \mathbb{R}^m \mid \exists \sigma . \mathbb{E}_{\mathcal{G}}^{\pi,\sigma}[\vec{\varrho}] = \vec{y}\})$ (see Figure 11). Note that this set is convex. Indeed, for every two vectors $\vec{y}_1, \vec{y}_2 \in U$ and weight p one can construct a strategy for $p\vec{y}_1 + (1-p)\vec{y}_2$ by choosing, with the initial memory distribution, with probability p to play a strategy for \vec{y}_1 and with probability 1-p to play a strategy for \vec{y}_2 . Moreover, the strategy is finite if constructed from finite strategies. Since π achieves ψ , there is a j satisfying $y_j \geq u_j$ for every $\vec{y} \in U$. We have that $\vec{u} \notin \operatorname{int}(U)$ where $\operatorname{int}(U)$ is the interior of U. Suppose otherwise, then there is $\varepsilon > 0$ s.t. $\vec{u} - \vec{\varepsilon} \in U$, contradicting that for all $\vec{y} \in U$ there is a j satisfying $y_j \geq u_j$ (take $\vec{y} = \vec{u} - \vec{\varepsilon}$ to derive the contradiction $u_j - \vec{\varepsilon} \geq u_j$). By the separating hyperplane theorem (Theorem 11.3 of [51]), there is a non-zero vector $\vec{x} \in \mathbb{R}^m$, such that for all $\vec{w} \in U$, $\vec{w} \cdot \vec{x} \geq \vec{u} \cdot \vec{x}$ (see Figure 11). We now show $\vec{x} \geq 0$. Assume for the sake of contradiction that $x_j < 0$ for some j. Take any $\vec{w} \in U$, let $d = \vec{w} \cdot \vec{x} - \vec{u} \cdot \vec{x} \geq 0$, and let \vec{w}' be the vector obtained from \vec{w} by replacing the jth coordinate with $w_j + \frac{d+1}{-x_j}$. Since $\frac{d+1}{-x_j}$ is positive and U is upwards closed in \mathbb{R}^m , we have $\vec{w}' \in U$.

$$\vec{w}' \cdot \vec{x} = \sum_{h=1}^{m} w_h' \cdot x_h = -(d+1) + \sum_{h=1}^{m} w_h \cdot x_h = -(d+1) + \vec{w} \cdot \vec{x} = \vec{u} \cdot \vec{x} - 1,$$

implying $\vec{u} \cdot \vec{x} > \vec{w}' \cdot \vec{x}$, which contradicts $\vec{w}' \in U$.

Now fix a strategy σ . Since $\mathbb{E}_{\mathcal{G}}^{\pi,\sigma}[\vec{\varrho}] \in U$, it follows that $\mathbb{E}_{\mathcal{G}}^{\pi,\sigma}[\vec{x} \cdot \varrho] = \vec{x} \cdot \mathbb{E}_{\mathcal{G}}^{\pi,\sigma}[\vec{\varrho}] \geq \vec{x} \cdot \vec{u}$.

"Only If" direction. Assume there is a non-zero vector $\vec{x} \in \mathbb{R}^m_{\geq 0}$ such that π achieves φ . Assume for the sake of contradiction that π does not achieve ψ . Fix σ such that $\neg (\mathbb{E}^{\pi,\sigma}_{\mathcal{G}}[\varrho_j] \geq u_j)$ for all j, which exists by assumption. Since \vec{x} is such that π achieves φ , we have $\vec{x} \cdot \mathbb{E}^{\pi,\sigma}_{\mathcal{G}}[\vec{\varrho}] = \mathbb{E}^{\pi,\sigma}_{\mathcal{G}}[\vec{x} \cdot \vec{\varrho}] \geq \vec{x} \cdot \vec{u}$. Because \vec{x} is non-zero and has no negative components, there must be a j such that $\mathbb{E}^{\pi,\sigma}_{\mathcal{G}}[\varrho_j] \geq u_j$, a contradiction.

The above theorem enables us to transfer results from conjunctions of linear combinations to Boolean combinations of objectives. In particular, we state below two transfer theorems, one for Pareto sets and the other for strategy synthesis.

For the remainder of this section we continue with the same notation as above. We now show how to compute, for every $\varepsilon > 0$, an ε -tight under-approximation of the Pareto set of ψ when one knows how to compute ε -tight under-approximations of the Pareto set of $\mathbb{E}(\vec{x} \cdot_n \vec{\varrho})$ and when the functions ϱ_{ij} are globally bounded by a constant B. We denote by $P_{\varepsilon}(\vec{x})$ an ε -tight under-approximation of Pareto($\mathbb{E}(\vec{x} \cdot_n \vec{\varrho})$) and by $\varepsilon' = \varepsilon/(4B)$. We define Grid, the set of vectors $\vec{x} \in [0, 1 + \varepsilon']^N$, such that each \vec{x}_i is non-zero, has norm satisfying $||\vec{x}_i||_{\infty} \in [1 - \varepsilon', 1 + \varepsilon']$ and whose components are multiples of ε' .

The first transfer theorem, proved in Appendix C.2, is for Pareto sets.

Theorem 9. The following set is an ε -tight under-approximation of the Pareto set of $\bigwedge_{i=1}^n \bigvee_{j=1}^{m_i} \mathbb{E}[\varrho_{i,j}] \ge u_{i,j}$.

$$\bigcup_{\vec{x} \in \mathsf{Grid}} \{ \vec{u} \in \mathbb{R}^{N} \mid \vec{x} \cdot_{n} \vec{u} \in P_{\varepsilon}(\vec{x}) \}.$$

The second transfer theorem deals with ε -optimal synthesis. Proof can be found in Appendix C.3.

Theorem 10. If there exists an algorithm to compute an ε -optimal strategy for $E(\vec{x} \cdot_n \vec{\varrho})(\vec{v})$ for every \vec{x} , then there exists an algorithm to compute an ε -optimal strategy for $\bigwedge_{i=1}^n \bigvee_{j=1}^m \mathbb{E}[\varrho_{i,j}] \ge u_{i,j}$.

Another consequence of Theorem 8 is that synthesis for Pmp CQs enables us to synthesise strategies that are winning for Boolean combinations of expected ratio objectives against every finite strategy.

Theorem 11. Let \mathcal{G} be a game. For $1 \leq i \leq n$, let $\vec{r_i}: S \to \mathbb{R}^{m_i}$ be m_i -dimensional reward structures, c_i be one-dimensional weakly positive reward structures, $\vec{u_i} \in \mathbb{R}^{m_i}$ and $\vec{x_i} \in \mathbb{R}^{m_i}$ non-null weight vectors. Let $\psi \stackrel{\text{def}}{=} \bigwedge_{i=1}^n \bigvee_{j=1}^m \mathbb{E}(\text{ratio}(r_{i,j}/c_i)) \geq u_{i,j}$ and $\varphi_{\vec{x}} \stackrel{\text{def}}{=} \bigwedge_{i=1}^n \mathbb{P}(\text{mp}(\vec{x_i} \cdot \vec{r_i} - (\vec{x_i} \cdot \vec{u_i})c_i) \geq 0) = 1$. Every finite strategy winning for $\varphi_{\vec{x}}$ is winning for ψ against finite strategies. For every $\varepsilon > 0$, there exists $\varepsilon' > 0$ such that every ε' -optimal strategy for $\varphi_{\vec{x}}$ is ε -optimal for ψ against finite strategies.

For the proof see Appendix C.4.

Example_{re} 8. Continuing with the running example, consider the game \mathcal{G}_{re}^1 depicted in Figure 5 with the MQ $\varphi_{re}^1[(\frac{1}{4},\frac{9}{8})] = \text{Eratio}(-r_1/c)(-1/4) \rightarrow \text{Eratio}(r_2/c)(9/8)$. This MQ is equivalent to $\psi_{re}^1[(\frac{1}{4},\frac{9}{8})] \stackrel{\text{def}}{=} \text{Eratio}(r_1/c)(1/4) \vee \text{Eratio}(r_2/c)(9/8)$ when both players play with finite memory. Consider the weight vector $(1,\frac{2}{3})$ and define the single-objective reward structure r' by

$$r'(a) = (1, \frac{2}{3}) \cdot (r_1(a), r_2(a)) - ((1, \frac{2}{3}) \cdot (\frac{1}{4}, \frac{9}{8}))c(a) = 0$$

$$r'(b) = (1, \frac{2}{3}) \cdot (r_1(b), r_2(b)) - ((1, \frac{2}{3}) \cdot (\frac{1}{4}, \frac{9}{8}))c(b) = -\frac{1}{3}$$

$$r'(d) = (1, \frac{2}{3}) \cdot (r_1(d), r_2(d)) - ((1, \frac{2}{3}) \cdot (\frac{1}{4}, \frac{9}{8}))c(d) = \frac{2}{3},$$

and zero everywhere else. Then, by Theorem 11, every winning strategy for $\mathsf{Pmp}(r')(\vec{0})$ is winning for $\psi^1_{\mathsf{re}}[(\frac{1}{4},\frac{9}{8})]$ against finite memory strategies (and is hence winning for $\varphi^1_{\mathsf{re}}[(\frac{1}{4},\frac{9}{8})]$ against finite memory strategies). The optimal strategy for Player \Diamond here clearly is to always take d. To spoil, the best Player \square can do is play b, but, due to the distribution, the expected number of times b is taken is at most $\sum_{k\geq 0} 2^{-k} = 2$ before a is taken again, balancing exactly the mean payoff to zero. Hence, Player \Diamond wins for $\mathsf{Pmp}(r')(\vec{0})$, and also for $\varphi^1_{\mathsf{le}}[(\frac{1}{4},\frac{9}{8})]$.

4.2. Emp Objectives in Controllable Multichain Games

We now consider synthesis of Boolean combinations of Emp objectives. Our methods are based on the observation that Pmp and Emp are equivalent in MECs of PAs. We define the class of *controllable multichain (CM)* games, in which Player \Diamond can approximate any distribution between the possible MECs (cf. Lemma 11); therefore, we can construct strategies that induce PAs with a single MEC. Strategies synthesised for Pmp straightforwardly carry over to Emp (Remark 3). The main result of this section is a completeness result, showing that, if Emp(\vec{r})($\vec{0}$) is ε -achievable by a finite DU strategy, then we can synthesise an ε -optimal strategy for Pmp(\vec{r})($\vec{0}$).

First we note that, in the special case where an induced PA contains only a single MEC, achievability for Emp and Pmp coincide. The lemma is proved in Appendix C.5.

Lemma 8. If a PA contains only one MEC, then it achieves $\mathsf{Emp}(\vec{r})(\vec{0})$ against finite strategies if and only if it achieves $\mathsf{Pmp}(\vec{r})(\vec{0})$ against finite strategies.

We define, for each MEC \mathcal{E} of an induced PA, the worst possible mean-payoff $\vec{z}^{\mathcal{E}}$ as follows. Given an *n*-dimensional reward structure \vec{r} , and a MEC $\mathcal{E} = (V, U)$ of a PA \mathcal{M} , let $\vec{z}^{\mathcal{E}} = (z_1^{\mathcal{E}}, \dots, z_n^{\mathcal{E}})$ be the vector given by

$$\mathbf{z}_{i}^{\mathcal{E}} \stackrel{\text{def}}{=} \min_{t \in \mathcal{S}_{\mathcal{E}}} \inf_{\sigma} \mathbb{E}_{\mathcal{E}, t}^{\sigma}[\mathsf{mp}(r_{i})] = \min_{t \in \mathcal{S}_{\mathcal{E}}} \inf_{\sigma} \mathbb{E}_{\mathcal{E}, t}^{\sigma} \left[\underline{\lim}_{N \to \infty} \frac{\mathsf{rew}^{N-1}(r_{i})}{N} \right]$$
(6)

Note that $\mathsf{Pmp}(\vec{r})(\vec{0})$ is satisfied if and only if $\vec{z}^{\mathcal{E}} \geq \vec{0}$ for every \mathcal{E} , because $\mathsf{Player} \,\Box$ can reach any MEC with positive probability. A weaker condition is satisfied when $\mathsf{Emp}(\vec{r})(\vec{0})$ is satisfied. In that case, there is a distribution γ over MECs, such that $\sum_{\mathcal{E}} \gamma(\mathcal{E}) \vec{z}^{\mathcal{E}} \geq \vec{0}$ (Lemma 9).

The idea underlying the definition of controllable multichain games (introduced below) is to make all the MECs of an induced PA almost-surely reachable from each other, so that then the distribution γ can be realised by Player \Diamond by the frequencies of visits of each \mathcal{E} in a new strategy, as formalised in Lemma 11. The strategy constructed ε -optimally achieves $\mathsf{Emp}(\vec{r})(\vec{0})$, and induces a PA with a single MEC, and hence also satisfies $\mathsf{Pmp}(\vec{r})(\vec{0})$ ε -optimally.

Lemma 9. Let \mathcal{M} be a finite PA for which $\mathsf{Emp}(\vec{r})(\vec{0})$ is satisfied and let \mathfrak{E} be the set of MECs in \mathcal{M} . Then there exists $\gamma \in \mathcal{D}(\mathfrak{E})$ such that $\sum_{\mathcal{E} \in \mathfrak{E}} \gamma(\mathcal{E}) \vec{\mathsf{Z}}^{\mathcal{E}} \geq \vec{\mathsf{0}}$.

This lemma is proved in Appendix C.6.

4.2.1. Controllable multichain games

An *irreducible component* (IC) \mathcal{H} of a game \mathcal{G} is a pair $(S_{\mathcal{H}}, \Delta_{\mathcal{H}})$ with $\emptyset \neq S_{\mathcal{H}} \subseteq S$ and $\emptyset \neq \Delta_{\mathcal{H}} \subseteq \Delta$, such that (i) for all $s \in S_{\mathcal{H}} \cap S_{\Diamond}$, there exists exactly one state $t \in S$ such that $(s,t) \in \Delta_{\mathcal{H}}$; (ii) for all $s \in S_{\mathcal{H}} \cap (S_{\square} \cup S_{\bigcirc})$, for all $t \in S$, $(s,t) \in \Delta_{\mathcal{H}}$ iff $(s,t) \in \Delta$; and (iii) for all $s,t \in S_{\mathcal{H}}$, there is a finite path $s_0s_1 \dots s_l \in \Omega_{\mathcal{G}}^{fin}$ within \mathcal{H} (that is, $(s_i,s_{i+1}) \in \Delta_{\mathcal{H}}$ for all $0 \leq i \leq l-1$), such that $s_0 = s$ and $s_l = t$. A game \mathcal{G} is a *controllable multichain* (CM) game if each IC \mathcal{H} of \mathcal{G} is Player \Diamond almost surely reachable from any state $s \in S$ of \mathcal{G} .

CM games generalise the PA notion of maximum end components (MECs) and are useful for modelling; in particular, all the case studies analysed in [41] are CM games. Games \mathcal{G}_{re}^1 and \mathcal{G}_{re}^2 of our running example of Section 2.4 are CM games. They have two ICs, one per choice of Player \Diamond in the single Player \Diamond state. Note that ICs can overlap, as opposed to MECs in PAs. The game of Figure 4 is not CM: it contains two ICs $\mathcal{H}_1 = (\{s_3, s_5\}, \{(s_3, s_5), (s_5, s_3)\})$ and $\mathcal{H}_2 = (\{s_2, s_4\}, \{(s_2, s_4), (s_4, s_2)\})$, but there is no possibility for Player \Diamond to reach \mathcal{H}_2 once the game is in \mathcal{H}_1 and vice-versa.

Theorem 12. The problem of whether a game is CM is in co-NP.

Proof. A game is not a CM game if it has an IC \mathcal{H} and a state $s \in S_{\mathcal{G}}$, such that \mathcal{H} is not reachable almost surely from s. One can guess in polynomial time such a subgame \mathcal{H} and a state s, and check in polynomial time whether \mathcal{H} is an IC, and whether \mathcal{H} is not reachable almost surely from s (Lemma 2). Hence, the problem lies in co-NP.

We do not know if this decision problem is co-NP-complete and leave this as an open question.

The main property we use below is that, for any CM game and any finite DU strategy, sets of states of the game that correspond to MECs in the induced PA are Player \Diamond almost surely reachable from everywhere in the game. This property is in fact equivalent to the definition of CM games as stated in the following lemma. Given a MEC $\mathcal{E} = (S_{\mathcal{E}}, \Delta_{\mathcal{E}})$ of an induced PA \mathcal{G}^{π} , define the set $S_{\mathcal{G},\mathcal{E}}$ of \mathcal{G} -states s occurring in \mathcal{E} (we recall that states of \mathcal{E} are of the form (s, \mathfrak{m}) or $((s, s'), \mathfrak{m})$). We have the following lemma, which is proved in Appendix C.7.

Lemma 10. A game G is a CM game if and only if, for every finite DU strategy π , for every MEC \mathcal{E} of G^{π} , $S_{G,\mathcal{E}}$ is Player \Diamond almost surely reachable from every state of S.

4.2.2. Emp CQs in CM Games

While a Player \Diamond strategy π achieving an Emp CQ may randomise between several MECs, a strategy $\underline{\pi}$ for Pmp CQ must be winning in every reached MEC. An example where Pmp and Emp Pareto sets differ is the (non-CM game) of Example 4, since randomisation between ICs \mathcal{H}_1 and \mathcal{H}_2 (defined in Section 4.2.1 above) is invoked at the beginning, once and for all, and there is no possibility, once in \mathcal{H}_1 , to go to \mathcal{H}_2 , and vice-versa. This kind of phenomenon is disallowed in CM games.

Given a strategy π achieving $\text{Emp}(\vec{r})(\vec{0})$ in a CM game \mathcal{G} , we construct below a strategy $\underline{\pi}$ that ε -achieves the same objective but induces a single MEC in $\mathcal{G}^{\underline{\pi}}$ via simulating the distribution over the MECs of $\mathcal{G}^{\underline{\pi}}$. Then using Lemma 8 we will conclude that the constructed strategy ε -achieves $\text{Pmp}(\vec{r})(\vec{0})$.

We construct $\underline{\pi}$ by looping between MECs, where each MEC \mathcal{E}_l is of a PA \mathcal{G}^{π^l} and has an associated finite *step* count N_l .

Since \mathcal{G} is CM, from each $s \in S_{\mathcal{G}}$, each MEC \mathcal{E} can be reached almost surely by an MD strategy $\pi^{\mathcal{E}}: S \to S_{\bigcirc}$ (see Lemma 10 and Lemma 2). We first explain the intuition of our construction of $\underline{\pi}$. We start $\underline{\pi}$ by playing $\pi^{\mathcal{E}_1}$, the MD strategy to reach \mathcal{E}_1 . As soon as \mathcal{E}_1 is reached, $\underline{\pi}$ switches to π^1 , which is played for N_1 steps, that is, $\underline{\pi}$ stays inside \mathcal{E}_1 for N_1 steps. Then, from whatever state s in \mathcal{E}_1 the game is in, $\underline{\pi}$ plays $\pi^{\mathcal{E}_2}$, and then in a similar fashion switches to π^2 for N_2 steps within \mathcal{E}_2 . This continues until \mathcal{E}_L is reached, at which point $\underline{\pi}$ goes back to \mathcal{E}_1 again. The strategy $\underline{\pi}$ keeps track in memory of whether it is going to a MEC \mathcal{E} , denoted $\triangleright \mathcal{E}$, or whether it is at a MEC \mathcal{E} and has played j steps, denoted $j@\mathcal{E}$. We emphasise that the strategies are finite DU. See Figure 12 for an illustration of $\underline{\pi}$.

Definition 7. Let $\pi^l = \langle \mathfrak{M}^l, \pi^l_c, \pi^l_d, \pi^l_d \rangle$ be finite DU Player \Diamond strategies, for $1 \leq l \leq L$, with respective MECs \mathcal{E}_l and step counts N_l . The step strategy $\underline{\pi}$ is defined as $\langle \underline{\mathfrak{M}}, \underline{\pi}_c, \underline{\pi}_d, \underline{\pi}_d \rangle$, where

$$\underline{\mathfrak{M}} \stackrel{\text{def}}{=} (\mathfrak{M} \times \{j@\mathcal{E}_l \mid l \leq L, j \leq N_l\}) \cup \bigcup_{l=1}^L \{\triangleright \mathcal{E}_l\},$$

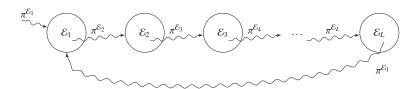


Figure 12: Illustrating the strategy π to simulate the distribution γ between MECs $\mathcal{E}_1, \mathcal{E}_2, \dots, \mathcal{E}_L$

and where, for all $s, t, u \in S_G$, $l \le L$, $j \le N_l$, and $m \in \mathfrak{M}$,

$$\begin{split} \underline{\pi}_{d}(s) &\stackrel{\text{def}}{=} \begin{cases} \triangleright \mathcal{E}_{1} & \text{if } s \notin S_{\mathcal{G},\mathcal{E}_{1}} \\ (\pi_{d}^{l}(s), 0@\mathcal{E}_{1}) & \text{if } s \in S_{\mathcal{G},\mathcal{E}_{1}} \end{cases} \\ \underline{\pi}_{u}(\triangleright \mathcal{E}_{l}, t) &\stackrel{\text{def}}{=} \begin{cases} \triangleright \mathcal{E}_{l} & \text{if } t \notin S_{\mathcal{G},\mathcal{E}_{l}} \\ (\pi_{d}^{l}(t), 0@\mathcal{E}_{l}) & \text{if } t \in S_{\mathcal{G},\mathcal{E}_{l}} \end{cases} \\ \underline{\pi}_{u}((\mathfrak{m}, j@\mathcal{E}_{l}), s) &\stackrel{\text{def}}{=} \begin{cases} \triangleright \mathcal{E}_{l'} & \text{if } j = N_{l} \text{ and } l' = 1 + (l \mod L) \\ (\pi_{u}^{l}(\mathfrak{m}, s), j + 1@\mathcal{E}_{l}) & \text{if } j < N_{l} \end{cases} \\ \underline{\pi}_{c}(s, \triangleright \mathcal{E}_{l})(u) &\stackrel{\text{def}}{=} \pi^{\mathcal{E}_{l}}(s)(u) \\ \underline{\pi}_{c}(s, (\mathfrak{m}, j@\mathcal{E}_{l}))(t) &\stackrel{\text{def}}{=} \pi^{l}(s, \mathfrak{m})(t). \end{split}$$

The following lemma justifies that, for appropriate choices of the step counts N_l , the strategy $\underline{\pi}$ approximates a distribution between MECs of \mathcal{G}^{π} , while only inducing a single MEC in $\mathcal{G}^{\underline{\pi}}$.

Lemma 11. Let G be a CM game, let π^l be finite DU strategies with associated MECs \mathcal{E}_l of G^{π^l} , for $1 \leq l \leq L$, and let \mathfrak{E} be the set of MECs $\{\mathcal{E}_l \mid 1 \leq l \leq L\}$. Then, for all $\gamma \in D(\mathfrak{E})$ and $\varepsilon > 0$, there exists a finite DU strategy $\underline{\pi}$ such that $G^{\underline{\pi}}$ contains only one MEC, and for all finite Player \square strategies σ

$$\mathbb{E}_{\mathcal{G}}^{\underline{\pi},\sigma}[\mathsf{mp}(\vec{r})] \geq \sum_{\mathcal{E} \in \mathfrak{F}} \gamma(\mathcal{E}) \vec{\mathsf{z}}^{\mathcal{E}} - \varepsilon.$$

For the proof of the above lemma see Appendix C.8.

We now show in Theorem 13, the main result of this section, that in CM games, for any $\varepsilon > 0$, we can find a strategy $\underline{\pi}$ that achieves $\mathsf{Pmp}(\vec{r} + \varepsilon)(\vec{0})$ whenever $\mathsf{Emp}(\vec{r})(\vec{0})$ is achievable. The ε degradation is unavoidable for finite strategies, due to the need for infinite memory in general, see Figure 7. Here, the strategy $\underline{\pi}$ has to minimise the transient contribution, which only vanishes if the step counts N_l go to infinity.

Theorem 13. In CM games, it holds that

$$Pareto_{FDU,FSU}(Emp(\vec{r})) = Pareto_{FDU}(Emp(\vec{r})) = Pareto(Pmp(\vec{r}))$$

Proof. By Theorem 6 and Remark 3 it holds that

$$Pareto(Pmp(\vec{r})) = Pareto_{FDU}(Pmp(\vec{r})) \subseteq Pareto_{FDU}(Emp(\vec{r})) \subseteq Pareto_{FDU,FSU}(Emp(\vec{r})).$$

It then remains to show that $\operatorname{Pareto}_{FDU,FSU}(\operatorname{Emp}(\vec{r})) \subseteq \operatorname{Pareto}(\operatorname{Pmp}(\vec{r}))$. For this purpose, it suffices to show that if a finite DU strategy π achieves $\operatorname{Emp}(\vec{r})(\vec{0})$ against finite Player \square strategies then, for all $\varepsilon > 0$, there is a finite DU strategy $\underline{\pi}$ achieving $\operatorname{Pmp}(\vec{r})(-\vec{\varepsilon})$. We find a winning strategy $\underline{\pi}$ such that the induced PA $\mathcal{G}^{\underline{\pi}}$ contains only a single MEC (which is reached w.p. 1, potentially via some transient states). Then we apply Lemma 8 to conclude that $\underline{\pi}$ also wins for Pmp . Let $\varepsilon > 0$ and let π be a finite DU strategy such that $\mathcal{G}^{\pi} \models \operatorname{Emp}(\vec{r})(\vec{0})$. The induced PA \mathcal{G}^{π} contains a set \mathfrak{E} of L MECs. If L = 1, we let $\pi = \pi$. If, on the other hand, L > 1, we construct a strategy π such that

 $\mathcal{G}^{\underline{\pi}} \models \mathsf{Emp}(\vec{r} + \vec{\varepsilon})(\vec{0})$ as follows. First, from Lemma 9, we obtain a distribution γ such that $\sum_{\mathcal{E} \in \mathfrak{G}} \gamma(\mathcal{E}) \vec{\mathsf{Z}}^{\mathcal{E}} \geq \vec{0}$. We then apply Lemma 11 with $\pi^I = \pi$ for each MEC $\mathcal{E}_I \in \mathcal{G}^{\pi}$, to find a strategy $\underline{\pi}$, so that $\mathcal{G}^{\underline{\pi}}$ contains only one MEC, and for all finite Player \square strategies σ , it holds that

$$\mathbb{E}_{\mathcal{G}}^{\underline{\pi},\sigma}[\mathsf{mp}(\vec{r})] \geq \sum_{l=1}^{L} \gamma(\mathcal{E}_l) \vec{\mathsf{z}}^{\mathcal{E}_l} - \varepsilon \geq -\varepsilon.$$

We conclude that π achieves $\mathsf{Pmp}(\vec{r})(-\vec{\varepsilon})$ using Lemma 8.

4.2.3. Emp MQs in CM Games

We can now summarise the results of this section in Theorem 14, which allows us to synthesise ε -optimal strategies for Emp objectives in CM games.

Theorem 14. In CM games with Emp MQs ψ , one can solve the two following problems using the algorithms for Pmp COs.

- 1. Compute an ε -tight under-approximation of the Pareto set Pareto_{FDU.FSU} (ψ) .
- 2. Synthesise a strategy winning against every finite strategy for every target \vec{u} such that $\vec{u} + \vec{\varepsilon} \in \text{Pareto}_{\text{FDU-FSU}}(\psi)$.
- *Proof.* 1. According to Theorem 9, it suffices to determine, for every $\vec{x} \in \text{Grid}$, an ε -tight under-approximation of $\text{Pareto}_{\text{FDU},\text{FSU}}(\text{E}(\vec{x} \cdot_n \text{ mp}(\vec{r})))$. By Proposition 13 and Theorem 13 we have $\text{Pareto}_{\text{FDU},\text{FSU}}(\text{E}(\vec{x} \cdot_n \text{ mp}(\vec{r}))) = \text{Pareto}_{\text{FDU},\text{FSU}}(\text{Emp}(\vec{x} \cdot_n \vec{r})) = \text{Pareto}(\text{Pmp}(\vec{x} \cdot_n \vec{r}))$. By Theorem 5, ε -tight under-approximation can be computed for these sets.
 - 2. According to Theorem 10, it suffices to solve the synthesis problem for $E(\vec{x} \cdot_n \operatorname{mp}(\vec{r}))$. Take a vector in Pareto_{FDU,FSU}($E(\vec{x} \cdot_n \operatorname{mp}(\vec{r}))$) = Pareto(Pmp($\vec{x} \cdot_n \vec{r}$)), then with Algorithm 1 we synthesise a finite strategy winning for Pmp($\vec{x} \cdot_n \vec{r}$)($-\varepsilon$), and hence for Emp($\vec{x} \cdot_n \vec{r}$)($-\varepsilon$). This strategy is also winning against any finite Player \square strategy for $E(\vec{x} \cdot_n \operatorname{mp}(\vec{r}))$ thanks to Proposition 13.

5. Compositional Strategy Synthesis

In this section we develop our framework for compositional strategy synthesis. We first introduce a composition operator (||) for games and explain how Player \Diamond strategies π^i of the component games \mathcal{G}^i for $i \in I$ (here and in the following I is a set of indices for component games) can be combined into a strategy $||_{i \in I} \pi^i$ of the composed game $||_{i \in I} \mathcal{G}^i$. Then we show how to instantiate sound synthesis rules of the form:

$$\frac{(\mathcal{G}^i)^{\pi^i} \models \bigwedge_{j=1}^{m_i} \varphi^i_j \quad i \in I}{(\|_{i \in I} \mathcal{G}^i)\|_{i \in I}^{\pi^i} \models \varphi},$$

which hold for all Player \Diamond strategies π^i . This means that strategies π^i synthesised for formulae $\bigwedge_{j=1}^{m_i} \varphi^i_j$ in the components \mathcal{G}^i yield a strategy $\parallel_{i \in I} \pi^i$ for the composed game $\parallel_{i \in I} \mathcal{G}^i$ that satisfies φ . An example of such a rule for our running example of Section 2.4 is

$$(\text{Rule}_{\text{re}}) \frac{(\mathcal{G}^1)^{\pi^1} \vdash^{\mathsf{u}} \varphi_{\text{re}}^1}{(\mathcal{G}^1 \parallel \mathcal{G}^2)^{\pi^1 \parallel \pi^2} \vdash^{\mathsf{u}} \varphi_{\text{re}}^2}{(\mathcal{G}^1 \parallel \mathcal{G}^2)^{\pi^1 \parallel \pi^2} \vdash^{\mathsf{u}} \varphi_{\text{re}}}$$
(7)

The meaning of \models^{u} and a proof of soundness of this rule is given in Section 5.4.1.

In this section, we allow deadlocks in the composed games. This relaxation is convenient for modelling and is used, for example, in the aircraft case study in [4, 41]. The crucial point is that deadlocks in induced DTMCs are avoided due to our use of fairness, as described in Section 5.4.1.

5.1. Game Composition

We provide a synchronising composition of games so that controllability is preserved for Player \Diamond , that is, actions controlled by Player \Diamond in the components are controlled by Player \Diamond in the composition. Our composition is inspired by interface automata [25], which have a natural interpretation as (concurrent) games. Each component game is endowed with an alphabet of actions \mathcal{A} , where synchronisation on *shared actions* in $\mathcal{A}^1 \cap \mathcal{A}^2$ is viewed as a (blocking) communication over ports, as in interface automata, though for simplicity we do not distinguish inputs and outputs. Synchronisation is multi-way and we do not impose input-enabledness of IO automata [22]. Strategies can choose between moves, and so, within a component, nondeterminism in Player \Diamond states is completely controlled by Player \Diamond . In our game composition, synchronisation is over actions only, and hence the choice between several moves with the same action is hidden to other components.

We illustrate the game composition with the help of the running example and refer the interested reader to [25] for more detail on composition of interface automata.

5.1.1. Normal form of a game

Our game composition is defined for games in normal form, which we now define.

Definition 8. A game is in normal form if every τ -transition $s \xrightarrow{\tau} \mu$ is from a Player \square state s to a Player \lozenge state s' with a Dirac distribution $\mu = s'$; and every Player \lozenge state s can only be reached by an incoming move (τ, s) .

In particular, in games in normal form, every distribution μ of a non- τ -transition, as well as the initial distribution, assigns probability zero to all Player \Diamond states. Component games can already be provided in normal form before composing, as in the running example of Section 2.4, although it is often convenient to model component games without τ -transitions and use the following transformation to transform them to normal form. Thus a designer, for simplicity, does not need to deal with τ -transitions, which we treat as a technical device to denote scheduling choice. We now show how one can transform games without τ -transitions into their corresponding normal form before composing, so that the transformation does not affect achievability of specifications defined on traces.

Given a game \mathcal{G} without τ -transitions, one can construct its normal form by splitting every state $s \in S_0$ into a Player \square state \overline{s} and a Player \lozenge state \underline{s} , such that (a) the incoming (resp. outgoing) moves of \overline{s} (resp. \underline{s}) are precisely the incoming (resp. outgoing) moves of s, with every Player \lozenge state $t \in S_0$ replaced by \overline{t} ; and (b) the only outgoing (resp. incoming) move of \overline{s} (resp. \underline{s}) is (τ, \underline{s}) . Intuitively, at \overline{s} the game is idle until Player \square allows Player \lozenge to choose a move in \underline{s} . Hence, any strategy for a game carries over naturally to its normal form, and for specifications defined on traces we can operate w.l.o.g. with normal-form games. As mentioned, τ can be considered as a scheduling choice. In the transformation to normal form, at most one such scheduling choice is introduced for each Player \square state, but in the composition several scheduling choices may be present at a Player \square state, so that Player \square resolves nondeterminism arising from concurrency.

5.1.2. Composition

Given games \mathcal{G}^i , $i \in I$, in normal form with respective player states $S^i_\lozenge \cup S^i_\square$, the set of player states $S_\lozenge \cup S_\square$ of the composition is a subset of the Cartesian product $\prod_{i \in I} S^i_\lozenge \cup S^i_\square$. We denote by s^i the ith component of $s^i \in \prod_{i \in I} S^i$. We denote by $\vec{\mu}$ the *product distribution* of $\mu^i \in \mathsf{D}(S^i)$ for $i \in I$, defined on $\prod_{i \in I} S^i$ by $\vec{\mu}(\vec{s}) \stackrel{\text{def}}{=} \prod_{i \in I} \mu^i(s^i)$. We say that a transition $\vec{s} \stackrel{a}{\longrightarrow} \vec{\mu}$ involves the ith component if $s^i \stackrel{a}{\longrightarrow} i \mu^i$, otherwise the state remains the same $\mu^i(s^i) = 1$. We define the set of actions *enabled* in a state s by $\mathsf{En}(s) \stackrel{\text{def}}{=} \{a \in \mathcal{A} \mid \exists \mu . s \stackrel{a}{\longrightarrow} \mu\}$.

Definition 9. Given normal-form games $\mathcal{G}^i = \langle S^i, (S^i_{\diamondsuit}, S^i_{\square}, S^i_{\circlearrowright}), \varsigma^i, \mathcal{A}^i, \chi^i, \Delta^i \rangle$, $i \in I$, their composition is the game $\|_{i \in I} \mathcal{G}^i \stackrel{\text{def}}{=} \langle S, (S_{\diamondsuit}, S_{\square}, S_{\circlearrowleft}), \prod_{i \in I} \mathcal{F}^i, \bigcup_{i \in I} \mathcal{H}^i, \chi, \Delta \rangle$, where the sets of Player \diamondsuit and Player \square states

$$S_{\diamondsuit} \subseteq \{\vec{s} \in \prod_{i \in I} (S_{\diamondsuit}^{i} \cup S_{\square}^{i}) \mid \exists ! \iota \, . \, s^{\iota} \in S_{\diamondsuit}^{\iota}\} \qquad and \qquad S_{\square} \subseteq \prod_{i \in I} S_{\square}^{i},$$

are defined inductively to contain the reachable states, where S_{\bigcirc} , χ , and Δ are defined via

• $\vec{s} \xrightarrow{a} \vec{\mu}$ for $a \neq \tau$ if at least one component is involved and the involved components are exactly those with a in their action alphabet, and if \vec{s} is a Player \Diamond state then its only Player \Diamond component G^t is involved; and

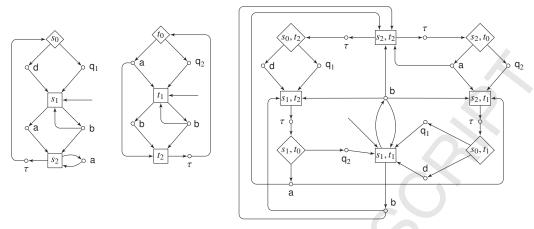


Figure 13: Example normal-form games \mathcal{G}_{re}^1 (left) and \mathcal{G}_{re}^2 (centre), with their composition \mathcal{G}_{re} (right). All distributions are uniform.

• $\vec{s} \xrightarrow{\tau} \vec{t}$ if exactly one component \mathcal{G}^i is involved, $\vec{s} \in S_{\square}$, and $En(\vec{t}) \neq \emptyset$.

We take the view that the identity of the players must be preserved through composition to facilitate synthesis, and thus Player \Diamond actions of the individual components are controlled by a single Player \Diamond in the composition. Player \Box in the composition acts as a scheduler, controlling which component advances and, in Player \Box states, selecting among available actions, whether synchronised or not. Synchronisation in Player \Diamond states means that Player \Diamond in one component may indirectly control some Player \Box actions in another component. In particular, we can impose assume-guarantee contracts at the component level, so that Player \Diamond of different components can cooperate to achieve a common goal: in one component Player \Diamond satisfies the goal B under an assumption A on its environment behaviour (i.e. $A \to B$), while Player \Diamond in the other component ensures that the assumption is satisfied, against all Player \Box strategies.

Under specifications defined on traces, our game composition is both associative and commutative, facilitating a modular model development. We define the relation \simeq between games so that $\mathcal{G}^1 \simeq \mathcal{G}^2$ means that, for all specifications φ defined on traces, $\mathcal{G}^1 \models \varphi$ if and only if $\mathcal{G}^2 \models \varphi$.

Proposition 11. Given normal-form games \mathcal{G}^1 , \mathcal{G}^2 and \mathcal{G}^3 , we have $\mathcal{G}^1 \parallel \mathcal{G}^2 \simeq \mathcal{G}^2 \parallel \mathcal{G}^1$ (commutativity), and $(\mathcal{G}^1 \parallel \mathcal{G}^2) \parallel \mathcal{G}^3 \simeq \mathcal{G}^1 \parallel (\mathcal{G}^2 \parallel \mathcal{G}^3) \models \varphi$ (associativity).

Our composition is closely related to PA composition [54], with the added condition that in Player \Diamond states the Player \Diamond component must be involved. As PAs are games without Player \Diamond states, the game composition restricted to PAs is the same as classical PA composition. The condition $\text{En}(\vec{t}) \neq \emptyset$ for τ -transitions ensures that a Player \Diamond state is never entered if it were to result in deadlock introduced by the normal form transformation. Deadlocks that were present before the transformation are still present in the normal form. In the composition of normal form games, τ -transitions are only enabled in Player \Box states, and Player \Diamond states are only reached by such transitions; hence, composing normal form games yields a game in normal form.

Example_{re} 9 (Game Composition). We return to our running example from Section 2.4. The games in Figure 5 are reproduced in Figure 13, with \mathcal{G}_{re}^1 and \mathcal{G}_{re}^2 on the left and in the centre respectively. Note that \mathcal{G}_{re}^1 and \mathcal{G}_{re}^2 are already in normal form (the self-loop labelled a in s_2 indicates that \mathcal{G}_{re}^1 was not derived via our automatic normal-form transformation). The game on the right is the composition $\mathcal{G}_{re} = \mathcal{G}_{re}^1 \parallel \mathcal{G}_{re}^2$. Actions a and b are synchronised. Player \square controls b in both s_1 and s_1 , and so in the composition Player \square controls b at (s_1, t_1) . Player \square controls a in s_1 and s_2 , but Player \lozenge controls a in t_0 , and so it is controlled by Player \lozenge in (s_1, t_0) and (s_2, t_0) in the composition. Note that actions are not necessarily exclusive to Player \lozenge or Player \square , since a is enabled in $s_1, s_2 \in S_{\square}^1$, as well as in $t_0 \in S_{\lozenge}^2$.

5.2. Strategy Composition

For compositional synthesis, we assume the following compatibility condition on component games, which is analogous to that for single-threaded interface automata [25]: we require that moves controlled by Player \Diamond in one game are enabled and fully controlled by Player \Diamond in the composition.

Definition 10. Games $(\mathcal{G}^i)_{i\in I}$ are compatible if, for every Player \lozenge state $\vec{s} \in S_{\lozenge}$ in the composition with $s^i \in S_{\lozenge}^i$, if $s^i \stackrel{a}{\longrightarrow} {}^i \mu^i$ then there is exactly one distribution \vec{v} , denoted by $\langle \mu^i \rangle_{\vec{s},a}$, such that $\vec{s} \stackrel{a}{\longrightarrow} \vec{v}$ and $v^i = \mu^i$. (That is, for $i \neq i$ such that $a \in \mathcal{A}^i$, there exists exactly one a-transition enabled in s^i .)

5.2.1. Composing SU strategies

The memory update function of the composed SU strategy ensures that the memory in the composition is the same as if the SU strategies were applied to the games individually. We assume w.l.o.g. that from the current memory element m one can recover the current state denoted s(m). We let $\Gamma(\vec{m}, \vec{s})$ be the set of indices of components that update their memory according to a new (stochastic) state formally defined by

$$\Gamma(\vec{\mathfrak{m}}, \vec{s}) = \begin{cases} \{i \in I \mid s^i \neq s(\mathfrak{m}^i)\} & \text{if } \vec{s} \in S_{\Diamond} \cup S_{\Box} \\ \{i \in I \mid a \in \mathcal{A}_i\} & \text{if } \vec{s} = (a, \vec{\mu}) \in S_{\bigcirc} \text{ s.t. } a \neq \tau \\ \{\iota\} & \text{if } \vec{s} = (\tau, \vec{t}) \in S_{\bigcirc} \text{ s.t. } s^{\iota} \in S_{\Diamond}^{\iota} \end{cases}$$

Definition 11. The composition of Player \lozenge strategies $\pi^i = \langle \mathfrak{M}^i, \pi^{u,i}, \pi^{c,i}, \pi^{d,i} \rangle$, $i \in I$, for compatible games is $||_{i \in I} \pi^i \stackrel{\text{def}}{=} \langle \prod_{i \in I} \mathfrak{M}^i, \pi_c, \pi_u, \pi_d \rangle$, where

$$\pi_{c}(\vec{s}, \vec{\mathfrak{m}})(a, \langle \mu^{\iota} \rangle_{\vec{s}, a}) \stackrel{\text{def}}{=} \pi^{c, \iota}(s^{\iota}, \mathfrak{m}^{\iota})(a, \mu^{\iota}) \qquad \qquad whenever \ s^{\iota} \in S^{\iota}_{\diamondsuit}$$

$$\pi_{u}(\vec{\mathfrak{m}}, \vec{s})(\vec{\mathfrak{m}}) \stackrel{\text{def}}{=} \prod_{i \in \Gamma(\vec{\mathfrak{m}}, \vec{s})} \pi^{u, i}(\mathfrak{m}^{i}, s^{i})(\mathfrak{n}^{i}) \qquad whenever \ \mathfrak{m}^{i} = \mathfrak{n}^{i} \ for \ i \neq \Gamma(\vec{\mathfrak{m}}, \vec{s})$$

$$\pi_{d}(\vec{s}) \stackrel{\text{def}}{=} \prod_{i \in I} \pi^{d, i}(s^{i}).$$

Remark 5. In the above definition, product was defined on SU strategies, as this provides a more compact encoding than with DU strategies. Recall that SU and DU strategies are equally powerful (Proposition 1). For the proofs one can consider w.l.o.g. only products of DU strategies since, when given SU strategies, the product of their determinisation equals the determinisation of their product.

Strategy composition is commutative and associative.

Proposition 12. Given compatible normal-form games \mathcal{G}^1 , \mathcal{G}^2 and \mathcal{G}^3 , and strategies π^1 , π^2 and π^3 , we have $(\mathcal{G}^1 \parallel \mathcal{G}^2)^{\pi^1 \parallel \pi^2} \simeq (\mathcal{G}^2 \parallel \mathcal{G}^1)^{\pi^2 \parallel \pi^1}$ (commutativity), and $((\mathcal{G}^1 \parallel \mathcal{G}^2) \parallel \mathcal{G}^3)^{(\pi^1 \parallel \pi^2) \parallel \pi^3} \simeq (\mathcal{G}^1 \parallel (\mathcal{G}^2 \parallel \mathcal{G}^3))^{\pi^1 \parallel (\pi^2 \parallel \pi^3)}$ (associativity).

Note that strategy composition can be implemented efficiently by storing the individual strategies and selecting the next move and memory update of the strategies corresponding to the components $\Gamma(act(\vec{m}), \vec{s})$ involved in the respective transitions.

5.3. Properties of the Composition

We now show that synthesising strategies for compatible individual components is sufficient to obtain a composed strategy for the composed game.

5.3.1. Functional simulations

We introduce functional simulations, which are a special case of classical PA simulations [54], and show that they preserve specifications over traces. Intuitively, a PA \mathcal{M}' functionally simulates a PA \mathcal{M} if all behaviours of \mathcal{M} are present in \mathcal{M}' , and if strategies translate from \mathcal{M} to \mathcal{M}' . Given a distribution μ , and a partial function $\mathcal{F}: S \to S'$ defined on the support of μ , we write $\overline{\mathcal{F}}(\mu)$ for the distribution defined by $\overline{\mathcal{F}}(\mu)(s') \stackrel{\text{def}}{=} \sum_{\mathcal{F}(s)=s'} \mu(s)$.

Definition 12. A functional simulation from a PA M to a PA M' is a partial function $\mathcal{F}: S \to S'$ such that

(F1)
$$\overline{\mathcal{F}}(\varsigma) = \varsigma'$$
; and

(F2) if
$$s \xrightarrow{a} \mu$$
 in \mathcal{M} then $\mathcal{F}(s) \xrightarrow{a} \overline{\mathcal{F}}(\mu)$ in \mathcal{M}' .

Lemma 12. Given a functional simulation from a PA \mathcal{M} to a PA \mathcal{M}' and a specification φ defined on traces, for every (finite) strategy σ there is a (finite) strategy σ' such that $(\mathcal{M}')^{\sigma'} \models \varphi \Leftrightarrow \mathcal{M}^{\sigma} \models \varphi$.

We have included the proof of this lemma in Appendix D.1.

5.3.2. From PA composition to game composition

When synthesising a strategy π^i for each component \mathcal{G}^i , we can induce the PAs $(\mathcal{G}^i)^{\pi^i}$, and compose them to obtain the composed PA $\parallel_{i\in I} (\mathcal{G}^i)^{\pi^i}$. However, in our synthesis rule we are interested in the PA $(\parallel_{i\in I} \mathcal{G}^i)^{\parallel_{i\in I}\pi^i}$, which is constructed by first composing the individual components, and then applying the composed Player \Diamond strategy. The following lemma exhibits a functional simulation between such PAs, which together with Lemma 12 allows us to develop our synthesis rules for specifications defined on traces.

Lemma 13. Given compatible normal form games $(\mathcal{G}^i)_{i \in I}$, and Player \Diamond strategies $(\pi^i)_{i \in I}$, there is a functional simulation from $(||_{i \in I} \mathcal{G}^i)^{||_{i \in I}\pi^i}$ to $||_{i \in I} (\mathcal{G}^i)^{\pi^i}$.

Proof can be found in Appendix D.2. In general, there is no simulation in the other direction, as in the PA composition states that were originally Player \Diamond states can no longer be distinguished.

5.4. Composition Rules

Our main result for compositional synthesis is that any verification rule for PAs gives rise to a synthesis rule for games with the same side conditions, shown in Theorem 15 below. The idea is to induce PAs from the games using the synthesised strategies, apply PA rules, and, using Lemma 13, lift the result back into the game domain.

Theorem 15. Given a rule \mathfrak{P} for PAs \mathcal{M}^i and specifications φ^i_j and φ defined on traces, then the rule \mathfrak{G} holds for all Player \Diamond strategies π^i of compatible games \mathcal{G}^i with the same action alphabets as the corresponding PAs, where

$$\mathfrak{P} \equiv \frac{\mathcal{M}^i \models \varphi^i_j \quad j \in J \quad i \in I}{\|_{i \in I} \quad \mathcal{M}^i \models \varphi,} \quad and \quad \mathfrak{G} \equiv \frac{(\mathcal{G}^i)^{\pi^i} \models \bigwedge_{j \in J} \varphi^i_j \quad i \in I}{(\|_{i \in I} \mathcal{G}^i)\|_{i \in I} \pi^i} \models \varphi.$$

Proof. For all $i \in I$, let \mathcal{G}^i be games, and let π^i be respective Player \Diamond strategies such that $(\mathcal{G}^i)^{\pi^i} \models \bigwedge_{j \in J} \varphi^i_j$. By applying the PA rule \mathfrak{P} with the PAs $\mathcal{M}^i \stackrel{\text{def}}{=} (\mathcal{G}^i)^{\pi^i}$, where $\mathcal{M}^i \models \bigwedge_{j \in J} \varphi^i_j$ for all $i \in I$ from how the strategies π^i were picked, we have that $\|_{i \in I} \mathcal{M}^i \models \varphi$. From Lemma 13, there is a functional simulation from $(\|_{i \in I} \mathcal{G}^i)^{\|_{i \in I} \pi^i}$ to $\|_{i \in I} (\mathcal{G}^i)^{\pi^i}$. Since $\|_{i \in I} (\mathcal{G}^i)^{\pi^i} \models \varphi$, applying Lemma 12 yields $(\|_{i \in I} \mathcal{G}^i)^{\|_{i \in I} \pi^i} \models \varphi$.

Monolithic synthesis is performed for components \mathcal{G}^i , $i \in I$, by obtaining for each i a Player \Diamond strategy π^i for $\mathcal{G}^i \models \bigwedge_{j \in J} \varphi^i_j$. We apply \mathfrak{P} with $\mathcal{M}_i \stackrel{\text{def}}{=} (\mathcal{G}^i)^{\pi^i}$ (which never has to be explicitly constructed) to deduce that $||_{i \in I} \pi^i$ is a winning strategy for Player \Diamond in $||_{i \in I} \mathcal{G}^i$. The rules can be applied recursively, making use of associativity of the game and strategy composition.

Note that, for each choice, the composed strategy takes into account the history of only one component, which is less general than using the history of the composed game. Hence, it may be possible that a specification is achievable in the composed game, while it is not achievable compositionally. Our rules are therefore sound but not complete, even if the PA rules \mathfrak{P} are complete.

5.4.1. Verification rules for PAs

We develop PA assume-guarantee rules for specifications defined on traces. Our rules are based on those in [39], but we emphasise that Theorem 15 is applicable to any PA rule. Given a composed PA $\mathcal{M} = \parallel_{i \in I} \mathcal{M}^i$, a strategy σ is *fair* if each component makes progress infinitely often with probability 1 [2]. We write $\mathcal{M} \models^u \varphi$ if, for all fair strategies σ , $\mathcal{M}^{\sigma} \models \varphi$. Note that a specification defined on traces remains defined on traces under fairness. In games, fairness is imposed only on Player \square , and for a single component fairness is equivalent to requiring deadlock-freedom. Our game composition does not guarantee freedom from deadlocks, that is, states without outgoing moves. However fair, Player \square strategies avoid reaching deadlocks and hence yield induced DTMCs without deadlocks. If deadlocks are unavoidable then the set of fair Player \square strategies is empty; in that case the synthesis problem is trivial: every Player \lozenge strategy satisfies any specification under fairness.

Theorem 16. Given compatible PAs \mathcal{M}^1 and \mathcal{M}^2 , specifications φ^G , φ^{G_1} , φ^{G_2} , φ^{A_1} and φ^{A_2} defined on traces of $\mathcal{A}_{G_1} \subseteq \mathcal{A}^1$, $\mathcal{A}_{G_2} \subseteq \mathcal{A}^2$, then the following rule is sound:

$$(\text{Conj}) \frac{\mathcal{M}^1 \models^u \varphi^{G_1} \qquad \mathcal{M}^2 \models^u \varphi^{G_2}}{\mathcal{M}^1 \parallel \mathcal{M}^2 \models^u \varphi^{G_1} \wedge \varphi^{G_2}}$$

Proof. Let $\mathcal{M} = \mathcal{M}^1 \parallel \mathcal{M}^2$. We first recall concepts of projections from [39]. Given a state $s = (s^1, s^2)$ of \mathcal{M} , the projection of s onto \mathcal{M}^i is $s \upharpoonright_{\mathcal{M}^i} \stackrel{\text{def}}{=} s^i$, and for a distribution μ over states of \mathcal{M} we define its projection by $\mu \upharpoonright_{\mathcal{M}^i}(s^i) \stackrel{\text{def}}{=} \sum_{s \upharpoonright_{\mathcal{M}^i} = s^i} \mu(s)$. Given a path λ of \mathcal{M} , the projection of λ onto \mathcal{M}^i , denoted by $\lambda \upharpoonright_{\mathcal{M}^i}$, is the path obtained from λ by projecting each state and distribution, and removing all moves with actions not in the alphabet of \mathcal{M}^i , together with the subsequent states. Given a strategy σ of \mathcal{M} , its projection $\sigma \upharpoonright_{\mathcal{M}^i}$ onto \mathcal{M}^i is such that, for any finite path λ^i of \mathcal{M}^i and transition last(λ^i) $\stackrel{a}{\longrightarrow} \mu^i$,

From Lemma 7.2.6 in [54], for any trace w over actions $\mathcal{A} \subseteq \mathcal{A}^i$ we have $\mathbb{P}^{\sigma}_{\mathcal{M}}(w) = \mathbb{P}^{\sigma \upharpoonright_{\mathcal{M}^i}}_{\mathcal{M}^i}(w)$. Therefore, if φ is defined on traces of $\mathcal{A} \subseteq \mathcal{A}^i$, we have that $\mathcal{M}^{\sigma} \models \varphi \Leftrightarrow \varphi(\mathbb{P}^{\sigma}_{\mathcal{M}^i}) \Leftrightarrow \varphi(\mathbb{P}^{\sigma^i \upharpoonright_{\mathcal{M}^i}}_{\mathcal{M}^i}) \Leftrightarrow (\mathcal{M}^i)^{\sigma^i \upharpoonright_{\mathcal{M}^i}} \models \varphi$.

defined on traces of $\mathcal{A} \subseteq \mathcal{A}^i$, we have that $\mathcal{M}^{\sigma} \models \varphi \Leftrightarrow \varphi(\mathbb{P}^{\sigma}_{\mathcal{M}}) \Leftrightarrow \varphi(\mathbb{P}^{\sigma^i \upharpoonright_{\mathcal{M}^i}}_{\mathcal{M}^i}) \Leftrightarrow (\mathcal{M}^i)^{\sigma^i \upharpoonright_{\mathcal{M}^i}} \models \varphi$. Take any fair strategy σ of \mathcal{M} . From Lemma 2 in [39], the projections $\sigma \upharpoonright_{\mathcal{M}^2}$ and $\sigma \upharpoonright_{\mathcal{M}^1}$ are fair. We have that $\mathcal{M}^i \models^{\mathsf{u}} \varphi^{G_i}$ implies $(\mathcal{M}^i)^{\sigma \upharpoonright_{\mathcal{M}^i}} \models \varphi^{G_i}$, since $\sigma \upharpoonright_{\mathcal{M}^i}$ is fair; this in turn implies $\mathcal{M}^{\sigma} \models \varphi^{G_i}$, since $\mathcal{A}_{G^i} \subseteq \mathcal{A}^i$. Since σ was an arbitrary fair strategy of \mathcal{M} , this implies $\mathcal{M} \models^{\mathsf{u}} \varphi^{G_1} \wedge \varphi^{G_2}$.

Another fundamental rule (whose soundness is straightforward) is

(Prop)
$$\frac{\mathcal{M} \models^{\mathsf{u}} \varphi}{\mathcal{M} \models^{\mathsf{u}} \psi}$$
, if φ implies ψ .

Using (Prop), which enables us to simplify logical formulae, and (Conj), which facilitates a split of tasks between components, several rules can be created.

Example_{re} 10 (Assume-guarantee rule for the running example). We show how to derive the rule (Rule_{re}) defined in (7). The following derivation holds for specifications $\varphi^{A_1}, \varphi^{A_2}, \varphi^{A_3}$ defined on traces, where $\mathcal{A}_{A_1}, \mathcal{A}_{A_2} \subseteq \mathcal{A}^1 \cap \mathcal{A}^2$, $\mathcal{A}_{A_3} \subseteq \mathcal{A}^3$.

$$(\text{Conj}) \frac{\mathcal{M}^{1} \models^{u} \varphi^{A_{1}} \rightarrow \varphi^{A_{2}} \qquad \mathcal{M}^{2} \models^{u} \varphi^{A_{1}} \wedge \varphi^{A_{3}}}{\mathcal{M}^{1} \parallel \mathcal{M}^{2} \models^{u} (\varphi^{A_{1}} \rightarrow \varphi^{A_{2}}) \wedge (\varphi^{A_{1}} \wedge \varphi^{A_{3}})}$$
$$(\text{Prop}) \frac{\mathcal{M}^{1} \parallel \mathcal{M}^{2} \models^{u} (\varphi^{A_{1}} \rightarrow \varphi^{A_{2}}) \wedge (\varphi^{A_{1}} \wedge \varphi^{A_{3}})}{\mathcal{M}^{1} \parallel \mathcal{M}^{2} \models^{u} \varphi^{A_{2}} \wedge \varphi^{A_{3}}}.$$

The use of (Prop) is justified since one can show that $(\varphi^{A_1} \to \varphi^{A_2}) \wedge (\varphi^{A_1} \wedge \varphi^{A_3})$ is logically equivalent to $\varphi^{A_1} \wedge \varphi^{A_2} \wedge \varphi^{A_3}$; this latter formula straightforwardly implies $\varphi^{A_2} \wedge \varphi^{A_3}$. To get (Rule_{re}) it suffices to define $\varphi^{A_1} = \text{Eratio}(-r_1/c)(-v_1)$, $\varphi^{A_2} = \text{Eratio}(r_2/c)(v_2)$, $\varphi^2_{\text{re}} = \text{Eratio}(-r_1/c)(-v_1) \wedge \text{Eratio}(-r_3/c)(-v_3)$ and use Theorem 15.

5.4.2. Under-approximating Pareto sets

We now describe how to pick the targets of the specifications φ^i in a compositional rule, such as from Theorem 15, so that φ in the conclusion of the rule is achievable. To this end, we compositionally compute an under-approximation of the Pareto set for φ ; we illustrate this approach in an example in Section 5.5 below.

Consider N reward structures, r_1, \ldots, r_N , and objectives φ^i , $i \in I$, over these reward structures for respective games G^i , as well as an objective φ , over the same reward structures, for the composed game $\mathcal{G} = ||_{i \in I} G^i$. Note that, for each $1 \leq j \leq N$, the reward structure r_j may be present in several objectives φ^i . Let P^i be an under-approximation of the Pareto set for $G^i \models \varphi^i$, for $i \in I$, and so each point $\vec{v}^{(i)} \in P^i$ represents a target vector for the MQ $\varphi^i[\vec{v}^{(i)}]$ achievable in the game G^i .

For a set P^i , define the *lifting* $\uparrow P^i$ to all N reward structures by $\uparrow P^i \stackrel{\text{def}}{=} \{ \vec{v} \in \mathbb{R}^N \mid \text{ the coordinates of } \vec{v} \text{ appearing in } \varphi^i \text{ are in } P^i \}$. The set $P' \stackrel{\text{def}}{=} \cap_{i \in I} \uparrow P^i$ is the set of target vectors for all N reward structures, which are consistent with

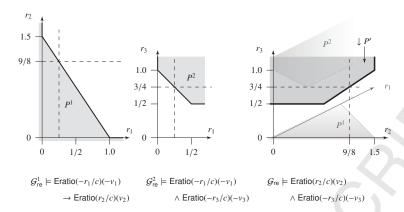


Figure 14: Pareto sets for example games in Figure 13. Specifications are given beneath the respective sets. The rightmost figure shows the compositional Pareto set, $\downarrow P'$, as well as the oblique projections of P^1 and P^2 for reference.

achievability of all objectives φ^i in the respective games. The projection $\downarrow P'$ of P' onto the space of reward structures appearing in φ then yields an under-approximation of the Pareto set P for φ in the composed game \mathcal{G} , that is, $\downarrow P' \subseteq P$. A vector $\vec{v} \in \downarrow P'$ can be achieved by instantiating the objectives φ^i with any targets $\vec{v}^{(i)}$ in P' that match \vec{v} .

5.5. The Compositional Strategy Synthesis Method

Our method for compositional strategy synthesis, based on monolithic synthesis for individual component games, is summarised as follows:

- (S1) User Input: A composed game $\mathcal{G} = ||_{i \in I} \mathcal{G}^i$, MQs φ^i , φ , and matching PA rules for use in Theorem 15.
- (S2) **First Stage:** Obtain under-approximations of Pareto sets P^i for $\mathcal{G}^i \models \varphi^i$, and compute the compositional under-approximated Pareto set $\downarrow P'$.
- (S3) **User Feedback:** Pick targets \vec{v} for the global specification φ from $\downarrow P'$; matching targets $\vec{v}^{(i)}$ for φ^i can be picked automatically from P^i .
- (S4) **Second Stage:** Synthesise strategies π^i for $\mathcal{G}^i \models \varphi^i[\vec{v}^{(i)}]$.
- (S5) **Output:** The strategy $||_{i \in I} \pi^i$, winning for $\mathcal{G} \models \varphi[\vec{v}]$ by Theorem 15.

Steps (S1), (S4) and (S5) are sufficient if the targets are known, while (S2) and (S3) are an additional feature enabled by the Pareto set computation.

Example_{re} **11.** Consider again the (controllable multichain) games of our running example introduced in Section 2.4. We are given local games $\mathcal{G}_{\text{re}}^1$, $\mathcal{G}_{\text{re}}^2$ and their composition $\mathcal{G}_{\text{re}} \stackrel{\text{def}}{=} \mathcal{G}_{\text{re}}^1 \parallel \mathcal{G}_{\text{re}}^2$; local specifications φ_{re}^1 , φ_{re}^2 and a global specification φ_{re} ; and a synthesis rule (Rulere) (given in (7)). This constitutes the inputs in step (S1). For step (S2), under-approximations of the Pareto sets for $\mathcal{G}_{\text{re}}^1$ and $\mathcal{G}_{\text{re}}^2$ are shown in Figure 14 (left) and (centre) respectively, together with the compositionally obtained under-approximated Pareto set $\downarrow P'$ for \mathcal{G} (right). In step (S3), if we want to, for example, find a strategy satisfying φ with $(v_2, v_3) = (\frac{9}{8}, \frac{3}{4})$, we look up a value for v_1 that is consistent with both P^1 and P^2 , as indicated by the dashed lines in Figure 14 (left) and (centre), and we find $v_1 = \frac{1}{4}$ to be consistent for both components. In step (S4) we synthesise strategies for the $MQs \varphi^1[(\frac{1}{4}, \frac{9}{8})]$ for $\mathcal{G}_{\text{re}}^1$ and $\varphi^2[(\frac{1}{4}, \frac{3}{4})]$ for $\mathcal{G}_{\text{re}}^2$. In $\mathcal{G}_{\text{re}}^1$ the strategy π^1 always plays d (as explained in Example 8), and the strategy π^2 for $\mathcal{G}_{\text{re}}^2$ is illustrated in Figure 10. Finally, we return the composed strategy $\pi = \pi^1 \parallel \pi^2$ in step (S5).

6. Conclusion

We presented a compositional framework for strategy synthesis in stochastic games, where winning conditions are specified as multi-dimensional long-run objectives. The algorithm proposed in Theorem 7 constructs succinct ε -optimal stochastic memory update strategies, and we show how such winning strategies for component games can be composed to be winning for the composed game. Since building the composed game is not necessary in order to synthesise a strategy to control it, our approach enhances scalability. However, this is at a cost of restricting the class of strategies. The techniques have been implemented and applied to several case studies, as reported separately in [41, 5, 4, 64].

Our compositional framework applies to all specifications defined on traces, which include almost-sure and expected ratio rewards treated here, as well as expected total rewards studied in [20, 21], but not mean payoffs. Nevertheless, the ability to synthesise strategies for mean payoffs at the component level is useful because, as we showed in Proposition 2 and Theorem 11, these enable us to synthesise strategies for conjunctions of almost-sure ratio rewards and Boolean combinations of expected ratio rewards that are well suited to the compositional approach. We anticipate that our framework is sufficiently general to permit further specifications defined on traces, such as Büchi specifications or ratio rewards with arbitrary satisfaction thresholds, but the problem of synthesising winning strategies for such specifications for individual components remains open.

As future work, we intend to investigate satisfaction objectives with arbitrary probability thresholds, and believe that this is possible using ideas from [34]. We would also like to adopt a unifying view between expectation and satisfaction objectives as done for MDPs in [14]. Finally, the compositional framework could be augmented by automatically decomposing games and specifications given a rule schema.

Acknowledgements. The authors thank Vojtěch Forejt, Stefan Kiefer, Benoît Barbot and Dave Parker for helpful discussions. The authors are partially supported by ERC Advanced Grant VERIWARE and EPSRC Mobile Autonomy Programme Grant EP/M019918/1.

References

- [1] C. Baier, C. Dubslaff, S. Klüppelholz, and L. Leuschner. Energy-utility analysis for resilient systems using probabilistic model checking. In *Petri Nets*, pages 20–39. Springer, 2014.
- [2] C. Baier, M. Größer, and F. Ciesinski. Quantitative analysis under fairness constraints. In ATVA, volume 5799 of LNCS, pages 135–150. Springer, 2009.
- [3] C. Baier, M. Größer, M. Leucker, B. Bollig, and F. Ciesinski. Controller synthesis for probabilistic systems (extended abstract). In IFIP TCS, volume 155, pages 493–506. Springer, 2004.
- [4] N. Basset, M. Kwiatkowska, U. Topcu, and C. Wiltsche. Strategy synthesis for stochastic games with multiple long-run objectives. In *TACAS*, volume 9035 of *LNCS*, pages 256–271. Springer, 2015.
- [5] N. Basset, M. Kwiatkowska, and C. Wiltsche. Compositional controller synthesis for stochastic games. In CONCUR, volume 8704 of LNCS, pages 173–187. Springer, 2014.
- [6] T. Brázdil, V. Brožek, K. Chatterjee, V. Forejt, and A. Kučera. Two views on multiple mean-payoff objectives in Markov decision processes. LMCS, 10(4), 2014.
- [7] T. Brázdil, V. Brožek, V. Forejt, and A. Kučera. Stochastic games with branching-time winning objectives. In LICS, pages 349–358. ACM/IEEE, 2006.
- [8] T. Brázdil, P. Jančar, and A. Kučera. Reachability games on extended vector addition systems with states. In ICALP, volume 6199 of LNCS, pages 478–489. Springer, 2010.
- [9] R. Brenguier and J.F. Raskin. Optimal values of multidimensional mean-payoff games. Research report, Université Libre de Bruxelles (U.L.B.), Belgium, 2014.
- [10] Véronique Bruyère, Emmanuel Filiot, Mickael Randour, and Jean-François Raskin. Meet your expectations with guarantees: Beyond worst-case synthesis in quantitative games. In Ernst W. Mayr and Natacha Portier, editors, 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014), STACS 2014, March 5-8, 2014, Lyon, France, volume 25 of LIPIcs, pages 199–213. Schloss Dagstuhl Leibniz-Zentrum fuer Informatik, 2014.
- [11] K. Chatterjee, L. Doyen, T.A. Henzinger, and J.F. Raskin. Generalized mean-payoff and energy games. In *FSTTCS*, volume 8 of *LIPIcs*, pages 505–516. Schloss Dagstuhl, 2010.
- [12] K. Chatterjee and M. Henzinger. Faster and dynamic algorithms for maximal end-component decomposition and related graph problems in probabilistic verification. In SODA, pages 1318–1336. ACM-SIAM, 2011.
- [13] K. Chatterjee and T.A. Henzinger. Assume-guarantee synthesis. In *TACAS*, volume 4424 of *LNCS*, pages 261–275. Springer, 2007.
- [14] K. Chatterjee, Z. Komárková, and J. Křetínský. Unifying two views on multiple mean-payoff objectives in Markov decision processes. In LICS, pages 244–256. ACM/IEEE, 2015.
- [15] K. Chatterjee, R. Majumdar, and T.A. Henzinger. Markov decision processes with multiple objectives. In STACS, volume 3884 of LNCS, pages 325–336. Springer, 2006.

- [16] K. Chatterjee, M. Randour, and J.F. Raskin. Strategy synthesis for multi-dimensional quantitative objectives. Acta Informatica, 51(3–4):129–163, 2014.
- [17] Krishnendu Chatterjee and Laurent Doyen. Perfect-information stochastic games with generalized mean-payoff objectives. In Martin Grohe, Eric Koskinen, and Natarajan Shankar, editors, Proc. LICS '16, pages 247–256. ACM, 2016.
- [18] T. Chen, V. Forejt, M. Kwiatkowska, D. Parker, and A. Simaitis. PRISM-games: A model checker for stochastic multi-player games. In TACAS, volume 7795 of LNCS, pages 185–191. Springer, 2013.
- [19] T. Chen, V. Forejt, M. Kwiatkowska, A. Simaitis, A. Trivedi, and M. Ummels. Playing stochastic games precisely. In *CONCUR*, volume 7454 of *LNCS*, pages 348–363, 2012.
- [20] T. Chen, V. Forejt, M. Kwiatkowska, A. Simaitis, and C. Wiltsche. On stochastic games with multiple objectives. In MFCS, volume 8087 of LNCS, pages 266–277. Springer, 2013.
- [21] T. Chen, M. Kwiatkowska, A. Simaitis, and C. Wiltsche. Synthesis for multi-objective stochastic games: An application to autonomous urban driving. In *QEST*, volume 8054 of *LNCS*, pages 322–337. Springer, 2013.
- [22] L. Cheung, N. Lynch, R. Segala, and F. Vaandrager. Switched PIOA: Parallel composition via distributed scheduling. TCS, 365(1–2):83–108, 2006.
- [23] B.A. Davey and H.A. Priestley. Introduction to lattices and order. Cambridge University Press, 1990.
- [24] L. De Alfaro. Formal verification of probabilistic systems. PhD thesis, Stanford University, 1997.
- [25] L. de Alfaro and T.A. Henzinger. Interface automata. SIGSOFT Software Engineering Notes, 26(5):109-120, 2001.
- [26] L. de Alfaro, T.A. Henzinger, and R. Jhala. Compositional methods for probabilistic systems. In CONCUR, volume 2154 of LNCS, pages 351–365. Springer, 2001.
- [27] A. Ehrenfeucht and J. Mycielski. Positional strategies for mean payoff games. International Journal of Game Theory, 8(2):109–113, 1979.
- [28] K. Etessami, M. Kwiatkowska, M.Y. Vardi, and M. Yannakakis. Multi-objective model checking of Markov decision processes. LMCS, 4(8):1–21, 2008.
- [29] L. Feng, C. Wiltsche, L. Humphrey, and U. Topcu. Synthesis of human-in-the-loop control protocols for autonomous systems. *IEEE Transactions on Automation Science and Engineering*, 13(2):450–462, April 2016.
- [30] J. Filar and K. Vrieze. Competitive Markov decision processes. Springer, 1996.
- [31] V. Forejt, M. Kwiatkowska, and D. Parker. Pareto curves for probabilistic model checking. In ATVA, volume 7561 of LNCS, pages 317–332. Springer, 2012.
- [32] M. Gelderie. Strategy composition in compositional games. In ICALP, volume 7966 of LNCS, pages 263-274. Springer, 2013.
- [33] S. Ghosh, R. Ramanujam, and S. Simon. Playing extensive form games in parallel. In CLIMA, volume 6245 of LNCS, pages 153–170. Springer, 2010.
- [34] H. Gimbert and F. Horn. Solving simple stochastic tail games. In SODA, pages 847-862. ACM-SIAM, 2010.
- [35] H. Gimbert and E. Kelmendi. Two-player perfect-information shift-invariant submixing stochastic games are half-positional. arXiv preprint arXiv:1401.6575, 2014.
- [36] F. Horn. Random Games. PhD thesis, Université Denis Diderot Paris 7 & Rheinisch-Westfällische Technische Hochschule Aachen, 2008.
- [37] G. Katz, D. Peled, and S. Schewe. Synthesis of distributed control through knowledge accumulation. In *CAV*, volume 6806 of *LNCS*, pages 510–525. Springer, 2011.
- [38] M. Kwiatkowska. Model checking and strategy synthesis for stochastic games: From theory to practice. In Proc. 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016), pages 4:1–4:18. Schloss Dagstuhl Leibniz-Zentrum fuer Informatik, 2016
- [39] M. Kwiatkowska, G. Norman, D. Parker, and H. Qu. Compositional probabilistic verification through multi-objective model checking. Information and Computation, 232:38–65, 2013.
- [40] M. Kwiatkowska and D. Parker. Automated verification and strategy synthesis for probabilistic systems. In ATVA, volume 8172 of LNCS, pages 5–22. Springer, 2013.
- [41] M. Kwiatkowska, D. Parker, and C. Wiltsche. PRISM-games 2.0: A tool for multi-objective strategy synthesis for stochastic games. In *TACAS*, 2016. (submitted).
- [42] D.A. Levin, Y. Peres, and E.L. Wilmer. Markov chains and mixing times. AMS, 2009.
- [43] L. MacDermed and C.L. Isbell. Solving stochastic games. In NIPS, pages 1186–1194. Curran Associates, Inc., 2009.
- [44] P. Madhusudan and P.S. Thiagarajan. A decidable class of asynchronous distributed controllers. In *CONCUR*, volume 7454 of *LNCS*, pages 145–160. Springer, 2002.
- [45] S. Mohalik and I. Walukiewicz. Distributed games. In FSTTCS, volume 2914 of LNCS, pages 338-351. Springer, 2003.
- [46] A. Pneuli and R. Rosner. Distributed reactive systems are hard to synthesize. In FOCS, pages 746-757. IEEE, 1990.
- [47] M.L. Puterman. Markov decision processes: discrete stochastic dynamic programming. Wiley-Interscience, 2009.
- [48] Michael O. Rabin. Probabilistic automata. Information and Control, 6(3):230 245, 1963.
- [49] M. Randour, J.F. Raskin, and O. Sankur. Variations on the stochastic shortest path problem. In VMCAI, volume 8318 of LNCS, pages 1–18. Springer, 2014.
- [50] M. Randour, J.F. Raskin, and O. Sankur. Percentile queries in multi-dimensional Markov decision processes. In CAV, volume 9206 of LNCS, pages 123–139. Springer, 2015.
- [51] R.T. Rockafellar. Convex Analysis. Princeton University Press, 1997.
- [52] S.M. Ross. Stochastic processes, volume 2. John Wiley & Sons New York, 1996.
- [53] O. Sankur. Robustness in Timed Automata: Analysis, Synthesis, Implementation. Thèse de doctorat, LSV, ENS Cachan, France, 2013.
- [54] R. Segala. Modelling and Verification of Randomized Distributed Real Time Systems. PhD thesis, Massachusetts Institute of Technology, 1995.
- [55] Lloyd S Shapley. Stochastic games. PNAS, 39(10):1095, 1953.
- [56] N. Shimkin and A. Shwartz. Guaranteed performance regions in Markovian systems with competing decision makers. Automatic Control, 38(1):84–95, 1993.

- [57] A. Simaitis. Automatic Verification of Competitive Stochastic Systems. PhD thesis, University of Oxford, 2013.
- [58] A. Sokolova and E.P. de Vink. Probabilistic automata: system types, parallel composition and comparison. In VOSS, volume 2925 of LNCS, pages 1-43. Springer, 2004.
- Mária Svorenová and Marta Kwiatkowska. Quantitative verification and strategy synthesis for stochastic games. volume 30, pages 15 30, 2016. 15th European Control Conference, {ECC16}.
- [60] Y. Velner. Finite-memory strategy synthesis for robust multidimensional mean-payoff objectives. In LICS, pages 79:1-79:10. ACM/IEEE.
- [61] Yaron Velner, Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, Alexander Moshe Rabinovich, and Jean-François Raskin. The complexity of multi-mean-payoff and multi-energy games. Inf. Comput., 241:177-196, 2015.
- [62] C. von Essen and B. Jobstmann. Synthesizing efficient controllers. In VMCAI, volume 7148 of LNCS, pages 428-444. Springer, 2012.
- [63] D.J. White. Multi-objective infinite-horizon discounted Markov decision processes. J. Math. Anal. Appl., 89(2):639–647, 1982.
- [64] C. Wiltsche. Assume-Guarantee Strategy Synthesis for Stochastic Games. PhD thesis, University of Oxford, 2016.

Appendix A. Proofs of results of Section 2

Appendix A.1. Proof of Proposition 1

Proof. The belief $\mathfrak{d}^{\Diamond}_{\lambda}$ after seeing a path λ is defined inductively as follows: $\mathfrak{d}^{\Diamond}_{s} = \pi_{\mathsf{d}}(s), \ \mathfrak{d}^{\Diamond}_{\lambda,s'} \stackrel{\text{def}}{=} \pi_{\mathsf{u}}(\mathfrak{d}^{\Diamond}_{\lambda},s')$. We define $\mathfrak{d}^{\square}_{\lambda}$ for Player \square similarly. We first remark that, given a game G and two strategies π , σ , then $\mathbb{P}^{\pi,\sigma}_{G}$ enjoys the following recursive definition $\mathbb{P}_{G}^{\pi,\sigma}(s) = \varsigma(s)$,

$$\mathbb{P}_{\mathcal{G}}^{\pi,\sigma}(\lambda s') = \mathbb{P}_{\mathcal{G}}^{\pi,\sigma}(\lambda) \sum_{\mathfrak{m},\mathfrak{n}} \mathfrak{d}_{\lambda}^{\Diamond}(\mathfrak{m}) \mathfrak{d}_{\lambda}^{\square}(\mathfrak{n}) \sum_{\mathfrak{m}',\mathfrak{n}'} \Delta((s,\mathfrak{m},\mathfrak{n}),(s',\mathfrak{m}',\mathfrak{n}')). \tag{A.1}$$

Indeed, $\mathfrak{d}_{\lambda}^{\Diamond}(\mathfrak{m})\mathfrak{d}_{\lambda}^{\square}(\mathfrak{n})$ is the probability of having memory element \mathfrak{m} and \mathfrak{n} knowing the path λ and $\sum_{\mathfrak{m}',\mathfrak{n}'} \Delta((s,\mathfrak{m},\mathfrak{n}),(s',\mathfrak{m}',\mathfrak{n}'))$ is the probability to have state s' knowing that λ ends in s with memory element \mathfrak{m}

For the deterministic update strategy $\bar{\pi}$, (A.1) can be written as:

$$\mathbb{P}_{\mathcal{G}}^{\bar{\pi},\sigma}(\lambda s') = \mathbb{P}_{\mathcal{G}}^{\pi,\sigma}(\lambda) \sum_{\mathfrak{n}} \mathfrak{d}_{\lambda}^{\square}(\mathfrak{n}) \sum_{\mathfrak{n}'} \Delta((s,\mathfrak{d}_{\lambda}^{\lozenge},\mathfrak{n}),(s',\mathfrak{d}_{\lambda s'}^{\lozenge},\mathfrak{n}')). \tag{A.2}$$

To show that (A.1) and (A.2) yield the same inductive definition, it suffices to note that the base case is satisfied since $\mathbb{P}_{\mathcal{G}}^{\bar{\pi},\sigma}(s) = \varsigma(s) = \mathbb{P}_{\mathcal{G}}^{\pi,\sigma}(s)$, and show that

$$\Delta((s,\mathfrak{d}_{\lambda}^{\diamondsuit},\mathfrak{n}),(s',\mathfrak{d}_{\lambda s'}^{\diamondsuit},\mathfrak{n}')) = \sum_{\mathfrak{m},\mathfrak{m}'} \mathfrak{d}_{\lambda}^{\diamondsuit}(\mathfrak{m}) \Delta((s,\mathfrak{m},\mathfrak{n}),(s',\mathfrak{m}',\mathfrak{n}')). \tag{A.3}$$

The right-hand side of (A.3) is equal to

$$\sum_{\mathfrak{m}} \mathfrak{d}_{\lambda}^{\Diamond}(\mathfrak{m}) \sum_{\mathfrak{m}'} \pi_{\mathsf{u}}(\mathfrak{m}, s')(\mathfrak{m}') \cdot \sigma_{\mathsf{u}}(\mathfrak{n}, s')(\mathfrak{n}') \cdot \begin{cases} \pi_{\mathsf{c}}(s, \mathfrak{m})(s') & \text{if } s \in S_{\Diamond} \\ \sigma_{\mathsf{c}}(s, \mathfrak{n})(s') & \text{if } s \in S_{\Box} \\ \Delta(s, s') & \text{if } s \in S_{\bigcirc} \end{cases}$$
(A.4)

which after simplification using $\sum_{\mathfrak{m}'} \pi_{\mathsf{u}}(\mathfrak{m}, s')(\mathfrak{m}') = 1$ and $\pi_{\mathsf{c}}(s, \mathfrak{d}_{\lambda}^{\Diamond})(s') = \sum_{\mathfrak{m} \in \mathfrak{M}} \mathfrak{d}_{\lambda}^{\Diamond}(\mathfrak{m}) \pi_{\mathsf{c}}(s, \mathfrak{m})(s')$ yields $\sigma_{\mathsf{u}}(\mathfrak{n}, s')(\mathfrak{n}')$. $\begin{cases} \pi_{\mathbf{c}}(s,\mathfrak{d}_{\lambda}^{\Diamond})(s') & \text{if } s \in S_{\Diamond} \\ \sigma_{\mathbf{c}}(s,\mathfrak{n})(s') & \text{if } s \in S_{\square} \text{ which is equal to the left-hand side of (A.3): } \Delta((s,\mathfrak{d}_{\lambda}^{\Diamond},\mathfrak{n}),(s',\mathfrak{d}_{\lambda s'}^{\Diamond},\mathfrak{n}')). \text{ We have proved that } \end{cases}$

 $\mathbb{P}_G^{\pi,\sigma}$ and $\mathbb{P}_G^{\bar{\pi},\sigma}$ satisfy the same inductive definition, thus they are equal.

Appendix A.2. Some properties of long-run behaviour

We state here several results about the (multi-objective) long-run behaviours of stochastic models as introduced in Section 2.3.

We begin by recalling standard definitions for Markov chains. A *bottom strongly connected component* (BSCC) of a DTMC \mathcal{D} is a nonempty maximal subset of states $\mathcal{B} \subseteq S$ s.t. every state in \mathcal{B} is reachable from any other state in \mathcal{B} , and no state outside \mathcal{B} is reachable. A state $s \in S$ of a DTMC \mathcal{D} is called *recurrent* if it is in some BSCC \mathcal{B} of \mathcal{D} . A state which is not recurrent is called *transient*. A DTMC is *irreducible* if its state space comprises a single BSCC. Given a BSCC $\mathcal{B} \subseteq S$ of a DTMC \mathcal{D} , the *stationary distribution* $\mu_{\mathcal{B}} \in D(S)$ is such that $\sum_{s \in \mathcal{B}} \mu_{\mathcal{B}}(s) \cdot \Delta(s, t) = \mu_{\mathcal{B}}(t)$ holds for all $t \in \mathcal{B}$; its existence and uniqueness is demonstrated, e.g., by Proposition M.2 in [30].

Theorem 17 (Theorem 4.16 in [42]). Let \mathcal{D} be an irreducible DTMC with a single BSCC \mathcal{B} , and let r be a reward structure. The sequence $\frac{1}{N+1} \text{rew}^N(r)(\lambda)$ almost surely converges to $\sum_{s \in \mathcal{B}} \mu_{\mathcal{B}}(s) \cdot r(s)$, where $\lambda \in \Omega_{\mathcal{D}}$.

Remark 6. From the previous theorem, the mean-payoff in a BSCC \mathcal{B} is the same at every state $s \in \mathcal{B}$, and we define, for a reward structure \vec{r} , $mp(\vec{r})(\mathcal{B}) \stackrel{\text{def}}{=} \sum_{s \in \mathcal{B}} \vec{r}(s) \mu_{\mathcal{B}}(s)$.

Lemma 14. Given a finite DTMC \mathcal{D} and a reward structure \vec{r} , for $\lambda \in \Omega_{\mathcal{D}}$ the limit $\lim_{N \to \infty} \frac{1}{N+1} \text{rew}^N(\vec{r})(\lambda)$ almost surely exists and takes values \vec{x} in the finite set $\{\text{mp}(\vec{r})(\mathcal{B}) \mid \mathcal{B} \text{ is a BSCC of } \mathcal{D}\}$ with probability

$$\sum_{\mathcal{B} \text{ s.t. } mp(ec{r})(\mathcal{B})=ec{x}} \mathbb{P}_{\mathcal{D}}(\mathcal{F}\mathcal{B}).$$

Proof. Note first that, for every path $\lambda \in \Omega_{\mathcal{D}}$, $\frac{1}{N+1} \text{rew}^N(\vec{r})(\lambda)$ converges if and only if, for every suffix λ' of λ , $\frac{1}{N+1} \text{rew}^N(\vec{r})(\lambda')$ converges to the same limit. For every recurrent state t of \mathcal{D} , we denote by W_t the set of paths λ such that t is the first recurrent state along λ . Paths $\lambda \in W_t$ have suffixes λ' distributed according to $\mathbb{P}_{\mathcal{D},t}$. By Theorem 17, $\frac{1}{N+1} \text{rew}^N(\vec{r})(\lambda')$ almost surely converges to $\sum_{t' \in \mathcal{B}} \mu_{\mathcal{B}}(t') r(t')$. Thus, with probability $\mathbb{P}_{\mathcal{D}}(\mathsf{F}\,\mathcal{B}) = \sum_{t \in \mathcal{B}} P_{\mathcal{D}}(W_t)$, the sequence $\frac{1}{N+1} \text{rew}^N(\vec{r})(\lambda)$ converges to $\text{mp}(\vec{r})(\mathcal{B})$. To conclude, it suffices to recall that $\sum_{\mathcal{B} \in \mathfrak{B}(\mathcal{D})} P_{\mathcal{D}}(\mathsf{F}\,\mathcal{B}) = 1$, and thus the result holds almost surely.

Remark 7. Consequently, $mp(\vec{r})(\lambda) \ge 0$ for almost all paths of a DTMC \mathcal{D} if and only if $mp(\vec{r})(\mathcal{B}) \ge 0$ for every BSCC \mathcal{B} of \mathcal{D} that is reached.

Lemma 15. Given a finite DTMC and two reward structures r and c with c weakly positive, then the sequence $rew^N(r)/(1 + rew^N(c))$ converges almost surely to mp(r)/mp(c).

Proof. Fix a finite DTMC \mathcal{D} . By Lemma 14, the limit inferior can be replaced by the true limit in mp(c) and mp(r). ratio $(r/c)(\lambda) = \frac{mp(r)(\lambda)}{mp(c)(\lambda)}$. Using the conditions on c imposed by the definition of ratio rewards, we have that, with probability one, mp(c) > 0. Hence,

$$\frac{\mathsf{mp}(r)(\lambda)}{\mathsf{mp}(c)(\lambda)} = \frac{\lim_{N \to \infty} \frac{1}{N+1} \mathsf{rew}^N(r)(\lambda)}{\lim_{N \to \infty} \frac{1}{N+1} \mathsf{rew}^N(c)(\lambda)} = \lim_{N \to \infty} \frac{\frac{1}{N+1} \mathsf{rew}^N(r)(\lambda)}{\frac{1}{N+1} \mathsf{rew}^N(c)(\lambda)}.$$

There is no indeterminacy for this quotient of limits, as the denominator is positive and the numerator is finite. Simplifying the $\frac{1}{N+1}$ term yields the equality $\frac{\mathsf{mp}(r)(\lambda)}{\mathsf{mp}(c)(\lambda)} = \lim_{N \to \infty} \frac{\mathsf{rew}^N(r)(\lambda)}{\mathsf{rew}^N(c)(\lambda)}$. This is almost surely equal to $\mathsf{ratio}(r/c)(\lambda) = \lim_{N \to \infty} \frac{\mathsf{rew}^N(r)(\lambda)}{1+\mathsf{rew}^N(c)(\lambda)}$ since $\mathsf{rew}^N(c)(\lambda) \to +\infty$ almost surely.

As a consequence of Lemma 14 and Lemma 15 it follows that mean-payoff and ratio rewards are linear in finite DTMCs.

Proposition 13. Given a finite DTMC, let \vec{r} be an n-dimensional reward structure and c a weakly positive reward structure. For every $\vec{x} \in \mathbb{R}^n_{>0}$, it almost surely holds that $\mathsf{mp}(\vec{x} \cdot \vec{r}) = \vec{x} \cdot \mathsf{mp}(\vec{r})$ and $\mathsf{ratio}(\vec{x} \cdot \vec{r}/c) = \vec{x} \cdot \mathsf{ratio}(\vec{r}/c)$.

Appendix A.3. Proof of Proposition 2

Proof. First note that $\operatorname{Pratio}(\vec{r}/\vec{c})(\vec{v})$ holds iff $\operatorname{Pratio}((\vec{r}-\vec{v}\bullet\vec{c})/\vec{c})(0)$ holds. So, up to replacing $\vec{r}-\vec{v}\bullet\vec{c}$ by \vec{r} , we can assume without loss of generality that $\vec{v}=0$. We now show equivalence between $\operatorname{Pmp}(\vec{r})(0)$ and $\operatorname{Pratio}(\vec{r}/\vec{c})(0)$. Fix a Player \square strategy σ and a dimension i. By weak positivity of c_i , for almost every path the sequence $(1+\operatorname{rew}^N(c_i)(\lambda))/(N+1)$ has a positive limit inferior and, as it takes only positive values, this implies that it has a positive lower bound. It is also upper-bounded as $(1+\operatorname{rew}^N(c_i)(\lambda))/(N+1) \leq 1+N\max_{s\in S}c_i(s)/(N+1) \to 1+\max_{s\in S}c_i(s)$. Now, note that for two real-valued sequences a_N and b_N such that $\underline{\lim}\ a_N\geq 0$, b_N is positive, inf $b_N>0$ and $\sup b_N<\infty$ then $\underline{\lim}\ a_N/b_N\geq 0$. We apply this remark with sequences $a_N(\lambda)=\operatorname{rew}^N(r_i)(\lambda)/(N+1)$ and $b_N(\lambda)=(1+\operatorname{rew}^N(c_i)(\lambda))/(N+1)$, where λ is a path such that $\operatorname{mp}(c_i)(\lambda)>0$. Then for almost every path the following equivalence holds: $\operatorname{ratio}(r_i/c_i)(\lambda)=\underline{\lim}\ a_N(\lambda)/b_N(\lambda)\geq 0$ iff $\operatorname{mp}(r_i)(\lambda)\geq 0$. Thus, π is winning for $\operatorname{Pratio}(\vec{r}/\vec{c})(0)$ iff it is winning for $\operatorname{Pmp}(\vec{r}-\vec{v}\bullet\vec{c})(0)$.

Appendix B. Proofs of results of Section 3

Appendix B.1. Proof of Theorem 6

The proof of Theorem 6 relies on notions and results presented in Appendix A.2 above. We also state a technical lemma used in the proof of this theorem.

Lemma 16. Let $(X_n)_{\geq n}$ be a sequence of real-valued random variables. If $\mathbb{P}(\underline{\lim}_{n\to\infty}X_n\geq v)=1$, then, for every $\delta>0$, $\mathbb{P}(X_n< v-\delta)\to 0$ as $n\to\infty$.

Proof. Assume that $\mathbb{P}(\underline{\lim}_{n\to\infty} X_n \ge v) = 1$, and fix $\delta > 0$. Let $A_n \stackrel{\text{def}}{=} \bigcup_{m \ge n} \{e \mid X_m(e) < v - \delta\}$. As A_n is a non-increasing sequence of events, as $n \to \infty$, it holds that $\mathbb{P}(A_n) \to \mathbb{P}(\bigcap_{n \ge 1} A_n)$, which is zero by hypothesis of the lemma. Hence $\mathbb{P}(X_n < v - \delta)$ also tends to zero as $n \to \infty$, since $\mathbb{P}(X_n < v - \delta) \le P(A_n)$.

We can now proceed to the proof of Theorem 6.

Proof. Let π be a Player \lozenge strategy achieving $\mathsf{Pmp}(\vec{r})(\vec{0})$. We show that, for every $\varepsilon > 0$, Player \lozenge has a finite DU strategy to achieve $\mathsf{Pmp}(\vec{r} + \varepsilon)(\vec{0})$. Let $\mathcal{M} = \mathcal{G}^{\pi}$.

Denote by $S_{\mathcal{M}}$ and $S_{\mathcal{G}}$ the respective states spaces of \mathcal{M} and \mathcal{G} . Without loss of generality, we assume that the memory of π is the set $\Omega_{\mathcal{G}}^{\text{fin}}$ of paths in \mathcal{G} , and so \mathcal{M} is an infinite tree where each state corresponds to a path $\lambda \in \Omega_{\mathcal{G}}^{\text{fin}}$. Consider the set $S_{\mathcal{M},\mathcal{G}} \stackrel{\text{def}}{=} \{ \text{last}(\lambda) \in S_{\mathcal{G}} | \lambda \in S_{\mathcal{M}} \}$ of states of the game that appear in some state of \mathcal{M} . For every $\lambda \in S_{\mathcal{M}}$, $\mathbb{P}_{\mathcal{M},\lambda}^{\sigma}$ (mp(\vec{r}) ≥ 0) = 1 holds for all Player \square strategies σ . Consider, for each state $s \in S_{\mathcal{M},\mathcal{G}}$, a state $\lambda_s \in S_{\mathcal{M}}$ with last(λ_s) = s (note that, given s, λ_s is not unique, but it suffices to pick an arbitrary one). Then, for every Player \square strategy σ and every state s, it holds that $\mathbb{P}_{\mathcal{M},\lambda_s}^{\sigma}$ ($\underline{\lim}_{N\to\infty}\frac{1}{N+1}\text{rew}^N(\vec{r})\geq 0$) = 1, and hence, by Lemma 16, the quantity $p_{s,h,\sigma} \stackrel{\text{def}}{=} \mathbb{P}_{\mathcal{M},\lambda_s}^{\sigma}$ ($\frac{1}{h+1}\text{rew}^h(\vec{r})\leq -\varepsilon/2$) (defined for a fixed h>0) tends to 0 as $\varepsilon\to 0$. We define $p_{h,\sigma} \stackrel{\text{def}}{=} \max_s p_{s,h,\sigma}$, and let p_h be the maximum $p_{s,h,\sigma}$ over all MD Player \square strategies σ . As the maxima are taken over finite sets, we have that $p_h\to 0$ as $h\to\infty$.

Now for a fixed positive integer h, construct the finite DU Player \Diamond strategy π_h that plays as follows: starting from $s \in S_{M,\mathcal{G}}$, it initialises its memory to λ_s and plays π for h steps; then, from whatever state $t \in S_{M,\mathcal{G}}$ it arrived at, it resets its memory to λ_t and plays π for a further h steps, and so on. Fix any MD strategy of Player \square , and a BSCC \mathcal{B} of the finite induced DTMC $\mathcal{D} = \mathcal{G}^{\pi_h,\sigma}$. Given a state $s \in S_{M,\mathcal{G}}$, let $\tilde{s} = (s,\lambda_s,\mathfrak{n})$ be the corresponding state of \mathcal{D} (where \mathfrak{n} is the only memory element of σ). Note that by definition of π_h , a state of the form \tilde{s} with $s \in S_{M,\mathcal{G}}$ is seen every h steps. In particular \mathcal{B} must contain at least one state \tilde{s}_0 with $s_0 \in S_{M,\mathcal{G}}$. By Remark 6, we then have $\mathbb{P}_{\mathcal{D}}(\mathsf{mp}(\vec{r}) = \mathsf{mp}(\vec{r})(\mathcal{B})) = 1$, so it suffices to find a lower-bound for $\mathsf{mp}(\vec{r})(\mathcal{B})$, which is equivalent to find a lower-bound for $\lim_{N\to\infty}\frac{1}{N+1}\mathbb{E}_{\mathcal{D},\tilde{s}_0}[\mathsf{rew}^N(\vec{r})]$. We have constructed π_h so that every h steps a state in $S_{M,\mathcal{G}}$ is encountered, and hence it holds, for every $k \geq 0$, that $\mathbb{E}_{\mathcal{D},\tilde{s}_0}[\mathsf{rew}^{kh}(\vec{r})] \geq k \cdot \min_{s \in S_{M,\mathcal{G}}}\mathbb{E}_{\mathcal{D},\tilde{s}}[\mathsf{rew}^h(\vec{r})]$. From a state $s \in S_{M,\mathcal{G}}$, with probability less than $p_{h,\sigma}$, the reward accumulated is at least $-h\rho^*$, where $\rho^* = \max_{s \in S_{\mathcal{G},i}}|r_i(s)|$. Further, with probability greater than $1 - p_{h,\sigma}$ the reward accumulated is at least $-h\rho^*$, where $\rho^* = \max_{s \in S_{\mathcal{G},i}}|r_i(s)|$. Further, with probability greater than $1 - p_{h,\sigma}$ the reward accumulated is at least $-h\rho^*$. Therefore, for every state $s \in S_{M,\mathcal{G}}$, $\mathbb{E}_{\mathcal{D},\tilde{s}}[\mathsf{rew}^h(\vec{r})] \geq -p_h\rho^* - (1 - p_h\rho)h\epsilon/2 \geq -p_h\rho^* - h\epsilon/2$. Hence, $\mathbb{E}_{\mathcal{D},\tilde{s}}[\mathsf{rew}^k(\vec{r})] \geq -kh(p_h\rho^* + \epsilon/2)$. Dividing by kh+1 and letting k go towards infinity, we get that $\mathbb{E}_{\mathcal{D},\tilde{s}_0}[\mathsf{mp}(\vec{r})] = \lim_k \frac{1}{kh+1}\mathbb{E}_{\mathcal{D},\tilde{s}_0}[\mathsf{rew}^k(\vec{r})] \geq -p_h\rho^* - \epsilon/2$. We therefore have, for every BSCC \mathcal

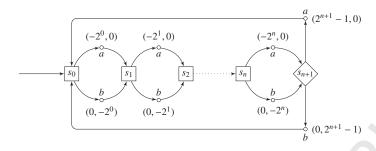


Figure B.15: Finite-memory SU strategies are exponentially more succinct than finite-memory DU strategies for $Pmp(\vec{r})(\vec{0})$.

achieves $\operatorname{Pmp}(\vec{r} + p_h \rho^* + \varepsilon/2)(\vec{0})$ against all MD Player \square strategies. Then, by Theorem 3, Player \lozenge achieves $\operatorname{Pmp}(\vec{r} + p_h \rho^* + \varepsilon/2)(\vec{0})$ against all Player \square strategies. Since $p_h \to 0$, we can find h large enough so that $p_h \rho^* \le \varepsilon/2$, and hence have $\operatorname{Pmp}(\vec{r} + \varepsilon)(\vec{0})$ against every σ .

Appendix B.2. Proof of Proposition 6

Proof. The proof method is based on similar results in [16, 57]. Consider the game \mathcal{G} in Figure B.15 with objective Pmp(\vec{r})(0). From s_0 , when Player \square chooses a sequence w of actions with $|w| \le n+1$, the total rewards are shifted by the vector $-(\alpha_w, 2^{|w|} - 1 - \alpha_w)$, where $\alpha_w \stackrel{\text{def}}{=} \sum_{j=1}^{|w|} \delta_{w_j = a} 2^{j-1}$ is the number corresponding to the binary word w represented with the least significant bit first, with a coding for 1 and b for 0.

Exponential memory DU strategy. We show that there is a winning DU strategy π for Player \diamondsuit with exponential memory $\mathfrak{M} \stackrel{\text{def}}{=} \bigcup_{k=1}^{n+1} \{a,b\}^k$, which at state s_{n+1} plays the distribution v_w defined by $v_w(a) \stackrel{\text{def}}{=} \frac{\alpha_w}{2^{n+1}-1}$ and $v_w(b) \stackrel{\text{def}}{=} 1 - v_w(a)$, where $w \in \mathfrak{M}$ is the current memory, determining α_w . This strategy compensates the shift incurred while going through the Player \square states, and hence, for every loop, the expected total reward is (0,0). Thus also the expected mean-payoff is (0,0). We now show that the almost sure mean-payoff is (0,0). As the strategy π has finite memory, the induced PA \mathcal{G}^{π} is finite, and it suffices to consider MD strategies for Player \square in \mathcal{G}^{π} , cf. Lemma 1. Let R_i be the random variable equals to the total reward of the ith loop. The random variables $(R_i)_{i\geq 0}$ are independent identically distributed and of expectation zero, and we apply the strong law of large numbers to obtain that $(1/N) \sum_{i=0}^N R_i$ converges almost surely towards the common mean 0. Hence, π is winning for almost sure convergence.

Linear memory SU strategy. We now show how the distribution v_w can be simulated by an SU strategy π that contains only 2(n+1) memory elements. Let $\mathfrak{M} \stackrel{\text{def}}{=} \bigcup_{i=0}^{n+1} \{a_i, b_i\}$, and let $\pi_{\mathsf{C}}(s_{n+1}, l_{n+1}) \stackrel{\text{def}}{=} l$ for $l \in \{a, b\}$, that is, l_i is the memory at state s_i corresponding intuitively to the intention of Player \diamond to play the action l.

We denote by $\mathbb{P}(l_i|w)$ the probability of Player \lozenge being in memory l_i after having read the sequence w of length i, starting from s_0 . We now inductively define a memory update function such that, for $i \leq n+1$ and $w \in \{a,b\}^i$, $\mathbb{P}(a_i|w) = \frac{\alpha_w}{2^i-1}$ (and $\mathbb{P}(b_i|w) = 1 - \mathbb{P}(a_i|w)$), so that, in particular, when i = n+1, Player \lozenge chooses the next move according to the distribution v_w . In the base case (when i = 0 and w is the empty word), $\mathbb{P}(a_0|w) = 1$ necessitates that the initial memory as well as the memory when returning after each loop to s_0 is $\pi_d(s_0) \stackrel{\text{def}}{=} \pi_u(l_{n+1}, l') \stackrel{\text{def}}{=} a_0$.

When going from s_i to s_{i+1} via an action q, the memory $l_i \in \{a_i, b_i\}$ in s_i is updated to l'_{i+1} in s_{i+1} , under the condition

$$\mathbb{P}(l'_{i+1}|wq) = \mathbb{P}(a_i|w) \cdot \pi_{\mathsf{u}}(a_i, q)(l'_{i+1}) + \mathbb{P}(a_i|w) \cdot \pi_{\mathsf{u}}(b_i, q)(l'_{i+1}). \tag{B.1}$$

Taking l' = a and taking q to be a or b in (B.1) gives as necessary conditions

$$\mathbb{P}(a_{i+1}|wa) = \frac{\alpha_w + 2^i}{2^{i+1} - 1} = \frac{\alpha_w}{2^i - 1} \cdot \pi_{\mathsf{u}}(a_i, a)(a_{i+1}) + \left(1 - \frac{\alpha_w}{2^i - 1}\right) \cdot \pi_{\mathsf{u}}(b_i, a)(a_{i+1}) \tag{B.2}$$

$$\mathbb{P}(a_{i+1}|wb) = \frac{\alpha_w}{2^{i+1} - 1} = \frac{\alpha_w}{2^i - 1} \cdot \pi_{\mathsf{u}}(a_i, a)(a_{i+1}) + \left(1 - \frac{\alpha_w}{2^i - 1}\right) \cdot \pi_{\mathsf{u}}(b_i, b)(a_{i+1}); \tag{B.3}$$

Taking l' = b in (B.1) gives symmetric conditions.

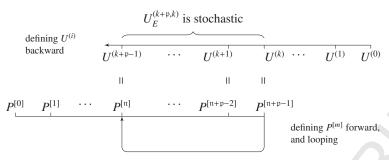


Figure B.16: Matrices $U^{(i)}$ and $P^{[m]}$ to define the ultimately periodic matrix based strategy for Player \Box to spoil $\mathsf{EE}(r-\varepsilon)$ in the proof of Proposition 5.

We now define the memory update function according to these conditions. Define $\pi_{\mathsf{u}}(a_i,a) \stackrel{\text{def}}{=} a_{i+1}$ and $\pi_{\mathsf{u}}(b_i,b) \stackrel{\text{def}}{=} b_{i+1}$, following the intuition that there is no need to change the intention to play a or b, corresponding to the current memory a_i and b_i , respectively, when the intention is followed. Further, using the conditions in (B.2), we obtain, for $l, \bar{l} \in \{a, b\}$ with $\bar{l} \neq l$ that $\pi_{\mathsf{u}}(l_i, \bar{l})(l_{i+1}) \stackrel{\text{def}}{=} \frac{2^{l}-1}{2^{l+1}-1}$ and $\pi_{\mathsf{u}}(l_i, \bar{l})(\bar{l}_{i+1}) \stackrel{\text{def}}{=} \frac{2^{i}}{2^{l+1}-1}$. We have thus defined π so that at s_{n+1} the choices it made were according to v_w . Then, as shown above, this strategy is winning. Moreover, π contains 2(n+1) memory elements, and is therefore exponentially smaller than the DU strategy described above. Note that this strategy could have been described with only two memory elements a and b but the strategy would still need a linear space to encode the memory updates (as distinct game transitions lead to distinct updating rules).

No sub-exponential DU strategy. We show that every finite DU strategy achieving $Pmp(\vec{r})(\vec{0})$ requires at least exponential memory. Consider a finite DU strategy π with less than $2^{n+1}-1$ memory elements. We show that it loses against some finite strategy σ . For every memory element $\mathfrak{m} \in \mathfrak{M}$, there exist at least two distinct sequences $w_{\mathfrak{m}}^{1}$ and $w_{\mathfrak{m}}^{2}$ such that the memory updated from \mathfrak{m} is the same after seeing either $w_{\mathfrak{m}}^{1}$ or $w_{\mathfrak{m}}^{2}$, denoted $f(\mathfrak{m})$, and such that $\mathsf{rew}(w_{\mathfrak{m}}^{1}) \geq \mathsf{rew}(w_{\mathfrak{m}}^{2}) + 1$ for r_{1} . Consider the finite memory strategy σ^{1} (resp. σ^{2}) that simulates the deterministic memory of π and plays the actions in $w_{\mathfrak{m}}^{1}$ (resp. $w_{\mathfrak{m}}^{2}$) from s_{0} and memory \mathfrak{m} . The strategy π reacts to $f(\mathfrak{m})$ at state s_{n+1} , so the rewards associated to $w_{\mathfrak{m}}^{1}$ or $w_{\mathfrak{m}}^{2}$ are not compensated. Let $\mathcal{D}_{i} \stackrel{\text{def}}{=} \mathcal{G}^{\pi,\sigma^{i}}$. We extend the reasoning to k loops as follows. For pairwise associated sequences $w^{i} = w_{\mathfrak{m}_{1}}^{i} l_{1} w_{\mathfrak{m}_{2}}^{i} l_{2} \cdots w_{\mathfrak{m}_{k}}^{i} l_{k}$ with $i \in \{1,2\}$, it holds that $\mathsf{rew}(r_{1})(w^{1}) \geq \mathsf{rew}(r_{1})(w^{2}) + k$ and $\mathbb{P}_{\mathcal{D}_{1}}(w^{1}) = \mathbb{P}_{\mathcal{D}_{2}}(w^{2})$. Hence, the average rewards in the two DTMCs are separated by 1/L, where L is the length of a loop. Hence, if π wins against σ^{1} , then $\mathbb{P}_{\mathcal{D}_{1}}(\mathsf{mp}(r_{1}) = 0) = \mathbb{P}_{\mathcal{D}_{1}}(\mathsf{mp}(r_{2}) = 0) = 1$, and hence, $\mathbb{P}_{\mathcal{D}_{2}}(\mathsf{mp}(r_{1}) \leq -1/L) = 1$. The strategy π loses against σ^{1} or σ^{2} , which concludes the proof.

Appendix B.3. Proof of Proposition 5

The proof uses notations on matrix and vectors that we introduce now. We recall that we use boldface notation for vectors over the state space; in particular, given a scalar a, we write \mathbf{a} for the vector with a in each component. With this notation a one-dimensional reward structure r is represented by the vector \mathbf{r} whose sth component is r(s). We use the notation $[\mathbf{v}]_s$ to refer to the sth component v_s of a vector \mathbf{v} . and use the notation $[A]_{s,t}$ to refer to the sth row and tth column of a matrix a. We use the induced matrix norm of a defined by $\|A\|_{\infty} \stackrel{\text{def}}{=} \max_{1 \le i \le m} \sum_{j=1}^{n} |A_{ij}|$. This norm is sub-multiplicative, i.e. $\|AB\|_{\infty} \le \|A\|_{\infty} \|B\|_{\infty}$. Given a vector \mathbf{v} with entries indexed by the state space a0, we denote by a0 the vector with entries indexed by the subset a1 such that a2 such that a3 for a4 with entries indexed by a5 set a5, we denote by a6 such that a6 set a7 such that a8 set a9 we write a9 set a9 set a9 identity matrix with entries indexed by a9. A square matrix a9 with nonnegative real entries is a9 set a9 identity matrix with entries indexed by a9. A square matrix a9 with nonnegative real entries is a9 set a9. The particular vectors are interesting in a9 with nonnegative real entries is a9 set a9 identity matrix with entries indexed by a9. A square matrix a9 with nonnegative real entries is a9 set a9 set a9. The particular vectors are interesting and a9 square matrix a9 with nonnegative real entries is a9. Square matrix a9 with nonnegative real entries in a9 square matrix a9 with nonnegative real entries in a9. Square matrix a9 with nonnegative real entries in a9 square matrix a9 with nonnegative real entries in a9.

Proof. The proof is as follows. For k large enough and for states in S_{∞} , there is no cut-off used to define \mathbf{u}^k , and hence \mathbf{u}^k satisfies the same linear equations as the expected non-truncated energy \mathbf{e}^k , which we proceed to express in terms of matrices. We then construct a finite memory Player \square strategy from the sequence \mathbf{u}^k and the associated matrices,

so that the expected energy with respect to the reward r is bounded. By operating with the reward $r - \varepsilon$, we substract $-\varepsilon$ at each step, and so the expected energy goes to $-\infty$, falsifying $\mathsf{EE}(r-\varepsilon)$.

Let k_0 be the least integer such that, for all $k \ge k_0$, $u_s^k < 0$ for every $s \in S_\infty$. For $k \ge 0$ and $s \in S_\square$, let $\sigma_k(s)$ be a successor of s, for which the minimum is attained, that is, $u_s^{k+1} = \min\{0, r(s) + u_{\sigma_k(s)}^k\}$. Let $U^{(k)}$ be the $S \times S$ matrix for \mathcal{M} defined by

$$U_{s,t}^{(k)} = \begin{cases} 1 & \text{if } s \in S_{\square} \land t = \sigma_k(s) \\ \Delta(s,t) & \text{if } s \in S_{\bigcirc} \\ 0 & \text{otherwise,} \end{cases}$$

for all $s, t \in S$. Let $U^{(j,i)}$ be the matrix product $U^{(j-1)} \cdot U^{(j-2)} \cdot \cdots \cdot U^{(i)}$ for j > i, and let $U^{(i,i)} = I$ (the identity). We use the following block decomposition of the matrix $U^{(k)}$

$$U^{(k)} = \begin{pmatrix} U_{S_{\infty}}^{(k)} & U_{S_{\infty}, S_{fin}}^{(k)} \\ 0 & U_{S_{fin}}^{(k)} \end{pmatrix}.$$
 (B.4)

The zero block in the lower left corner of $U^{(k)}$ arises because all successors of states in S_{fin} are in S_{fin} . In particular, $U^{(j,l)}_{S_{\infty}} = U^{(j-1)}_{S_{\infty}} \cdot U^{(j-2)}_{S_{\infty}} \cdot \cdots \cdot U^{(l)}_{S_{\infty}}$.

Remark 8. For every $k \ge k_0$, it holds that $\mathbf{u}_{S_{\infty}}^{k+1} = \mathbf{r}_{S_{\infty}} + [U^{(k)} \cdot \mathbf{u}^k]_{S_{\infty}}$.

We now proceed to show Proposition 5 as a consequence of Lemmas 17–22.

Lemma 17. For every $l \ge 0$, there exists a constant $b_l \ge 0$, such that, for every $k \ge k_0$, it holds that $\|\mathbf{u}_{S_{\infty}}^{k+l}\|_{\infty} \le \|U_{S_{\infty}}^{(k+l,k)}\|_{\infty} \cdot \|\mathbf{u}_{S_{\infty}}^{k}\|_{\infty} + b_{l}$.

Proof. We show the following more general statement by induction:

$$\mathbf{u}_{S_m}^{k+l} \ge U_{S_m}^{(k+l,k)} \cdot \mathbf{u}_{S_m}^k + \mathbf{a} - l\boldsymbol{\rho}^*, \tag{B.5}$$

where **a** and ρ^* are the constant vector with equal components $a \stackrel{\text{def}}{=} \min_{s \in S_{\text{fin}}} u_s^*$ and $\rho^* \stackrel{\text{def}}{=} \max_{s \in S} |r(s)|$, respectively.

The base case, for l=0, is satisfied. Now assume that the result is true for some index l, and we show that it implies that it is true for l+1. Recall that for $k \ge k_0$ and $s \in S_{\infty}$, there is no cut-off of positive values in u_s^k . We thus obtain

$$\begin{split} \mathbf{u}_{S_{\infty}}^{k+l+1} &= \mathbf{r}_{S_{\infty}} + [U^{(k+l)} \cdot \mathbf{u}^{k+l}]_{S_{\infty}} & \text{(Remark 8)} \\ &= \mathbf{r}_{S_{\infty}} + U_{S_{\infty}}^{(k+l)} \cdot \mathbf{u}_{S_{\infty}}^{k+l} + U_{S_{\infty},S_{\mathrm{fin}}}^{(k+l)} \cdot \mathbf{u}_{S_{\mathrm{fin}}}^{k+l} & \text{(by (B.4))} \\ &\geq -\rho^* + U_{S_{\infty}}^{(k+l)} \cdot \mathbf{u}_{S_{\infty}}^{k+l} + U_{S_{\infty},S_{\mathrm{fin}}}^{(k+l)} \cdot \mathbf{a} & \text{(definition of } \mathbf{a} \text{ and } \boldsymbol{\rho}^*) \\ &\geq -\rho^* + U_{S_{\infty}}^{(k+l)} \cdot (U_{S_{\infty}}^{(k+l,k)} \cdot \mathbf{u}_{S_{\infty}}^k + \mathbf{a} - l\boldsymbol{\rho}^*) + U_{S_{\infty},S_{\mathrm{fin}}}^{(k+l)} \cdot \mathbf{a} & \text{(induction hypothesis)} \\ &\geq U_{S_{\infty}}^{(k+l+1,k)} \cdot \mathbf{u}_{S_{\infty}}^k + (U_{S_{\infty}}^{(k+l)} + U_{S_{\infty},S_{\mathrm{fin}}}^{(k+l)}) \cdot \mathbf{a} - (l+1)\boldsymbol{\rho}^* & \text{(rearranging)} \\ &\geq U_{S_{\infty}}^{(k+l+1,k)} \cdot \mathbf{u}_{S_{\infty}}^k + \mathbf{a} - (l+1)\boldsymbol{\rho}^*. & \text{(}U^{(k+l)} \text{ is stochastic)} \end{split}$$

It now suffices to define $b_l \stackrel{\text{def}}{=} a - l\rho^*$, and take the norm in (B.5):

$$\begin{aligned} \|\mathbf{u}_{S_{\infty}}^{k+l}\|_{\infty} &= \max_{s \in S_{\infty}} (-\mathbf{u}_{s}^{k+l}) & \text{(norm)} \\ &\leq \max_{s \in S_{\infty}} (U_{S_{\infty}}^{(k+l,k)} \cdot (-\mathbf{u}_{S_{\infty}}^{k}) + b_{l}) & \text{(by (B.5))} \\ &= \|U_{S_{\infty}}^{(k+l,k)} \cdot (-\mathbf{u}_{S_{\infty}}^{k})\|_{\infty} + b_{l} \\ &\leq \|U_{S_{\infty}}^{(k+l,k)}\|_{\infty} \cdot \|\mathbf{u}_{S_{\infty}}^{k}\|_{\infty} + b_{l}. & \text{(sub-multiplicativity)} \end{aligned}$$

Lemma 18. Let $b \ge 0$, and let $(x_m)_{m \in \mathbb{N}}$ and $(c_m)_{m \in \mathbb{N}}$ be non-negative real sequences. If $x_m \to \infty$ as $m \to \infty$, and, for every $m \ge 0$, $x_{m+1} \le c_m x_m + b$ and $c_m \le 1$, then it holds that $\sup_{m \ge 0} c_m = 1$.

Proof. Assume toward a contradiction that there exists $\theta < 1$ such that, for every m, $c_m \le \theta$. As $x_m \to \infty$, there exists m_0 such that, for every $m \ge m_0$, it holds that $x_m > b/(1-\theta)$, and hence that $x_{m+1}/x_m \le c_m + b/x_m < \theta + b/(b/(1-\theta)) = 1$. This yields that, from the index m_0 , the sequence $(x_m)_{m \ge m_0}$ is decreasing, and thus cannot go to $+\infty$, a contradiction.

Lemma 19. If $S_{\infty} \neq \emptyset$, then there exists a set $E \subseteq S_{\infty}$ and indices $j > i \geq k_0$ such that $U_E^{(i,j)}$ is stochastic.

Proof. Given a subset of states $A \subseteq S$, and a $S \times S$ stochastic matrix P, we define Reach $(A, P) \stackrel{\text{def}}{=} \{s' \mid \exists s \in A \cdot P_{s,s'} > 0\}$. Note that P_E is stochastic if and only if Reach $(E, P) \subseteq E$, and further that Reach $(E, P) \subseteq$

$$\begin{split} \operatorname{Reach}(E_{s,k},U^{(j,i)}) &= \operatorname{Reach}(\operatorname{Reach}(\{s\},U^{(k+l,j)}),U^{(j,i)}) \\ &= \operatorname{Reach}(\{s\},U^{(k+l,j)}\cdot U^{(j,i)}) \\ &= \operatorname{Reach}(\{s\},U^{(k+l,j)}) \\ &= E_{s,k}. \end{split}$$

Hence $U_{E_{s,k}}^{(j,i)}$ is stochastic. It now suffices to prove that $E_{s,k} \subseteq S_{\infty}$ for some $s \in S_{\infty}$ and $k \ge k_0$. Assume for the sake of contradiction that $E_{s,k} \cap S_{\text{fin}} \neq \emptyset$ for every $s \in S_{\infty}$ and $k \ge k_0$. By definition of $E_{s,k}$ there exists i such that $E_{s,k} = \text{Reach}(\{s\}, U^{(k+l,i)})$ and hence such that $U_{s,S,\text{fin}}^{(k+l,i)} \neq 0$. Now recall that $U_{S_{\text{fin}}}^{(i,k)}$ is stochastic, since every successor of a state in S_{fin} is in S_{fin} . We deduce that $U_{s,S,\text{fin}}^{(k+l,i)} = U_{s,S,\text{fin}}^{(k+l,i)} \vee U_{S_{\text{fin}}}^{(i,k)} \neq 0$. The matrix $U^{(k+l,k)}$ is the product of l matrices, each of which has entries either zero or greater than p_{\min}^l , the minimal probability on edges of the PA M. Therefore, coefficients of $U^{(k+l,k)}$ are either zero or greater than P_{\min}^l , and so $\|U_{s,S,\text{fin}}^{(k+l,k)}\|_{\infty} \geq p_{\min}^l$. Since $U^{(k+l,k)}$ is stochastic, its row-sum are equal to one, that is, $\sum_{s' \in S_{\text{fin}}} U_{s,s'}^{(k+l,k)} + \sum_{s' \in S_{\infty}} U_{s,s'}^{(k+l,k)} = 1$, for every $s \in S$ and $k \geq 0$. This implies that $\sum_{s' \in S_{\infty}} U_{s,s'}^{(k+l,k)} \leq 1 - p_{\min}^l$, for every $s \in S$ and $k \geq 0$. We let $c_m \stackrel{\text{def}}{=} \|U_{S_{\infty}}^{(k+l,k)+l,k}\|_{\infty}$, and have by the above discussion that $\sup_m c_m \leq 1 - p_{\min}^l < 1$, to which we now derive a contradiction. Let $x_m \stackrel{\text{def}}{=} \|\mathbf{u}_{S_{\infty}}^{(k-l,m)}\|_{\infty}$, for which we have, by Lemma 17, that $x_{m+1} \leq c_m \cdot x_m + b_l$. We now use Lemma 18 to obtain $\sup_m c_m = 1$, a contradiction.

We now define Player \square strategies and the expected energies they induce in terms of matrices. We consider *ultimately periodic* sequences of matrices that after a finite prefix $\mathfrak n$ keep repeating the same $\mathfrak p$ elements in a loop. Formally, an ultimately periodic sequence $(P^{[m]})_{m\in\mathbb N}$ with *prefix* $\mathfrak n$ and *period* $\mathfrak p$ is such that the *m*th element is equal to the element of index $m \mod (\mathfrak n, \mathfrak p)$ (that is, $P^{[m]} = P^{[m \mod (\mathfrak n, \mathfrak p)]}$), where

$$m \mod (\mathfrak{n}, \mathfrak{p}) \stackrel{\text{def}}{=} \begin{cases} m & \text{if } m \leq \mathfrak{n} + \mathfrak{p} - 1 \\ \mathfrak{n} + (m - \mathfrak{n} \mod \mathfrak{p}) & \text{otherwise.} \end{cases}$$

A stochastic matrix P conforms to \mathcal{M} if, for every $s \in S_{\bigcirc}$ and all $s' \in \Delta(s)$, it holds that $P_{s,s'} = \Delta(s,s')$. We define a finite strategy by an ultimately periodic sequence of matrices $(P^{[k]})_{k \in \mathbb{N}}$ that conform to \mathcal{M} : the memory is a counter $m \le \mathfrak{n} + \mathfrak{p}$ that is updated at every step from m to $m+1 \mod (\mathfrak{n},\mathfrak{p})$; and in state s and memory m the choice function selects s' with probability $P^{[m]}_{s,s'}$. To express several steps of the strategy, we introduce the interval matrices $P^{[m,m+l]} = P^{[m]} \cdots P^{[m+l-1]}$ with $P^{[m,m]} = I_S$, and the corresponding cumulative matrices $\hat{P}^{[m,m+l]} = \sum_{q=0}^{l-1} P^{[m,m+q]}$ with $\hat{P}^{[m,m]} = 0$.

For every step $k \ge 0$ and memory m, we define a vector $\mathbf{e}_{(m)}^k(r)$, where the entry for s is defined as $e_{s,m}^k$ in the PA with reward structure r, that is, the expected energy for r after k steps at state (s, m) of the induced DTMC.

Lemma 20. Given a strategy based on an ultimately periodic matrix with prefix \mathfrak{n} and period \mathfrak{p} , it holds that $\mathbf{e}_{(m \mod (\mathfrak{n}, \mathfrak{p}))}^{l}(r) = \hat{P}^{[m, m+l]} \cdot \mathbf{r}$, for all $l \geq 0$ and $m \geq 0$.

Proof. We show this statement by induction on l. The base case for l = 0 is satisfied. Now assume the statement holds for l, and we show for l + 1. As the strategy with memory $m \mod (\mathfrak{n}, \mathfrak{p})$ plays according to the matrix $P^{[m]}$, and increments its memory to $m + 1 \mod (\mathfrak{n}, \mathfrak{p})$, it holds that

$$\mathbf{e}_{(m \mod (\mathfrak{n},\mathfrak{p}))}^{l+1}(r) = \mathbf{r} + P^{[m]} \cdot \mathbf{e}_{(m+1 \mod (\mathfrak{n},\mathfrak{p}))}^{l}(r)$$

$$= P^{[m]} \cdot \hat{P}^{[m+1,m+l+1]} \cdot \mathbf{r}$$

$$= \hat{P}^{[m,m+l+1]} \cdot \mathbf{r}.$$

We now show that the strategy based on ultimately periodic matrices is able to decrease the expected energy in the periodic phase by a nonzero amount every p number of steps.

Lemma 21. Given a strategy based on an ultimately periodic matrix with prefix $\mathfrak n$ and period $\mathfrak p$, and a set E such that $A = P_E^{[\mathfrak n,\mathfrak n+\mathfrak p]}$ is stochastic, then, for all $j \geq 0$, it holds that $[e_{(\mathfrak n)}^{j\mathfrak p}(r-\varepsilon)]_E = \sum_{k=0}^{j-1} A^k \cdot [\hat P^{[\mathfrak n,\mathfrak n+\mathfrak p]} \cdot \mathbf r]_E - j\mathfrak p \varepsilon$.

Proof. Note first that $P^{[\mathfrak{n},\mathfrak{n}+j\mathfrak{p}]}=(P^{[\mathfrak{n},\mathfrak{n}+\mathfrak{p}]})^j$, that $\hat{P}^{[\mathfrak{n},\mathfrak{n}+j\mathfrak{p}]}\cdot \mathbf{1}=j\mathfrak{p}$, and that $\hat{P}^{[\mathfrak{n},\mathfrak{n}+j\mathfrak{p}]}=\sum_{k=0}^{j-1}(P^{[\mathfrak{n},\mathfrak{n}+\mathfrak{p}]})^k\cdot \hat{P}^{[\mathfrak{n},\mathfrak{n}+\mathfrak{p}]}$. Since the restriction of $P^{[\mathfrak{n},\mathfrak{n}+\mathfrak{p}]}$ to the set E is stochastic, it holds, for every vector \mathbf{x} , that $[P^{[\mathfrak{n},\mathfrak{n}+\mathfrak{p}]}\cdot \mathbf{x}]_E=P^{[\mathfrak{n},\mathfrak{n}+\mathfrak{p}]}_E\cdot \mathbf{x}_E$. We apply Lemma 20 with $l=j\mathfrak{p}$ and $m=\mathfrak{n}$, and thus get, for all $j\geq 0$, that

$$\begin{aligned} [\mathbf{e}_{(\mathbf{n})}^{jp}(r-\varepsilon)]_E &= [\hat{P}^{[\mathbf{n},\mathbf{n}+jp]} \cdot (\mathbf{r}-\varepsilon)]_E \\ &= \left[\sum_{k=0}^{j-1} (P^{[\mathbf{n},\mathbf{n}+p]})^k \cdot \hat{P}^{[\mathbf{n},\mathbf{n}+p]} \cdot \mathbf{r} - j\mathfrak{p}\varepsilon\right]_E \\ &= \sum_{k=0}^{j-1} (P^{[\mathbf{n},\mathbf{n}+p]})^k \cdot [\hat{P}^{[\mathbf{n},\mathbf{n}+p]} \cdot \mathbf{r}]_E - j\mathfrak{p}\varepsilon. \end{aligned}$$

We now describe a situation where the cut-off of positive values in the definition of \mathbf{u}^k does not occur.

Lemma 22. For $k \ge k_0$, and $E \subseteq S_{\infty}$ such that $U_E^{(k+\mathfrak{p},k)}$ is stochastic,

$$\mathbf{u}_{E}^{k+\mathfrak{p}} = [\hat{U}^{(k+\mathfrak{p},k)} \cdot \mathbf{r}]_{E} + U_{E}^{(k+\mathfrak{p},k)} \cdot \mathbf{u}_{E}^{k}. \tag{B.6}$$

Proof. We show, by induction on l, the following more general statement: for all $l \ge 0$, $k \ge k_0$, and $E, E' \subseteq S_\infty$ such that $E' = \text{Reach}(E, U^{(k+l,k)})$, it holds that

$$\mathbf{u}_E^{k+l} = [\hat{U}^{(k+l,k)} \cdot \mathbf{r}]_E + U_{E,E'}^{(k+l,k)} \cdot \mathbf{u}_{E'}^k.$$

The base case for l=0 is straightforward. Now suppose that the result holds for l, and we show it for l+1. Let $k\geq k_0$ and $E,E'\subseteq S_\infty$ such that $E'=\mathrm{Reach}(E,U^{(k+l+1,k)})$, and let $E''=\mathrm{Reach}(E,U^{(k+l+1,k+1)})$. Note that $\mathrm{Reach}(E'',U^{(k)})=E'\subseteq S_\infty$, and hence that $E''\subseteq S_\infty$, since every predecessor of a state in S_∞ is in S_∞ . As $k+1\geq k_0$ and $E''\subseteq S_\infty$, it holds that $\mathbf{u}_{E''}^{k+1}=\mathbf{r}_{E''}+U_{E'',E'}^{(k+1)}\mathbf{u}_{E'}^k$, and hence we can conclude the proof by

$$\begin{aligned} \mathbf{u}_{E}^{k+l+1} &= [\hat{U}^{(k+l+1,k+1)} \cdot \mathbf{r}]_{E} + U_{E,E''}^{(k+l+1,k+1)} \cdot \mathbf{u}_{E''}^{k+1} \\ &= [\hat{U}^{(k+l+1,k+1)} \cdot \mathbf{r}]_{E} + U_{E,E''}^{(k+l+1,k+1)} \cdot \mathbf{r}_{E''} + U_{E,E''}^{(k+l+1,k+1)} \cdot U_{E'',E'}^{(k+1)} \cdot \mathbf{u}_{E'}^{k} \\ &= [\hat{U}^{(k+l+1,k)} \cdot \mathbf{r}]_{E} + U_{E,E'}^{(k+l+1,k)} \cdot \mathbf{u}_{E'}^{k}, \end{aligned}$$

where the first equality is due to the induction hypothesis.

We can now complete the proof of Proposition 5. We assume that $S_{\infty} \neq \emptyset$. By Lemma 19, there exists a set $E \subseteq S_{\infty}$, and indices $k_0 \leq k < k + \mathfrak{p}$, such that $\operatorname{Reach}(E, U^{(k+\mathfrak{p},k)}) = E$. By Lemma 22, it holds that $\mathbf{u}_E^{k+\mathfrak{p}} = \mathbf{y} + A \cdot \mathbf{u}_E^k$ with $\mathbf{y} = [\hat{U}^{(k+\mathfrak{p},k)} \cdot \mathbf{r}]_E$ and $A = U_E^{(k+\mathfrak{p},k)}$.

We define Player \square strategy $\overset{\iota}{\sigma}$ based on ultimately periodic matrices $U^{(k+\mathfrak{p})}, \ldots, U^{(k+1)}$ (involved in the definition of A). The prefix of this strategy ensures that the set E is reachable from the initial states, and hence that

the states of E are in the induced DTMC \mathcal{M}^{σ} . We let $P^{[0]}, \dots P^{[n-1]}$ be matrices that conform to \mathcal{M} , such that $E \cap \text{Reach}(\text{supp}(\varsigma), P^{[0,n-1]}) \neq \emptyset$; for instance, we can take $P^{[i]}$ to be the matrix corresponding to choosing successors in Player \square states with uniform probability. Then we define the periodic phase with \mathfrak{p} matrices by letting $P^{[n+i]} = U^{(k+\mathfrak{p}-i)}$ for $0 \le i \le \mathfrak{p} - 1$ (see Figure B.16).

Note that $P^{[\mathfrak{n},\mathfrak{n}+\mathfrak{p}]} = U^{(k+\mathfrak{p},k)}$ and $\mathbf{y} \stackrel{\mathrm{def}}{=} [\hat{U}^{(k+\mathfrak{p},k)} \cdot \mathbf{r}]_E = [\hat{P}^{[\mathfrak{n},\mathfrak{n}+\mathfrak{p}]} \cdot \mathbf{r}]_E$. Further, for states $s \in E \cap \mathrm{Reach}(\mathrm{supp}(\varsigma), P^{[0,\mathfrak{n}-1]})$, we have that the state (s,\mathfrak{n}) is in the induced DTMC \mathcal{M}^σ . We now show that $e^{j\mathfrak{p}}_{(s,\mathfrak{n})} \to -\infty$ as $j \to \infty$, and hence that the strategy σ spoils $\mathrm{EE}(r-\varepsilon)$. From Lemma 21 we have $[e^{j\mathfrak{p}}_{(\mathfrak{n})}(r-\varepsilon)]_E = \sum_{k=0}^{j-1} A^k \cdot \mathbf{y} - j\mathfrak{p}\varepsilon$. It remains to show that the sequence $\sum_{k=0}^{j-1} A^k \cdot \mathbf{y}$ is upper-bounded, in order to have convergence of $\mathbf{e}^{j\mathfrak{p}}_{(s,\mathfrak{n})}$ toward $-\infty$. We have $\mathbf{y} = \mathbf{u}_E^{k+\mathfrak{p}} - A \cdot \mathbf{u}_E^k \leq (I-A) \cdot \mathbf{u}_E^k$, and thus

$$\left(\sum_{i=0}^{j-1}A^i\right)\cdot\mathbf{y}\leq\left(\sum_{i=0}^{j-1}A^i\right)\cdot(I-A)\cdot\mathbf{u}_E^k=(I-A^j)\cdot\mathbf{u}_E^k\leq-A^j\cdot\mathbf{u}_E^k\leq\|\mathbf{u}_E^k\|_\infty\cdot\mathbf{1},$$

where we use for the last inequality that $||A^j||_{\infty} = 1$, since A^j is stochastic.

Appendix B.4. Proof of Lemma 4

Proof. Fix a Player \square strategy σ for \mathcal{M} . We first show by induction on k that $u_s^k \le e_{s,\mathfrak{m}}^k$ for every s and \mathfrak{m} . The base case for k=0 is satisfied as $e_{s,\mathfrak{m}}^k=u_s^k=0$. Now assume that $u_s^k \le e_{s,\mathfrak{m}}^k$ holds for some k and for every s, \mathfrak{m} , and we show it holds for k+1. In each Player \square state s, we have

$$\begin{split} u_s^{k+1} & \leq r(s) + \min_{t \in \Delta(s)} u_t^k \\ & \leq r(s) + \sum_{(t,\mathfrak{m}') \in \Delta^{\sigma}(s,\mathfrak{m})} \Delta^{\sigma}((s,\mathfrak{m}),(t,\mathfrak{m}')) u_t^k \\ & \leq r(s) + \sum_{(t,\mathfrak{m}') \in \Delta^{\sigma}(s,\mathfrak{m})} \Delta^{\sigma}((s,\mathfrak{m}),(t,\mathfrak{m}')) e_{t,\mathfrak{m}'}^k \quad \text{(induction hypothesis)} \\ & = e_{s,\mathfrak{m}}^{k+1}. \end{split}$$

Since Player \square can falsify EE(r), for every v_0 there is (s, m) such that $e_{s,m}^k \le v_0$ and hence $u_s^* \le u_s^k \le e_{s,m}^k \le v_0$. As \mathcal{M} is finite and v_0 can be taken arbitrary low, it means that there is one state for which $u_s^* = -\infty$, and thus $S_\infty \ne \emptyset$. \square

Appendix B.5. Proof of Lemma 5

Proof. Instead of proving $\forall \sigma . \mathcal{G}^{\pi,\sigma} \models \psi \Rightarrow \forall \sigma . \mathcal{G}^{\pi,\sigma} \models \varphi$, we prove the stronger statement $\forall \sigma . (\mathcal{G}^{\pi,\sigma} \models \psi \Rightarrow \mathcal{G}^{\pi,\sigma} \models \varphi)$. Fix finite strategies π and σ . Let $\mathcal{D} = \mathcal{G}^{\pi,\sigma}$, which is a finite DTMC. By Lemma 14, the limit $\lim_{N\to\infty} \frac{1}{N+1} \text{rew}^N(\vec{r})$ almost surely exists. For every N and path λ , we have $|\frac{1}{N+1} \text{rew}^N(\vec{r})(\lambda)| \leq \max_{s \in S_{\mathcal{D}}} |\vec{r}(s)|$, where the maximum is taken componentwise, and so we have

$$\mathbb{E}_{\mathcal{D},s} \left[\lim_{N \to \infty} \frac{1}{N+1} \mathsf{rew}^N(\vec{r}) \right] = \lim_{N \to \infty} \mathbb{E}_{\mathcal{D},s} \left[\frac{1}{N+1} \mathsf{rew}^N(\vec{r}) \right]$$
(B.7)

by the Lebesgue dominated convergence theorem.

Proof of (i). By Theorem 3 it suffices to consider MD Player \square strategies. Assume that $\mathsf{EE}(\vec{r})$ is satisfied. Fix a finite shortfall \vec{v}_0 such that, for all $s \in S_{\mathcal{D}}$, it holds that

$$\begin{split} \forall N &\geq 0 \ . \ \mathbb{E}_{\mathcal{D},s}[\mathsf{rew}^N(\vec{r})] \geq \vec{v}_0 \qquad \qquad \text{(by assumption)} \\ \forall N &\geq 0 \ . \ \mathbb{E}_{\mathcal{D},s}[\frac{1}{N+1}\mathsf{rew}^N(\vec{r})] \geq \frac{\vec{v}_0}{N+1} \qquad \text{(dividing by } N+1) \\ \lim_{N \to \infty} \mathbb{E}_{\mathcal{D},s}\left[\frac{1}{N+1}\mathsf{rew}^N(\vec{r})\right] \geq 0 \qquad \qquad \text{(taking limits)} \\ \mathbb{E}_{\mathcal{D},s}\left[\lim_{N \to \infty} \frac{1}{N+1}\mathsf{rew}^N(\vec{r})\right] \geq 0. \qquad \qquad \text{(by (B.7))} \end{split}$$

From Lemma 14, when s is in a BSCC \mathcal{B} of \mathcal{D} (that is, $\mathbb{P}_{\mathcal{D},s}(\mathsf{F}\,\mathcal{B})=1$), we have $\mathsf{mp}(\vec{r})(\mathcal{B})=\mathbb{E}_{\mathcal{D},s}[\lim_{N\to\infty}\frac{1}{N+1}\mathsf{rew}^N(\vec{r})]$. Therefore, for every BSCC \mathcal{B} , $\mathsf{mp}(\vec{r})(\mathcal{B})\geq\vec{0}$. Thus, again by Lemma 14, $\mathsf{Pmp}(\vec{r})(\vec{0})$ is satisfied.

Proof of (ii). Assume π is DU, and so, by Proposition 6, it suffices to consider finite Player \square strategies. Fix $\varepsilon > 0$. Assume that $\mathcal{D} \models \mathsf{Pmp}(\vec{r})(\vec{0})$, and so, by Lemma 14, $\mathsf{rew}(\vec{r})(\mathcal{B}) \geq 0$ for every BSCC \mathcal{B} of \mathcal{D} . Thus, for all states $s \in S_{\mathcal{D}}$, we have

$$\begin{split} \lim_{N \to \infty} \mathbb{E}_{\mathcal{D},s} [\frac{1}{N+1} \mathsf{rew}^N(\vec{r})] &\geq \vec{0} \qquad \qquad (\text{by (B.7)}) \\ \exists N_{\varepsilon,s} \geq 0 \,.\, \forall N \geq N_{\varepsilon,s} \,.\, \mathbb{E}_{\mathcal{D},s} [\frac{1}{N+1} \mathsf{rew}^N(\vec{r})] \geq -\vec{\varepsilon} \qquad (\text{definition of limit}) \\ \forall N \geq 0 \,.\, \mathbb{E}_{\mathcal{D},s} [\mathsf{rew}^N(\vec{r})] \geq -(N+1) \cdot \vec{\varepsilon} + \vec{v}_0^s \\ \qquad \qquad (\text{fixing } N_{\varepsilon,s} \text{ and letting } v_{0,i}^s \stackrel{\text{def}}{=} \min_{N \leq N_{\varepsilon,s}} \mathbb{E}_{\mathcal{D},s} [\mathsf{rew}^N(r_i)]) \\ \forall N \geq 0 \,.\, \mathbb{E}_{\mathcal{D},s} [\mathsf{rew}^N(\vec{r} + \varepsilon)] \geq \vec{v}_0^s \geq \vec{v}_0. \qquad (\text{letting } v_{0,i} \stackrel{\text{def}}{=} \min_{\tau \in \Gamma} v_{0,i}^s) \end{split}$$

Since \vec{v}_0 is finite, \mathcal{D} satisfies $\mathsf{EE}(\vec{r} + \vec{\varepsilon})$.

Appendix B.6. Proof of Proposition 8

We first recall concepts about fixpoints from [23]. Given a partially ordered set C with a partial order \leq , and a set $Y \subseteq C$, an element $x \in C$ is an *upper bound* of Y if $y \leq x$ for all $y \in Y$, and the *supremum* of Y is its least upper bound, written sup Y. Given a map $\Phi : C \to C$, we say that $x \in C$ is a *fixpoint* of Φ if $\Phi(x) = x$. We write fix(Φ) for the least fixpoint of Φ .

A nonempty subset D of an ordered set C is directed if, for every finite subset $F \subseteq D$, an upper bound of F is in D. An ordered set C is a complete partially ordered set (CPO) if $\sup D$ exists for each directed subset D of C, and C has a bottom element \bot , which is the least element with respect to the order \le . A map $\Phi: C \to C$ over a CPO C is Scott-continuous if, for every directed set D in C, $\Phi(\sup D) = \sup \Phi(D)$. By Lemma 3.15 in [23], every continuous map is order-preserving, meaning that $\Phi(x) \le \Phi(y)$ for all $x, y \in C$ such that $x \le y$.

Theorem 18 (Theorem 4.5 (ii) in [23], Kleene fixpoint theorem). Let C be a CPO, and let $\Phi: C \to C$ be a Scott-continuous map. The least fixpoint fix (Φ) exists and is equal to $\sup_{k>0} \Phi^k(\bot)$.

We now give more details on the set C_M and show that it is a CPO. For $D \subseteq C_M$, the supremum $\sup D$ is defined via $[\sup\{X \in D\}]_s \stackrel{\text{def}}{=} \bigcap_{X \in D} X_s$ for all $s \in S$. The intersection of convex, closed, M-downward-closed sets is itself convex, closed, and M-downward-closed, and so $\sup D \in C_M$ for any directed set D. Hence, C_M is a CPO.

Proof. The properties claimed in the proposition are consequences of Scott continuity of F_M and the Kleene fixpoint theorem, (Theorem 18). To show Scott continuity, it is sufficient to show that, for every countable directed set D, we have that $[F_M(\sup D)]_s = \sup([F_M(D)]_s)$ for all $s \in S$. Take any countable directed set $D = \{X^k \in C_M \mid k \geq 0\} \subseteq C_M$, and any $s \in S$. We first show intermediate results about this directed set D.

Lemma 23. For finite
$$T \subseteq S$$
, $conv(\bigcup_{t \in T} \bigcap_{k \ge 0} X_t^k) = \bigcap_{k \ge 0} conv(\bigcup_{t \in T} X_t^k)$.

Proof. We first define $Y^k \stackrel{\text{def}}{=} \mathsf{conv}(\bigcup_{t \in T} X^k_t)$, and let $Y^\infty \stackrel{\text{def}}{=} \bigcap_{k \geq 0} Y^k$. The sets X^k_t are compact and convex, and so their convex hull Y^k is also compact and convex, by Theorem 17.2 in [51]. Moreover, Y^k is M-downward closed, and so, for every k, $Y^k \in \mathcal{P}_{c,M}$.

We now show the equality of the lemma. For the \subseteq direction, take $\vec{y} \in \text{conv}(\bigcup_{t \in T} \bigcap_{k \ge 0} X_t^k)$. Then $\vec{y} = \sum_{t \in T} \mu(t) \cdot \vec{x_t}$ for some distribution $\mu \in D(T)$ and some $\vec{x_t} \in \bigcap_{k \ge 0} X_t^k$. Hence, for every $k, \vec{y} \in Y^k$, and so $\vec{y} \in Y^{\infty}$.

For the \supseteq direction, take $\vec{y}^{\infty} \in Y^{\infty}$. We note that, for every $k \ge 0$, $\vec{y}^{\infty} = \sum_{t \in T} \mu_k(t) \cdot \vec{x}_t^k$ for some distribution $\mu_k \in \mathsf{D}(T)$ and some vector $\vec{x}_t^k \in X_t^k$. The sets X^k are in $\mathcal{P}_{c,M}$, and thus compact, and so one can extract a subsequence of indices i_k such that μ_{i_k} and $\vec{x}_t^{i_k}$ converge toward limits, which we respectively denote μ and \vec{x}_t for every $t \in T$. Moreover, $\lim_{k \to \infty} \vec{x}_t^{i_k} = \vec{x}_t \in Y_t^l$ for every $t \ge 0$ as Y^l is compact. Hence, $\vec{x}_t \in \bigcap_{k \ge 0} X_t^k$ for every t and we conclude $\vec{y}^{\infty} = \sum_{t \in T} \mu(t) \cdot \vec{x}_t \in \mathsf{conv}(\bigcup_{t \in T} \bigcap_{k \ge 0} X_t^k)$.

Lemma 24. For finite $T \subseteq S$, $\bigcap_{t \in T} \bigcap_{k > 0} X_t^k = \bigcap_{k > 0} \bigcap_{t \in T} X_t^k$.

Proof. Straightforward reordering of countable intersections.

Lemma 25. For finite $T \subseteq S$, $\sum_{t \in T} \mu(t) \times \bigcap_{k \geq 0} X_t^k = \bigcap_{k \geq 0} \sum_{t \in T} \mu(t) \times X_t^k$.

Proof. The \subseteq direction is straightforward. For the \supseteq direction, take $\vec{x} \in \bigcap_{k \ge 0} \sum_{t \in T} \mu(t) \times X_t^k$, and so, for all $k \ge 0$, there exist vectors $\vec{x}_t^k \in X_t^k$ for $t \in T$, such that $\vec{x} = \sum_{t \in T} \mu(t) \cdot \vec{x}_t^k$. We extract a subsequence of indices i_k such that \vec{x}_t^i tends to a limit \vec{x}_t , which necessarily lies in $\bigcap_{k \ge 0} X_t^k$, by the same arguent as in Lemma 24. Hence $\vec{x} = \sum_{t \in T} \mu(t) \vec{x}_t \in \sum_{t \in T} \mu(t) \times \bigcap_{k \ge 0} X_t^k$.

We now continue the proof of Proposition 8 by considering three cases. For $s \in S_{\Diamond}$, we have

$$\begin{split} [F_{M}(\sup(D))]_{s} &\stackrel{\text{def}}{=} \operatorname{Box}_{M} \cap \operatorname{dwc}(\vec{r}(s) + \operatorname{conv}(\bigcup_{t \in \Delta(s)} \bigcap_{k \geq 0} X_{t}^{k})) \\ &= \operatorname{Box}_{M} \cap \operatorname{dwc}(\vec{r}(s) + \bigcap_{k \geq 0} \operatorname{conv}(\bigcup_{t \in \Delta(s)} X_{t}^{k})) \\ &= \bigcap_{k \geq 0} (\operatorname{Box}_{M} \cap \operatorname{dwc}(\vec{r}(s) + \operatorname{conv}(\bigcup_{t \in \Delta(s)} X_{t}^{k}))) \\ &\stackrel{\text{def}}{=} [\sup F_{M}(D)]_{s}. \end{split}$$
 (Lemma 23)

For $s \in S_{\square}$, we have

$$\begin{split} [F_{M}(\sup(D))]_{s} &= \operatorname{Box}_{M} \cap \operatorname{dwc}(\vec{r}(s) + \bigcap_{t \in \Delta(s)} \bigcap_{k \geq 0} X_{t}^{k}) \\ &= \operatorname{Box}_{M} \cap \operatorname{dwc}(\vec{r}(s) + \bigcap_{k \geq 0} \bigcap_{t \in \Delta(s)} X_{t}^{k}) \\ &= \bigcap_{k \geq 0} (\operatorname{Box}_{M} \cap \operatorname{dwc}(\vec{r}(s) + \bigcap_{t \in \Delta(s)} X_{t}^{k})) \\ &\stackrel{\text{def}}{=} [\sup F_{M}(D)]_{s}. \end{split}$$
 (Lemma 24)

Finally, for $s \in S_{\bigcirc}$, we have

$$\begin{split} [F_{M}(\sup(D))]_{s} &\stackrel{\text{def}}{=} \operatorname{Box}_{M} \cap \operatorname{dwc}(\vec{r}(s) + \sum_{t \in \Delta(s)} \Delta(s, t) \times \bigcap_{k \geq 0} X_{t}^{k}) \\ &= \operatorname{Box}_{M} \cap \operatorname{dwc}(\vec{r}(s) + \bigcap_{k \geq 0} \sum_{t \in \Delta(s)} \Delta(s, t) \times X_{t}^{k}) \\ &= \bigcap_{k \geq 0} (\operatorname{Box}_{M} \cap \operatorname{dwc}(\vec{r}(s) + \sum_{t \in \Delta(s)} \Delta(s, t) \times X_{t}^{k})) \\ &\stackrel{\text{def}}{=} [\sup F_{M}(D)]_{s}. \end{split}$$
 (Lemma 25)

This concludes the proof of Scott continuity for F_M . Then, by Theorem 18, the least fixpoint exists, and is equal to $fix(F_M) = \bigcap_{k>0} F_M^k(\bot_M)$.

Appendix B.7. Proof of Proposition 9

Proof. We first show two intermediate lemmas. In Lemma 26, we show that we can consider the fixpoints $fix[F_{M,\mathcal{M}}]_s$ for a PA \mathcal{M} , and in Lemma 27 we reduce the problem to the study of one-dimensional expected truncated energy, which we used earlier in Proposition 5 and Lemma 4.

Lemma 26. Given a game G, a DU strategy π and a constant M, if $[fix(F_{M,G^{\pi}})]_s \neq \emptyset$ for all $s \in S_{G^{\pi}}$, then $[fix(F_{M,G})]_s \neq \emptyset$ for every $s \in supp(S)$.

Proof. We first describe how to compare elements of the CPOs $C_{M,\mathcal{G}}$ and C_{M,\mathcal{G}^n} associated with F_{M,\mathcal{G}^n} and F_{M,\mathcal{G}^n} are satisfied:

$$\begin{cases} Y_{(s,\mathfrak{m})} \subseteq X_s & \text{for } (s,\mathfrak{m}) \in S_{\mathcal{G}^\pi} \text{ with } s \in S_\square \cup S_\bigcirc; \\ \sum_{s' \in \Delta(s)} \pi_{\mathsf{c}}(s,\mathfrak{m})(s') Y_{((s,s'),\mathfrak{m})} \subseteq X_s & \text{for } s \in S_\lozenge \text{ and } \mathfrak{m} \text{ such that } ((s,s'),\mathfrak{m}) \in S_{\mathcal{G}^\pi} \text{ for some } s' \in S_\bigcirc \end{cases}$$

We now show that $\operatorname{fix}(F_{M,\mathcal{G}^\pi}) > \operatorname{fix}(F_{M,\mathcal{G}})$. Recall that $\operatorname{fix}(F_{M,\mathcal{G}^\pi}) = \cap_{k \in \mathbb{N}} Y^k$ and $\operatorname{fix}(F_{M,\mathcal{G}}) = \cap_{k \in \mathbb{N}} X^k$ where $Y^k \stackrel{\text{def}}{=} F^k_{M,\mathcal{G}^\pi}(\bot_M)$ and $X^k \stackrel{\text{def}}{=} F^k_{M,\mathcal{G}^\pi}(\bot_M)$. It hence suffices to show by induction that, for every $k \in \mathbb{N}$, $Y^k > X^k$.

For k = 0, the property holds as all sets involved are equal to Box_M . We now assume that the property is proved at rank k - 1 and show that it holds at rank k.

Let $s \in S_{\Diamond}$ and m such that $((s, s'), m) \in S_{\mathcal{G}^n}$ for some $s' \in S_{\bigcirc}$. It holds that

$$\begin{split} \sum_{s' \in \Delta(s)} \pi_{\mathsf{C}}(s, \mathfrak{m})(s') Y_{((s,s'),\mathfrak{m})}^k &= \sum_{s' \in \Delta(s)} \pi_{\mathsf{C}}(s, \mathfrak{m})(s') \mathrm{Box}_M \cap \mathsf{dwc}\left(\vec{r}(s) + Y_{(s',\pi_{\mathsf{u}}(\mathfrak{m},s'))}^{k-1}\right) \\ &\subseteq \sum_{s' \in \Delta(s)} \pi_{\mathsf{C}}(s, \mathfrak{m})(s') \mathrm{Box}_M \cap \mathsf{dwc}\left(\vec{r}(s) + X_{s'}^{k-1}\right) \\ &\subseteq \mathsf{conv}\left(\bigcup_{s' \in \Delta(s)} \mathrm{Box}_M \cap \mathsf{dwc}\left(\vec{r}(s) + X_{s'}^{k-1}\right)\right) \\ &= X_s^k. \end{split}$$

Let $(s, \mathfrak{m}) \in \mathcal{G}^{\pi}$ with $s \in S_{\square}$. It holds that

$$\begin{split} Y^k_{(s,\mathfrak{m})} &= \mathrm{Box}_M \cap \mathsf{dwc} \Bigg(\overrightarrow{r}(s) + \bigcap_{t \in \Delta(s)} Y^{k-1}_{(t,\pi_{\mathsf{u}}(\mathfrak{m},t))} \Bigg) \\ &\subseteq \mathrm{Box}_M \cap \mathsf{dwc} \Bigg(\overrightarrow{r}(s) + \bigcap_{t \in \Delta(s)} X^{k-1}_t \Bigg) \\ &= X^k_s. \end{split}$$

Let $(s, \mathfrak{m}) \in \mathcal{G}^{\pi}$ with $s \in S_{\bigcirc}$. It holds that

$$Y_{(s,\mathfrak{m})}^k = \operatorname{Box}_M \cap \operatorname{dwc}(\vec{r}(s) + E_1 + E_2)$$

where

$$E_1 \stackrel{\text{def}}{=} \sum_{s' \in \Delta(s) \cap S_{\square}} \mu(s') Y_{(s', \pi_{\mathsf{u}}(\mathfrak{m}, s'))}^{k-1}$$

and

$$E_2 \stackrel{\text{def}}{=} \sum_{s' \in \Delta(s) \cap S} \mu(s') \sum_{s'' \in \Delta(s')} \pi_{\mathsf{c}}(s', \pi_{\mathsf{u}}(\mathfrak{m}, s'))(s'') Y_{(s's'', \pi_{\mathsf{u}}(\mathfrak{m}, s'))}^{k-1}.$$

Applying the induction hypothesis yields

$$Y_{s,\mathfrak{m}}^k \subseteq \operatorname{Box}_M \cap \operatorname{dwc}\left(\vec{r}(s) + \sum_{s' \in \Delta(s)} \mu(s') X_{s'}^{k-1}\right) = X_s^k.$$

We have shown by induction that, for every $k \in \mathbb{N}$, $Y^k > X^k$. Thus $fix(F_{M,\mathcal{G}^n}) > fix(F_{M,\mathcal{G}})$. The conclusion of the lemma follows.

Lemma 27. Given a PA \mathcal{M} with rewards \vec{r} and a state s, if $fix[F_{M,\mathcal{M}}]_s = \emptyset$ for every $M < \infty$, then there exists i such that $u_s^* = -\infty$ for the reward r_i .

Proof. Fix a PA $\mathcal{M} = \langle S, (S_{\square}, S_{\bigcirc}), \varsigma, \mathcal{A}, \chi, \Delta \rangle$. We prove the lemma by contraposition: given a state s_0 , we assume that $u_{s_0}^* > -\infty$ for rewards r_i for all i, and show that there is an M for which fix $[F_{M,\mathcal{M}}]_{s_0} \neq \emptyset$. We consider a multi-dimensional version of the truncated energy sequence defined in (2), and get that the fixpoint of the multi-dimensional truncated energy, as $k \to \infty$, is

$$\vec{u}_s^* = \begin{cases} \min(\vec{0}, \vec{r}(s) + \min_{t \in \Delta(s)} \vec{u}_t^*) & \text{if } s \in S_{\square} \\ \min(\vec{0}, \vec{r}(s) + \sum_{t \in \Delta(s)} \Delta(s, t) \vec{u}_t^* & \text{if } s \in S_{\bigcirc}, \end{cases}$$

where the minima are taken componentwise.

Observe that, for a state s, if \vec{u}_s^* has no infinite coordinate, then neither do its successors. As all states of the PA are reachable from the initial state, then for every state s, \vec{u}_s^* has no infinite coordinate. Therefore, there is a global bound M, such that $u_s^* \in \text{Box}_M$ for every s. We now show that $Y \in C_M$, defined by $Y_s \stackrel{\text{def}}{=} \text{Box}_M \cap \text{dwc}(\tilde{u}_s^*)$, is a fixpoint of $F_{M,M}$, and hence that the least-fixpoint of $F_{M,M}$ is non-empty. Taking the downward-closure gives

$$\mathsf{dwc}(\vec{u}_s^*) = \begin{cases} \mathbb{R}_{\leq 0} \cap (\vec{r}(s) + \bigcap_{t \in \Delta(s)} \mathsf{dwc}(\vec{u}_t^*)) & \text{if } s \in S_{\square} \\ \mathbb{R}_{\leq 0} \cap (\vec{r}(s) + \sum_{t \in \Delta(s)} \Delta(s, t) \times \mathsf{dwc}(\vec{u}_t^*)) & \text{if } s \in S_{\bigcirc}, \end{cases}$$

$$Y_s = \begin{cases} \mathsf{Box}_M \cap (\vec{r}(s) + \bigcap_{t \in \Delta(s)} \mathsf{dwc}(\vec{u}_t^*)) & \text{if } s \in S_{\square} \\ \mathsf{Box}_M \cap (\vec{r}(s) + \sum_{t \in \Delta(s)} \Delta(s, t) \times \mathsf{dwc}(\vec{u}_t^*)) & \text{if } s \in S_{\square}. \end{cases}$$

and hence

$$Y_s = \begin{cases} \operatorname{Box}_M \cap (\vec{r}(s) + \bigcap_{t \in \Delta(s)} \operatorname{dwc}(\vec{u}_t^*)) & \text{if } s \in S_{\square} \\ \operatorname{Box}_M \cap (\vec{r}(s) + \sum_{t \in \Delta(s)} \Delta(s, t) \times \operatorname{dwc}(\vec{u}_t^*)) & \text{if } s \in S_{\square}. \end{cases}$$

Since $\vec{u}_t^* \in \text{Box}_M$, Y_t is nonempty, and we have

$$\begin{split} \vec{r}(s) + \bigcap_{t \in \Delta(s)} \mathsf{dwc}(\vec{u}_t^*) &= \mathsf{dwc}(\vec{r}(s) + \bigcap_{t \in \Delta(s)} Y_t) & \text{for } s \in S_{\square} \\ \vec{r}(s) + \sum_{t \in \Delta(s)} \Delta(s,t) \times \mathsf{dwc}(\vec{u}_t^*) &= \mathsf{dwc}(\vec{r}(s) + \sum_{t \in \Delta(s)} \Delta(s,t) \times Y_t) & \text{for } s \in S_{\bigcirc}. \end{split}$$

This implies that $Y = F_{M,\mathcal{M}}(Y)$, and hence that $\operatorname{fix}[F_{M,\mathcal{M}}]_{s_0} \sqsubseteq Y_{s_0}$. We thus conclude from $Y_{s_0} \neq \emptyset$ that $\operatorname{fix}[F_{M,\mathcal{M}}]_{s_0} \neq \emptyset$ Ø.

We can now conclude the proof of Proposition 9. Fix a game \mathcal{G} and $\varepsilon > 0$. We show the contrapositive: if, for every M, $[fix(F_{M,G})]_s = \emptyset$ for some $s \in supp(\varsigma)$, then $EE(\vec{r} - \varepsilon)$ is not achievable by a finite strategy (against finite strategies). Assume that, for every M, $[fix(F_{M,G})]_s = \emptyset$, for some $s \in supp(\varsigma)$, and let π be an arbitrary finite DU strategy. By Lemma 26, $[fix(F_{M,\mathcal{G}^n})]_s = \emptyset$ for some $s \in S_{\mathcal{G}^n}$. Thus by Lemma 27 there is a dimension i such that $u_s^* = -\infty$ for some $s \in S_{\mathcal{G}^{\pi}}$ for the reward r_i , and hence $S_{\infty} \neq \emptyset$. We conclude, using Proposition 5, that Player \square can spoil $\mathsf{EE}(r-\varepsilon)$ in the PA \mathcal{G}^{π} . We have thus shown the contrapositive, that is, there is no winning strategy for Player \Diamond to achieve $\mathsf{EE}(\vec{r} - \varepsilon)$, whenever, for every M, $[\mathsf{fix}(F_{M,\mathcal{G}})]_s = \emptyset$ for some $s \in \mathsf{supp}(\varsigma)$.

Appendix B.8. Proof of Proposition 10

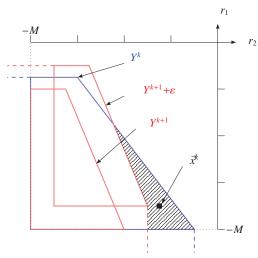
The proof we use a Ramsey like theorem (Theorem 19). We first recall the necessary definitions. A graph G = (V, E) consists of a finite set V of nodes and a set $E \subseteq V \times V$ of edges. A graph is linearly-ordered complete, if for some strict linear order > on V, $(v, w) \in E$ if and only if v > w. An *n-colouring* of a graph (V, E) is a function $E \to \{1, \dots, n\}$, assigning one of n possible colours to each edge. A monochromatic directed path of length N is a sequence of nodes v_1, \ldots, v_N such that $(v_i, v_{i+1}) \in E$ for all $1 \le i < N$, and such that each node v_i is assigned the same

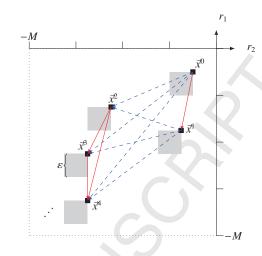
Theorem 19 (Theorem 4.5.2 of [53]). Let G = (V, E) be a linearly-ordered complete graph over m nodes, with an *n-colouring of its edges. Then G contains a monochromatic directed path of length* $\lfloor \sqrt{m/n-2} \rfloor - 1$.

We first consider a single state in Lemma 28, and then use an inductive argument on the number of states to find the bound for all states in Proposition 10.

Lemma 28. Let $(Y^k)_{k\in\mathbb{N}}$ be a sequence over $\mathcal{P}_{c,M}$ that is non-decreasing for \sqsubseteq . For every $I\subseteq\mathbb{N}$ such that $|I|\geq k^*\stackrel{\text{def}}{=} n\cdot ((\lceil\frac{M}{\varepsilon}\rceil+1)^2+2)$, there exists $k\in I$ such that $Y^{k+1}+\varepsilon\sqsubseteq Y^k$.

Proof. Fix a sequence $(Y^k)_{k \in \mathbb{N}}$ non-decreasing for \sqsubseteq , and fix $I \subseteq \mathbb{N}$ such that $|I| \ge k^*$. We assume towards a contradiction that for every $k \in I$, $Y^{k+1} + \varepsilon \not\sqsubseteq Y^k$. Consider the linearly-ordered complete graph over nodes I, and with edges (j, k) for j < k and $j, k \in I$. We define below an *n*-colouring *c* of this graph where colours represent dimensions of the *M*-polyhedrals, see Figure B.17 (b). Note first that, if two sets satisfy $B \not\sqsubseteq A$, then there exists $\vec{x} \in A \setminus \mathsf{dwc}(B)$. Hence, the hypothesis $Y^{k+1} + \varepsilon \not\sqsubseteq Y^k$ for every $k \in I$ implies the existence of a sequence $(\vec{x}^k)_{k \in I} \in Y^k \setminus \mathsf{dwc}(Y^{k+1} + \varepsilon)$ of points, illustrated in Figure B.17 (a). We show that, for all j < k, there exists a coordinate c(j,k) for which $x_{c(j,k)}^j - x_{c(j,k)}^k > \varepsilon$ and define c(j,k) as the colour of the edge (j,k). Assume otherwise, that is, $\vec{x}^j - \vec{\varepsilon} \leq \vec{x}^k$ for j < k. Then $\vec{x}^j - \vec{\varepsilon} \in \mathsf{dwc}(Y^k)$,





- (a) The hatched region is $Y^k \cap (\text{Box}_M \backslash \text{dwc}(Y^{k+1} + \varepsilon))$, where x^k has to lie.
- (b) The red (solid) and blue (dashed) arrows represent distance greater than ε in dimensions r_1 and r_2 resp.

Figure B.17: Illustrations for Lemma 28 for two dimensions r_1 and r_2 .

and, since $Y^k \sqsubseteq Y^{j+1}$, we deduce $\vec{x}^j \in \mathsf{dwc}(Y^{j+1} + \vec{\mathcal{E}})$, a contradiction to the definition of the sequence $(\vec{x}^k)_{k \le m}$. By Theorem 19, there exists a monochromatic path $j_1 \to j_2 \to \cdots \to j_l$ of length $l = \lfloor \sqrt{|I|/n-2} \rfloor - 1 \ge \lceil \frac{M}{\varepsilon} \rceil$, and thus by denoting c the colour of this path it holds that $x_c^{j_1} > x_c^{j_2} + \varepsilon > \ldots > x_c^{j_l} + l\varepsilon \ge -M + \frac{M}{\varepsilon}\varepsilon \ge 0$, a contradiction. \square

Lemma 29. Let U be a finite set, let P be a predicate over $U \times \mathbb{N}$, and let K be a positive integer. The implication " $P1 \Rightarrow P2$ " holds, where

P1 "For every $s \in U$ and every $I \subseteq \mathbb{N}$ such that $|I| \ge K$, there exists $i \in I$, such that P(s, i) holds."

P2 "For every $I \subseteq \mathbb{N}$ such that $|I| \ge K^{|U|}$, there exists $i \in I$ such that, for every $s \in U$, P(s,i) holds."

Proof. We show the result by induction on the cardinality of U. If U is empty the result is true. Now assume that the implication "P1 ⇒ P2" holds for sets U' of cardinality c, and let $U = U' \cup \{t\}$ be of cardinality c + 1. Let P be a predicate over $U \times \mathbb{N}$ and let K be a positive integer, such that P1 is satisfied for U. Let $I \subseteq \mathbb{N}$ such that $|I| \ge K^{|U|}$. We want to find an index i such that P(s,i) holds for all $s \in U$. We partition I into K parts I_1, \ldots, I_K , each containing at least $K^{|U|-1}$ elements. Since P1 is satisfied for U, it is also satisfied for $U \setminus \{t\}$, and so, by the induction hypothesis, for every I_k there is an index $I_k \in I_k$ such that, for every $I_k \in U \setminus \{t\}$, $I_k \in U$ holds. The set $I_k \in U$ contains $I_k \in U$ then that $I_k \in U$ is true. Hence, $I_k \in U$ is such that for every $I_k \in U$ is true, concluding the induction step.

We can now conclude the proof of Proposition 10.

Fix M and $\varepsilon > 0$. Let \mathcal{G} be a game with state space S. Let $(X^k)_{k \ge 0}$ be a sequence over C_M that is non-decreasing for \sqsubseteq . We apply Lemma 29 with U = S, $K = k^*$, and with the predicate $X_s^{k+1} + \varepsilon \sqsubseteq X_s^k$ for P, noting that P1 is satisfied by Lemma 28, and that P2 is the statement we set out to prove.

Appendix B.9. Proof of Lemma 6

Proof. Let $X \in C_M$ such that $F_M(X) + \varepsilon \sqsubseteq X$ and $[F_M(X)]_s \neq \emptyset$ for every $s \in \text{supp}(\varsigma)$. We now show that the strategy constructed in Section 3.4.2 is well-defined. First note that $s \in T_X$ for every $s \in \text{supp}(\varsigma)$, and, if $s \in T_X \cap (S_{\square} \cup S_{\bigcirc})$, then, for every $t \in \text{succ}(s)$, $[F_M(X)]_t + \varepsilon \sqsubseteq X_t \neq \emptyset$, and hence $t \in T_X$.

For any $s \in T_X$, depending on the type of s (i.e. Player \lozenge , Player \square , or move), we define an auxiliary set Y_s without the cut-off by Box_M. We then show that we can find the required distributions α and β , and the extreme points for every point in Y_s , and prove that for all extreme points \vec{p} of X_s we have $\vec{p} - \varepsilon$ in Y_s for $k \ge 0$, allowing us to show well-definedness of the strategy. Take $s \in T_X$.

- Case $s \in S_{\diamondsuit}$. Let $Y_s \stackrel{\text{def}}{=} \vec{r}(s) + \text{conv}(\bigcup_{t \in \Delta(s) \cap T_X} X_t)$. Take any $\vec{p}' \in Y_s$. There are distributions $\alpha \in D(\Delta(s) \cap T_X)$, $\beta^t \in D([1, n])$, and points $\vec{q}_i^t \in C(X_t)$ for $t \in \Delta(s) \cap T_X$, such that $\sum_t \alpha(t) \cdot \sum_i \beta^t(i) \cdot \vec{q}_i^t \ge \vec{p}' \vec{r}(s)$.
- Case $s \in S_{\square}$. Let $Y_s \stackrel{\text{def}}{=} \mathsf{dwc}(\vec{r}(s) + \bigcap_{t \in \Delta(s)} X_t)$. Take any $\vec{p}' \in Y_s$. For any $t \in \Delta(s)$, there are distributions $\beta^t \in \mathsf{D}([1,n])$ and points $\vec{q}_i^t \in \mathsf{C}(X_t)$ such that $\sum_i \beta_i^t \cdot \vec{q}_i^t \geq \vec{p}' \vec{r}(s)$.
- Case $s = (a, \mu) \in S_{\bigcirc}$. Let $Y_s \stackrel{\text{def}}{=} \vec{r}(s) + \sum_{t \in \text{supp}(\mu)} \mu(t) \times X_t$. Take any $\vec{p} \in Y_s$. Due to the Minkowski sum, there are distributions $\beta^t \in D([1, n])$ and points $\vec{q}_i^t \in C(X_t)$ such that $\sum_{t \in \text{supp}(\mu)} \mu(t) \cdot \sum_i \beta_i^t \cdot \vec{q}_i^t \ge \vec{p}' \vec{r}(s)$.

Note that, if two sets satisfy $A \sqsubseteq B$, they also satisfy $A - \varepsilon \sqsubseteq B - \varepsilon$. We have $F_M(X) + \varepsilon \sqsubseteq X$, and so $\mathsf{dwc}(Y_s) \cap \mathsf{Box}_M = [F_M(X)]_s \sqsubseteq X_s - \vec{\varepsilon}$, for all $s \in T_X$. Then, for any point $\vec{p} \in \mathsf{C}(X_s)$, it holds that $\vec{p} - \varepsilon \in \mathsf{dwc}(Y_s) \cap \mathsf{Box}_M$. Hence, we can find for $\vec{p}' = \vec{p} - \vec{\varepsilon}$ the corresponding distributions and extreme points to construct the strategy π .

Now we show that π achieves $\mathsf{EE}(\vec{r}+\vec{\varepsilon})$ against Player \square finite strategies. Let σ be a finite Player \square strategy, let $\mathcal{D} \stackrel{\text{def}}{=} \mathcal{G}^{\pi,\sigma}$, and let s_0 be a state of \mathcal{D} , which has the form $s_0 = (s_o, (s_o, \vec{p}_0), \mathfrak{n})$, where (s_o, \vec{p}_0) is the memory of Player \lozenge . We show that $\mathbb{E}_{\mathcal{D},s_o}[\mathsf{rew}^N(\vec{r})] \geq \vec{p}_0 - N\varepsilon$. For this we show that the memory of π is always above $\vec{p}_0 - \mathbb{E}_{\mathcal{D},s_o}[\mathsf{rew}^N(\vec{r})] - N\varepsilon$, and, since this memory is always non-positive, we get the desired result.

Let $Y_N: \Omega_{\mathcal{D}} \to \mathbb{R}^n$ be the random variable that assigns the vector \vec{p} to a path $\lambda = s_0 s_1 \dots$ for which $s_N = (s, (s, \vec{p}), \eta)$. Since $\mathbb{E}_{\mathcal{D}, s_0}[Y_N] \leq \vec{0}$ for all $N \geq 0$, it is sufficient to show, for all s_0 , that

$$\mathbb{E}_{\mathcal{D},s_0}[Y_N] \ge \vec{p}_0 - \mathbb{E}_{D,s_0}[\mathsf{rew}^N(\vec{r})] - N \cdot \varepsilon \tag{B.8}$$

in order to conclude that $\mathbb{E}_{\mathcal{D},s_0}[\mathsf{rew}^N(\vec{r})] \geq \vec{0}$, and thus that \mathcal{D} satisfies $\mathsf{EE}(\vec{r} + \vec{\varepsilon})$.

We show (B.8) by induction on the length N of paths $\Omega_{\mathcal{D}}$. In the base case, for N=0, we have $\mathbb{E}_{\mathcal{D},s_0}[Y_0]=\vec{p}_0$, corresponding to the memory at the initial state s_0 . For the induction step, assume that $\mathbb{E}_{\mathcal{D},s_0}[Y_N] \geq \vec{p}_0 - \mathbb{E}_{\mathcal{D},s_0}[\text{rew}^N(\vec{r})] - N\varepsilon$. Let W_N be the set of all finite paths of length N in \mathcal{D} , and we use the notation $\lambda' = \lambda(s, (s, \vec{p}_{\lambda'}), \mathfrak{n})$ for paths $\lambda' \in \Omega_{\mathcal{D},N}$. We have

$$\mathbb{E}_{\mathcal{D},s_0}[Y_{N+1}|\lambda'] = \begin{cases} \sum_t \pi_{\mathbf{c}}(s,(s,\vec{p}_{\lambda'}))(t) \cdot \sum_{\vec{q}} \pi_{\mathbf{u}}((s,\vec{p}_{\lambda'}),t)(t,\vec{q}) \cdot \vec{q} & \text{if } s \in S_{\diamondsuit} \\ \sum_t \sigma_{\mathbf{c}}(s,\mathfrak{n})(t) \cdot \sum_{\vec{q}} \pi_{\mathbf{u}}((s,\vec{p}_{\lambda'}),t)(t,\vec{q}) \cdot \vec{q} & \text{if } s \in S_{\square} \\ \sum_t \mu(t) \cdot \sum_{\vec{q}} \pi_{\mathbf{u}}(\mathfrak{m},t)(t,\vec{q}) \cdot \vec{q} & \text{if } s = (a,\mu) \in S_{\bigcirc}. \end{cases}$$

Therefore, by definition of π_u and π_c we have

$$\mathbb{E}_{\mathcal{D},s_0}[Y_{N+1}|\lambda'] \ge \vec{p}_{\lambda'} - \vec{r}(s) - \varepsilon. \tag{B.9}$$

Further, evaluating expectations over paths of W_N yields

$$\mathbb{E}_{\mathcal{D},s_0}[\mathsf{rew}^{N+1}(\vec{r})] - \mathbb{E}_{\mathcal{D},s_0}[\mathsf{rew}^N(\vec{r})] = \sum_{\lambda' \in W_N} \vec{r}(s) \cdot \mathbb{P}_{\mathcal{D},s_0}(\lambda') \tag{B.10}$$

$$\mathbb{E}_{\mathcal{D},s_0}[Y_N] = \sum_{\lambda' \in W_N} \mathbb{P}_{\mathcal{D},s_0}(\lambda') \cdot \vec{p}_{\lambda'}. \tag{B.11}$$

We can now conclude our induction step to establish (B.8) as follows:

$$\begin{split} \mathbb{E}_{\mathcal{D},s_0}[Y_{N+1}] &= \sum_{\lambda' \in W_N} \mathbb{E}_{\mathcal{D},s_0}[Y_{N+1}|\lambda'] \cdot \mathbb{P}_{\mathcal{D},s_0}(\lambda') & \text{(law of total probability)} \\ &\geq \sum_{\lambda' \in W_N} (\vec{p}_{\lambda'} - \vec{r}(s) - \varepsilon) \cdot \mathbb{P}_{\mathcal{D},s_0}(\lambda') & \text{(by equation (B.9))} \\ &= \mathbb{E}_{\mathcal{D},s_0}[Y_N] - (\mathbb{E}_{\mathcal{D},s_0}[\mathsf{rew}^{N+1}(\vec{r})] - \mathbb{E}_{\mathcal{D},s_0}[\mathsf{rew}^N(\vec{r})]) - \varepsilon \\ & \text{(by equations (B.10) and (B.11))} \\ &\geq \vec{p}_0 - \mathbb{E}_{\mathcal{D},s_0}[\mathsf{rew}^{N+1}(\vec{r})] - (N+1) \cdot \varepsilon. & \text{(induction hypothesis)} \end{split}$$

Appendix C. Proofs of results of Section 4

Appendix C.1. Proof that expected ratio rewards are globally-bounded

Lemma 30. ratio(r/c) is integrable and globally bounded by $B \stackrel{\text{def}}{=} \max_{S} r(s)/c_{\min}$.

Proof. Fix two strategies π, σ . The function |ratio(r/c)| is non-negative and measurable, so the quantity $\mathbb{E}_{\mathcal{G}}^{\pi,\sigma}(|\text{ratio}(r/c)|)$ is well-defined in $\mathbb{R}_{\geq 0} \cup \{+\infty\}$. We show that this quantity is finite and bounded by B independently of π, σ . We let $\rho^* = \max_S r(s)$ and use that, for every N, $\frac{\text{rew}^N(r)}{N+1} \leq \rho^*$. Hence,

$$\mathbb{E}_{\mathcal{G}}^{\pi,\sigma}(|\mathsf{ratio}(r/c)|) = \mathbb{E}_{\mathcal{G}}^{\pi,\sigma}\left(\underline{\lim}_{N \to \infty} \frac{|\mathsf{rew}^N(r)(\lambda)|}{1 + \mathsf{rew}^N(c)(\lambda)}\right) \leq \rho^* \mathbb{E}_{\mathcal{G}}^{\pi,\sigma}\left(\underline{\lim}_{N \to \infty} \frac{N+1}{1 + \mathsf{rew}^N(c)(\lambda)}\right).$$

Note that for a sequence $(x_N)_{N\geq 0}$ of positive numbers it holds that

$$\underline{\lim}_{N\to\infty}\frac{1}{x_N}=\frac{1}{\overline{\lim}_{N\to\infty}x_N}\leq \frac{1}{\underline{\lim}_{N\to\infty}x_N}.$$

This implies that almost surely

$$\underline{\lim}_{N \to \infty} \frac{N+1}{1+\mathsf{rew}^N(c)(\lambda)} \leq \frac{1}{\underline{\lim}_{N \to \infty} \left(\frac{1+\mathsf{rew}^N(c)(\lambda)}{N+1}\right)} = \frac{1}{\mathsf{mp}(c)(\lambda)} \leq \frac{1}{c_{\min}}.$$

Hence, $\mathbb{E}_{G}^{\pi,\sigma}(|\mathsf{ratio}(r/c)|) \le \max_{S} r(s)/c_{\min}$ as expected.

Appendix C.2. Proof of Theorem 9

Proof. Consider $\vec{u} \in \operatorname{Pareto}(\psi)$, then the vector $\vec{u} - \varepsilon/4$ is achievable. Using Theorem 8, there exists a vector $\vec{y} \in \mathbb{R}^N$ with every \vec{y}_i non-negative and non-null such that $\bigwedge_{i=1}^n \mathbb{E}_{\mathcal{G}}^{\pi,\sigma}[\vec{y}_i \cdot \vec{e}_i] \geq \vec{y}_i \cdot (\vec{u}_i - \varepsilon/4)$ is achievable. Up to dividing each \vec{y}_i by $||\vec{y}_i||_{\infty}$ we assume that $||\vec{y}_i||_{\infty} = 1$. Let \vec{x} be such that $\vec{x} - \varepsilon/(4B) \leq \vec{y} \leq \vec{x}$ and such that each coordinate of \vec{x} is multiple of $\varepsilon/(4B)$. It remains to show that $\bigwedge_{i=1}^n \mathbb{E}_{\mathcal{G}}^{\pi,\sigma}[\vec{x}_i \cdot \vec{e}_i] \geq \vec{x}_i \cdot \vec{u}_i - \varepsilon$ and that $\vec{x} \in \operatorname{Grid}$. Fix $i \leq n$, we first note that $|(\vec{x}_i - \vec{y}_i) \cdot \vec{e}_i| \leq ||\vec{x}_i - \vec{y}_i||_{\infty}B \leq \varepsilon/4$. Hence

$$|\mathbb{E}_{\mathcal{G}}^{\pi,\sigma}[(\vec{x}_i-\vec{y}_i)\cdot\vec{\varrho}_i]|\leq \mathbb{E}_{\mathcal{G}}^{\pi,\sigma}[|(\vec{x}_i-\vec{y}_i)\cdot\vec{\varrho}_i|]\leq \mathbb{E}_{\mathcal{G}}^{\pi,\sigma}[\varepsilon/4]=\varepsilon/4.$$

and then

$$\begin{split} \mathbb{E}_{\mathcal{G}}^{\pi,\sigma}[\vec{x}_i \cdot \vec{\varrho}_i] &\geq \mathbb{E}_{\mathcal{G}}^{\pi,\sigma}[\vec{y}_i \cdot \vec{\varrho}_i] - \varepsilon/4 \\ &\geq \vec{y}_i \cdot (\vec{u}_i - \varepsilon/4) - \varepsilon/4 \\ &\geq (\vec{x}_i - \varepsilon/(4B)) \cdot (\vec{u}_i - \varepsilon/4) - \varepsilon/4 \\ &\geq \vec{x}_i \cdot \vec{u}_i - (\varepsilon/4)(||\vec{x}_i||_{\infty} + ||\vec{u}_i||_{\infty}/B) - \varepsilon/4 \\ &\geq \vec{x}_i \cdot \vec{u}_i - \varepsilon. \end{split}$$

The last inequality is justified by $\|\vec{u}_i\|_{\infty} \leq B$ and $\|\vec{x}_i\|_{\infty} \leq \|\vec{y}_i\|_{\infty} + \varepsilon/(4B) \leq 1 + \varepsilon/(4B) \leq 2$. It also holds that $\|\vec{x}_i\|_{\infty} \geq \|\vec{y}_i\|_{\infty} - \varepsilon/(4B) \geq 1 - \varepsilon/(4B)$, and hence $\vec{x} \in \mathsf{Grid}$.

Appendix C.3. Proof of Theorem 10

Proof. Take \vec{u} an approximable target for $\bigwedge_{i=1}^n\bigvee_{j=1}^m\mathbb{E}[\varrho_{i,j}]\geq u_{i,j}$. Then we apply Theorem 9 with $\varepsilon/2$. Thus one can find a weight vector $\vec{x}\in G$ rid such that $\vec{x}\cdot_n(\vec{u}-\varepsilon/2)\in P_{\varepsilon/2}(\vec{x})$. For every $i,\ \vec{x}_i$ has a positive component which is at least $\varepsilon/(8B)$, and hence $\vec{x}\cdot_n\varepsilon/2\geq\varepsilon'$, where we define $\varepsilon'\stackrel{\text{def}}{=}\varepsilon^2/(16B)$. By assumption, one can synthesise an ε' -optimal strategy π for $\mathbb{E}(\vec{x}\cdot_n\vec{\varrho})(\vec{x}\cdot_n(\vec{u}-\varepsilon/2))$, meaning that π is winning for $\vec{x}\cdot_n(\vec{u}-\varepsilon/2)-\varepsilon'$. By definition of ε' it holds that $\vec{x}\cdot_n(\vec{u}-\varepsilon/2)-\varepsilon'\geq\vec{x}\cdot_n(\vec{u}-\varepsilon/2)-\vec{x}\cdot_n\varepsilon/2=\vec{x}\cdot_n(\vec{u}-\varepsilon)$. Thus, π is winning for $\mathbb{E}(\vec{x}\cdot_n\vec{\varrho})(\vec{x}\cdot_n(\vec{u}-\varepsilon))$, and hence for $\bigwedge_{i=1}^n\bigvee_{j=1}^m\mathbb{E}[\varrho_{i,j}]\geq u_{i,j}-\varepsilon$.

Appendix C.4. Proof of Theorem 11

Proof. By Proposition 2 and Remark 3, $\varphi_{\vec{x}}$ implies $\bigwedge_{i=1}^n \mathbb{E}(\text{ratio}(\vec{x_i} \cdot \vec{r_i}/c_i)) \ge \vec{x_i} \cdot \vec{u_i}$. We need to consider only pairs of finite strategies as the statements are for finite Player \diamondsuit strategies winning against finite Player \square strategies (we recall that $\varphi_{\vec{x}}$ is Player \square -positional by Theorem 3). Fix two finite strategies π , σ , then the induced DTMC $\mathcal{G}^{\pi,\sigma}$ is finite. Hence, by Proposition 13, ratio($\vec{x_i} \cdot \vec{r_i}/c_i$) = $\vec{x_i} \cdot \text{ratio}(\vec{r_i}/c_i)$ and then $\mathbb{E}_{\mathcal{G}}^{\pi,\sigma}(\text{ratio}(\vec{x_i} \cdot \vec{r_i}/c_i)) = \mathbb{E}_{\mathcal{G}}^{\pi,\sigma}(\vec{x_i} \cdot \text{ratio}(\vec{r_i}/c_i))$. Now we can apply Theorem 8 and deduce that π is winning for ψ against finite strategies whenever it is winning for $\varphi_{\vec{x}}$, where c_{\min} is a bound such that for every i it holds that $m(c_i) \ge c_{\min}$ almost surely under any pair of strategies. Let $\varepsilon > 0$ and $\varepsilon' \stackrel{\text{def}}{=} \varepsilon \cdot c_{\min} \cdot \min(\vec{x_i} \cdot \vec{x_i}/||\vec{x_i}||_{\infty})$. Let π , σ be two finite strategies. Now, note that almost surely $\varepsilon' \le (\vec{x_i} \cdot \vec{x_i}) \cdot \text{mp}(c_i) \cdot \varepsilon/||\vec{x_i}||_{\infty}$. Hence $mp(\vec{x_i} \cdot \vec{r_i} - (\vec{x_i} \cdot \vec{u_i})c_i) \ge -\varepsilon'$ implies $mp(\vec{x_i} \cdot \vec{r_i} - (\vec{x_i} \cdot (\vec{u_i} - (\varepsilon/||\vec{x_i}||_{\infty})\vec{x_i}))c_i) \ge 0$. Thus, if π is ε' -optimal for $\varphi_{\vec{x}}$ then it is winning for ψ with the targets $u_{i,j} - (x_{i,j}/||\vec{x_i}||_{\infty}) \cdot \varepsilon$, and hence with the ε -optimal targets $u_{i,j} - \varepsilon$.

Appendix C.5. Proof of Lemma 8

Proof. If $\mathsf{Pmp}(\vec{r})(\vec{0})$ then $\mathsf{Emp}(\vec{r})(\vec{0})$ by Remark 3. We show the other direction by contraposition. If $\mathsf{Pmp}(\vec{r})(\vec{0})$ does not hold in a PA \mathcal{M} with a single MEC, then there exists a finite strategy σ such that $\mathbb{P}^{\sigma}_{\mathcal{M}}(\mathsf{mp}(r_i) < 0) > 0$ for some i. By Lemma 14, there exists a BSCC \mathcal{B} in the induced DTMC \mathcal{M}^{σ} such that $\mathsf{mp}(r)(\mathcal{B}) < 0$. By Lemma 2, the set of states of the PA corresponding to the BSCC, formally given by $\mathcal{B}_{\mathcal{M}} \stackrel{\mathsf{def}}{=} \{s \mid \exists \mathfrak{m} . (s, \mathfrak{m}) \in \mathcal{B}\}$, is reachable with probability one by an MD strategy from all states in \mathcal{M} . Hence, the strategy σ' that first reaches $\mathcal{B}_{\mathcal{M}}$ and then plays as σ to form the BSCC \mathcal{B} is finite and induces a DTMC with a single BSCC \mathcal{B}' in which the mean-payoff is $\mathsf{mp}(r)(\mathcal{B}') = \mathsf{mp}(r)(\mathcal{B}) < 0$. By Lemma 14, we have $\mathbb{P}^{\sigma'}_{\mathcal{M}}(\mathsf{mp}(r) = \mathsf{mp}(r)(\mathcal{B})) = \mathbb{P}^{\sigma'}_{\mathcal{M}}(\mathsf{F}\,\mathcal{B}) = 1$. Thus $\mathbb{P}^{\sigma'}_{\mathcal{M}}(\mathsf{mp}(r) < 0) = 1$, and hence $\mathbb{E}^{\sigma}_{\mathcal{M}}[\mathsf{mp}(r_i)] < 0$. We conclude that $\mathsf{Emp}(\vec{r})(\vec{0})$ does not hold when $\mathsf{Pmp}(\vec{r})(\vec{0})$ does not.

Appendix C.6. Proof of Lemma 9

Proof. We first show that in the definition of $\vec{\mathsf{z}}_i^{\mathcal{E}} \stackrel{\text{def}}{=} \min_{t \in \mathcal{S}_{\mathcal{E}}} \inf_{\sigma} \mathbb{E}_{\mathcal{E},t}^{\sigma}[\mathsf{mp}(r_i)]$, the minimum is reached for every state of the MEC.

Lemma 31. Given a MEC \mathcal{E} , and an index i, the value $\inf_{\sigma} \mathbb{E}^{\sigma}_{\mathcal{E},t}[mp(r_i)]$ does not depend on t, and is hence equal to $\vec{\mathcal{Z}}^{\mathcal{E}}_{i}$.

Proof. Consider two states t,t' of a MEC \mathcal{E} . Consider a strategy σ in the PA \mathcal{E}_t . Consider the strategy σ' in $\mathcal{E}_{t'}$ that first plays memoryless deterministic to reach t with probability 1 (it is possible in a MEC) and then switches to σ as soon as t is reached for the first time. Then $\mathbb{E}_{\mathcal{E},t'}^{\sigma'}[\mathsf{mp}(r_i)] = \mathbb{E}_{\mathcal{E},t}^{\sigma}[\mathsf{mp}(r_i)]$. Hence, for every t,t', $\inf_{\sigma'} \mathbb{E}_{\mathcal{E},t'}^{\sigma'}[\mathsf{mp}(r_i)] \leq \inf_{\sigma} \mathbb{E}_{\mathcal{E},t}^{\sigma}[\mathsf{mp}(r_i)]$. Reversing role of t,t' leads to an equality.

We can now proceed to the proof of Lemma 9.

Let σ be an arbitrary Player \square strategy. Given a MEC $\mathcal{E} = (S_{\mathcal{E}}, \Delta_{\mathcal{E}})$, we denote by $\mathcal{E}^{(k)}$ the set of paths that stay forever in \mathcal{E} after the first k steps, and define $\mathcal{E}^{(\infty)} = \cup_k \mathcal{E}^{(k)}$. We define the distributions $\gamma^k(\mathcal{E}) \stackrel{\text{def}}{=} \mathbb{P}^{\pi,\sigma}_{\mathcal{G}}(\mathcal{E}^{(k)})$ and $\gamma(\mathcal{E}) \stackrel{\text{def}}{=} \mathbb{P}^{\pi,\sigma}_{\mathcal{G}}(\mathcal{E}^{(\infty)})$. Note that $(\mathcal{E}^{(k)}_{\geq 0})$ is a non-decreasing sequence with respect to \subseteq , and hence $\gamma^k(\mathcal{E})$ is a non-decreasing sequence that converges towards $\gamma(\mathcal{E})$. By Theorem 3.2 of [24], with probability 1, the (player and stochastic) states seen infinitely often along a path form an end component, and hence are included in a MEC. Since MECs are disjoint, a further consequence is that $\sum_{\mathcal{E}} \gamma(\mathcal{E}) = 1$.

Now fix $\delta > 0$. Consider, for every state s that is in some MEC \mathcal{E} , and every $\delta > 0$, a δ -optimal strategy $\sigma_{s,\delta}$, that is, such that $\mathbb{E}_{\mathcal{M},s}^{\sigma_{s,\delta}}[\mathsf{mp}(\vec{r})] \leq \vec{\mathsf{z}}^{\mathcal{E}} + \delta$ (which exists due to Lemma 31). Consider the strategy $\sigma_{k,\delta}$ that plays as σ for the k first steps, and then switches to the δ -optimal strategy $\sigma_{s,\delta}$ if it is at a state s in some MEC, or plays arbitrarily if not in a MEC. Hence, it holds that

$$\vec{0} \leq \mathbb{E}_{\mathcal{M}}^{\sigma_{k,\delta}}[\mathsf{mp}(\vec{r})] \leq \sum_{\mathcal{E}} \sum_{s \in \mathcal{S}_{\mathcal{E}}} \mathbb{P}_{\mathcal{M}}^{\sigma}(\mathsf{F}^{=k}\left\{s\right\}) \cdot \mathbb{E}_{\mathcal{M},s}^{\sigma_{s,\delta}}[\mathsf{mp}(\vec{r})] + (1 - \sum_{\mathcal{E}} \mathbb{P}_{\mathcal{M}}^{\sigma}(\mathsf{F}^{=k}\left\{s\right\}))\rho^*],$$

where the second term is an upper bound on the reward contributed by the paths that are not in a MEC after k steps. We define $p_k(\mathcal{E}) \stackrel{\text{def}}{=} \mathbb{P}^{\sigma}_{\mathcal{M}}(\mathsf{F}^{=k} S_{\mathcal{E}}) = \sum_{s \in S_{\mathcal{E}}} \mathbb{P}^{\sigma}_{\mathcal{M}}(\mathsf{F}^{=k} \{s\})$, and have that

$$\vec{0} \le \sum_{\mathcal{E}} p_k(\mathcal{E})(\vec{\mathsf{z}}^{\mathcal{E}} + \delta) + (1 - \sum_{\mathcal{E}} p_k(\mathcal{E}))\rho^*. \tag{C.1}$$

We now show that $p_k(\mathcal{E}) \to \gamma(\mathcal{E})$ for every \mathcal{E} . Indeed, it holds that

$$\gamma^k(\mathcal{E}) \leq p_k(\mathcal{E}) \leq 1 - \sum_{\mathcal{E}' \neq \mathcal{E}} p_k(\mathcal{E}') \leq 1 - \sum_{\mathcal{E}' \neq \mathcal{E}} \gamma^k(\mathcal{E}'),$$

and the outermost terms converge to the same limit $\gamma(\mathcal{E}) = 1 - \sum_{\mathcal{E}' \neq \mathcal{E}} \gamma(\mathcal{E}')$, and hence so does the inner term $p_k(\mathcal{E})$. Finally, we let $k \to +\infty$ and $\delta \to 0$ in (C.1) to obtain the desired result $\vec{0} \leq \sum_{\mathcal{E} \in \mathfrak{E}} \gamma(\mathcal{E}) \vec{z}^{\mathcal{E}}$.

Appendix C.7. Proof of Lemma 10

Proof. "Only if" direction. Assume \mathcal{G} is CM. Fix a finite DU Player \Diamond strategy π , and let $\mathcal{E} = (S_{\mathcal{E}}, \Delta_{\mathcal{E}})$ be a MEC of \mathcal{G}^{π} . It suffices to show that there exists an IC \mathcal{H} such that $S_{\mathcal{H}} \subseteq S_{\mathcal{G},\mathcal{E}}$, since by the CM property $S_{\mathcal{H}}$ is reachable almost surely. We first build a pair $\mathcal{H}' = (S', \Delta')$ that satisfies properties (ii) and (iii). For this we define S' and Δ' by deleteting the memory component of each element of $S_{\mathcal{E}}$ and $\Delta_{\mathcal{E}}$, respectively. Formally, $S' = S_{\mathcal{G},\mathcal{E}}$ and Δ' is the set of transitions (s, s') for which there is a transition of $\Delta_{\mathcal{E}}$ of the form $((s, \mathfrak{m}), (s', \mathfrak{m}'))$, $(((s, s'), \mathfrak{m}), (s', \mathfrak{m}'))$ or $((s, \mathfrak{m}), ((s, s'), \mathfrak{m}'))$. It is easy to see that (ii) and (iii) hold. We now remove all but one choice per Player \Diamond state in \mathcal{H}' , and obtain a subgame \mathcal{H}'' of \mathcal{G} , which corresponds to an MDP as Player \Diamond has no longer any choice. Since we remove only Player \Diamond choices, \mathcal{H}'' still satisfies (ii). A corollary of Lemma 2.2 of [12] is that every bottom strongly connected component (g-BSCC) in the graph of an MDP is a MEC. We can thus take a g-BSCC in the graph of \mathcal{H}'' , which corresponds to a MEC, and thus an IC \mathcal{H} of \mathcal{G} .

"If" direction. Assume that, for every finite DU Player \Diamond strategy π , for every MEC \mathcal{E} of \mathcal{G}^{π} , $S_{\mathcal{G},\mathcal{E}}$ is almost surely reachable from every state of \mathcal{G} . Take any IC \mathcal{H} in \mathcal{G} . Hence, for any π' , $\mathcal{H}^{\pi'}$ forms a single MEC \mathcal{E} . Take the strategy π that plays arbitrarily outside of \mathcal{H} , and plays π' upon reaching \mathcal{H} . Then \mathcal{E} is also a MEC in \mathcal{G}^{π} . By assumption, $S_{\mathcal{G},\mathcal{E}}$ is almost surely reachable from every state of \mathcal{G} . Since $S_{\mathcal{G},\mathcal{E}} = S_{\mathcal{H}}$, $S_{\mathcal{H}}$ is almost surely reachable from every state of \mathcal{G} , and hence \mathcal{G} is CM.

Appendix C.8. Proof of Lemma 11

Lemma 34 below ensures that we can safely interchange the quantification over σ , t, and N used to define $\vec{z}^{\mathcal{E}}$. That means that, for every ε , there exists an N such that $\frac{\mathsf{rew}^{N-1}(\vec{r})}{N}$ stays above the threshold $\vec{z}^{\mathcal{E}} - \varepsilon$, independently of the Player \square strategy and of the state considered as starting state.

We first show two following technical lemmas.

Lemma 32. Let \mathcal{D} be a DTMC, let $b \geq 0$, let $(c_K)_{K \in \mathbb{N}}$ be a sequence of positive reals, and let $(X_K)_{K \in \mathbb{N}}$, $(Y_K)_{K \in \mathbb{N}}$, $(Z_K)_{K \in \mathbb{N}}$ be sequences of real-valued random variables on $\Omega_{\mathcal{D}}$ such that $Z_K \geq 0$, $|X_K| \leq b \cdot c_K$, and $|Y_K| \leq b \cdot Z_K$. Then

$$\left| \mathbb{E}_{\mathcal{D}} \left[\frac{X_K + Y_K}{c_K + Z_K} \right] - \mathbb{E}_{\mathcal{D}} \left[\frac{X_K}{c_K} \right] \right| \le \frac{2b}{c_K} \mathbb{E}_{\mathcal{D}}[Z_K].$$

Proof. From the assumptions of the lemma, we obtain

$$\begin{split} \left| \mathbb{E}_{\mathcal{D}} \left[\frac{X_K + Y_K}{c_K + Z_k} \right] - \mathbb{E}_{\mathcal{D}} \left[\frac{X_K}{c_K} \right] \right| &= \left| \mathbb{E}_{\mathcal{D}} \left[\frac{Y_K}{c_K + Z_K} \right] - \mathbb{E}_{\mathcal{D}} \left[\frac{X_K \cdot Z_K}{c_K (c_K + Z_K)} \right] \right| \\ &\leq \mathbb{E}_{\mathcal{D}} \left[\frac{|Y_K|}{c_K + Z_K} \right] + \mathbb{E}_{\mathcal{D}} \left[\frac{|X_K| \cdot Z_K}{c_K (c_K + Z_K)} \right] \\ &\leq \mathbb{E}_{\mathcal{D}} \left[\frac{b \cdot Z_K}{c_K} \right] + \mathbb{E}_{\mathcal{D}} \left[\frac{b \cdot c_K \cdot Z_K}{c_K^2} \right] \\ &\leq \frac{2b}{c_K} \mathbb{E}_{\mathcal{D}}[Z_K]. \end{split}$$

Lemma 33. Let G be a game with states S and with minimum non-zero probability p_{\min} . For any $s, t \in S$ such that t is reachable from s almost surely, the expected number of steps to reach t from s with an MD strategy is bounded from above by $|S| \cdot p_{\min}^{-|S|}$.

Proof. After |S| steps, t is reached from s with probability at least $p^* \stackrel{\text{def}}{=} p_{\min}^{|S|}$, Thus, the expected number of steps to reach $S_{\mathcal{H}}$ from s is upper bounded by $N_{\text{trans}} \stackrel{\text{def}}{=} |S| p^* + 2|S| p^* (1 - p^*) + 3|S| p^* (1 - p^*)^2 + \cdots = |S|/p^*$.

Lemma 34. For every MEC \mathcal{E} of a finite PA with rewards \vec{r} , it holds that

$$\underline{\lim}_{N\to\infty} \min_{t\in\mathcal{S}_{\mathcal{E}}} \inf_{\sigma} \mathbb{E}^{\sigma}_{\mathcal{E},t} \left[\frac{rew^{N-1}(\vec{r})}{N} \right] \geq \vec{z}^{\mathcal{E}}.$$

Proof. Fix a MEC $\mathcal{E} = (S_{\mathcal{E}}, \Delta_{\mathcal{E}})$ of a finite PA $\mathcal{M} = \langle S, (S_{\square}, S_{\bigcirc}), \varsigma, \mathcal{A}, \chi, \Delta \rangle$. Denote by p_{\min} the minimum non-zero probability in \mathcal{M} , and let $\rho^* \stackrel{\text{def}}{=} \max_{s \in S, i} |r_i(s)|$. Assume toward a contradiction that there exists $\delta > 0$ and i such that

$$\underline{\lim}_{N\to\infty} \min_{t\in S_{\mathcal{E}}} \inf_{\sigma} \mathbb{E}_{\mathcal{E},t}^{\sigma} \left[\frac{\mathsf{rew}^{N-1}(r_i)}{N} \right] < \mathsf{z}_i^{\mathcal{E}} - \delta.$$

In particular, we can fix $N \ge \lfloor 2\rho^* |S_{\mathcal{E}}| p_{\min}^{-|S_{\mathcal{E}}|} \delta^{-1} \rfloor$, $t \in S_{\mathcal{E}}$, and σ , such that

$$\mathbb{E}_{\mathcal{E},t}^{\sigma} \left[\frac{\mathsf{rew}^{N-1}(r)}{N} \right] < \mathsf{z}_{i}^{\mathcal{E}} - \delta.$$

We show that there exists a strategy σ' such that $\mathbb{E}_{\mathcal{E},t}^{\sigma'}[\mathsf{mp}(\vec{r_i})] < \mathsf{z}_i^{\mathcal{E}}$, that is, it contradicts the definition of $\mathsf{z}_i^{\mathcal{E}}$. From Lemma 33, we have that $|S_{\mathcal{E}}| \cdot p_{\min}^{-|S_{\mathcal{E}}|}$ is an upper bound for the expected number of steps to reach t from s for MD strategies. We construct the strategy σ' as follows. Starting from t, σ' plays in the first phase the first N steps of σ , then plays in the second phase an MD strategy to reach t, and then repeats ad infinitum the two previous phases. For a path λ , we let $N^{(K)}(\lambda)$ be the index of the beginning of the Kth loop, and $+\infty$ if λ contains no loops. We have

$$\mathbb{E}_{\mathcal{E},t}^{\sigma'}[\mathsf{mp}(r_i)] = \mathbb{E}_{\mathcal{E},t}^{\sigma'}\left[\underline{\lim}_{k\to\infty} \frac{1}{k+1} \mathsf{rew}^k(r_i)\right] \qquad \text{(definition)}$$

$$\leq \mathbb{E}_{\mathcal{E},t}^{\sigma'}\left[\underline{\lim}_{K\to\infty} \frac{1}{N^{(K)}+1} \mathsf{rew}^{N^{(K)}}(r_i)\right] \qquad \text{(sub-sequence)}$$

$$\leq \underline{\lim}_{K\to\infty} \mathbb{E}_{\mathcal{E},t}^{\sigma'}\left[\frac{1}{N^{(K)}+1} \mathsf{rew}^{N^{(K)}}(r_i)\right] \qquad \text{(Fatou's Lemma)}$$

For a path λ , we denote by $c_K(\lambda) - 1 \stackrel{\text{def}}{=} NK$ (resp. $Z_K(\lambda)$) the total cumulated steps in the first phase (resp. second phase) during the first K loops. We denote by $X_K(\lambda)$ (resp. $Y_K(\lambda)$) the respective cumulated reward of r_i . We have $\mathbb{E}^{\sigma'}_{\mathcal{E},t} \left[\frac{1}{N^{(K)}+1} \mathsf{rew}^{N^{(K)}}(r_i) \right] \stackrel{\text{def}}{=} \mathbb{E}^{\sigma'}_{\mathcal{E},t} \left[\frac{X_K + Y_K}{c_K + Z_K} \right]$, and so from Lemma 32 we obtain

$$\mathbb{E}_{\mathcal{E},t}^{\sigma'}\left[\frac{1}{N^{(K)}+1}\mathsf{rew}^{N^{(K)}}(r_i)\right] \leq \mathbb{E}_{\mathcal{E},t}^{\sigma'}\left[\frac{X_K}{c_K}\right] + \frac{2\rho^*}{c_K}\mathbb{E}_{\mathcal{E},t}^{\sigma'}[Z_K]. \tag{C.2}$$

We now consider the two terms on the right-hand side of (C.2). By definition of σ' in the first phase, the first term equals $\frac{K}{1+KN}\mathbb{E}_{\mathcal{E},\ell}^{\sigma}\left[\mathsf{rew}^{N-1}(r_i)\right]$. The second term is upper-bounded by δ , since

$$(2\rho^*/c_K)\mathbb{E}_{\mathcal{E},t}^{\sigma'}[Z_K] \leq (2\rho^*/KN)K|S_{\mathcal{E}}|p_{\min}^{-|S_{\mathcal{E}}|} = 2\rho^*|S_{\mathcal{E}}|p_{\min}^{-|S_{\mathcal{E}}|}/N \leq \delta.$$

We can now conclude

$$\mathbb{E}_{\mathcal{E},t}^{\sigma'}[\mathsf{mp}(r_i)] \leq \underline{\lim}_{K \to \infty} \frac{K}{1 + KN} \mathbb{E}_{\mathcal{E},t}^{\sigma}[\mathsf{rew}^{N-1}] + \delta = \frac{1}{N} \mathbb{E}_{\mathcal{E},t}^{\sigma}[\mathsf{rew}^{N-1}] + \delta < u_i^{\mathcal{E}}.$$

This contradicts the definition of $u_i^{\mathcal{E}}$ and the proof is complete.

We can now prove Lemma 11.

Proof. Let $\mathfrak E$ be the set of L MECs $\mathcal E_l$ of $\mathcal G^{\pi^l}$, indexed by l. We show that the strategy π constructed in Definition 7, with appropriately chosen step counts N_l , satisfies the lemma, that is, it approximates γ . Throughout the proof, we refer to the strategy π , keeping the step counts as parameters. From Lemma 10, every MEC is almost surely reachable in $\mathcal G$ from any state s. Thus, we have an upper bound $N_{\triangleright} = |S| \cdot p^*$ on the mean time spent between two MECs. For every l, we define A_l such that, for every $N_l \geq A_l$, $\min_{t \in S_{\mathcal E_l}} \inf_{\sigma} \mathbb E_{\mathcal E_l,t}^{\sigma} \Big[\text{rew}^{N_l-1}(\vec{r}) \Big] \geq N_l(\vec{z}^{\mathcal E_l} - \mathcal E/3)$, which exists by virtue of Lemma 34. We now define the step counts for π by $N_l \stackrel{\text{def}}{=} \lfloor h\gamma(\mathcal E_l) \rfloor$, and let $N \stackrel{\text{def}}{=} \sum_{l=1}^L N_l$ with h chosen such that

- (h1) for every $l, N_l \ge A_l$;
- (h2) $1/h \le \varepsilon/(3\sum_{l=1}^{L} \|\vec{\mathsf{z}}^{\varepsilon_l}\|_{\infty});$
- (h3) $(L\gamma(\mathcal{E}_l) + 1)/(h L) \le \varepsilon/(3\sum_l ||\vec{z}^{\mathcal{E}_l}||_{\infty})$; and
- (h4) $\frac{1}{N}2\rho^*LN_{\triangleright} \le \varepsilon/3$.

For an infinite path λ , we let $N^{(K)}(\lambda)$ be the index of the beginning of the Kth loop, or $+\infty$ if λ has fewer than K loops. For every finite DU strategy σ , it holds for almost every path λ that $N^{(K)}(\lambda)$ is finite for all K, and thus $\lim_{k\to\infty} \frac{1}{k+1} \operatorname{rew}^k(\vec{r})(\lambda) = \lim_{K\to\infty} \frac{1}{N^{(K)}+1} \operatorname{rew}^{N^{(K)}}(\vec{r})(\lambda)$. Hence,

$$\begin{split} \mathbb{E}_{\mathcal{G}}^{\pi,\sigma}\left[\mathsf{mp}(\vec{r})\right] &= \mathbb{E}_{\mathcal{G}}^{\pi,\sigma}\left[\lim_{k\to\infty}\frac{1}{k+1}\mathsf{rew}^k(\vec{r})\right] & \text{(definition)} \\ &= \mathbb{E}_{\mathcal{G}}^{\pi,\sigma}\left[\lim_{K\to\infty}\frac{1}{N^{(K)}+1}\mathsf{rew}^{N^{(K)}}(\vec{r})\right] & \text{(almost sure equality)} \\ &= \lim_{K\to\infty}\mathbb{E}_{\mathcal{G}}^{\pi,\sigma}\left[\frac{1}{N^{(K)}+1}\mathsf{rew}^{N^{(K)}}(\vec{r})\right]. & \text{(Lebesgue's theorem)} \end{split}$$

For a path $\lambda \in \Omega_{\mathcal{D}}$, we denote by $c_K - 1 \stackrel{\text{def}}{=} NK$ (resp. $Z_k(\lambda)$), the total cumulated time spent on the MEC phase (resp. inter-MEC phase) during the first K loops. We denote by $X_K(\lambda)$ (resp. $Y_K(\lambda)$) the respective cumulated reward. We are interested in the limit when $K \to \infty$ of

$$\mathbb{E}_{\mathcal{G}}^{\pi,\sigma} \left[\frac{1}{N^{(K)}+1} \mathsf{rew}^{N^{(K)}} \right] = \mathbb{E}_{\mathcal{G}}^{\pi,\sigma} \left(\frac{X_K + Y_K}{c_K + Z_K} \right),$$

and from Lemma 32 we therefore get that

$$\mathbb{E}_{\mathcal{G}}^{\pi,\sigma} \left[\frac{1}{N^{(K)} + 1} \mathsf{rew}^{N^{(K)}} \right] \ge \mathbb{E}_{\mathcal{G}}^{\pi,\sigma} \left(\frac{X_K}{c_K} \right) - \frac{2\rho^*}{c_K} \mathbb{E}_{\mathcal{G}}^{\pi,\sigma}(Z_K). \tag{C.3}$$

We let $X_{l,k}(\lambda)$ be the reward accumulated in the lth MEC phase during the kth loop, and thus have $X_K = \sum_{k=0}^{K-1} \sum_{l=1}^{L} X_{l,k}$. By virtue of (h1), $N_l \ge A_l$, and hence it holds that $\mathbb{E}_{\mathcal{G}}^{\pi,\sigma}[X_{l,k}] \ge N_l(\vec{\mathbf{Z}}^{\mathcal{E}_l} - \frac{1}{3}\varepsilon)$. Therefore,

$$\mathbb{E}_{\mathcal{G}}^{\pi,\sigma}\left(\frac{X_K}{c_K}\right) = \frac{1}{1+KN} \sum_{k=0}^{K-1} \sum_{l=1}^{L} \mathbb{E}_{\mathcal{G}}^{\pi,\sigma}[X_{l,k}]$$

$$\geq \frac{1}{1+KN} \sum_{k=0}^{K-1} \sum_{l=1}^{L} N_l (\vec{\mathbf{z}}^{\mathcal{E}_l} - \frac{1}{3}\varepsilon)$$

$$\geq \frac{K}{1+KN} \sum_{l=1}^{L} N_l \vec{\mathbf{z}}^{\mathcal{E}_l} - \frac{1}{3}\varepsilon.$$

Taking the limit, we get

$$\begin{split} \lim_{K \to \infty} \mathbb{E}_{\mathcal{G}}^{\pi, \sigma} \left(\frac{X_K}{c_K} \right) &\geq \sum_{l=1}^{L} \frac{N_l}{N} \vec{\mathsf{z}}^{\mathcal{E}_l} - \frac{1}{3} \varepsilon \\ &\geq \sum_{l=1}^{L} \gamma(\mathcal{E}_l) \vec{\mathsf{z}}^{\mathcal{E}_l} - \sum_{l=1}^{L} \left| \gamma(\mathcal{E}_l) - \frac{N_l}{N} \right| \| \vec{\mathsf{z}}^{\mathcal{E}_l} \|_{\infty} - \frac{1}{3} \varepsilon \end{split}$$

Note that

$$\frac{N_l}{N} \ge \frac{h\gamma(\mathcal{E}_l) - 1}{\sum_{l'=1}^L h\gamma(\mathcal{E}_{l'})} \ge \gamma(\mathcal{E}_l) - \frac{1}{h},$$

and that

$$\frac{N_l}{N} \leq \frac{h\gamma(\mathcal{E}_l) + 1}{\sum_{l'=1}^L (h\gamma(\mathcal{E}_{l'}) - 1)} = \frac{h\gamma(\mathcal{E}_l) + 1}{h - L} = \gamma(\mathcal{E}_i) + \frac{1}{h - L}(L\gamma(\mathcal{E}_l) + 1).$$

Using condition (h2) and (h3) on h, we get $|\gamma(\mathcal{E}_l) - \frac{N_l}{N}| \le \varepsilon/(3\sum_{l'=1}^L ||\vec{u}^{\mathcal{E}_{l'}}||)$, and hence

$$\lim_{K \to \infty} \mathbb{E}_{\mathcal{G}}^{\pi,\sigma} \left(\frac{X_K}{c_K} \right) \ge \sum_{l=1}^{L} \gamma(\mathcal{E}_l) \vec{\mathsf{z}}^{\mathcal{E}_l} - \frac{2}{3} \varepsilon. \tag{C.4}$$

We now upper-bound the absolute value of the second term of (C.3) using

$$\frac{2\rho^*}{c_K} \mathbb{E}_{\mathcal{G}}^{\pi,\sigma}(Z_K) \le \frac{2\rho^*}{KN} KLN_{\triangleright} = \frac{1}{N} 2\rho^* LN_{\triangleright} \le \varepsilon/3, \tag{C.5}$$

where the last inequality comes from condition (h4) on h, and hence on N. Applying the bounds (C.4) and (C.5) to (C.3), we obtain

$$\mathbb{E}_{\mathcal{G}}^{\pi,\sigma}[\mathsf{mp}(\vec{r})] \geq \sum_{l=1}^{L} \gamma(\mathcal{E}_l) \vec{\mathsf{z}}^{\mathcal{E}_l} - \varepsilon.$$

Appendix D. Proofs of results of Section 5

Appendix D.1. Proof of Lemma 12

Proof. Let $\mathcal{M} = \langle S, (S_{\square}, S_{\bigcirc}), \varsigma, \mathcal{A}, \chi, \Delta \rangle$, $\mathcal{M}' = \langle S', (S'_{\square}, S'_{\bigcirc}), \varsigma', \mathcal{A}', \chi', \Delta' \rangle$, and $\sigma = \langle \mathfrak{R}, \sigma_{\mathtt{c}}, \sigma_{\mathtt{u}}, \sigma_{\mathtt{d}} \rangle$. We construct an SU strategy σ' that simulates σ applied to \mathcal{M} by keeping the current state in \mathcal{M} and the memory of σ in its own memory. The functional simulation ensures that every path of \mathcal{M}^{σ} corresponds to a path in $(\mathcal{M}')^{\sigma'}$, and so after seeing memory (s,\mathfrak{m}) the strategy σ' picks the next move that σ would pick in state s with memory \mathfrak{m} . Our aim is to show that the trace distributions of $(\mathcal{M}')^{\sigma'}$ and \mathcal{M}^{σ} are equivalent. We formally let $\sigma' \stackrel{\text{def}}{=} \langle \mathfrak{R}', \sigma'_{\mathtt{c}}, \sigma'_{\mathtt{u}}, \sigma'_{\mathtt{d}} \rangle$, where we define $\mathfrak{R}' \stackrel{\text{def}}{=} \mathfrak{R} \times S$, and where, for all $(\mathfrak{m}, s), (\mathfrak{n}, (a, \mu)), (\mathfrak{o}, t) \in \mathfrak{R}'$ and all $s' \stackrel{a}{\longrightarrow} '\mu'$ in \mathcal{M}' , such that $s' = \mathcal{F}(s), \mu' = \overline{\mathcal{F}}(\mu), t' = \mathcal{F}(t) \in \text{supp}(\mu')$, we define

$$\sigma'_{\mathsf{d}}(s')((\mathfrak{m},s)) \stackrel{\text{def}}{=} \sigma_{\mathsf{d}}(s)(\mathfrak{m}) \cdot \frac{\varsigma(s)}{\varsigma'(s')}$$

$$\sigma'_{\mathsf{u}}((\mathfrak{m},s),(a,\mu'))((\mathfrak{n},(a,\mu))) \stackrel{\text{def}}{=} \frac{\sigma_{\mathsf{u}}(\mathfrak{m},(a,\mu))(\mathfrak{n})}{\sigma'_{\mathsf{c}}(s',(\mathfrak{m},s))(a,\mu')}$$

$$\sigma'_{\mathsf{u}}((\mathfrak{n},(a,\mu)),t')((\mathfrak{o},t)) \stackrel{\text{def}}{=} \sigma_{\mathsf{u}}(\mathfrak{n},t)(\mathfrak{o}) \cdot \frac{\mu(t)}{\mu'(t')}$$

$$\sigma'_{\mathsf{c}}(s',(\mathfrak{m},s))(a,\mu') \stackrel{\text{def}}{=} \sum_{\overline{\mathcal{F}}(u)=\mu'} \sigma_{\mathsf{c}}(s,\mathfrak{m})(a,\mu).$$
(D.1)

Denote by $\mathbb{P}_{\mathcal{D}}(\mathfrak{m}, \lambda) \stackrel{\text{def}}{=} \mathbb{P}_{\mathcal{D}}(\lambda) \cdot \mathfrak{d}_{\lambda}(\mathfrak{m})$ the probability of the path λ and the memory \mathfrak{m} after seeing λ . A functional simulation \mathcal{F} must be defined for the reachable states of \mathcal{M} , and so it extends inductively to a total function on

paths of \mathcal{M} by defining $\mathcal{F}(\lambda(a,\mu)s) \stackrel{\text{def}}{=} \mathcal{F}(\lambda)(a,\overline{\mathcal{F}}(\mu))\mathcal{F}(s)$. We now show by induction on the length of paths that $\mathbb{P}^{\sigma'}_{\mathcal{M}'}((\mathfrak{m},s),\lambda') = \mathbb{P}^{\sigma}_{\mathcal{M}}(\mathfrak{m},\lambda)$ if $\mathcal{F}(\lambda) = \lambda'$, and $\mathbb{P}^{\sigma'}_{\mathcal{M}'}((\mathfrak{m},s),\lambda') = 0$ otherwise.

For the base case, for any $(\mathfrak{m},s)\in\mathfrak{N}'$ and $s'\in S'$ such that $s'=\mathcal{F}(s)$, we have that $\mathbb{P}^{\sigma'}_{\mathcal{M}'}((\mathfrak{m},s),s')=\varsigma'(s')\cdot\sigma'_{\mathsf{d}}(s',(\mathfrak{m},s))=\sigma_{\mathsf{d}}(s)(\mathfrak{m})\cdot\varsigma(s)=\mathbb{P}^{\sigma}_{\mathcal{M}}(\mathfrak{m},s);$ if, on the other hand, $s'\neq\mathcal{F}(s)$ then $\sigma'_{\mathsf{d}}(s',(\mathfrak{m},s))=0,$ and so $\mathbb{P}^{\sigma'}_{\mathcal{M}'}((\mathfrak{m},s),s')=0.$

For the induction step, assume the equality holds for $\lambda \in \Omega_{\mathcal{M}}^{\text{fin}}$ and $\lambda' \in \Omega_{\mathcal{M}'}^{\text{fin}}$, and we consider paths $\lambda(a,\mu)t \in \Omega_{\mathcal{M}}^{\text{fin}}$ and $\lambda'(a,\mu')t' \in \Omega_{\mathcal{M}'}^{\text{fin}}$. We have that

$$\mathbb{P}_{\mathcal{M}'}^{\sigma'}((\mathfrak{o},t),\lambda'(a,\mu')t') = \sum_{(\mathfrak{m},\mathsf{last}(\lambda)),(\mathfrak{n},(a,\mu))\in\mathfrak{R}'} \mathbb{P}_{\mathcal{M}'}^{\sigma'}((\mathfrak{m},s),\lambda')\cdot p_1\cdot p_2,$$

where

$$p_1 = \sigma'_{\mathsf{c}}(\mathsf{last}(\lambda'), (\mathfrak{m}, \mathsf{last}(\lambda)))(a, \mu') \cdot \sigma'_{\mathsf{u}}((\mathfrak{m}, \mathsf{last}(\lambda)), (a, \mu'))((\mathfrak{n}, (a, \mu)))$$

$$p_2 = \mu'(t') \cdot \sigma'_{\mathsf{u}}((\mathfrak{n}, (a, \mu)), t')((\mathfrak{o}, t')).$$

We consider first the case where $\mathcal{F}(\lambda(a,\mu)t) \neq \lambda'(a,\mu')t'$: if $\mathcal{F}(\lambda) \neq \lambda'$, then from the induction hypothesis $\mathbb{P}^{\sigma'}_{\mathcal{M}'}((\mathfrak{m},s),\lambda')=0$; and if $\mathcal{F}((a,\mu)t)\neq (a,\mu')t'$, then $p_2=0$ from (D.2). Now suppose that $\mathcal{F}(\lambda(a,\mu)t)=\lambda'(a,\mu')t'$. From (D.1) we have that $p_1=\sigma_{\mathsf{u}}(\mathfrak{m},(a,\mu))(\mathfrak{n})$ and from (D.2) we have that $p_2=\mu(t)\cdot\sigma_{\mathsf{u}}(\mathfrak{n},t)(\mathfrak{o})$. Applying the induction hypothesis, we conclude the induction, since

$$\begin{split} \mathbb{P}_{\mathcal{M}'}^{\sigma'}((\mathfrak{o},t),\lambda'(a,\mu')t') &= \sum_{\mathfrak{m},\mathfrak{n}\in\mathfrak{N}} \mathbb{P}_{\mathcal{M}}^{\sigma}(\mathfrak{m},\lambda) \cdot \sigma_{\mathsf{u}}(\mathfrak{m},(a,\mu))(\mathfrak{n}) \cdot \mu(t) \cdot \sigma_{\mathsf{u}}(\mathfrak{n},t)(\mathfrak{o}) \\ &= \mathbb{P}_{\mathcal{M}}^{\sigma}(\mathfrak{o},\lambda(a,\mu)t). \end{split}$$

We thus have

where the equation marked with * is a consequence of trace(λ) = trace($\mathcal{F}(\lambda)$). Thus, σ' and σ induce the same trace distribution, and φ , which is defined on traces, satisfies (\mathcal{M}') $^{\sigma'} \models \varphi \Leftrightarrow \mathcal{M}^{\sigma} \models \varphi$.

Appendix D.2. Proof of Lemma 13

Proof. Following Remark 5, we assume w.l.o.g. that the strategies are DU strategies. We construct a functional simulation by viewing states in the induced PA $\mathcal{M} = (\|_{i \in I} \mathcal{G}^i)^{\|_{i \in I} \pi^i}$ as derived from the paths of the composed game $\mathcal{G} = (\|_{i \in I} \mathcal{G}^i)$. These paths are projected to components \mathcal{G}^i and then assigned a corresponding state in the induced PA $(\mathcal{G}^i)^{\pi^i}$. Due to the structure imposed by compatibility, moves chosen at Player \Diamond states in \mathcal{G}^i can be translated to moves in the composition $\mathcal{M}' = \|_{i \in I} (\mathcal{G}^i)^{\pi^i}$.

Denote the induced PA by $\mathcal{M} = \langle S, (S_{\square}, S_{\bigcirc}), \varsigma, \mathcal{A}, \chi, \Delta \rangle$, and the composition of induced PAs by $\mathcal{M}' = \langle S', (S'_{\square}, S'_{\bigcirc}), \varsigma', \mathcal{A}, \chi', \Delta' \rangle$. We define a partial function $\mathcal{F} : S \to S'$, and then show that it is a functional simulation. We use $\vec{\gamma}$ to stand for both Player \square states \vec{s} and Player \lozenge state-move tuples $(\vec{s}, (a, \vec{\mu}))$ of the game \mathcal{G} , as occurring in the induced PA \mathcal{M} (see Definition 6). We write

$$[\vec{\gamma}]^i = \begin{cases} s^i & \text{if } \vec{\gamma} = \vec{s} \in S_{\square} \\ (s^i, (a, \mu^i)) & \text{if } \vec{\gamma} = (\vec{s}, (a, \vec{\mu})) \text{ and } \mathcal{G}^i \text{ is involved in } \vec{s} \xrightarrow{a} \vec{\mu} \\ s^i & \text{if } \vec{\gamma} = (\vec{s}, (a, \vec{\mu})) \text{ and } \mathcal{G}^i \text{ is not involved in } \vec{s} \xrightarrow{a} \vec{\mu}, \end{cases}$$

We define \mathcal{F} by $[\mathcal{F}(\vec{\gamma}, \vec{b})]_i = (\gamma^i, b^i)$ for all reachable states $(\vec{\gamma}, \vec{b}) \in S$ of \mathcal{M} , and all $i \in I$. We now show that \mathcal{F} is a functional simulation.

Case (F1). We show that $\overline{\mathcal{F}}(\varsigma) = \varsigma'$. Note that, due to the normal form, the initial distribution ς of \mathcal{M} only maps to states of the form $S_{\square} \times \mathfrak{M}$, and the initial distribution ς' of \mathcal{M}' only maps to states of the form $\prod_{i \in I} S_{\square}^i \times \mathfrak{M}$

 \mathfrak{M}^i . For such states $(\vec{s}, \vec{b}) \in S_{\square} \times \mathfrak{M}$, we have $[\mathcal{F}(\vec{s}, \vec{b})]_i = (s^i, b^i)$, and so $\overline{\mathcal{F}}(\varsigma)((s^1, b^1), (s^2, b^2), \ldots) = \varsigma(\vec{s}, \vec{b}) = \varsigma'((s^1, b^1), (s^2, b^2), \ldots)$.

Case (F2). Consider a transition $(\vec{\gamma}, \vec{\delta}) \stackrel{a}{\longrightarrow} \mu_{\vec{\gamma}, \vec{\delta}}$ of the induced PA, $\mathcal{M} = \mathcal{G}^{\parallel_{i\in I}\pi^i}$ where $\mu_{\vec{\gamma}, \vec{\delta}}(\vec{\gamma}', \vec{\delta}') \stackrel{\text{def}}{=} \Delta^{\pi}((\vec{\gamma}, \vec{\delta}), (\vec{\gamma}', \vec{\delta}'))$. It is induced from a transition $\vec{s} \stackrel{a}{\longrightarrow} \vec{\mu}$ of the game composition \mathcal{G} . For each involved component \mathcal{G}^i , we apply the strategy π^i separately, and obtain that, for each transition $s^i \stackrel{a}{\longrightarrow} i \mu^i$ in \mathcal{G}^i , the transition $(\gamma^i, \delta^i) \stackrel{a}{\longrightarrow} \mu_{\gamma^i, \delta^i}$ (where $\mu_{\gamma^i, \delta^i}(\gamma', \delta') = \Delta^{\pi^i}((\gamma^i, \delta^i), (\gamma, \delta'))$) is in the induced PA $(\mathcal{G}^i)^{\pi^i}$. Then, composing the induced PAs $(\mathcal{G}^i)^{\pi^i}$ yields a transition $\mathcal{F}(\vec{\gamma}, \vec{\delta}) \stackrel{a}{\longrightarrow} \nu$ in \mathcal{M}' , where ν is not null on element $\mathcal{F}(\gamma_+, \delta_+)$ only if $\gamma^i = \gamma^i_+$ and $\delta^i = \delta^i_+$ for the component not involved and $\delta^i_+ = \pi^i_{\mathsf{U}}(\delta^i, (a, \mu^i))$ for the involved component. On such elements it holds that

$$\begin{split} \nu(\mathcal{F}(\vec{\gamma_{+}},\vec{\mathfrak{d}_{+}})) &= \prod_{i \in \Gamma(\vec{0},\vec{\gamma_{+}})} \mu_{\gamma^{i},\mathfrak{d}^{i}}^{\pi^{i}}(\gamma_{+}^{i},\mathfrak{d}_{+}^{i}) \qquad \text{(Definition 9)} \\ &= \overline{\mathcal{F}}(\mu_{\vec{\gamma},\vec{0}})(\mathcal{F}(\vec{\gamma_{+}},\vec{\mathfrak{d}_{+}})). \quad \text{(definition of } \overline{\mathcal{F}}) \end{split}$$

We thus have that $\mathcal{F}(\vec{\gamma}, \vec{b}) \xrightarrow{a'} \mathcal{F}(\mu_{\vec{\gamma}, \vec{b}})$ is in \mathcal{M}' , concluding the proof of (F2).