
Compositional Verification of a Communication
Protocol for a Remotely Operated Aircraft I

Alwyn E. Goodloe∗,a, César A. Muñoza

aNational Aeronautics and Space Administration, Langley Research Center, Hampton, VA
23681, USA

Abstract

This paper presents the formal specification and verification of a communication
protocol between a ground station and a remotely operated aircraft. The proto-
col can be seen as the vertical composition of protocol layers, where each layer
performs input and output message processing, and the horizontal composition
of different processes concurrently inhabiting the same layer, where each process
should satisfy a distinct delivery requirement. A compositional technique is used
to formally prove that the protocol satisfies these requirements. Although the
protocol itself is not novel, the methodology employed in its verification extends
existing techniques by automating the tedious and usually cumbersome part of
the proof, thereby making the iterative design process of protocols feasible.

Key words: Protocol verification, interactive theorem proving, compositional
reasoning

1. Introduction

A Remotely Operated Aircraft (ROA) is a distributed system where its crit-
ical components are dispersed between the airborne vehicle and the ground
station. Flight commands are sent from the ground station to the vehicle and
telemetry data are sent from the aircraft to the ground station.

AirSTAR [1, 2, 3] is an experimental jet-powered ROA designed and built
by NASA’s Langley Research Center (LaRC) for use as a testbed for research
on software health management and flight control. The operational platform
of AirSTAR has a simple organization with one vehicle in the air and a single
ground station, where the pilots are rarely out of visual sight of the aircraft.

IThis work was supported by the National Aeronautics and Space Administration under
NASA Cooperative Agreement NNX08AE37A awarded to the National Institute of Aerospace
(NIA) while the authors were resident at NIA. Authors are listed in alphabetical order.

∗Corresponding author.
Email addresses: a.goodloe@nasa.gov (Alwyn E. Goodloe), Cesar.A.Munoz@nasa.gov

(César A. Muñoz)

Preprint submitted to Elsevier December 5, 2011

When flying, commands from AirSTAR’s ground-based pilot are broadcast to
the aircraft and telemetry data from the aircraft are broadcast to the ground
station. Aircraft commands are time sensitive in the sense that if a message
is lost or corrupted in transit, then it should not be resent because it would
be considered stale by the time a new copy arrives. This requirement is called
the weak delivery requirement. On the other hand, engineers and researchers
on the ground need to receive all data produced by the aircraft in order to
analyze aircraft performance as well as to plan future aircraft flights. Hence,
the aircraft communication protocol should guarantee that all telemetry data
broadcast is eventually delivered. This requirement is called the guaranteed
delivery requirement. This paper proposes a formally verified communication
protocol for AirSTAR that satisfies these delivery requirements.

Since the requirements of weak and guaranteed delivery are orthogonal to
each other, the communication protocol has been structured as two different
protocols: the weak delivery protocol (WDP) and the guaranteed delivery proto-
col (GDP). The relationship between WDP and GDP is similar to the relation-
ship between the User Datagram Protocol (UDP) and the Transmission Control
Protocol (TCP) of the Internet protocol suite. As with UDP and TCP, WDP
and GDP are multi-layered protocols. In particular, a link layer is considered
that performs error detection and multiplexes WDP and GDP messages into the
physical communication medium. However, WDP and GDP are considerably
smaller and simpler than UDP and TCP. For instance, since there is only one
vehicle and one ground station, WDP and GDP do not need a network layer.

This paper focuses on the functional correctness of WDP and GDP’s delivery
properties, when both protocols run in parallel and share the communication
medium and the link layer. The correctness requirement for GDP is that mes-
sages are received in the order they are sent. In the case of WDP, the correctness
requirement states that every message received was in the sequence of sent mes-
sages. Since both protocols share the lower layers of the protocol stack, the
delivery properties have to be verified for the communication protocol formed
by WDP and GDP, denoted WDP ‖ GDP. This design structure introduces
complexities that tax current model checking capabilities. Consequently, the
verification work presented in this paper is supported by interactive theorem
proving technology.

The use of a theorem prover, as opposed to a model checker, also allows
for a specification that is more abstract than an implementation, but con-
crete enough to provide a detailed description of the design, amenable to rapid
prototyping. The formal verification is carried out in the Prototype Verifica-
tion System (PVS) [4]. The full development is electronically available from
http://shemesh.larc.nasa.gov/people/cam/AirSTAR. The verification ap-
proach employs a compositional technique where the delivery properties of the
communication in the composed protocol WDP ‖ GDP are lifted from the de-
livery properties of its components. A significant percentage of these proofs
are automated via PVS’s proof scripting language. This promotes the iterative
design of systems, as laborious proofs need not be repeated by hand at each
design iteration.

2

The paper is structured as follows. The multi-layered architecture of the
communication protocol is presented in Section 2. Section 3 describes each
component of the stack except for GDP, which is detailed in Section 4. The
verification of the protocol is discussed in Section 5. Section 6 discusses related
works and Section 7 concludes the paper.

2. Communication Protocol Architecture

The communication protocol is structured in a protocol stack, where each
layer handles a different aspect of message processing. As a message moves
down the stack, each layer performs some processing and adds packet headers.
As a message moves up the stack, the corresponding packet headers are removed.
Because there is no network layer for routing, the layers of the protocol stack
roughly correspond to the application layer, transport layer, link layer, and
physical layer. Given that the physical layer is concerned with the details of
the communication hardware, it is not modeled in this analysis. Instead, its
functional behaviour is abstracted by a communication medium, which will be
referred to as the ether.

At the top layer of the protocol stack is the application layer. All messages
sent and received from the application layer are presumed to be sent via WDP
or GDP depending on required message delivery guarantees. In other words, it
is assumed that the application chooses between the WDP and GDP protocols
when sending a message. The next layer down corresponds to the transport
layer and it is here that the core of the delivery protocols reside. WDP simply
sends a message, but provides no guarantee that the message ever arrived at its
destination. Hence, messages may be lost or corrupted in transit and are never
resent. GDP is designed to provide its user with a guarantee that any message
sent is eventually received. The link layer is the next layer in the protocol
stack. The delivery protocols directly interface with the link layer as there is
no network layer. The link layer performs error detection and multiplexes the
messages from the WDP and GDP layers. The ether models the communication
channels over which messages are sent and received.

The proposed protocol stack is illustrated in Figure 1. The protocol stack
can be explained both vertically and horizontally. Vertically, each layer performs
a specific transformation on a message, adding headers as it traverses down the
stack and removing headers as it traverses up the stack. Horizontally, the WDP
and GDP lie at the same layer, but they behave differently as they satisfy dif-
ferent requirements. These may be viewed as disjoint independent components
occupying the same layer in the stack and sharing the link layer. Each protocol
in the stack typically has a sender and receiver process. A message processed
by the sender at one node should be processed by the receiver at the destination
node.

In the model of the protocol stack, the protocol layers are connected using
First In First Out (FIFO) queues. This structure is illustrated in Figure 1,
where each queue is depicted as a small rectangle with an arrow pointing in

3

Ether

Link Layer

Weak
Delivery

Guaranteed
Delivery

Application Layer

App_to_WDP

WDP_to_LL

Input

App_to_GDP

GDP_to_LL

to_WDP from_WDP to_GDP from_GDP

GDP_to_App

LL_to_GDP

Output

LL_to_WDP

WDP_to_App

Figure 1: Protocol stack

the direction of the information flow with a label naming the queue attached.
Ignoring the details of the application layer, the messages to be sent by WDP
and GDP are modeled by a pair of sequences to GDP and to WDP. At the receiving
process, the messages are placed in the pair of sequences from GDP and from WDP.
Tracing the flow of a WDP message, a message in to WDP is moved to the
App to WDP queue, the weak delivery layer adds a header and places the packet
on the WDP to LL queue, the link layer adds its header and moves the packet
to ether’s input queue. The ether is not a protocol layer itself, but a model of
the transport medium that removes packets from the ether’s input and placed
them on the ether’s output queue. The link layer removes the message from the
output queue, strips off the outer header, performs its processing, and moves
the packet onto the LL to WDP queue. The weak delivery layer removes the
packet from the LL to WDP queue, removes any header, and places the packet
on the WDP to App queue. The application layer removes the message from the
WDP to App queue and adds it to the from WDP structure.

3. Protocol Specification

The communication protocol presented in Section 2 has been specified and
formally verified in the PVS specification language. First, this section gives
a brief introduction to the syntax and design patterns used throughout the
specification. This is followed by a description of all of the components of the
specification except the GDP layer, which, given its complexity, is described in
Section 4.

4

3.1. Specification Language
PVS is a tightly coupled specification language and interactive theorem

prover. The specification language is quite expressive in that it extends clas-
sical higher-order logic with dependent types and predicate subtyping. This
rich type system makes type checking undecidable, but the type checker copes
with this by producing proof obligations that must be discharged using the the-
orem prover. PVS supports primitive types such a real numbers and Boolean
values, and composed types such as abstract data types, tuples, and records.
Enumeration types are considered to be a special case of abstract data types.

In this paper, abstract data type declarations take the form

T = cons1(a11 : T11, . . . , a1m1 : T1m1) : rec1? +
· · ·
consi(ai1 : Ti1, . . . , aimi

: Timi
) : reci? +

· · ·
consn(an1 : Tn1, . . . , anmn

: Tnmn
) : recn?,

where consi is a constructor, aimi
is an accessor, and reci? is a type recognizer,

which is a symbol used to branch on the type structure. Furthermore, a record
type T is defined as

T = a1 : T1 × · · · × an : Tn,

where ai is a field accessor. In PVS, field access is performed using the backquote
operator, so if s is a record and a is one of its fields, then s‘a is the value of a
in s. The with operator overrides record fields, e.g., s with [‘a := e, ‘b :=
f] is a new record that is equal to s in all its fields except in a and b where it
has the values e and f, respectively.

Each layer of the protocol stack is modeled by a state type, a state transition
function, and a state transition relation. The state of the machine is represented
by a record that consists of internal variables, e.g., counters, and input/output
communication variables. The functional component is a deterministic state
machine that takes the current state and an action and returns the next state.
The relational component is a transition relation that nondeterministically se-
lects a valid action for the state machine to execute.

The following naming conventions are used. The PVS type that represents
the state of a machine and its relational component have the same name. This
is possible since PVS supports name overloading. Furthermore, the functional
component is always called next. As explained in Section 5.2, it is this uni-
formity in the structure of each component and use of name conventions that
makes it possible to write strategies that automate the proofs.

For expository purposes certain details in the PVS model have been elided in
the presentation of the protocols given in this paper. For instance, field names
that are not need in the discussion of the protocol are left out. Moreover, in
some instances, simplified variants of functions and relations are given. The
reader is referred to the actual PVS development for the precise definitions of
the models presented in this paper.

5

3.2. Ether
The ether state is specified as a pair of multisets (bags) that represent,

respectively, input and output communication channels, i.e.,

Ether = input : bag[LinkFrame] × output : bag[LinkFrame],

where LinkFrame is the type of the message frame sent over the link layer and is
formally defined in Section 3.3. The specification of the ether considers the fact
that messages may be duplicated, corrupted, or dropped in the physical layer or
while in transit. The possible actions are defined by the datatype EtherAction
as

DropIn(linkframe:LinkFrame) : DropIn? +
DropOut(linkframe:LinkFrame) : DropOut? +
DupIn(linkframe:LinkFrame) : DupIn? +
DupOut(linkframe:LinkFrame): DupOut? +
NoiseIn(linkframe:LinkFrame) : NoiseIn? +
NoiseOut(linkframe:LinkFrame) : NoiseOut?.

The ether state machine perturbs the communication medium by taking the
current state and the action to perform and returns a transformed ether with
a frame either corrupted, dropped, or duplicated. The PVS code for dropping,
duplicating, and corrupting a frame on the inbound is given as follows.

next(s:Ether,a:EtherAction) : Ether =
CASES a OF

DropIn(linkframe) :
s WITH [‘ether‘input := remove(linkframe,s ‘ether‘input)]

DupIn(linkframe) :
IF member(linkframe,s ‘ether‘input) THEN

s WITH [‘ether‘input := add(linkframe,s ‘ether‘input)]
ELSE

s % No change in state
ENDIF,

NoiseIn(linkframe) :
IF ¬checksum?(linkframe) THEN

s WITH [‘ether‘input := add(linkframe,s ‘ether‘input)]
ELSE

s % No change in state
ENDIF,

...
ENDCASES

6

The relational component that specifies the nondeterministic behavior of the
ether is defined by the predicate

Ether(s,n:Ether):boolean = n = s

∨ ∃(a:EtherAction):n = next(s,a).

3.3. Link Layer
The link layer serves as an interface between the protocol stack and the

communication medium. It provides common services needed by the protocols
that lie at the next higher layer and performs a check-sum error detection.
Furthermore, the link layer multiplexes messages sent from the WDP and GDP
layers by wrapping them in a common header, and demultiplexes them on the
receiving side by removing this header and sending the unwrapped frame to the
appropriate protocol for processing.

A link layer frame is composed of a check-sum and either a GDP or WDP
frame:

LinkFrame = cs: CheckSum × frame: Frame,

where the type Frame can be thought of as a disjoint sum of WDP and GDP
frames. The details of performing a check-sum are abstracted away. The type
Link consists of the queues GDP to LL, WDP to LL, LL to GDP, and LL to WDP,
and the ether state.

The link layer functionality is represented by a transition function that,
given the current state of type Link and the action to perform, yields the next
state, where the possible actions are: send a message, either WDP or GDP,
and receive a message. If sending a message, the sate machine removes a frame
from the corresponding GDP to LL or WDP to LL queue, forms a link layer frame
as the product of that frame and its check-sum, and places the result in the
ether’s input channel. If receiving a message, a LinkFrame is removed from the
ether’s output channel, the check-sum is verified and if invalid, the packet is
dropped. Otherwise, the protocol checks if the packet is a GDP or WDP frame,
strips off the check-sum, and places the message on the appropriate LL to GDP
or LL to WDP queue.

The predicate Link specifies the relation between current and next link
states. As in the case of the ether machine, the nondeterministic choice of
a link action is specified using an existential quantifier. Since the choice of what
action to perform is made nondeterministically, there is no priority given to
GDP or WDP in the case of contention when messages are sent.

3.4. Transport Layer
The transport layer consists of the Weak Delivery Protocol (WDP) and

Guaranteed Delivery Protocol (GDP). For each of the WDP and GDP protocols
there are sender and receiver processes.

The state of WDP sender process, which is called WDPSender, consists of
the queue App to WDP and the link state. Sending a message is modeled as
removing a message from the App to WDP queue and adding it to the WDP to LL

7

queue in the link state. The state of WDP receiver process, which is called
WDPReceiver, consists of the queue WDP to App and the link state. Receiving
a message is modeled as removing a message from the LL to WDP queue and
adding it to the WDP to App queue in the link state.

In contrast to WDP, GDP is very complex and it is modeled after a sliding-
window protocol [5]. As it is the most significant component of the communi-
cation protocol, Section 4 is dedicated to its specification.

3.5. Application Layer
The application layer consists of sender and receiver processes for both WDP

and GDP messages. The process that sends GDP messages maintains an index
to the next message in to GDP to be sent, copies that message to App to GDP, and
increments the index. The process that sends WDP messages behaves similarly
by copying messages from to WDP to App to WDP. The receiver processes handle
the data structures GDP to App, from GDP, WDP to App, and from WDP.

4. Guaranteed Delivery Protocol

The Guaranteed Delivery Protocol shall satisfy the AirSTAR’s guaranteed
delivery requirement. The sliding-window protocol with block acknowledgment
developed by Gouda [6, 7] was deemed to be the most suitable for the commu-
nication pattern in AirSTAR. The distinguishing feature of this protocol is that
although each message is sent in an individual frame, the receiver replies with
a single message acknowledging the receipt of a contiguous block of sequence
numbers. Although an informal proof of this protocol may be found in the liter-
ature, the one presented in this paper appears to be the first formal mechanical
proof of the protocol. This section contains an informal presentation of the
protocol along with a small example.

4.1. Sliding Window Protocol
As indicated above, the GDP sender and receiver processes are modeled

using a sliding window protocol. These processes maintain bounded buffers
called windows. The sender window ackd contains the messages sent that are
waiting for a block acknowledgment. The receiver window, called rcvd, contains
the messages received but not yet delivered to the application layer.

The upper bounds on the size of the sender’s and receiver’s windows are
called, respectively, sw and rw. Each window entry has two fields: a data field
and a Boolean mask field. The ackd mask field is set to false when that
message is sent and true when an acknowledgment is received. The rcvd mask
field is set to true when a message is received. The data in the buffers may
be viewed as being indexed by the positive integers, although in the actual
specification some amount of machinery is needed to map an unbounded range
of sequence numbers to a bounded buffer.

In order to track the buffer entry of the next message to be sent and next
expected acknowledgement, the sender maintains the following indices. The

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

na ns
Sender(ackd)

at most sw

Sent Not
Acknowledged Not SentSent &

Acked

la lr

Receiver (rcvd)

at most rw

Maybe Received
Not Acknowledged

Not
Received

Received
Acked

nd

Data
Mask

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 2: Sliding window

variable ns is an index to the sequence number of the next data item to be sent
and the variable na is an index to the first sequence number that has yet to be
acknowledged. That is, sequence numbers below na have all been acknowledged
as received by the sender, but sequence number na has not yet been acknowl-
edged. An invariant na ≤ ns ≤ na + sw is maintained by the sender, indicating
that the window of sent but not acknowledged data is of size at most sw. The
sender will not send messages with a sequence number greater than na + sw
until data message na is acknowledged. The sender may receive acknowledg-
ments for sequence numbers k, where na ≤ k < ns, in any possible order; yet,
only when a block acknowledgment for the contiguous sequence numbers (na,n),
where n < ns, has been received is the value of na slid forward to n + 1. If a
timeout action occurs before message na is acknowledged, then it is resent.

The receiver symmetrically tracks the buffer entry of the next expected mes-
sage to arrive as well as sequence number of the last acknowledged message.
Periodically, acknowledged messages are sent to the application layer hence the
receiver also tracks the last buffer entry so delivered. The variable nd points
to the lowest sequence number that has yet to be delivered to the application
layer. The variable lr points the highest sequence number that has yet to be
received with the constraint that lr ≤ nd + rw. The receiver accepts messages
for sequence numbers k, where nd ≤ k < nd+rw, in any order, and ignores mes-
sages out of this range. When the receiver has received the contiguous block of
sequence numbers (nd,n), the index nd is slid forward to n + 1 and the corre-
sponding messages are delivered to the application layer. The variable la points
to the last acknowledged sequence number, i.e., messages with a sequence num-
ber below la have all been acknowledged. Note that messages with a sequence
number m, where la ≤ m ≤ nd − 1, have been received and delivered, but
not yet acknowledged. Periodically, GDP sends the block acknowledgment for
sequence numbers (la,m− 1) and la is reset to nd.

The execution of the protocol is illustrated using Figure 2. In order to not
clutter the figure, data fields are left blank and true values in the mask field are
shaded while false entries are not. According to the figure, the sequence num-
bers 1, 2, 3 have been sent and acknowledged. The sequence numbers 4, . . . , 12
have been sent, but not necessarily delivered to the receiver. Furthermore, the

9

sequence numbers 4 and 5 have been sent and received, but not yet acknowl-
edged; 9, 10, 11 are delivered; and 6, 7, 8 are lost in transit. At some point the
sender times out and resends these messages. When sequence numbers 4, . . . , 11
have been received by the receiver and delivered to the application layer, the
index nd slides forward to 12. When the acknowledgment message is sent by
the receiver acknowledging the receipt of the sequence numbers 4, . . . , 11, the
receiver sets la to 12. If the acknowledgment is lost in transit, the sequence
numbers 4, . . . , 11 would eventually be resent and, although the messages would
be ignored by the receiver process, acknowledgments would be resent.

4.2. GDP Sender
The sender process implements the procedure for the sliding window proto-

col sender outlined above. The internal state of the sender’s window with its
corresponding indices is defined using the record type

WinSenderPrivate = na : nat×
ns : subrange(na,na+sw) ×
ackd : maxwindow?(ns-na),

where the dependent type system of PVS is used to encode invariant relations
between the fields. The type maxwindow?(ns-na) specifies that the window has
maximum size ns-na. Thus, bounding the maximum index into the buffer.

The state of the sender is defined as

GDPSender = App to GDP : fifo[Data]×
winsender : WinSenderPrivate×
link : Link,

forming a tuple of the queue holding data to be sent, the internal indices and
buffers of the sender side of the sliding-window protocol, and the link state,
which includes the ether state.

The sender process is modeled by the transition relation GDPSender, which
relates the current state of the GDP sender process and a possible next state.
It is formally defined as follows.

GDPSender(s,n:GDPSender) = Link(s‘link,n‘link) ∧ . . .
∨ n = s

∨ ∃(a:WinSenderAction) : n = next(s,a),

where the unspecified parts in this definition state that the fields that are not
modified by transitions remain unchanged. The possible actions performed by
the sender are send a message, process an acknowledgment, and timeout due to
the fact that an acknowledgment has not been received in a predefined time.
The actions are formally defined by the enumeration type:

WinSenderAction = {Send, GetAck, Timeout}.

10

The following describes the sender transition to the next state. In each case,
the next state is the same as the current state except for the changes described
below.

• Send. If there is data to be sent and there is space in the ackd buffer, i.e.,

¬ empty fifo?(App to GDP) ∧ ns− na < sw,

then the following changes take place:

– The data is removed from the App to GDP queue.

– A GDP frame is formed from the value removed from App to GDP
and the sequence number ns and added to the GDP to LL queue to
send it to the link layer for further processing.

– The index ns is incremented by 1.

– The window ackd is updated, i.e., its length is incremented by 1,
data(n) is assigned the value of the data removed from the queue
and mask(n) is assigned the value false, where n is the current
length of the buffer.

• GetAck. An acknowledgment message contains two fields, lb and ub,
that denote the lower bound and upper bound on the sequence numbers
being acknowledged. If the message being acknowledged falls outside of
the window, i.e., lb < na ∨ ub ≥ ns, then ignore the message removing
it from the LL to GDP queue. If na ≤ lb ∧ ub < ns, then remove the
acknowledgment message from LL to GDP. The ackd mask entries lb −
na, . . . , ub − na are set to true. The function slide is then invoked to
update ackd by sliding the index of the next acknowledged frame, e.g.,
na, forward.

• Timeout. If a timeout has occurred and ns > na, then retransmit the
message with the sequence number na.

4.3. GDP Receiver
The receiver process implements the procedure for the sliding window pro-

tocol receiver and is somewhat symmetric to the sender. The internal state of
the receiver’s window with its corresponding indices is defined using the record
type

WinReceiverPrivate = nd : nat×
la : upto(nd)×
lr : subrange(nd,nd+rw)×
rcvd : max window?(lr-nd),

where, as with the sender, the dependent type system of PVS encodes the
invariant relationships given in Section 4.1.

11

The state of the GDP receiver is defined as

GDPReceiver = GDP to App : fifo[Data]×
winreceiver : WinReceiverPrivate×
link : Link,

forming a tuple of the queue holding data that has been received, the internal
indices and buffers of the receiver side of the sliding-window protocol, and the
link state, which includes the ether state.

The receiver process is modeled by the transition relation GDPReceiver,
which relates the current state of the GDP receiver and a possible next state.
It is formally defined as follows.

GDPReceiver(s,n:GDPReceiver) = Link(s‘link,n‘link) ∧ . . .
∨ n = s

∨ ∃(a:WinReceiverAction) : n = next(s,a),

where the unspecified parts in this definition state that the fields that are not
modified by transitions remain unchanged. The possible actions performed by
the receiver are process a message and send an acknowledgement. The actions
are formally defined by the enumeration type:

WinReceiverAction = {Receive, SendAck}.

The following describes the receiver transition to the next state. In each
case, the next state is the same as the current state except for the changes
described below.

• Receive. If the message on the top of the LL to GDP queue is not a data
message, then nothing is changed. Otherwise, let i be the value of this
message’s sequence number. Depending on the value of i, the protocol
takes the following action:

– If i ≥ nd+ rw ∨ la ≤ i ∧ i < nd, then the message is outside of the
receiver’s window and is removed from the LL to GDP and discarded.

– If i < la, which means that the message has already been acknowl-
edged, but for whatever reason the sender has resent it, then send
an acknowledgment back. That is, the message is removed from the
LL to GDP queue and discarded and an acknowledgment added to the
GDP to LL queue.

– If nd ≤ i < nd + rw, then the sequence number is within the window
and so the data is placed in the rcvd buffer and the mask set to true.
The following state changes then take place:

∗ The message is removed from the LL to GDP queue.

12

∗ The function deliver is invoked that places the data in rcvd
from nd to n on the GDP to App queue, where nd . . . n is a con-
tiguous block of data that has been received, but not yet deliv-
ered to the application layer. The value of nd is set to n+ 1.

∗ The value of nd is set to the index of the first mask in rcvd that
is false.

∗ The value of lr is set to the maximum between lr and i+ 1.
∗ The function slide is invoked to update rcvd by sliding the

index of the next delivered frame, e.g. nd, forward.

• SendAck. If nd > la, then form an acknowledgment message for the
indices la, . . . , nd − 1. The next state is the same as the current state
except that

– The value of la is set to nd.

– The new acknowledgment message is added to the GDP to LL queue.

5. Protocol Verification

This paper focuses on the analysis of functional correctness of the WDP and
GDP protocols in the PVS theorem prover.

Functional correctness of protocols is usually expressed by safety properties,
i.e., predicates that hold in every reachable state of a state transition system.
In PVS, transition systems can be modeled using the general theories defined
in [8]. In that paper, a transition system T is a triple (S, I,→), where S is
an abstract type, I is an initial set of elements of type S, and → ⊆ S × S
is a transition relation of elements of type S. The set Rn denotes the states
that are reachable in exactly n steps. It is inductively defined as R0 = I and
Rn+1 = {s′ ∈ S | (∃(s : S) : s ∈ Rn ∧ s → s′}. A possibly infinite sequence
of states s0, . . . , sn, . . . is called a trace if si ∈ Ri for all i. The PVS type Run
consists of all traces of a given transition system. A predicate P on S is an
invariant of T if P holds on any reachable state. Formally,

invariant(P) = ∀(s : S, n : nat) : s ∈ Rn =⇒ P (s).

5.1. WDP ‖ GDP
For the purpose of this verification, a system of two distributed nodes is

considered, one of which is the sender and the other is the receiver. The two
nodes interact only trough the ether. That system, denoted WDP ‖ GDP, is
illustrated in Figure 3.

The state of WDP ‖ GDP is the union of AppWDPSender, AppWDPReceiver,
AppGDPSender, AppGDPReceiver, WDPSender, WDPReceiver, GDPSender, and
GDPReceiver, where (1) the sender and receiver processes each share the link
layer, and (2) the input and output channels of the ether state in the sender
are connected, respectively, to the output and input channels of the ether state

13

Ether

Link

WDP
Sender

Link

GDP
Receiver

GDP
Sender

Application
 Sender

Application
Receiver

WDP
Receiver

Figure 3: System WDP ‖ GDP

in the receiver. The predicate WDP GDP represents the transition relation of the
system. It is defined as the disjunction of the transition relations AppWDPSender,
AppWDPReceiver, AppGDPSender, AppGDPReceiver, WDPSender, WDPReceiver,
GDPSender, and GDPReceiver, where fields that are not modified by transitions
remain unchanged.

The initial states of WDP ‖ GDP have all indices set to 0. Furthermore,
queues and sequences are empty, except for the sequences to WDP and to GDP
that have arbitrary values representing, respectively, the WDP and GDP mes-
sages to be sent by the sender process.

The predicates that express the weak delivery and guaranteed delivery re-
quirements of WDP ‖ GDP are defined, respectively, by

WDP sound?(s:WDP GDP) = s‘from WDP ⊆ s‘to WDP,

GDP sound?(s:WDP GDP) = s‘from GDP � s‘to GDP,

where � is the prefix relation between sequences. The predicate WDP sound?
states that all WDP messages that the receiver node delivers to the applica-
tion layer were indeed sent by the sender’s application layer. The predicate
GDP sound? states that GDP messages are delivered by the receiver to the ap-
plication layer in the same order as they were sent by the sender’s application
layer.

The primary verification objective of this work is to formally prove that the
predicates WDP sound? and GDP sound? are invariant properties of the system
WDP ‖ GDP. Proving invariants of transition systems is considered routine
in the theorem proving community. However, for the case of WDP ‖ GDP,
the problem is made harder by the fact that the transition relation WDP GDP is
formed from the disjunction of several nested relations representing lower layers

14

of the stack. Since invariants must be shown to hold under each transition in
each layer, each proof requires the discharge of a large number of cases. As it
will be shown in the following sections, this complexity can be mitigated by the
use of proof decomposition and proof automation.

The system WDP ‖ GDP can be seen as the asynchronous composition of
two systems, namely WDP and GDP, that share common resources such as the
link layer and the communication medium. Each one of the systems WDP and
GDP consists of two nodes, representing a sender and a receiver process. The
state of WDP is the projection of the sate of WDP GDP to the fields that are
relevant to WDP. The transition relation of WDP, called WDP, is defined by the
disjunction of the relations AppWDPSender, AppWDPReceiver, WDPSender, and
WDPReceiver. The system GDP is defined in a similar way.

When each protocol is considered independently, it can be verified that the
predicates WDP sound? and GDP sound? are invariants of WDP and GDP,
respectively. Section 5.2 shows how these verifications are highly automated
via the development of proof strategies. A verification approach is proposed
in Section 5.3 that, under certain conditions, guarantees that a predicate is an
invariant of a composed system, if the predicate is an invariant of one of its
components. This approach is used in Section 5.4 to prove that WDP sound?
and GDP sound? are also invariants of WDP ‖ GDP. In the case of GDP, a
liveness property is also considered. That property states that all messages are
eventually delivered to the receiver under a fairness assumption on the sender
side. Since that proof straightforwardly follows a similar proof in [8], it is not
detailed in this paper. However, it is included in the formal development and
briefly discussed in Section 5.5.

5.2. Proving Invariant Properties of WDP and GDP
Deductive proofs of invariant properties of a transition system typically pro-

ceed by natural induction on the length of the system traces. These inductive
proofs often require the transformation of the invariant properties to a form that
can be proved by induction. However, not all invariants properties of WDP and
GDP require sophisticated proofs. There are many relationships that are local
to either the sender process or the receiver process. For instance, the property
stating that the index of the next message to be sent is greater than or equal to
the index of the next message waiting to be acknowledged, i.e., na ≤ ns, only
concerns the sender, and the property that states that the index of the next
message to be delivered to the application layer is greater than or equal to the
index of the last message to be acknowledged, i.e., la ≤ nd, only concerns the
receiver. As these properties can be described solely in terms of the state of
one of the processes, they can be easily encoded using the PVS’s subtype and
dependent type system. These type annotations generate proof obligations that
are automatically discharged by the theorem prover.

Safety properties related to the interaction between the sender and receiver
processes cannot be statically specified using the type system. These kinds of
properties require more complex reasoning. In these cases, the nontrivial task
of finding auxiliary invariants that enable the inductive proof of a property is

15

subject to the ingenuity of the human prover. In this paper, a set of proof
strategies have been developed that automate the verification of invariant prop-
erties of GDP and WDP. Although these strategies are used in the context of
GDP and WDP, they can be adapted to work on discrete transition systems
that are based on Rusu’s PVS theories [8].

In PVS, strategies, which are called tactics in other theorem provers, are
written in a restricted Common Lisp language [9] that preserves the soundness
of the theorem prover. These strategies enable the definition of advanced logical
combinators based on other strategies and the basic deduction rules of PVS.
The strategy code is 1161 lines long and can be found as part of this formal
development at the aforementioned web site.

In developing the PVS models of the WDP and GDP, certain syntactical and
structural conventions have been followed for naming and defining the protocol
components. For instance, the definition of each transition relation T has the
form

T (s, n : T) : boolean = T1(s1, n1) ∧ ŝ1 = n̂1

∨ . . .

∨ Tm(sm, nm) ∧ ŝm = n̂m

∨ s = n

∨ ∃(a : TAction) : n = next(s, a),

where m ≥ 0. Furthermore, for 1 ≤ i ≤ m, si and ni represent, respectively, the
parts of s and n that are relevant to the transition Ti, and ŝi and n̂i represent
the complements of si and ni, respectively. The case s = n guarantees that the
transition relations considered here are reflexive, i.e., the transition systems are
closed under stuttering. These notions will be formalized in Section 5.3.

The family of strategies unroll-T , where T is a transition relation, takes
advantage of the modular definition of T . Each one of these strategies unfolds
the definition of T by expanding the definition of next and recursively calling
unroll-Ti, for 1 ≤ i ≤ m. Since actions in T are specified using a case con-
structor, when splitting the case, the strategy unroll-T comments each branch
in the case with the action name. These strategies are building blocks of more
sophisticated strategies. They are also useful in interactive proofs as they relieve
the user from expanding all the numerous cases by hand. The comments that
are added by the strategies will assist the user in recognizing each particular
case. Each strategy unroll-T is defined according to the following algorithm:

1. Expand the definition of T .
2. Expand the definition of next and comment each case with the name of

the action.
3. Split disjunction.
4. For 1 ≤ i ≤ m perform unroll-Ti.

As many other protocols, WDP and GDP use data structures such as FIFO
queues, bags, and finite sequences. The strategy simp-inv simplifies a given

16

proposition by applying several properties of these structures in addition to
standard PVS decision procedures.

A general strategy for proving invariant properties of transition systems is
called discharge-inv. This strategy tries to prove propositions of the form
invariant(P), where P is a predicate on T , by using the induction principle
defined in [8] along with the strategies simp-inv and unroll-T . It is defined
according to the following algorithm:

1. Instantiate the induction principle in [8] as appropriate.
2. In the base case, apply simp-inv.
3. In the inductive case:

• Apply unroll-T .

• Apply simp-inv to each one of the cases generated in the previous
step.

After applying discharge-inv, most cases are automatically discharged. The
remaining unproven cases provide enough information to assist the developer in
finding auxiliary invariants that get applied to complete the proof.

One of PVS notable weaknesses is the matching algorithm for higher-order
functions, such as invariant predicates. The simple strategy use-inv takes
advantage of the syntactical conventions in the definition of transition relations
to find an appropriate instantiation for an inductive lemma that is passed as a
parameter.

The proofs of WDP and GDP soundness proceed by induction on the traces,
but complexities arise due to the protocol stack. In fact, the structure of both
proofs mimics the stack structure as the property must be shown to hold at each
layer. A pattern emerges where the proof of an invariant at one layer requires
an auxiliary invariant, where the initial invariant is applied to one level below.
This pattern can be seen in the structure of the proof of WDP soundness. In
order to show

s‘from WDP ⊆ s‘to WDP,

the property must be shown to hold the next layer down:

s‘App to WDP ⊆ s‘to WDP.

This pattern repeats going down and back up the stack proving the following
invariants:

• All messages in WDP to LL are in to WDP.

• All WDP messages in the ether are in to WDP.

• All messages in LL to WDP are in to WDP.

• All messages in WDP to App are in to WDP.

17

The proof of GDP soundness follows a similar pattern, but additional invariants
are needed as described below. Discovering all the of required auxiliary invari-
ants is difficult when carrying out the proof by hand due to the complexity
of the model. Discharging a similar invariant at each layer of the sender and
receiver’s stack leads to a great deal of repetitiveness. The proposed strategies
automate this process as much as possible.

Armed with the strategies described above, the following theorems are proved
in a highly automated way.

Theorem 1. The proposition invariant(WDP sound?) holds in WDP.

Sketch of PVS Proof. The proof proceeds by induction on the length of the
WDP traces. After applying the strategy discharge-inv, two cases remain.
The first case comes from the transition relation WDPReceiver and states that
WDP frames ready to be delivered by the transport layer to the application layer
appear in to WDP. This property is an invariant of the system and is proved by
induction using discharge-inv. Once this invariant property is proved, the
case is discharged by the strategy use-inv. The second case comes from the
transition relation AppWDPSender and simply states that the sequence to WDP
does not lose messages. It is easily proved by unfolding a definition.

Theorem 2. The proposition invariant(GDP sound?) holds in GDP.

Sketch of PVS Proof. The proof proceeds by induction on the length of the
GDP traces. After applying the strategy discharge-inv, two cases remain.
The first case comes from the transition relation AppGDPSender and states that
the sequences to GDP do not decrease in size. It can be easily proved by unfolding
a definition. The second case comes from the transition relation GDPReceiver
and states that the sequence of GDP frames delivered by the transport layer to
the application layer appear in the same order in to GDP. This property is an
invariant of the system and is proved by induction using discharge-inv. Once
this invariant property is proved, the case is discharged by the strategy use-inv
and the expansion of some definitions.

As illustrated by the proofs above, the lemmas that are necessary to prove
the first case in Theorem 1 and the second case in Theorem 2 are suggested by
the strategy discharge-inv. In the process of discharging these lemmas using
the strategies, some nontrivial invariant properties are discovered. In particular,
the following properties are first discovered by discharge-inv and then proved
to hold in GDP.

• The application layer pointer to the next GDP frame to send is equal to
the counter of sent messages plus the number of frames in the queue.

• Both the queue connecting the application layer to the GDP layer and
ackd are segments of to GDP.

• The counter of received messages is less than or equal to the counter of
sent messages, i.e., lr ≤ ns.

18

• The counter of delivered messages is less than or equal to the counter of
sent messages, i.e., nd ≤ ns.

• The largest sequence number for which an acknowledgment has been re-
ceived is less than or equal to the counter of the sent acknowledgments

na + last true(ackd) ≤ la,

where the function last true returns the difference between na and the
largest sequence number for which an acknowledgment has been received.

5.3. Proving Invariants of Composed Systems
In the previous section, it has been proved that WDP sound? is an invariant

of WDP and that GDP sound? is an invariant of GDP. However, the verification
goal is to show that both of them are also invariants of WDP ‖ GDP. This
goal could be trivially achieved if WDP and GDP were completely independent.
They are not. The GDP and WDP sender and receiver processes share the same
link layer and ether interfaces. It could be possible to prove that WDP sound?
and GDP sound? are invariants of WDP ‖ GDP using the strategies described in
the previous section. However, this approach does not profit from the invariants
that have been already proved for WDP and GDP, and therefore they have to
be proved again for WDP ‖ GDP.

In this paper, a different approach is proposed. Instead of reproving all the
invariants, a general theory of asynchronous composition of transition systems
is developed in PVS, where invariants of a composed system are lifted from
invariants of its components. To this end, it is considered that the state of a
transition system is a tuple denoted [P | S], where P is a private state and S
is a shared state. Given two transition systems T1 = ([P1 | S], I1,→T1) and
T2 = ([P2 | S], I2,→T2), define T1 ‖ T2 as follows. The state of the composed
system has a copy of the private states of each transition system, but only one
of the shared state, i.e., ST 1‖T 2 = [P1 × P2 | S]. The initial state of T1 ‖ T2 is
defined as

IT1‖T2 = {s : ST1‖T2 | s↓T1 ∈ IT1 ∧ s↓T2 ∈ IT2},

where the restriction operators s↓Ti and s↓[Ti], for i = {1, 2}, are defined such
that the first operator projects the composed state to the state of Ti, which
only includes the private and shared state of Ti, and the second operator only
projects the private part of Ti. The transition relation of the composed system
is defined as

s→T1‖T2 s
′ = {(s, s′) : ST1‖T2 × ST1‖T2 | s↓T1 →T1 s

′↓T1 ∧ s↓[T2] = s′↓[T2]
∨ s↓T2 →T2 s′↓T2 ∧ s↓[T1] = s′↓[T1]}.

An abstraction α of a transition system T is a function that maps states into
states such that

1. if s0 is an initial state in T , then α(s0) is also an initial state of T , and

19

2. if sn →T sn+1 then α(sn)→T α(sn+1).

Furthermore, α is said to be fixed under a predicate P if

P (α(s↓T)) =⇒ P (s↓T).

Let T be a composed transition system of T1 and T2, and α be an abstraction
of T1. The transition system T2 does not interfere with α if for all sn, sn+1 ∈ ST ,

sn↓T2 →T2 sn+1↓T2 =⇒ α(sn↓T1)→T1 α(sn+1↓T1).

The following theorem, which is formally proved in PVS, is sufficient to prove
that an invariant of one side of the parallel operator is also an invariant of the
composed system.

Theorem 3. Let T be a composed transition system of T1 and T2, and P be an
invariant of T1. The predicate PT , where PT (s : ST) = P (s↓T1), is an invariant
of the transition system T if there is an abstraction α of T1 fixed under P such
that T2 does not interfere with α.

Sketch of PVS Proof. Consider an arbitrary trace s0, . . . , sn in T . It is shown
that P holds in sn. First, it is shown that α(s0↓T1), . . . , α(sn↓T1) is a trace in
T1. There are two cases:

1. The transition (si, si+1) is a transition in T1. In this case, α(si↓T1) →T1
α(si+1↓T1) since α is an abstraction of T1.

2. The transition (si, si+1) is a transition in T2. In this case, α(si↓T1) →T1
α(si+1↓T1) since T2 does not interfere with α.

Therefore, α(s0↓T1), . . . , α(sn↓T1) is a trace in T1. Since P is an invariant of T1,
P holds in α(si↓T1), for i ≤ n. Since α is fixed under P , P holds in si↓T1 as well.
The result then follows from the fact that PT (si) is defined as P (si↓T1).

Theorem 3 is stated in an abstract setting. In order to use this theorem
on given transitions systems T1 and T2, an abstract function α that satisfies
the hypotheses of the theorem must be provided. That function represents a
projection of the combined state that keeps the information that is important
for the validity of the invariant on T1, i.e., α is fixed under P , and that erases
the information that is only relevant to T2, i.e., T2 does not interfere with α.
It is usually the case, at least in the protocols presented in this paper, that
when s↓T2 →T2 n↓T2 , α(s↓T1) and α(n↓T1) are identical. Therefore, in order
to get α(s↓T1) →T1 α(n↓T1) is necessary for the transition relation in T1 to be
reflexive. For this reason, all the transition relations in this paper are defined
closed under stuttering. However, it should be noted that Theorem 3 does not
require reflexivity of the transition relation in T1 (or T2).

20

5.4. WDP ‖ GDP is Sound
For the case of the distributed system WDP ‖ GDP, the queues App-to-WDP

and WDP-to-App are private to WDP. The sequences to WDP and from WDP reside
in the application layer. However, for analytical purposes they can be seen as
belonging to WDP since they are not shared in any way with the GDP processes.
The queues App-to-GDP and GDP-to-App as well as the fields winsender and
winreceiver are private to GDP. All the other fields, i.e., the link and the ether
interfaces, are shared. It should be noted that although these structures are
shared, it is not like classical shared variable concurrency in the sense that the
WDP and GDP processes do not share variables to which they both read and
write. Instead, the shared structures provide a service to the WDP and GDP
layers, but by design, the frames written by one higher-layer protocol will never
be transformed into frames from a different layer protocol and frames written
by a higher-layer protocol will never be delivered to a different higher-layer
protocol.

Theorem 4 (WDP ‖ GDP Soundness). The protocol WDP ‖ GDP satisfies
the weak and guarantee delivery properties, i.e., invariant(WDP sound?) and
invariant(GDP sound?) hold in WDP ‖ GDP.

Sketch of PVS Proof. For the first proposition, the abstraction that is needed
is a filter that removes GDP packets from the link layer and the ether interface.
The abstraction αw(s : WDP) is defined such that αw(s) = s in all fields but:

αw(s‘link‘GDP to Link) = empty,

αw(s‘link‘Link to GDP) = empty,

αw(s‘ether‘input) = remove gdp(s‘ether‘input),
αw(s‘ether‘output) = remove gdp(s‘ether‘output),

where empty is the empty queue and remove gdp removes all GDP frames from
a multiset. Then, it is proved that αw is an abstraction of WDP fixed under
WDP sound? and that GDP does not interfere with αw. By Theorem 1, the in-
variant WDP sound? holds on WDP. Therefore, by Theorem 3, WDP sound? is
also an invariant of WDP ‖ GDP. For the second proposition, the abstraction
that is needed in this case is a filter that removes WDP packets from the link
layer and the ether interface. The proof is similar to the first case but uses Theo-
rem 2. As noted in Section 5.3, in order to use Theorem 3 to lift the invariants in
Theorem 1 and Theorem 2, it is necessary to prove that the transition relations
WDP and GDP are reflexive, which they are trivially so.

The hypotheses of this theorem are automatically discharged by strategies
that have been developed to prove that a given function is an abstraction, that
an abstraction is fixed under an invariant, and that a transition relation does not
interfere with an abstraction. These strategies also use the family of unroll-T
strategies discussed in Section 5.2, but they are considerable more specific to
WDP and GDP. Hence, they are less prone to generalization.

21

5.5. GDP Liveness
In addition to the safety properties given above, it has been shown that GDP

satisfies the liveness property for sliding window-protocols given in Rusu [8].
Fair runs of the protocol are defined as those that eventually obtain all the data
from the sender and live runs of the protocol are defined as those that eventually
deliver all sent data to the receiver. Formalizing these properties amounts to
instantiating Rusu’s PVS definitions with the data structures defined in this
paper. GDP’s layered structure introduces a number of data structures that
must be accounted for.

The definition of the fairness predicate given in [8] states that in any trace
of the protocol, for every sequence number m there exists a state in the trace
where ns > m. This is stated formally as follows:

fair(r : Run) = ∀(m : nat) : ∃(n : nat) : rn‘ns > m,

where Run is the type of all traces in the GDP and rn ∈ Rn, i.e., rn is a state
reachable in exactly n steps of GDP. Similarly, the definition of the liveness
predicate states that in any trace of the protocol, for every sequence number m
there exists a state in the trace where nd > m. Formally, this is expressed as
follows:

live(r : Run) = ∀(m : nat) : ∃(n : nat) : rn‘nd > m.

The liveness property of the GDP protocol states that every fair trace is live.
In PVS:

liveness: THEOREM

∀ (r: Run): fair(r) =⇒ live(r)

The theorem above is proved in PVS and it is part of the formal development
available in the aforementioned web site. The proof of this theorem follows the
proof found in [8], modulo the difference in data structures. The main steps of
that proof require the following invariants

s‘App to GDP‘length + s‘sender‘ns = s‘to GDP‘ptr,

which shows the relationship between application level data and the next item
in the ackd window to be sent, and

s‘GDP to App‘length + s‘from GDP‘ptr = s‘receiver‘nd,

which gives the relationship between the next frame in rcvd to be delivered and
the data received by the application layer. Both invariants are discharged using
strategies mentioned in Section 5.2.

6. Related Work

Numerous variations of the basic sliding window protocol have been sub-
jected to hand verification techniques. Stenning [10] is likely to have been the

22

first to discuss the correctness of such protocols. Refinement techniques have
been used by Shankar and Lam [11], Snepscheut [12] and Hoogerwoord [13] to
derive the basic sliding window protocol. Process algebras have also been used
to manually verify one-bit sliding window protocols [14, 15, 16]. Badban et
al [17] consider a protocol with arbitrary, but finite window size, while others
assume an unbounded window size.

Model checking has been applied to a number of sliding window protocols.
Holzmann [18, 19] verified both safety and liveness properties for a protocol
with a window size of five and Kaivola [20] did the same for a protocol with a
window size of seven. Applying abstraction and model checking, Sthal was able
to verify a protocol with a window size of sixteen [21].

Others have applied automated theorem provers to verify sliding window
protocols. Cardell-Oliver used HOL to verify safety properties [22]. A timed
model is given in [23] and a safety property is verified using PVS. Rusu [8]
proved safety and liveness of a protocol with unbounded window size in PVS.
Safety and liveness properties of a protocol with arbitrary finite window size em-
ploying modulo-arithmetic were verified using process algebra techniques with
the assistance of the PVS prover in [17].

The sliding window protocols verified in aforementioned efforts were con-
siderably simpler than the sliding window protocol with block acknowledgment
response that is presented here. Only Badban et al. [17] also consider a proto-
col with arbitrary, but finite window size. Previous work considered the sliding
window protocol acting in isolation rather than as a component in a protocol
stack. This assumption considerably simplifies the proofs and does not accu-
rately reflect how protocols are actually designed.

The sliding window protocol with block acknowledgement was introduced
in [7] along with pencil and paper proofs of safety and liveness properties. The
authors treated the sliding window protocol in isolation so the safety property
is stated in terms of the sender and receiver windows, where the safety property
stated in this paper is given in terms of the messages sent and received by the
application layer. Given that the core of the GDP protocol is essentially the
same as the protocol presented in [7], it is not surprising that the soundness
proofs of both require the same basic invariants. Yet the proofs given here
cannot be seen as simple transcriptions of those pencil and paper proofs as
additional complexities arise due to the fact that proofs of GDP invariants must
consider the protocol stack layers above and below. In particular, the need to
prove the invariant at each layer of the protocol stack creates additional work
and complexities, which were mitigated by the use of proof scripts to automate
the proof process. In contrast to the use of theorem proving technology to
formally prove correctness, the proofs in [7] are informal and conducted by hand.
Their proofs mainly consist of a statement of the key invariants and comments on
axiomatic techniques to prove invariants. The proof presented here was formally
conducted using the model for transition systems developed by Rusu [8], where
the proof is performed by induction on the length of the system trace. Another
contrast between the two approaches stems from automating the correctness
proofs using PVS strategies as described in Section 5, which is more akin to the

23

software development process than conducting hand proofs.
Concurrently executing programs are complex artifacts making it difficult

to reason about their correctness. The classical theory of Owicki and Gries [24]
was the first complete logic for proving correctness of parallel programs with
shared variables. Each concurrently executing component is annotated with
Hoare-style assertions comprising a proof outline. The key restriction placed
on a proof outline is that it must be free from interference from the other
concurrently executing components. Components P1 and P2 are said to be
interference free if for all assertions pi of P1 and for all atomic action aj of P2

{pi ∧ pre aj} aj {pi}

and vice versa. If P1 has n statements and P2 has m, then the number of
noninterference proof obligations will be on the order of n ×m. An additional
drawback is that the theory is not compositional because a change in one com-
ponent can affect the proofs of the other components. Mechanized verification
of concurrent programs using Owicki/Gries has been performed in Isabelle [25]
and PVS [26, 27].

Rely-guarantee techniques evolved from the Owicki/Gries theory by encod-
ing interference information in the specification itself and hence used in the
verification of constituent processes. Thus no additional proof obligation of in-
terference is needed and consequently this method is compositional [28, 29]. In
rely-guarantee, a component P satisfies its specification if under the assump-
tions that P ’s precondition pre is initially satisfied and any transition satisfies
a predicate rely, then P ensures that any component transition satisfies the
guarantee predicate guar and if P terminates, the the final state satisfies the
postcondition post. The composition rule is specified as follows.

rely ∨ guar1 =⇒ rely2

rely ∨ guar2 =⇒ rely1

guar1 ∨ guar2 =⇒ guar
P1 ` (pre, rely1, guar1,post1)
P2 ` (pre, rely2, guar2,post2)

P1||P2 ` (pre, rely, guar,post1 ∧ post2)

Note that the term environment encompasses the states of the concurrently
executing components. Nieto [30] formalized rely-guarantee in Isabelle. Re-
cently, rely-guarantee techniques have been married with separation logic [31]
resulting in simpler proofs. Rushby [32] has developed a version of a rely-
guarantee rule for use in the verification of timed reactive systems. Charp-
entier [33] has recently explored the composition of invariants for concurrent
systems. In that work, the authors explored both invariants satisfied by ev-
ery component of the composed system as well as situations similar to the one
explored here, where an invariant in the composed system is satisfied by one
component of the composed system. The approach proposed in this paper is
not as general as those techniques, but since it is targeted toward the system
under analysis, it is largely mechanizable.

24

7. Conclusion

A communication protocol stack intended to be used by remotely operated
vehicles has been presented. Soundness and liveness properties of the protocol
stack components have been formulated and proven.

All the mathematical development presented here, including the framework
to compose transition systems, was formally carried out in the PVS verifica-
tion system and is publicly available. In order to facilitate an iterative design
process, proof strategies have been developed to automate tedious and com-
plex tasks in the verification process, such as finding inductive invariants and
proving safety properties of composed systems. The techniques presented in
this paper complement the techniques in [8] by allowing them to be applied to
larger systems where the designs evolve over time.

The process of proving invariant properties of the communication protocol
presented in this paper considerably differs from performing the proof either
informally or formally by manual means. This is because the stack structure re-
sults in an explosion in the size of the proof as invariants must be shown to hold
at each level of the stack. Consequently, most analyses abstracts away lower
layers of the stack in such a way as to elide interactions among the layers that
may be critical to the architecture of the network. The automated approach
presented in this paper relieves the user of the burden of repeatedly perform-
ing basic proof steps. It also aids the user in the process of finding the right
invariants that makes the proof goes through. In addition, it transforms the
process of writing a proof primarily into one of writing proof strategy scripts.
One of the strengths of this approach is that it supports iterative design. The
prospect of repeatedly manually reproving the soundness properties after each
design change is unappealing. In contrast, using the approach presented in this
paper, changes in the protocol typically require local changes to the proof scripts
in order to recreate the soundness proofs.

Finally, since the protocol is specified in the declarative specification lan-
guage of PVS, it is amenable to rapid prototyping. Indeed, using recently added
PVS features, Java code that implements the functional and deterministic as-
pects of the protocol was automatically generated [34]. An actual implementa-
tion will likely be structured somewhat differently for efficiency. However, it is
expected that the semantics will be preserved, allowing this prototype to serve
as a semantic benchmark for the implementation.

References

[1] R. Bailey, R. Hostetler, K. Barnes, C. Belcastro, C. Belcastro, Exper-
imental validation subscale aircraft ground facilities and integrated test
capability, in: Proceedings of the AIAA Guidance Navigation, and Control
Conference and Exhibit 2005, San Francisco, California.

[2] T. Jordan, J. Foster, R. Bailey, C. Belcstro, AirSTAR: a UAV platform
for flight dynamics and control system testing, in: Proceeding of the 25th

25

AIAA Aerodynamic Measurement Technology and Ground Testing Con-
ference.

[3] A. Murch, A flight control system architecture for the NASA AirSTAR
flight test infrastructure, 2008. AIAA Guidance, Navigation and Control
Conference and Exhibit.

[4] S. Owre, J. Rushby, N. Shankar, PVS: A prototype verification system, in:
D. Kapur (Ed.), Proc. 11th Int. Conf. on Automated Deduction, volume
607 of Lecture Notes in Artificial Intelligence, Springer-Verlag, 1992, pp.
748–752.

[5] A. Tannenbaum, Computer Networks, Prentice Hall, third edition, 1996.

[6] M. Gouda, Elements of Network Protocols, Wiley-Interscience, 1998.

[7] M. Brown, M. Gouda, R. Miller, Block acknowledgement: Redesigning
the window protocol, IEEE Transactions on Communications 39 (1991)
524–532.

[8] V. Rusu, Verifying a Sliding-Window Using PVS, in: Formal Techniques
for Networked and Distributed Systems (FORTE01), Kluwer Academic,
2001, pp. 251–266.

[9] M. Archer, B. D. Vito, C. Muñoz, Developing user strategies in PVS:
A tutorial, in: Proceedings of Design and Application of Strategies/Tac-
tics in Higher Order Logics STRATA’03, NASA/CP-2003-212448, NASA
LaRC,Hampton VA 23681-2199, USA, pp. 16–42.

[10] N. Stenning, A data transfer protocol, Computer Networks 1 (1976) 99–
110.

[11] A. Shankar, S. Lam, Construction of network protocols by stepwise refine-
ment, in: J. de Bakker, W.-P. de Rover (Eds.), Proceedings of Stepwise
Refinement of Distributed Systems, Models, Formalisms, Correctness, Lec-
ture Notes in Computer Science 430, Springer-Verlag, 1989, pp. 669–695.

[12] J. V. de Snepscheut, The sliding-window protocol revisited, Formal Aspects
of Computing 7 (1995) 3–17.

[13] R. Hoogerwoord, A formal derviation of a sliding window protocol, 2006.
Technical University of Eindhoven.

[14] F. Vaandrager, Verification of Two Communication Protocol by Means of
Process Algebra, Technical Report, CWI, 1986.

[15] J. Brunekreff, Sliding window protocols, in: Algebraic Specification of Pro-
tocols, number 36 in Cambridge Tracts in Theoretical Computer Science,
1993, pp. 71–112.

26

[16] K. Paliwoda, J. Sanders, An incremental specification of the sliding-window
protocol, Distributed Computing (1991).

[17] B. Badban, W. Fokkink, J. Groote, J. Pang, J. van de Pol, Verification of a
sliding window protocol in µCRL and PVS, Formal Aspects of Computing
17 (2005) 342–388.

[18] G. Holzmann, Design and Validation of Computer Protocols, Prentice-Hall,
1991.

[19] G. Holzmann, The model checker Spin, IEEE Transactionsactions of Soft-
ware Engineerng 23 (1997) 279–295.

[20] R. Kaivola, Using compositional preorders in the verification of a sliding
window protocol, in: Proceedings of the 9th Conference on Computer
Aided Verification, Lecture Notes in Computer Science 1254, Springer-
Verlag, 1997, pp. 48–59.

[21] K. Stahl, K. Baukus, K. Lakhnech, Y. Steffen, Divide, abstract, and model
check, in: Proceedings of the 6th International SPIN Workshop, Lecture
Notes in Computer Science 1680, pp. 57–76.

[22] R. M. Cardell-Oliver, The Formal Verification of Hard Real-Time Systems,
Ph.D. thesis, University of Cambridge, 1992.

[23] D. Chkliaev, J. Hooman, E. de Vink, Verification and improvement of the
sliding windonw protocol, in: Proceedings of the 9th Conference on Tools
and Algorithms for the Construction of Analysis of Systems (TACAS’03),
Lecture Notes in Computer Science 2619, Springer-Verlag, 2003, pp. 113–
127.

[24] S. Owicki, D. Gries, An axiomatic proof technique for parallel programs,
Acta Informatica 6 (1976) 319–340.

[25] T. Nipkow, L. P. Nieto, Owicki/Gries in Isabelle/HOL, in: Fundamental
Approaches to Software Engineering, Lecture Notes in Computer Science
1577, Springer-Verlag, 1999, pp. 188–203.

[26] A. Mooij, W. Wesselink, Incremental verificaiton of Owicki/Gries proof
outlines using pvs., in: Proceedings of the 7th International Conference
on Formal Engineering Methods, Lecture Notes in Computer Science 3785,
Springer-Verlag, 2005, pp. 390–404.

[27] J. Koudijs, Automated Verification of Owicki/Gries proof outlines: com-
paring PVS and Isabelle, Master’s thesis, T.U. Eindhoven, 2006.

[28] C. Jones, Tentative steps toward a method for interfering programs, ACM
Transactions of Programming Languages and Systems (TOPLAS) 5 (1983)
596–619.

27

[29] Q. Xu, W. de Roever, J. He, The rely-guarantee method for verifying shared
variable concurrent programs, Formal Aspects of Computing 9 (1997) 149–
174.

[30] L. Nieto, The rely-guarantee method in Isabelle/HOL, in: Programming
Languages and Systems, Lecture Notes in Computer Science 2618, Sprin-
ger-Verlag, 2003, pp. 348–362.

[31] V. Vafeiadis, M. Parkinson, A marriage of rely/guarantee and separation
logic, in: Proceedings of 18th International Conference on Concurrency
Theory (CONCUR), Lecture Notes in Computer Science 4136, Springer-
Verlag, 2007, pp. 256–271.

[32] J. Rushby, Formal Verification of McMilian’s Compositional Assume-
Guarantee Rule, Technical Report, SRI, 2001.

[33] M. Charpentier, Composing invariants, Science of Computer Programming
60 (2006) 221–243.

[34] L. Lensink, C. Muñoz, A. Goodloe, From Verified Models to Verifiable
Code, Technical Memorandum NASA/TM-2009-215943, NASA, Langley
Research Center, Hampton VA 23681-2199, USA, 2009.

28

