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Abstract

Traditional approaches for knowledge

base completion are based on symbolic

representations of knowledge. Low-

dimensional vector embedding models

proposed recently for this task are at-

tractive since they generalize to possi-

bly unlimited sets of relations. A sig-

nificant drawback of previous embed-

ding models for KB completion is that

they merely support reasoning on indi-

vidual relations (e.g., bornIn(X,Y ) ⇒
nationality(X,Y )). In this work, we de-

velop an embedding model for KB com-

pletion that supports chains of reasoning

on paths of any length using compositional

vector space models. Unlike most previ-

ous methods, our approach can general-

ize to paths that are unseen in training and

additionally, in a zero-shot setting, predict

target relations without explicitly training

for the target relation types. In a challeng-

ing large-scale dataset, our method out-

performs a simple classifier method and

a method that uses pre-trained vectors by

11% and 7% respectively, and performs

competitively with a modified stronger

baseline. We also show that the zero-shot

model without using any direct supervi-

sion achieves impressive results by per-

forming significantly better than a random

baseline.

1 Introduction

Knowledge base (KB) construction has been a fo-

cus of research in natural language understand-

ing, and large KBs have been created, most no-

tably Freebase (Bollacker et al., 2008), YAGO

(Suchanek et al., 2007) and NELL (Carlson et al.,

2010). These KBs contain several million facts

such as (Barack Obama, presidentOf, USA) and

(Brad Pitt, marriedTo, Angelina Jolie). However,

these KBs are incomplete (Min et al., 2013) and

are missing important facts, thus jeopardizing their

usefulness in downstream tasks. In this work, we

focus on binary relation extraction, i.e., relations

with two arguments for KB completion.

Traditional KB completion methods (Mintz et

al., 2009; Min et al., 2013; Lao et al., 2011;

Lao et al., 2012) use symbolic representations of

knowledge and are bound to a fixed and hand-

built schema that are usually brittle and incom-

plete. Low-dimensional vector embedding mod-

els proposed recently (Riedel et al., 2013; Bordes

et al., 2013) are attractive since they generalize

to possibly unlimited set of relations. A draw-

back of previous work in using embedding mod-

els for KB completion is that they merely sup-

port simple reasoning of the form A ⇒ B (e.g.,

bornIn(X,Y ) ⇒ nationality(X,Y )).

A more general approach for KB comple-

tion is to infer missing relation facts of en-

tity pairs using paths (of length greater than or

equal to one) connecting them in the KB graph

(Schoenmackers et al., 2010; Lao et al., 2011).

Here, the KB graph is constructed with the en-

tities as nodes and (typed) edges indicating re-

lations between them. For example, if the KB

contains the facts IsBasedIn(Microsoft, Seattle),

StateLocatedIn(Seattle, Washington) and Country-

LocatedIn(Washington, USA), we can infer the

fact CountryOfHeadquarters(Microsoft, USA) us-

ing the rule:

CountryOfHeadquarters(X, Y) ⇔
IsBasedIn(X,A) ∧ StateLocatedIn(A, B) ∧

CountryLocatedIn(B, Y)

where IsBasedIn - StateLocatedIn - CountryLo-

catedIn is a path connecting the entity pair (Mi-

crosoft, USA) in the KB graph, and IsBasedIn,

StateLocatedIn and CountryLocatedIn are the bi-

nary relations in the path.
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Figure 1: Semantically similar paths connecting

entity pair (Microsoft, USA).

A drawback of most previous work (Schoen-

mackers et al., 2010; Lao et al., 2011; Lao et

al., 2012) that uses symbolic representations of

knowledge is that they reason on individual paths

in the KB graph independently. For example, Lao

et al. (2011) create a separate feature for each of

the semantically similar paths in Figure 1 leading

to feature space explosion and poor generaliza-

tion. This limits the applicability of these meth-

ods to modern KBs that have thousands of rela-

tions since the number of paths increases rapidly

with the number of relations. Moreover, it is of-

ten beneficial to add more information in the form

of Subject-Verb-Object (SVO) triples to the KB

graph which dramatically increases the number of

relations and paths in the KB graph, making the

feature explosion problem more severe.

In response, Gardner et al. (2013) and Gard-

ner et al. (2014) use pre-trained low-dimensional

vector representations of relations to alleviate the

feature explosion problem. Gardner et al. (2013)

replace relation type with their cluster member-

ship which reduces the number of distinct paths in

the KB graph but the clustering of relations does

not capture asymmetric implicature and could lead

to loss of important information. Gardner et al.

(2014) transform new unseen paths to seen paths

by replacing relation types in the unseen paths

with relations that are close to it in the vector

space. Both these methods aim to obtain higher

quality paths connecting the entity pairs but still

perform inference in the symbolic space and in

the path finding step use pre-trained relation vec-

tors that are not tailored for the task. Unlike our

model, they do not have the ability to make pre-

dictions about relation types that are absent during

training (zero-shot learning) .

Our approach performs inference directly in the

vector space by comparing the vector representa-

tion of a path with the vector representation of

the relation to be predicted. We construct com-

positional vector representations for the paths in

the KB graph from the semantic vector represen-

tations of the binary relations in that path (Figure

2). We use Recursive Neural Networks (RNNs)

(Socher et al., 2011) to model semantic compo-

sition. The reasons for using composition models

for this task is motivated by : (1) unlike classifiers,

they allow us to share parameters across semanti-

cally similar paths using the vector representations

of the relations in those paths and (2) at test time,

we can perform inference using paths that are un-

seen during training. These advantages empower

our model to seamlessly perform inference on mil-

lions of paths in the KB graph. Additionally, by

learning a single powerful composition function

over the semantic vector space and fixing the rela-

tion vectors using pre-trained vectors from Riedel

et al. (2013), our method can perform zero-shot

inference to predict relational facts without explic-

itly training for the target (or test) relation types.

We evaluate our methods on a large-scale

dataset constructed with Freebase (Bollacker et

al., 2008) as the KB enriched with entity linked

text triples from Clueweb (Orr et al., 2013). This

dataset has the following advantages over the

dataset used in Gardner et al. (2014): (1) the meth-

ods are evaluated to perform inference on an aver-

age of over 2 million paths per relation type com-

pared to 1000 in the previous dataset, (2) we use

on an average more than 10, 000 entity pairs per

relation type from Freebase for training and test-

ing instead of just 200 and (3) while the previous

dataset was created by representing each textual

entity mention with a separate node in the graph

we create nodes only for Freebase entities leverag-

ing the publicly available entity linked information

(Orr et al., 2013). We make this dataset containing

millions of paths per relation type publicly avail-

able.

In this challenging large-scale dataset, our

method outperforms the simple classifier method

of Lao et al. (2012) and the method of Gardner et

al. (2013) that uses pre-trained vectors by 11% and

7% respectively and performs competitively with

a modified stronger baseline when evaluated on 46
relation types. The best results are obtained by

combining the predictions of our model with the

predictions of the modified baseline. This combi-

nation achieves 15% and 19% improvement over

the method of Lao et al. (2012) and Gardner et

al. (2013) respectively. We also show that the





Algorithm 1 Training Algorithm of RNN model

for relation δ

1: Input: Λδ = Λ+
δ ∪Λ−

δ ,Φδ , number of iterations T , mini-
batch size B

2: Initialize vr,Wδ randomly
3: for t = 1, 2, . . . , T do
4: ∇vr = 0, ∇Wδ = 0 and b = 0
5: for λ = (γ, δ) ∈ Λδ do
6: µλ = argmaxπ∈Φδ(γ)

vp(π).vr(δ)
7: Accumulate gradients to ∇vr , ∇Wδ

8: using path µλ.
9: b = b+ 1

10: if b = B then
11: Gradient Update for vr,Wδ

12: ∇vr = 0, ∇Wδ = 0 and b = 0
13: end if
14: end for
15: if b > 0 then
16: Gradient Update for vr,Wδ

17: end if
18: end for
19: Output: vr,Wδ

a ∈ R
d, b ∈ R

d along with a bias feature to get a

new vector [a; b] ∈ R
2d+1.

The vector representation of the path Π = Is-

BasedIn - StateLocatedIn - CountryLocatedIn in

Figure 2 is computed similarly by,

vp(Π) =

f(Wδ[vp(π); vr( CountryLocatedIn)])

where vp(π) is the vector representation of path

IsBasedIn - StateLocatedIn. While computing the

vector representation of a path we always traverse

left to right, composing the relation vector in the

right with the accumulated path vector in the left1.

This makes our model similar to a recurrent neural

network (Werbos, 1990).

Finally, we make a prediction regarding Coun-

tryOfHeadquarters(Microsoft, USA) using the

path Π = IsBasedIn - StateLocatedIn - Coun-

tryLocatedIn by comparing the vector represen-

tation of the path (vp(Π)) with the vector repre-

sentation of the relation CountryOfHeadquarters

(vr(CountryOfHeadquarters)) using the sigmoid

function.

3.1 Model Training

We assume that we are given a KB (for example,

Freebase enriched with SVO triples) containing a

set of entity pairs Γ, set of relations ∆ and a set of

observed facts Λ+ where ∀λ = (γ, δ) ∈ Λ+(γ ∈

1we did not get significant improvements when we tried
more sophisticated ordering schemes for computing the path
representations.

Γ, δ ∈ ∆) indicates a positive fact that entity pair

γ is in relation δ. Let Φδ(γ) denote the set of paths

connecting entity pair γ given by PRA for predict-

ing relation δ.

In our task, we only observe the set of paths

connecting an entity pair but the path(s) that is pre-

dictive of the fact is unobserved. We treat this as

a latent variable (µλ for the fact λ) and we assign

µλ the path whose vector representation has maxi-

mum dot product with the vector representation of

the relation to be predicted. For example, µλ for

the fact λ = (γ, δ) ∈ Λ+ is given by,

µλ = argmax
π∈Φδ(γ)

vp(π).vr(δ)

Selecting only the path which is closest to the rela-

tion in vector space not only allows for faster train-

ing (compared to marginalization) but also gave

improved performance. This technique has been

successfully used in other models previously (We-

ston et al., 2013; Neelakantan et al., 2014). During

training, we assign µλ using the current parameter

estimates. We use the same procedure to assign

µλ for unobserved facts that are used as negative

examples during training. Note that this scenario

does not occur in previous work that use RNNs

(Socher et al., 2011; Socher et al., 2012; Socher

et al., 2013b; Iyyer et al., 2014; Irsoy and Cardie,

2014).

We train a separate RNN model for predicting

each relation and the parameters of the model for

predicting relation δ ∈ ∆ are Θ = {vr(ω)∀ω ∈
∆, Wδ}. Given a training set consisting of posi-

tive (Λ+
δ ) and negative (Λ−

δ ) instances2 for relation

δ, the parameters are trained to maximize the log

likelihood of the training set with L-2 regulariza-

tion.

Θ∗ = argmax
Θ

∑

λ=(γ,δ)∈Λ+
δ

P (yλ = 1;Θ)+

∑

λ=(γ,δ)∈Λ−

δ

P (yλ = 0;Θ)− ρ‖Θ‖2

where yλ is a binary random variable which takes

the value 1 if the fact λ is true and 0 otherwise, and

the probability of a fact P (yλ = 1;Θ) is given by,

P (yλ = 1;Θ) = sigmoid(vp(µλ).vr(δ))

where µλ = argmax
π∈Φδ(γ)

vp(π).vr(δ)

2we sub-sample a portion of the set of all unobserved in-
stances.



and P (yλ = 0;Θ) = 1 − P (yλ = 1;Θ). The

relation vectors and the composition matrix are

initialized randomly. We train the network us-

ing backpropagation through structure (Goller and

Küchler, 1996).

4 Zero-shot KB Inference

In this section, we show that our model described

in the previous section is capable of zero-shot

or zero-data learning after making a few simple

modifications. In zero-shot or zero-data learning

(Larochelle et al., 2008; Palatucci et al., 2009),

few labels or classes is omitted during training the

model and only a description of those classes are

given at prediction time. We make two modifica-

tions to the model described in the previous sec-

tion, (1) learn a general composition matrix, and

(2) fix relation vectors with pre-trained vectors, so

that we can predict relations that are unseen during

training.

We learn a general composition matrix for all

relations instead of learning a separate composi-

tion matrix for every relation to be predicted. So,

for example, the vector representation of the path

π = IsBasedIn - StateLocatedIn containing two

relations IsBasedIn and StateLocatedIn is com-

puted by (Figure 2),

vp(π) =

f(W [vr(IsBasedIn); vr(StateLocatedIn)])

where W ∈ R
d∗2d+1 is the general composition

matrix.

The vector representation of the path Π = Is-

BasedIn - StateLocatedIn - CountryLocatedIn in

Figure 2 is computed similarly by,

vp(Π) =

f(W [vp(π); vr( CountryLocatedIn)])

where vp(π) is the vector representation of path

IsBasedIn - StateLocatedIn.

We initialize the vector representations of the

binary relations (vr) using the representations

learned in Riedel et al. (2013) and do not update

them during training. The relation vectors are not

updated because at prediction time we would be

predicting relation types which are never seen dur-

ing training and hence their vectors would never

get updated. We learn only the general composi-

tion matrix in this model. The parameters of the

composition matrix are learned using the available

training data containing instances of few relations.

The other aspects of the model remain unchanged

and training is again done using backpropagation

through structure (Goller and Küchler, 1996).

To predict facts whose relation types are un-

seen during training, we compute the vector rep-

resentation of the path using the general compo-

sition matrix and compute the probability of the

fact using the pre-trained relation vector. For ex-

ample, using the vector representation of the path

Π = IsBasedIn - StateLocatedIn - CountryLocate-

dIn (vp(Π)) in Figure 2, we can predict any rela-

tion irrespective of whether they are seen at train-

ing by comparing it with the pre-trained relation

vectors (vr). This ability of the model to gener-

alize to unseen relations is beyond the capabilities

of all previous methods for KB inference (Schoen-

mackers et al., 2010; Lao et al., 2011; Gardner et

al., 2013; Gardner et al., 2014).

5 Related Work

KB Inference: Methods such as Lin and Pan-

tel (2001), Yates and Etzioni (2007) and Berant

et al. (2011) learn inference rules of length one.

Schoenmackers et al. (2010) learn general infer-

ence rules by considering the set of all paths in

the KB and selecting paths that satisfy a certain

precision threshold. Their method does not scale

well to modern KBs and also depends on carefully

tuned thresholds. Lao et al. (2011) train a simple

logistic regression classifier with NELL KB paths

as features to perform KB completion while Gard-

ner et al. (2013) and Gardner et al. (2014) extend it

by using pre-trained relation vectors to overcome

feature sparsity. Yang et al. (2014) learn inference

rules using simple element-wise addition or multi-

plication as the composition function.

Compositional Vector Space Models: There has

been plenty of work on developing compositional

vector space models to represent phrases and sen-

tences in natural language as vectors (Mitchell

and Lapata, 2008; Baroni and Zamparelli, 2010;

Yessenalina and Cardie, 2011). RNNs (Socher

et al., 2011) have been successfully used to learn

vector representations of phrases using the vec-

tor representations of the words in that phrase.

They have been used for many tasks like pars-

ing (Socher et al., 2011), sentiment classification

(Socher et al., 2012; Socher et al., 2013b; Irsoy

and Cardie, 2014), question answering (Iyyer et

al., 2014) and natural language logical semantics



Entities 18M

Freebase Facts 40M

Clueweb triples 12M

Relations 25,994

Relation types tested 46

Avg. paths/relation 2.3M

Avg. training facts/relation 6638

Avg. positive test instances/relation 3492

Avg. negative test instances/relation 43,160

Table 1: Statistics of our dataset.

(Bowman et al., 2014). Recurrent neural networks

have been used for many tasks such as language

modeling (Mikolov et al., 2010), machine transla-

tion (Sutskever et al., 2014) and parsing (Vinyals

et al., 2014).

Zero-shot or zero-data learning: Zero-data

learning was introduced in Larochelle et al. (2008)

for character recognition and drug discovery.

Palatucci et al. (2009) perform zero-shot learning

for neural decoding while there has been plenty

of work in this direction for image recognition

(Socher et al., 2013a; Frome et al., 2013; Norouzi

et al., 2014).

6 Experiments

In this section, we give details on our data and re-

sults. All the neural network models are trained

for 150 iterations using 50 dimensional relation

vectors, and we set the L2-regularizer and learning

rate to 0.0001 and 0.1 respectively. We halved the

learning rate after every 60 iterations and use mini-

batches of size 20. The neural networks and the

classifiers were optimized using AdaGrad (Duchi

et al., 2011). The hyperparameters of both the

models were tuned on the same development data.

6.1 Data

We ran experiments on Freebase (Bollacker et al.,

2008) knowledge base enriched with information

from Clueweb. We use the publicly available en-

tity links (Orr et al., 2013) to Freebase in the

Clueweb dataset. Hence, we create nodes only

for Freebase entities in our KB graph. We re-

move facts containing /type/object/type as they do

not give useful predictive information for our task.

We get triples from Clueweb by considering sen-

tences that contain two entities linked to Freebase.

We extract the phrase between the two entities and

treat them as the relation types. For phrases that

are of length greater than four we keep only the

first and last two words. This helps us to avoid the

time consuming step of dependency parsing the

sentence to get the relation type. These triples are

similar to facts obtained by OpenIE (Banko et al.,

2007). To reduce noise, we select relation types

that occur at least 50 times. We evaluate on 46
relation types in Freebase that have the most num-

ber of instances. The methods are evaluated on a

subset of facts in Freebase that were hidden during

training. Table 1 shows important statistics of our

dataset.

6.2 Predictive Paths

Table 2 shows predictive paths for 4 relations

learned by the RNN model. The high quality of

unseen paths is indicative of the fact that the RNN

model is able to generalize to paths that are never

seen during training.

6.3 Results

We compare the performance of the following

methods in our experiments:

PRA Classifier is the method in Lao et al. (2012)

which trains a logistic regression classifier by cre-

ating a feature for every path type.

Cluster PRA Classifier is the method in Gardner

et al. (2013) which replaces relation types from

Clueweb triples with their cluster membership in

the KB graph before the path finding step. Af-

ter this step, their method proceeds in exactly the

same manner as Lao et al. (2012) training a logis-

tic regression classifier by creating a feature for

every path type. We use pre-trained relation vec-

tors from Riedel et al. (2013) and use k-means

clustering to cluster the relation types to 25 clus-

ters as done in Gardner et al. (2013).

Composition-Add uses a simple element-wise ad-

dition followed by sigmoid non-linearity as the

composition function (Yang et al., 2014).

RNN-random is the supervised RNN model de-

scribed in section 3 with the relation vectors ini-

tialized randomly.

RNN is the supervised RNN model described in

section 3 with the relation vectors initialized using

the method in Riedel et al. (2013).

PRA Classifier-b is our simple extension to the

method in Lao et al. (2012) which additionally

uses bigrams in the path as features. We add a

special start and stop symbol to the path before

computing the bigram features.

Cluster PRA Classifier-b is our simple extension

to the method in Gardner et al. (2013) which ad-



Relation: /book/written work/original language/ (book “x” written in language “y”)

Seen paths:

/book/written work/previous in series - /book/written work/author-/people/person/nationality - /people/person/nationality−1

- /people/person/languages

/book/written work/author - /people/ethnicity/people−1 - /people/ethnicity/languages spoken
Unseen paths:

”in”−1 - ”writer”−1 - /people/person/nationality−1 - /people/person/languages

/book/written work/author - addresses - /people/person/nationality−1 - /people/person/languages

Relation: /people/person/place of birth/ (person “x” born in place “y”)

Seen paths:

“was,born,in” - /location/mailing address/citytown−1 - /location/mailing address/state province region

“from” - /location/location/contains−1

Unseen paths:

“born,in” - /location/location/contains - “near”−1

“was,born,in” - commonly,known,as−1

Relation: /geography/river/cities/ (river “x” flows through or borders “y”)

Seen paths:

“at” - /location/location/contains−1

“meets,the” - /transportation/bridge/body of water spanned−1 - /location/location/contains−1 - “in”
Unseen paths:

/geography/lake/outflow−1 - /location/location/contains−1

/geography/lake/outflow−1 - /location/location/contains−1 - “near”

Relation: /people/family/members/ (person “y” part of family “x”)

Seen paths:

/royalty/monarch/royal line−1 - /people/person/children - /royalty/monarch/royal line
- /royalty/royal line/monarchs from this line

/royalty/royal line/monarchs from this line - /people/person/parents−1 - /people/person/parents−1 - /people/person/parents−1

Unseen paths:

/royalty/monarch/royal line−1 - “leader”−1 - “king” - “was,married,to”−1

“of,the”−1 - “but,also,of” - “married” - “defended”−1

Table 2: Predictive paths, accroding to the RNN model, for 4 target relations. Two examples of seen and

unseen paths are shown for each target relation. Inverse relations are marked by −1, i.e, r(x, y) =⇒
r−1(y, x), ∀(x, y) ∈ r. Relations within quotes are OpenIE (textual) relation types.

ditionally uses bigram features computed as previ-

ously described.

RNN + PRA Classifier combines the predictions

of RNN and PRA Classifier. We combine the pre-

dictions by assigning the score of a fact as the sum

of their rank in the two models after sorting them

in ascending order.

RNN + PRA Classifier-b combines the predictions

of RNN and PRA Classifier-b using the technique

described previously.

RNN-ensemble is obtained by combining the pre-

dictions of five different RNNs. Apart from RNN

and RNN-random, we trained three more RNNs

with different random initialization and the perfor-

mance of the three RNNs individually are 57.09,

57.11 and 56.91. Combining the predictions of

the ensemble with PRA Classifier-b did not yield

improvements over RNN + PRA Classifier-b.

Table 3 shows the results of our experiments.

We are not able to include the method described

in Gardner et al. (2014) since the publicly avail-

able implementation does not scale to our large

dataset3. First, we show that it is better to train

3The method in Gardner et al. (2014) has a hyperparam-
eter that controls the probability of restarting a random walk
and we suspect the run time of their method is very sensitive

the models using all the path types instead of us-

ing only the top 1, 000 path types as done in pre-

vious work (Gardner et al., 2013; Gardner et al.,

2014). We can see that the RNN model performs

significantly better than the baseline methods of

Lao et al. (2012) and Gardner et al. (2013), and

performs competitively with classifiers which ad-

ditionally use bigram features. The performance

of the RNN model is not affected by initialization

since using random vectors and pre-trained vec-

tors results in similar performance. The bigram

features help the classifiers to handle feature spar-

sity. The best results are obtained by combining

the predictions of our model with the classifiers

using bigram features.

6.3.1 Zero-shot

Table 4 shows the results of the zero-shot model

described in section 4 compared with the fully su-

pervised RNN model (section 3) and a baseline

that produces a random ordering of the test facts.

We evaluate on randomly selected 10 (out of 46)

relation types, hence for the fully supervised ver-

sion we train 10 RNNs, one for each relation type.

For evaluating the zero-shot model, we randomly

to it.



train with

top 1000 paths

train with

all paths

Method MAP MAP

PRA Classifier 43.46 51.31

Cluster PRA Classifier 46.26 53.23

Composition-Add 40.23 45.37

RNN-random 45.52 56.91

RNN 46.61 56.95

PRA Classifier-b 48.09 58.13

Cluster PRA Classifier-b 48.72 58.02

RNN + PRA Classifier 49.92 58.42

RNN + PRA Classifier-b 51.94 61.17

RNN-ensemble - 59.16

Table 3: Results comparing different methods on 46 types. All the methods perform better when trained

using all the paths than training using the top 1, 000 paths. When training with all the paths, RNN per-

forms significantly (ρ < 0.005) better than PRA Classifier and Cluster PRA Classifier, and competitively

with PRA Classifier-b and Cluster PRA Classifier-b. The best results are obtained by combining the pre-

dictions of RNN with PRA Classifier-b which performs significantly (ρ < 10−5) better than both PRA

Classifier-b and Cluster PRA Classifier-b.

split the relations into two sets of equal size and

train a zero-shot model on one set and test on the

other set. So, in this case we have two RNNs

making predictions on relation types that they have

never seen during training. As expected, the fully

supervised RNN outperforms the zero-shot model

by a large margin but the zero-shot model with-

out using any direct supervision clearly performs

much better than a random baseline. We expect

the performance of the zero-shot model to predict

facts about unseen relation types to increase as we

train it on more relations.

6.3.2 Discussion

We suspect the RNN model does not capture long-

range structural dependencies well since the best

results are achieved only after combining the pre-

dictions of the RNN with a classifier using bi-

gram features. To overcome this drawback, in fu-

ture work, we plan to explore compositional mod-

els that have a longer memory (Hochreiter and

Schmidhuber, 1997; Cho et al., 2014; Mikolov et

al., 2014). We also plan to include vector represen-

tations for the entities and develop models that ad-

dress the issue of polysemy in verb phrases (Cheng

et al., 2014).

train with

top 1000 paths

train with

all paths

Method MAP MAP

RNN 43.82 50.10

zero-shot 19.28 20.61

Random 7.59

Table 4: Results comparing the zero-shot model

with supervised RNN and a random baseline on

10 types. RNN is the fully supervised model de-

scribed in section 3 while zero-shot is the model

described in section 4. The zero-shot model with-

out explicitly training for the target relation types

achieves impressive results by performing signifi-

cantly better than a random baseline.

7 Conclusion

We develop a compositional vector space model

for knowledge base inference that unlike most

previous methods can generalize to paths that

are unseen in training. In a challenging large-

scale dataset, our method outperforms two base-

line methods and performs competitively with

a modified stronger baseline. The best results

are obtained by combining the predictions of our

model with the predictions of the modified base-



line which achieves a 15% and 19% improvement

over the method in Lao et al. (2012) and Gardner

et al. (2013) respectively. We also show that the

zero-shot model without explicitly training for the

target relation types achieves impressive results

by performing significantly better than a random

baseline.
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Sumit Chopra, Michaël Mathieu, and Marc’Aurelio
Ranzato. 2014. Learning longer memory in recur-
rent neural networks. In CoRR.

[Min et al.2013] Bonan Min, Ralph Grishman, Li Wan,
Chang Wang, and David Gondek. 2013. Distant su-
pervision for relation extraction with an incomplete
knowledge base. In HLT-NAACL, pages 777–782.

[Mintz et al.2009] Mike Mintz, Steven Bills, Rion
Snow, and Dan Jurafsky. 2009. Distant supervi-
sion for relation extraction without labeled data. In
Association for Computational Linguistics and In-
ternational Joint Conference on Natural Language
Processing.

[Mitchell and Lapata2008] Jeff Mitchell and Mirella
Lapata. 2008. Vector-based models of semantic
composition. In Association for Computational Lin-
guistics.

[Neelakantan et al.2014] Arvind Neelakantan, Jeevan
Shankar, Alexandre Passos, and Andrew McCallum.
2014. Efficient non-parametric estimation of multi-
ple embeddings per word in vector space. In Empir-
ical Methods in Natural Language Processing.

[Norouzi et al.2014] Mohammad Norouzi, Tomas
Mikolov, Samy Bengio, Yoram Singer, Jonathon
Shlens, Andrea Frome, Greg Corrado, and Jeffrey
Dean. 2014. Zero-shot learning by convex com-
bination of semantic embeddings. In International
Conference on Learning Representations.

[Orr et al.2013] Dave Orr, Amarnag Subramanya, Ev-
geniy Gabrilovich, and Michael Ringgaard. 2013.
11 billion clues in 800 million documents: A web
research corpus annotated with freebase concepts.
http://googleresearch.blogspot.com/2013/07/11-
billion-clues-in-800-million.html.

[Palatucci et al.2009] Mark Palatucci, Dean Pomerleau,
Geoffrey Hinton, and Tom Mitchell. 2009. Zero-
shot learning with semantic output codes. In Neural
Information Processing Systems.

[Riedel et al.2013] Sebastian Riedel, Limin Yao, An-
drew McCallum, and Benjamin M. Marlin. 2013.
Relation extraction with matrix factorization and
universal schemas. In HLT-NAACL.

[Schoenmackers et al.2010] Stefan Schoenmackers,
Oren Etzioni, Daniel S. Weld, and Jesse Davis.
2010. Learning first-order horn clauses from web
text. In Empirical Methods in Natural Language
Processing.

[Socher et al.2011] Richard Socher, Cliff Chiung-Yu
Lin, Christopher D. Manning, and Andrew Y. Ng.
2011. Parsing natural scenes and natural language
with recursive neural networks. In Proceedings
of the 26th International Conference on Machine
Learning (ICML).

[Socher et al.2012] Richard Socher, Brody Huval,
Christopher D. Manning, and Andrew Y. Ng.
2012. Semantic compositionality through recursive
matrix-vector spaces. In Joint Conference on
Empirical Methods in Natural Language Processing
and Computational Natural Language Learning.

[Socher et al.2013a] Richard Socher, Milind Ganjoo,
Christopher D Manning, and Andrew Ng. 2013a.
Zero-shot learning through cross-modal transfer. In
Neural Information Processing Systems.

[Socher et al.2013b] Richard Socher, Alex Perelygin,
Jean Wu, Jason Chuang, Christopher D. Manning,
Andrew Y. Ng, and Christopher Potts. 2013b. Re-
cursive deep models for semantic compositionality
over a sentiment treebank. In Conference on Empir-
ical Methods in Natural Language Processing.

[Suchanek et al.2007] Fabian M. Suchanek, Gjergji
Kasneci, and Gerhard Weikum. 2007. Yago: A core
of semantic knowledge. In Proceedings of the 16th
International Conference on World Wide Web.

[Sutskever et al.2014] Ilya Sutskever, Oriol Vinyals,
and Quoc V. V Le. 2014. Sequence to sequence
learning with neural networks. In Advances in Neu-
ral Information Processing Systems.

[Vinyals et al.2014] Oriol Vinyals, Lukasz Kaiser,
Terry Koo, Slav Petrov, Ilya Sutskever, and Geof-
frey Hinton. 2014. Grammar as a foreign language.
In CoRR.

[Werbos1990] Paul Werbos. 1990. Backpropagation
through time: what it does and how to do it. In
IEEE.

[Weston et al.2013] Jason Weston, Ron Weiss, and
Hector Yee. 2013. Nonlinear latent factorization by
embedding multiple user interests. In ACM Interna-
tional Conference on Recommender Systems.



[Yang et al.2014] Bishan Yang, Wen-tau Yih, Xiaodong
He, Jianfeng Gao, and Li Deng. 2014. Embedding
entities and relations for learning and inference in
knowledge bases. In CoRR.

[Yates and Etzioni2007] Alexander Yates and Oren Et-
zioni. 2007. Unsupervised resolution of objects and
relations on the web. In North American Chapter of
the Association for Computational Linguistics.

[Yessenalina and Cardie2011] Ainur Yessenalina and
Claire Cardie. 2011. Compositional matrix-space
models for sentiment analysis. In Empirical Meth-
ods in Natural Language Processing.


