
1

Compositional Verification of a

Multi-Agent System for One-to-Many Negotiation*

 Frances M.T. Brazier1, Frank Cornelissen1, Rune Gustavsson2, Catholijn M. Jonker1,

Olle Lindeberg2, Bianca Polak1, Jan Treur1

1Vrije Universiteit Amsterdam
Department of Artificial Intelligence

De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
URL: http://www.cs.vu.nl /{frances,jonker,treur} Email: {frances,jonker,treur}@cs.vu.nl

2University of Karlskrona/Ronneby (HK/R)
Department of Computer Science and Business Administration, Research Laboratory SIKT

URL: http:// www.sikt.hk-r.se Email: {Rune.Gustavsson, Olle.Lindeberg}@ide.hk-r.se

Abstract

Verification of multi-agent systems hardly occurs in design practice. One of the difficulties is that
required properties for a multi-agent system usually refer to multi-agent behaviour which has nontrivial
dynamics. To constrain these multi-agent behavioural dynamics, often a form of organisational structure
is used, for example, for negotiating agents, by following strict protocols. The claim is that these
negotiation protocols entail a structured process that is manageable with respect to analysis, design and
execution of such a multi-agent system. In this paper this is shown by a case study: verification of a
multi-agent system for one-to-many negotiation in the domain of load balancing of electricity use. A
compositional verification method for multi-agent systems is applied that allows to (1) logically relate
dynamic properties of the multi-agent system as a whole to dynamic properties of agents, and (2)
logically relate dynamic properties of agents to properties of their subcomponents. Given that properties
of these subcomponents can be verified by more standard methods, these logical relationships provide
proofs of the dynamic properties of the multi-agent system as a whole.

1. Introduction

Development of agent systems in practice is often performed by a direct programming approach,
providing implementation code without specification of a design at a conceptual and formal level. A
first step to a principled approach to agent system development is using a structured design method
(tuned to the specific area of multi-agent systems). The use of such a design method provides a
conceptual design specification or design model in addition to the implementation code. The
development of such design methods for agent systems is currently underway; e.g., [6], [14], [18],
[26]. A design usually specifies the structure of an agent system. However, even if a design
specification of a multi-agent system is available, it is often difficult to guarantee that this design
specification actually fulfils the needs, i.e., whether it satisfies the design requirements
(verification). Requirements specify the behaviour or dynamics of an agent system. Especially for
critical applications, there is a need to prove that the designed system has certain behavioural or
dynamic properties under certain conditions (assumptions). This means that it has to be analysed

* A shorter, preliminary version appeared in: Y. Demazeau (ed.), Proceedings of the Third International Conference on
Multi-Agent Systems, ICMAS’98, IEEE Computer Society Press, 1998, pp. 49-56.

2

how a given structure entails certain required behavioural dynamics. While developing a proof of
such dynamic properties, also the assumptions that define the bounds within which the system will
function properly, are generated. Research on formal verification methods specialised for agent
systems is rather rare, one of the very few exceptions being [14], where verification of agent
systems is addressed using a temporal belief logic.
 The methodological approach followed in this paper assumes two specification languages: a
language to specify behavioural properties or requirements for (systems of) agents, in addition to a
language to specify design descriptions. Each of these languages fulfills its own purpose. A
language to specify a (multi-agent) system architecture needs features different from a language to
express properties of such a system. Therefore, in principle the two languages are different. The
distinction between these specification languages follows the distinction made in the AI and Design
community (cf. [15]) between the structure of a design object on the one hand, and function or
behaviour on the other hand. Formal models specified in the two languages can be related in a
formal manner: it is formally defined when a design description satisfies a behavioural property
specification, and this formal relation is used to verify that the design description fulfills the
requirements.
 Therefore, in addition to a multi-agent system design method based on a design specification
language, a method and language for formal analysis, i.e., for requirements engineering and
verification have to be developed. In contrast to previous papers addressing design specification,
such as [6], (for a case study in design specification, see [6]), this paper addresses, for a real-world
case, specification of behavioural properties, identification of logical relations between these
properties, and verification of these properties for a design specification.
 For nontrivial examples, verification can be a very complex process, both in the conceptual and
computational sense. For these reasons, a recent trend in the literature on verification in general is to
exploit compositionality and abstraction to structure the process of verification; cf. [1], [17], [20].
The notion of compositional verification by itself is certainly not novel, but the specialisation of this
notion to multi-agent systems is. In the approach presented below, the use of a compositional
verification method for multi-agent systems (cf. [20]) is explored for the formal analysis of a multi-
agent system for one-to-many negotiation, in particular for load balancing of electricity use; see [5].
In short, the behavioural properties of the whole system are established and logically related to
assumptions that themselves are behavioural properties of agents, which in turn are related to
assumptions on sub-components of agents, and so on. The behavioural properties are formalised in
terms of temporal semantics.
 The multi-agent system design analysed in this paper has been specified using the component-
based design method for multi-agent systems DESIRE; cf. [6]. Using the DESIRE software
environment, from this design specification in an automated manner an executable prototype
implementation can be (and actually has been) generated by a standard implementation generator
available within the software environment. Note that the formal analysis addressed in this paper
establishes relationships between different formally specified behavioural properties and between
formally specified behavioural properties and the design specification, and no direct relationships
with the implementation code (which would be much less transparent). However, the relationships
between design specification and prototype implementation code by means of the standard
implementation generator at least defines an indirect relationship. The advantage of this two-step
indirectness is that both design structures and behavioural properties can be specified (and related)
at a conceptual level instead of an implementation level, which makes the verification process more

3

transparent compared to the case that the implementation code is directly addressed in a formal
analysis.
 The paper is structured as follows. In Section 2 the component-based design method for multi-
agent systems DESIRE is briefly described, and in Section 3 the compositional verification method
is introduced. Section 4 discusses the approach to one-to-many negotiation processes used, and in
Section 5 the design model of the multi-agent system is briefly summarized. Section 6 addresses
verification at the top level of the system, and Section 7 verification at the highest process
abstraction level within one of the agents: the Utility Agent. In Section 8 the results are discussed.

2. Component-Based Design of Multi-Agent Systems

The example multi-agent system described in this paper has been developed using the component-
based design method DESIRE for multi-agent systems (DEsign and Specification of Interacting
REasoning components); cf. [5a]. The design at a conceptual level of a multi-agent system is
supported by graphical design tools within the DESIRE software environment. Translation to an
operational system is straightforward; the software environment includes implementation generators
with which formal specifications can be translated into executable code of a prototype system. In
DESIRE, a design model or design structure consists of specifications of the following three types:
process composition, knowledge composition, the relation between process composition and
knowledge composition. Specification in DESIRE focusses on the design description of a system;
specification of behavioural properties as needed for Requirements Engineering and verification is
not particularly supported within DESIRE. The three types of specification in a design description
are discussed in more detail below. Notice that, since this paper addresses formal analysis of multi-
agent systems, and not design specification, the necessary notions on design are only briefly
sketched. For more details about design specification, see the references [6].

2.1. Process Composition

Process composition identifies the relevant processes at different levels of (process) abstraction, and
describes how a process can be defined in terms of (is composed of) lower level processes.

2.1.1. Identification of Processes at Different Levels of Abstraction
Processes can be described at different levels of abstraction; for example, the process of the multi-
agent system as a whole, processes defined by individual agents and the external world, and
processes defined by task-related components of individual agents. The identified processes are
modelled as components. For each process the input and output information types are modelled.
The identified levels of process abstraction are modelled as abstraction/specialisation relations
between components: components may be composed of other components or they may be primitive.
Primitive components may be either reasoning components (i.e., based on a knowledge base), or,
components capable of performing tasks such as calculation, information retrieval, optimisation.
These levels of process abstraction provide process hiding at each level.

2.1.2. Composition of Processes
The way in which processes at one level of abstraction are composed of processes at the adjacent
lower abstraction level is called composition. This composition of processes is described by a
specification of the possibilities for information exchange between processes (static view on the

4

composition), and a specification of task control knowledge used to control processes and
information exchange (dynamic view on the composition).

2.2. Knowledge Composition

Knowledge composition identifies the knowledge structures at different levels of (knowledge)
abstraction, and describes how a knowledge structure can be defined in terms of lower level
knowledge structures. The knowledge abstraction levels may correspond to the process abstraction
levels, but this is often not the case.

2.2.1. Identification of Knowledge Structures at Different Abstraction Levels
The two main structures used as building blocks to model knowledge are: information types and
knowledge bases. Knowledge structures can be identified and described at different levels of
abstraction. At higher levels details can be hidden. An information type defines an ontology
(lexicon, vocabulary) to describe objects or terms, their sorts, and the relations or functions that can
be defined on these objects. Information types can logically be represented in order-sorted predicate
logic. To illustrate these notions a simple example is used. In this example agent A (with role
service request generation) communicate a (service) request to agent B (with role service
provision). Agent B answers with a service proposal, which is accepted by agent A. In this example
the information type for the input of agent A is:

sorts

AGENT, REQUEST, PROPOSAL

objects

r1: REQUEST

p1: PROPOSAL

relations

proposal_for_from: PROPOSAL x REQUEST x AGENT x AGENT

An example of an information type is, for the output of an agent A with role service request
generation (notice that more objects in the sorts can be defined):

sorts

AGENT, REQUEST, PROPOSAL

objects

r1: REQUEST

p1: PROPOSAL

relations

request_for_from: REQUEST x AGENT x AGENT

accepted_proposal_for_from: PROPOSAL x REQUEST x AGENT x AGENT

An example information type for the input of an agent B is:

sorts

AGENT, REQUEST, PROPOSAL

5

objects

r1: REQUEST

p1: PROPOSAL

relations

request_for_from: REQUEST x AGENT x AGENT

accepted_proposal_for_from: PROPOSAL x REQUEST x AGENT x AGENT

An example information type for the output of agent B (with role service provision) is:

sorts

AGENT, REQUEST, PROPOSAL

objects

r1: REQUEST

p1: PROPOSAL

relations

proposal_for_from: PROPOSAL x REQUEST x AGENT x AGENT

An example internal information type for agent B (with role service provision) is:

sorts

REQUEST, PROPOSAL

objects

r1: REQUEST

p1: PROPOSAL

relations

qualified_proposal_for: PROPOSAL x REQUEST

These information types specify an ontology, for example, for a request R of agent A to agent B
(request_for_from(R, A, B)), a proposal P of B to A to satisfy a request R (proposal_for_from(P, R, B, A), and a
citerion to indicate whether a proposal qualifies to fulfill a request (qualified_proposal_for(P, R)).

A knowledge base defines a part of the knowledge that is used in one or more of the processes.
Knowledge is represented by formulae in order-sorted predicate logic, which can be normalised by
a standard transformation into rules. An example of a part of a knowledge base (of agent B) is:

 qualified_proposal_for(p1, r1).

if request_for_from(R:REQUEST, B:AGENT, A:AGENT)
and qualified_proposal_for(P:PROPOSAL, R:REQUEST)
then proposal_for_from(P:PROPOSAL, R:REQUEST, A:AGENT, B:AGENT).

This expresses that p1 is a qualified proposal for r1, and if any request R is done by agent B to agent
A, for which P is a qualified proposal, then this P is a proposal from agent A for request R to agent B.

2.2.2. Composition of Knowledge Structures
Information types can be composed of more specific information types, following the principle of
compositionality discussed above. Similarly, knowledge bases can be composed of more specific

6

knowledge bases. The compositional structure is based on the different levels of knowledge
abstraction distinguished, and results in information and knowledge hiding.

2.3. Relation between Process and Knowledge Composition

Each process in a process composition uses knowledge structures. Which knowledge structures are
used for which processes is defined by the relation between process composition and knowledge
composition.

2.4 Trace Semantics of a Design

Semantics of a component-based design is based on a set of traces of three-valued information
states. An information state I of a system or system component D (e.g., the overall system, or an
input or output interface of an agent) is an assignment of truth values {true, false, unknown} to the set
of ground atoms describing the information within D (i.e., based on the interface information types).
The set of all possible information states of D is denoted by IS(D). A trace 0�of D is a sequence
(over the natural numbers) of information states (I t)t∈N in IS(D). Each design defines such a set of

traces. For more details, see [7].

3. Compositional Verification

The purpose of verification is to formulate relevant functional or behavioural properties of a system
(and its components), and to prove that, under a certain set of conditions (assumed properties), a
system will adhere to a certain set of desired properties (for example the behavioural requirements
for the design). Compositional verification, in particular, is a well-known method to verify systems
based on concurrently processing components; cf [23]. In the compositional verification approach
for multi-agent systems used in this paper (and adopted from [20]), this is done by a mathematical
proof (i.e., a proof in the form mathematicians are accustomed to do) that the specification of the
system together with the assumed properties implies the behavioural properties that it needs to
fulfil.

3.1. The Compositional Verification Method

A component-based multi-agent system can be viewed at different levels of process abstraction.
Viewed from the top level, denoted by L0, the complete system is one component S; internal
information and processes are hidden. At the next, lower level of abstraction, the system component
S can be viewed as a composition of agents and the world. Each agent is composed of its sub-
components, and so on. The compositional verification method takes this compositional structure
into account. Verification of a composed component is done using:
• properties of the sub-components it embeds,
• the way in which the component is composed of its sub-components (the composition relation),
• environmental properties of the component (depending on the rest of the system, including the

world)
Given the specification of the composition relation, the assumptions under which the component
functions properly are the environmental properties and the properties to be proven for its sub-
components. This implies that properties at different levels of process abstraction are involved in

7

the verification process. The primitive components (those that are not composed of other
components) can be verified using more traditional verification methods; for an overview, see, e.g.,
[21]. Often the properties involved are not given at the start: to find them is one of the aims of the
verification process.
 The verification proofs that connect properties of one process abstraction level with properties of
the other level are compositional in the following manner: any proof relating level i to level i+1 can
be combined with any proof relating level i-1 to level i, as long as the same properties at level i are
involved. This means, for example, that the whole compositional structure beneath level i can be
replaced by a completely different design as long as the same properties at level i are achieved.
After such a modification only the proof for the new component has to be provided. In this sense
the verification method supports reuse of verification proofs. The compositional verification
method can be formulated as follows:

A. Verifying one Level Against the Other
For each abstraction level the following procedure for verification is followed:
1. Determine which properties are of interest (for the higher level).
2. Determine which assumed properties (at the lower level) are needed to guarantee the properties
of the higher level, and which environment properties.
3. Prove the properties of the higher level on the basis of these assumed properties, and the
environment properties.

B. Verifying a Primitive Component
For primitive knowledge-based components a number of techniques exist in literature, see for
example [21]. For primitive non-knowledge-based components, such as databases, or neural
networks, or optimisation algorithms, verification techniques can be used that are especially tuned
for that type of component.

C. The Overall Verification Process
To verify the entire system
1. Determine the properties that are desired for the whole system.
2. Apply A iteratively. In the iteration the desired properties of each abstraction level Li are the
assumed properties for the higher level.
3. Verify the primitive components according to B.

Notes:
• The results of verification are two-fold:
 (1) Properties at the different abstraction levels.
 (2) The logical relations between the properties of adjacent abstraction levels.
• process and information hiding limits the complexity of the verification per abstraction level.

• a requirement to apply the compositional verification method described above is the availability
of an explicit specification of how the system description at an abstraction level Li is composed
from the descriptions at the lower abstraction level Li+1; the component-based design method for
multi-agent systems DESIRE fulfils this requirement.

• in principle different procedures can be followed (e.g., top-down, bottom-up or mixed).

8

3.2. Language and Semantics used

In contrast to a design specification language as in DESIRE, which specifies design structure, a
language is needed to specify dynamic properties of an agent system’s behaviour. To obtain a
formalisation of behavioural properties different variants of temporal logic can be used, depending
on the type of properties to be expressed. For example, linear or branching time temporal logic are
appropriate to specify various agent (system) behavioural properties. Examples of the use of
specification languages based on such variants of temporal logic are described, for example in [11],
[14], [22]. However, to specify adaptive properties such as ‘exercise improves skill’ as well, a
comparison between different histories has to be explicitly expressed. This requires a form of
temporal logic language which is more expressive than those allowing to refer at each time point
only to one history. An example of such a more expressive formal language in which different
histories can be compared is the Temporal Trace Language TTL introduced in [20]; this language is
defined as follows.
 A structure consisting of a number of component names, a sub-component relation, and interface
information types for each component is assumed given. As in Section 2.4 an information state I of
a component D (e.g., the overall system, or an input or output interface of an agent) is an assignment
of truth values {true, false, unknown} to the set of ground atoms describing the information state within D.
The set of all possible information states of D is denoted by IS(D). A trace 0�of D is a sequence
(over the natural numbers) of information states (It)t∈N in IS(D). Given a trace 0 of D, the

information state of the input interface of an agent A at time point t is denoted by
 stateD(0, t, input(A)),
where stateD and input are function symbols. Analogously,
 stateD(0, t, output(A))
denotes the information state of the output interface of agent A at time point t within system
(component) D. The information states can be related to statements via the formally defined
satisfaction relation denoted by the symbol |=, which has some similarity to the Holds-predicate in
the Situation Calculus. Differences from the Situation Calculus approach are, however, that we
(1) use an infix notation for the |= predicate instead of a prefix notation,
(2) refer to a trace and time point instead of a single state, and
(3) can focus on part of the system.
Based on these statements, behavioural properties can be formulated in a formal manner in a sorted
first-order predicate logic with sorts T for time points, Traces for traces and F for state formulae,
using quantifiers over time and the usual first order logical connectives such as ¬ (not), ∧ (and), ∨

(or), ⇒ (implies) , ∀ (for all), ∃ (there exists). As the language is a first-order predicate logic
language, standard semantics and proof calculus can be adopted.
 An example of such a statement is the following (other examples can be found in Sections 6 and
7 below). Consider the following informally expressed property for the dynamics of a multi-agent
system as a whole:

Each service request of agent A to agent B must be followed by a service proposal of agent B after a certain
time which is acknowledged as satisfactory by agent A..

In a structured, semiformal manner, this property can be reformulated (and detailed) as follows:

 if at some point in time
 agent A outputs: a service request for B,
 then at a later point in time

9

 agent B outputs: a service proposal for the request for A
 and at a still later point in time
 agent A outputs: the proposal is accepted to B

Using the formal language introduced above the following temporal formalisation is made of this
example property:

∀ �
 , t, r [state(

�
, t, output(A)) |= request_for_from(r, B, A)

 ⇒ [∃ p, t1 ≥ t state(
�

, t1, output(B)) |= proposal_for_from(p, r, A, B)

 ∧ ∃ t2 ≥ t1 state(
�

, t2, output(A)) |= accepted_proposal_for_from(p, r, A, B)]]

Here the statement state(
�

, t, output(A)) ∞ request_for_from(r, B, A) means that within trace
�

 at time
point t a statement request_for_from(r, B, A) occurs in the output interface of agent A, i.e. has truth value
true in the output state of A.

4. One-to-many Negotiation Processes

In this section the application domain is briefly sketched, and the one-to-many negotiation process
devised within this domain is presented.

4.1. Load Balancing of Electricity Use

The purpose of load management of electricity use is to smoothen peak load by managing a more
appropriate distribution of the electricity use among consumers. Flexible pricing schemes can be an
effective means to influence consumer behaviour; cf. [16]. The assumption behind the model
presented in this paper is that, to acquire a more even distribution of electricity usage in time,
consumer behaviour can be influenced by financial gain. Consumers are autonomous in the process
of negotiation: each individual consumer determines which price/risk he/she is willing to take and
when. As consumers are all individuals with their own characteristics and needs (partially defined
by the type of equipment they use within their homes), that vary over time, models of consumers
used to design systems to support the consumer, need to be adaptive and flexible (cf. [2]). Utility
companies negotiate price in a one-to-many negotiation process with each and every individual
separately, unaware of the specific models behind such systems for individuals. In the model
discussed in this paper the negotiation process is modelled for one utility company and a number of
consumers, each with their own respective agent to support them in the negotiation process: one
Utility Agent and a number of Customer Agents.

4.2. Modelling the Negotiation Process

In [24] a number of mechanisms for negotiation are described. A protocol with well-defined
properties, called the monotonic concession protocol, is described: during a negotiation process all
proposed deals must be equally or more acceptable to the counter party than all previous deals
proposed. The strength of this protocol is that the negotiation process always converges. The
monotonic concession protocol has been applied to the load management problem, to obtain a
model for the one-to-many negotiation process between one Utility Agent and a (in principle large)
number of Customer Agents.
 In this model, the Utility Agent always initiates the negotiation process, as soon as a coming
peak in the electricity consumption is predicted. In the method used the Utility Agent constructs a

10

so-called reward table and communicates this table to all Customer Agents (announcement). A
reward table (for a given time interval) consists of a list of possible cut-down values, and a reward
value assigned to each cut-down value. The cut-down value specifies an amount of electricity that
can be saved (expressed in percentages) and the reward value specifies the amount of reward the
Customer Agent will receive from the Utility Agent if it lowers its electricity consumption by the
cut-down value. A Customer Agent examines and evaluates the rewards for the different cut-down
values in the reward tables. If the reward value offered for the specific cut-down is acceptable to the
Customer Agent, it informs the Utility Agent (bid) that it is prepared to make a cut-down x, which
may be zero to express that no cut-down is offered.
 As soon as the Customer Agents have responded to the announcement of a reward table, the
Utility Agent predicts the new balance between consumption and production of electricity for the
stated time interval. The Utility Agent is satisfied by the responses if a peak can be avoided if all
Customer Agents implement their bids. If the Utility Agent is not satisfied by the responses
communicated by the Customer Agents, it announces a new reward table (according to the
monotonic concession protocol mentioned above) to the Customer Agents in which the reward
values are at least as high, and for some cut-down values higher than in the former reward table
(determined on the basis of, for example, the formulae described in Section 5 below). The Customer
Agents react to this new announcement by responding with a new bid or the same bid again (in line
with the rules of the monotonic concession protocol). This process continues until (1) the peak is
satisfactorily low for the Utility Agent (at most the capacity of the utility company), or (2) the
reward values in the new reward table have (almost) reached the maximum value the Utility Agent
can offer. This value has been determined in advance. For more details on this negotiation method,
see [5].

5. Component-based Design of the Prototype System

The prototype Multi-Agent System has been fully specified and (automatically) implemented in the
DESIRE software environment. The top level composition of the system consists of a Utility Agent,
two Customer Agents, and an External World. The top level process composition of the system is
shown in Figure 1 (picture taken from the graphical design tool within the DESIRE software
environment).

5.1. Top Level Composition of the Utility Agent

The first level composition within the Utility Agent is depicted in Figure 2 (taken from the
graphical design tool within the DESIRE software environment). This picture shows part of the
graphical interface of the DESIRE software environment; in addition, interfaces to the agents have
been implemented which are specific for this prototype (see [5]).

11

utility_agent

customer_agent1

customer_agent2

external_world

announcement_to_c1

announcement_to_c2

bids_from_c1_to_ua

bids_from_c2_to_ua

prediction_info_to_UA

Figure 1. Process composition at the top level of the system

5.2. Knowledge used within the Utility Agent

In this prototype system the Utility Agent communicates the same announcements to all Customer
Agents, in compliance with Swedish law. The predicted balance between the consumption and the
production of electricity, is determined by the following formulae (here CA is a variable ranging
over the set of Customer Agents):
The first of the formulae determines the prediction of a consumer CA’ s electricity use, after this
consumer has committed to a reduction by cutdown(CA). Here predicted_use(CA) is the electricity use of
customer CA during the considered period if no reduction (cutdown) is decided by CA. Moreover,
cutdown(CA) denotes the reduction fraction of CA, and allowed_use(CA) is the maximal allowed use as
agreed in the general contract with the customer.

 predicted_use_with_cutdown(CA) = min { predicted_use(CA), (1 - cutdown(CA))* allowed_use(CA) }

The second formula takes the sum over all consumers of the difference between predicted use
(assuming the reduction to which they committed) and normal use (the overall use that is
considered to be optimal by the Utility Agent) to determine the predicted_overuse. This
predicted_overuse is the number that needs to be reduced to zero by the negotiation process. The last
formula normalises this overuse by normalising it with respect to normal use.

 predicted_overuse = ΣCA predicted_use_with_cutdown(CA) - normal_use

 overuse = predicted_overuse/normal_use

In the prototype system the increase of rewards in announcements during the negotiation process is
based on the following formula

 new_reward = reward + beta * overuse * (1 - reward/max_reward)* reward

12

 Here max_reward is the maximal reward the utility company is willing to pay, and beta is a factor
by which the negotiation speed can be fine-tuned. Note that the increase of rewards is proportional
to the relative overuse. Therefore, if the overuse decreases, also the increases in rewards decrease
during the negotiation process. The factor beta determines how steeply the reward values increase;
in the current system it has a constant value. As said, the reward value increases more when the
predicted overuse is higher (in the beginning of the negotiation process) and less if the predicted
overuse is lower. However, the rewards never exceed the maximal reward, due to the logistic factor
 (1 - reward/max_reward)
The negotiation process ends when the difference between the new reward values and the (old)
reward values is less than or equal to 1. Note that for the predicted use of a customer there is no
need to use an individual value: an average value based on available customer statistics is sufficient,
since in the formula for predicted over-use the sum is taken over all customers. Furthermore, the
predictions assume that a customer commits to the reduction as promised. To assure that customers
indeed live up to these commitments, for example, high financial penalties can be used if
commitments are violated.

utility_agent
1
in

utility_agent
2
in

utility_agent
1

out

utility_agent
2

out

agent_interaction_management
own_process_control

cooperation_managementdetermine_balance

predicted_overuse_from_DB_to_CMpredicted_use_to_DB

round_from_CM_to_DB

predicted_overuse_from_DB_to_OPC

round_from_CM_to_OPC

outgoing_communicationnego_state_from_OPC_to_CM

cutdowns_to_AIM

announce_progress_from_CM_to_AIM

announce_progress_from_CM_to_OPC

communications_from_CM_to_AIM

bids_from_AIM_to_DB

max_allowed_to_DPB

overuse_from_DB_to_AIM

Figure 2 Process composition at the first level within the Utility Agent

6. Verification Starting at the Top Level

Two important assumptions behind the system are: energy use is (statistically) predictable at a
global level, and consumer behaviour can be influenced by financial gain. These assumptions imply
that if the financial rewards (calculated on the basis of statistical information) offered by a Utility
Agent are well chosen, Customer Agents will respond to such offers and decrease their use.
 To verify the system a top-down compositional verification (see Section 3) approach is followed.
First, in Section 6.1 requirements for the system S as a whole are identified, in the form of dynamic
properties. Next, in Section 6.2 requirements for the different agents (Utitility Agent (UA) and
Customer Agents (CA)) and the External World component within the system are identified that

13

together entail the requirements of S as a whole. In Section 6.3 logical relationships are identified
between these dynamic properties at different aggregation levels within the system.
 The most important properties as requirements for the load balancing system S as a whole are
that

(1) the negotiation process satisfies the monotonic concession protocol,
(2) at some point in time the negotiation process will terminate, and
(3) the agents make rational decisions during the negotiation process.

These properties are formally defined in Section 6.1.
 To prove properties such as these, several other properties of the participating agents (and the
external world) are assumed. These properties of agents and the external world are defined in
Section 6.2. An important property for the Utility Agent, for example, is that after the negotiation
process the predicted overuse has decreased to such an extent that is at most the maximal overuse
the utility company considers acceptable. Some of the logical relationships (and proofs thereof)
between properties are briefly presented in Section 6.3. Next, Section 7 shows how these assumed
properties of the agents in the system can be logically related to (and proven from) properties
assumed for the subcomponents of the agents, and finally in Section 8 it is shown how basic
properties of a (primitive) subcomponent can be related to the subcomponent’ s input-output relation
or knowledge base.
 The properties defined at the level of the entire system are based on combinations of properties
of the agents. The formalisation of the properties is done in the Temporal Trace Language TTL
briefly described in Section 3.2; see also [20]. In these properties, and the properties in subsequent
sections the following language elements are used

Table 1 Overview of variables and predicates from the state ontologies used in Section 6

variables meaning

t, t’
CD, CD’

N, N’
R, R’
U, U’
CA

Range over the values within the time frame
Range over cutdown fraction values (0.1, 0.2, 0.3, …, 0.9, 1.0)
Range over negotiation round values (natural numbers)
Range over reward values (taken as natural numbers)
Range over use values (real numbers)
Ranges over Customer Agent names

predicates meaning

round(N)

announcement(CD, R, N)

cutdown(CD, N).

cutdown_from(CD, CA, N)

predicted_overuse(U, N)

Denotes that negotiation round N occurs (a counter to indicate which
negotiation round is in effect).
Denotes that in round N the utility agent offers for cutdown fraction
CD a reward R.
denotes that the customer agent (CA) offers a cutdown of CD in
round N.
Within the Utility Agent an additional argument is added to the
predicate cutdown: the ternary predicate cutdown_from to indicate the
Customer Agent CA from which the cutdown originates.
Denotes that for round N the predicted overuse is U

14

6.1 Properties of the System as a Whole

S1. Monotonicity of negotiation
The system S satisfies monotonicity of negotiation if the Utility Agent satisfies montonicity of
announcements and all Customer Agents satisfy monotonicity of bids. This is formally defined as
the conjunction of the Utility Agent announce monotonicity property U7 and for each Customer
Agent the bid monotonicity property C5 (see below).

S2. Termination of negotiation
The system S satisfies termination of negotiation (on a given time interval) if a time point exists
after which no announcements or bids (referring to the given time interval) are generated by the
agents. This is formally defined as the conjunction of the Utility Agent termination property U0 and
for each Customer Agent the termination property C0 (see below).

S3. Rationality of negotiation
The system S satisfies rationality of negotiation if the Utility Agent satisfies announcement
rationality and each Customer Agent satisfies bid rationality. This is formally defined as the
conjunction of the Utility Agent announcement rationality property U9 and for each Customer
Agent the bid rationality property C4 (see below).

To be able to prove successfulness of the negotiation certain assumptions have to be made on how
the ‘willingness’ of the Customer Agents compares to the ‘willingness’ of the Utility Agent. The
following system property expresses that the Utility Agent is willing to offer at least or more than
the required reward by the Customer Agents.

S4. Required reward limitation

The system S satisfies required reward limitation if for each Customer Agent and each cut-down
fraction CD, the required reward of the Customer Agent rrCA(CD) is at most the maximal reward
mrUA(CD) that can be offered by the Utility Agent:

 ∀CA ∀CD rrCA(CD) � mrUA(CD)

S5. Communication Successfulness
A system property which often is used is communication successfulness: if an agent A talks to
another agent B, then agent B will hear what is said. In particular this property is needed for
communication on the negotiation round, on announcements and on cut-downs.

Communication successfulness from UA to CA:
∀0∈Traces(S) ∀CA, t, X

 stateUA(0 , t, output(UA)) |= X ⇒ ∃t’ � t stateCA(0 , t’, input(CA)) |= X
This property expresses that if X occurs at the output of the Utility Agent UA, then at a later point in
time it will occur at the input of the Customer Agent CA; here X can be one of round(N),

announcement(CD, R, N).

15

Communication successfulness from CA to UA:
∀0∈Traces(S) ∀CA, t, CD, N

 stateCA(0 , t, output(CA)) |= cutdown(CD, N) ⇒ ∃t’ � t stateUA(0 , t’, input(UA)) |= cutdown_from(CD, CA, N)

Note that within the Utility Agent an additional argument is added to the predicate cutdown: it is
mapped onto the ternary predicate cutdown_from to indicate the Customer Agent CA from which the
cutdown originates.

S6. Communication Groundedness
Communication successfulness only guarentees that an agent hears what is said. Sometimes also the
reverse needs to be guaranteed: that an agent does not hear things that were not said. This property
is formulated for communication on the negotiation round, on announcements and on cut-downs.

Communication groundedness from UA to CA:
∀0∈Traces(S) ∀CA, t, X

 stateCA(0 , t, input(CA)) |= X ⇒ ∃t’ � t stateUA(0 , t’, output(UA)) |= X
This property expresses that if X occurs at the input of the Customer Agent CA, then at an earlier
point in time it has occured at the output of the Utility Agent UA; here X can be one of round(N),

announcement(CD, R, N).

Communication groundedness from CA to UA:
∀0∈Traces(S) ∀CA, t, CD, N

 stateUA(0 , t, input(UA)) |= cutdown_from(CD, CA, N) ⇒ ∃t’ � t stateCA(0 , t’, output(CA)) |= cutdown(CD, N)

The above three properties S4, S5 and S6 are assumptions for the whole system; they are assumed
and used in the proofs of a number of properties.

In addition to these properties a global successfulness property for the whole negotiation process
could be defined. However, as successfulness depends on the perspective of a specific agent, the
choice has been made to define succesfulness as a property of an agent (e.g., property U1 below).

6.2 Properties of the Agents and the World

The properties of the Utility Agent, the Customer Agents, and the External World are defined in this
section. Note that each of the properties is presented as a temporal statement either about all traces
of the system S (i.e., U0, U1, U11, C0 below) or about all traces of the agent itself. In the latter case
the truth of the property does not depend on the environment of the agent, but only on the agent’ s
internal processes. Section 6.3 discusses how the various properties are logically related.

6.2.1 Properties of the Utility Agent

First, two properties U0 and U1 of the agent UA are defined that depend both on the agent’ s
internal functioning and on the environment of the agent within the system as a whole. These

16

properties are expressed for traces 0∈Traces(S) of the system as a whole. Next the properties U2,
U3, U4, U5, U6, U7, U8, U9, U10, and U11 are defined that only depend on the agent’ s internal
functioning, and not on the agent’ s environment within the system. These properties are expressed
for traces 0∈Traces(UA) of the agent UA independent of the rest of the system.

U0. Finite termination of negotiation by UA
The Utility Agent satisfies finite termination of negotiation if a round number N exists such that UA
does not negotiate for any round N’ after this round number, i.e., no announcement or round
information are communicated for such N’:

 ∀0∈Traces(S) ∃N ∀t, CD, R, N’>N stateS(0 , t, output(UA)) |≠ announcement(CD, R, N’) &

 stateS(0 , t, output(UA)) |≠ round(N’)

U1. Successfulness of negotiation
The Utility Agent satisfies successfulness of negotiation if:

 at some t and for some negotiation round N the predicted overuse is less than or equal to 0

Formally:
 ∀0∈Traces(S) ∃t, N ∃U � 0 stateS(0 , t, output(UA)) |= predicted_overuse(U, N)

U2. Negotiation round generation effectiveness
The Utility Agent satisfies negotiation round generation effectiveness if the following holds:

 if and when within round N predicted overuse is positive, a next negotiation round N+1 is initiated

Formally:

 ∀0∈Traces(UA) ∀t , N, U, CD, R
 [stateUA(0 , t, output(UA)) |= round(N)
 & stateUA(0 , t, output(UA)) |= predicted_overuse(U, N)

 & U > 0

 & stateUA(0 , t, output(UA)) |= announcement(CD, R, N)

 & R < mrUA(CD)]
 ⇒ ∃t’ > t stateUA(0 , t’, output(UA)) |= round(N+1)

Here round(N+1) denotes that the Utility Agent has declared round N+1 active.

U3. Negotiation round generation groundedness
The Utility Agent satisfies negotiation round generation groundedness if the following holds:

 if the predicted overuse is not positive, then no new negotiation round is initiated

Formally:
 ∀0∈Traces(UA) ∀t , N, U

17

 stateUA(0 , t, output(UA)) |= predicted_overuse(U, N) & U � 0

 ⇒ ∀t’, N’>N stateUA(0 , t’, output(UA)) |≠ round(N’)

U4. Announcement generation effectiveness
The Utility Agent satisfies announcement generation effectiveness if

 for each initiated negotiation round, for each cutdown fraction
 at least one reward value is announced

Formally:
 ∀0∈Traces(UA) ∀t , N
 [stateUA(0 , t, output(UA)) |= round(N)
 ⇒ ∃ t’ � t ∀CD ∃ R stateUA(0 , t’, output(UA)) |= announcement(CD, R, N)]

U5. Announcement uniqueness
The Utility Agent satisfies announcement uniqueness if

 for each initiated negotiation round at most one announcement is generated

Formally:
 ∀0∈Traces(UA) ∀t , t’, N ∀CD, R, R’
 stateUA(0 , t, output(UA)) |= announcement(CD, R, N)

 & stateUA(0 , t’, output(UA)) |= announcement(CD, R’, N)
 ⇒ R = R’

U6. Announcement generation groundedness
The Utility Agent satisfies announcement generation groundedness if

 an announcement is only generated for initiated negotiation rounds

Formally:
 ∀0∈Traces(UA) ∀t , N ∀CD, R
 stateUA(0 , t, output(UA)) |= announcement(CD, R, N) ⇒ ∃ t’ � t stateUA(0 , t’, output(UA)) |= round(N)

U7. Monotonicity of announcement
The Utility Agent satisfies monotonicity of announcement if

 for each announcement and each cut-down percentage the offered reward is at least
 the reward for the same cut-down percentage offered in the previous announcements

Formally:

 ∀0∈Traces(UA) ∀t, t’, N, N’ ∀CD, R, R’

 stateUA(0 , t, output(UA)) |= announcement(CD, R, N)
 & stateUA(0 , t’, output(UA)) |= announcement(CD, R’, N’)

18

 & N � N’
 ⇒ R � R’

U8. Progress in announcement
The Utility Agent satisfies progress in announcement if

 for at least one cut-down percentage the difference between the currently announced reward and
 the previously announced reward is at least the positive constant m (announce margin)

Formally:
 ∀0∈Traces(UA) ∀t, t’, N ∃CD R, R’

 stateUA(0 , t, output(UA)) |= announcement(CD, R, N)
 & stateUA(0 , t’, output(UA)) |= announcement(CD, R’, N+1)
 ⇒ R + m � R’

U9. Announcement rationality
The Utility Agent satisfies announcement rationality if

 no announced reward is higher than the maximal reward

Formally:
 ∀0∈Traces(UA) ∀t, N ∀CD, R

 stateUA(0 , t, output(UA)) |= announcement(CD, R, N) ⇒ R � mrUA (CD)

U10. Transfer successfulness and groundedness properties within UA
Similar to the communication successfulness and groundedness properties at the level of the whole
system (i.e., properties S5 and S6), also within the agents properties are needed that guarantee
proper information transfer between the different components. These properties can be specified in
a form as in S5 and S6. For example, proper transfer of Customer Agents bids from Agent
Interaction Management to Determine Balance requires:

Transfer successfulness from AIM to DB:
∀0∈Traces(UA) ∀CA, t, CD, N

 stateUA(0 , t, output(AIM)) |= cutdown_from(CD, CA, N)

 ⇒ ∃t’ � t stateUA(0 , t’, input(DB)) |= cutdown_from(CD, CA, N)

Transfer groundedness from AIM to DB:
∀0∈Traces(UA) ∀CA, t, CD, N

 stateUA(0 , t, input(DB)) |= cutdown_from(CD, CA, N)

 ⇒ ∃t’ � t stateUA(0 , t’, output(AIM)) |= cutdown_from(CD, CA, N)

Similar transfer properties are used for all other information transfer between components within
UA. For the proofs these properties are assumptions, on the basis of the design specification: the
transfer properties are the expression of the semantics of the information links in a design.

19

U11. Environmental property for UA
This environmental property states

if the Utility Agent makes an annoncement,
then after some time for each Customer Agent a bid has been received

Formally:
 ∀0∈Traces(S) ∀t , N, CD, R
 [stateUA(0 , t, output(UA)) |= round(N)
 & stateUA(0 , t, output(UA)) |= announcement(CD, R, N)]
 ⇒ ∀CA ∃t’ > t, CD’ stateUA(0 , t’, input(UA)) |= cutdown_from(CD’, CA, N)

6.2.2 Properties of each Customer Agent

C0. Finite termination of negotiation by CA
A Customer Agent CA satisfies finite termination of negotiation by CA if

 a round number exists such that CA does not negotiate after this round number

Formally:
 ∀0∈Traces(S) ∃N ∀t, CD, N’>N stateS(0 , t, output(CA)) |≠ cutdown(CD, N’)

A successfulness property of a Customer Agent could be defined on the basis of some balance
between discomfort and financial gains. These aspects were not included in the model and the
analysis.

C1. Bid generation effectiveness
A Customer Agent CA satisfies bid generation effectiveness if

 for each announced negotiation round at least one bid is generated
 (possibly a bid for reduction zero)

Formally:
 ∀0∈Traces(CA) ∀t, N

 stateCA(0 , t, input(CA)) |= round(N) ⇒ ∃CD, t’ � t stateCA(0 , t’, output(CA)) |= cutdown(CD, N)

C2. Bid uniqueness
A Customer Agent CA satisfies bid uniqueness if

 for each negotiation round at most one bid is generated

Formally:
 ∀0∈Traces(CA) ∀t, t’, N, CD, CD’

20

 stateCA(0 , t, output(CA)) |= cutdown(CD, N) & stateCA(0 , t’, output(CA)) |= cutdown(CD’, N)
 ⇒ CD = CD’

C3. Bid generation groundedness
A Customer Agent CA satisfies bid generation groundedness if

 a bid is only generated once a negotiation round is announced

Formally:
 ∀0∈Traces(CA) ∀t, N, CD

 stateCA(0 , t, output(CA)) |= cutdown(CD, N) ⇒ ∃ t’ � t stateCA(0 , t’, input(CA)) |= round(N)

C4. Bid rationality
A Customer Agent CA satisfies bid rationality if

 for each bid the required reward for the offered cut-down is at most the reward
 announced in the same round, and the offered cut-down is the highest with this property

Formally:
 ∀0∈Traces(CA) ∀t, t’, N, CD, R

 [[stateCA(0 , t, output(CA)) |= cutdown(CD, N) & stateCA(0 , t’, input(CA)) |= announcement(CD, R, N)]

 ⇒ rrCA(CD) � R] &
 ∀t, t’,t”, N, CD, R, CD’,R’ [[stateCA(0 , t, output(CA)) |= cutdown(CD, N)

 & stateCA(0 , t’, input(CA)) |= announcement(CD, R, N)

 & stateCA(0 , t”, input(CA)) |= announcement(CD’, R’, N)

 & rrCA(CD’) � R’]

 ⇒ CD � CD’]

Note that the choice to take the highest cutdown of the acceptable cutdowns is a bit arbitrary. If the
model of the Customer Agents is specialised to a more refined model incorporating more detail on a
user profile model involving the balance between discomfort and financial gain, another, more
sophisticated criterion for this decision could be used instead. However, the system was designed
with focus more on the Utility Agent and the Customer Agents in the actual system make the
decision as indicated in property C4; since the analysis concerns the system as designed, the above
property has been specified as above to fit the system.

C5. Monotonicity of bids
A Customer Agent CA satisfies monotonicity of bids if

for each bid the offered cutdown value is at least as high (a cut-down percentage)
as for the bids in the previous rounds

Formally:
 ∀0∈Traces(CA) ∀t, t’, N, N’ ∀CD, CD’

21

 stateS(0 , t, output(CA)) |= cutdown(CD, N) & stateS(0 , t’, output(CA)) |= cutdown(CD’, N’) & N � N’
 ⇒ CD � CD’

C6. Transfer successfulness and groundedness properties within CA
Similar to the agent UA, also for proper information transfer within CA transfer successfulness and
groundedness properties are assumed; they have the same form as in U10.

6.2.3 Properties of the External World
The External World satisfies information provision effectiveness if it provides information about the
predicted use of energy, the maximum energy level allocated to each Customer Agent, and the
maximal overuse of the Utility Agent. The External World satisfies static world if the information
provided by the external world does not change during a negotiation process.

6.3 Logical Relationships between Properties
To identify logical relationships between properties at different aggregation levels, the
compositional structure of the system is followed. For the level of the whole system, system
properties are proved from agent properties, which are defined at one process abstraction level
lower.

6.3.1 Logical Relationships and Proofs for the System Properties
Property S4 is a domain-specific assumption on the system, which is used in the proofs of other
properties. The top level properties S1, S2 and S3 can be proven from the agent properties in a
rather trivial manner, since they happen to be conjunctions of agent properties. For example, by
definition monotonicity of negotiation (S1) can be proven directly from the properties monotonicity
of announcement (U7) and monotonicity of bids (C5) for all Customer Agents, since it is the
conjunction of these properties. In a similar manner system property S2 (termination) can be proven
directly from U0 and C0, and system property S3 (rationality) from U9 and C4. Properties S5 and
S6 are generic assumptions for the system as a whole: within an implementation each arrow within
the design has to be implemented in such a manner that transfer of information indeed takes place;
the prototype implementation satisfies these requirements due to the fact that it was built using the
DESIRE implementation generator which satisfies such requirements in a generic manner.

6.3.2 Logical Relationships and Proofs for Agent Properties
Agent properties can be logically related to (and proven from):
1. Properties of sub-components of the agent.

In this case the proof can be made at one process abstraction level lower: purely within the
agent. This is discussed for the Utility Agent in Section 7.

2. Other agent properties.
An example proof of this type will be discussed below: for the Utility Agent property U0 (from
U1, U3 and U6).

3. Agent properties relating to the agent’ s environment.
An example proof of this type will be discussed below: for Utility Agent property U11 (from
Customer Agent property C1 and S5)

Also combinations of types 1. or 3. with 2. are possible. An example of this is the proof of the
Customer Agent property C0 (from C3 and U10) shown below.

22

* Proof of U0 from U1, U3 and U6.
As a first example, the termination property for the Utility Agent (U0)

 ∀0∈Traces(S) ∃N ∀N’>N, t, CD, R stateS(0 , t, output(UA)) |≠ announcement(CD, R, N’) &

 stateS(0 , t, output(UA)) |≠ round(N’)

can be proven from the properties U1, U3, and U6. The proof runs as follows. Let a trace�0�∈
Traces(S) be given. From U1 it follows that for some N, t, and U � max_overuse it holds

 stateS(0 , t, output(UA)) |= predicted_overuse(U, N)

By property U3 it follows that

 ∀t’, N’>N stateUA(0 , t’, output(UA)) |≠ round(N’)

From this, using property U6 it follows:

 ∀t’, N’>N, R, CD stateUA(0 , t’, output(UA)) |≠ announcement(CD, R, N’)

This proves U0.

* Proof of U11 from C1 and S5.
Proofs of an environmental agent property takes place at the system level. As an example, the proof
of U11 is shown. Based on the properties C1 and S5, the proof runs as follows. Let 0∈Traces(S) be
given, and t , N, U, CD, R such that

 stateUA(0 , t, output(UA)) |= round(N)
 & stateUA(0 , t, output(UA)) |= announcement(CD, R, N)

 & R < mrUA(CD)

By communication successfulness (S5), for each CA a t’ � t exists such that

 stateCA(0 , t’, input(CA)) |= round(N)

Using bid generation effectiveness (C1) it follows that for some t” � t’ and CD it holds

 stateCA(0 , t”, output(CA)) |= cutdown(CD, N)

Again by communication successfulness (S5) for some t’’’ � t” it holds.

 stateCA(0 , t’’’, input(UA)) |= cutdown_from(CD, CA, N)

This proves the environmental property U11.

* Proof of C0 from C3 and U10.

23

The termination property of a Customer Agent depends on the Utility Agent, since the Customer
Agents are reactive: the proof of C0 makes use of C3, the Utility Agent property U0, and the
assumption that the communication between UA and CA functions properly.
 What is to prove is that a Customer Agent CA satisfies finite termination of negotiation, i.e., a
round number exists such that CA does not negotiate after this round number:

 ∀0∈Traces(S) ∃N ∀t, CD, N’>N stateS(0 , t, output(CA)) |≠ cutdown(CD, N’)

Let a trace 0∈Traces(S) and a Customer Agent CA be given. From Utility Agent property U0 it
follows that an N exists such that:

 ∀N’>N, t, CD, R stateS(0 , t, output(UA)) |≠ announcement(CD, R, N’) &

 stateS(0 , t, output(UA)) |≠ round(N’)

By communication groundedness (S6) it follows that

 ∀N’>N, t stateS(0 , t, input(CA)) |≠ round(N’)

By the bid generation groundedness property (C3), a bid is only generated by CA if a negotiation
round was received; therefore:

 ∀t, N’>N, CD stateCA(0 , t, output(CA)) |≠ cutdown(CD, N’)

This proves Customer Agent property C0.

7. Compositional Verification within the Utility Agent

To illustrate the next level in the compositional verification process, in this section it is discussed
how properties of the Utility Agent can be logically related to more basic properties: properties of
components within the Utility Agent. First some of the properties of the components Agent
Interaction Management and Determine Balance are defined.

7.1 Properties of Components within UA

Properties are defined for the components Agent Interaction Management (AIM), Determine
Balance (DB), Cooperation Management (CM), and Own Process Control (OPC) of the Utility
Agent (see Figure 1).

7.1.1 Properties of AIM
The following two properties express that the component Agent Interaction Management (1)
distributes the relevant information from incoming communication, and (2) generates outgoing
communication if required.

AIM1. Cut-down provision effectiveness
The component Agent Interaction Management satisfies cut-down provision effectiveness if AIM is
effective in the analysis of incoming communication:

24

 the cut-down information received by AIM of the form received(cutdown_from(CD, CA, N)) is
 interpreted and translated into cut-down information required by other components of the form
 offered_bid(cutdown(CD, CA, N)) and made available in AIM’ s output interface

Formally:
 ∀0∈Traces(AIM) ∀t, N, CD, CA

 stateS(0 , t, input(AIM)) |= received(cutdown_from(CD, CA, N))
 ⇒ ∃ t’≥t stateS(0 , t, output(AIM)) |= offered_bid(cutdown(CD,CA,N))

AIM2. Communication generation effectiveness
The component Agent Interaction Management satisfies communication generation effectiveness if
AIM is effective in generation of outgoing communication on the basis of the analysis of input
information received from other components of the form next_communication(round(N)),

next_communication(announcement(CD, R, N)) which is made available in statements of the form
own_communication(round(N)), and own_communication(announcement(CD, R, N)):

 ∀0∈Traces(AIM) ∀t, N, CD

 stateAIM(0 , t, input(AIM)) |= next_communication(X)
 ⇒ ∃ t’≥t stateAIM(0 , t, output(AIM)) |= own_communication(X)

7.1.2 Properties of Determine Balance
The following two properties express that the component Determine Balance calculates predictions
in a reasonable manner.

DB1. Overuse prediction generation effectiveness
The component Determine Balance satisfies overuse prediction generation effectiveness if

 the predicted overuse is determined if and when normal capacity,
 predicted use and cut-downs are known

Formally:
 ∀0∈Traces(DB) ∀t , N, C
 stateDB(0 , t, input(DB)) |= predicted_use(U)

 & stateDB(0 , t, input(DB)) |= normal_capacity(C)

 & ∀CA CD stateDB(0 , t, input(DB)) |= cutdown_from(CD,CA,N)

 & stateDB(0 , t, output(DB)) |= round(N)
 ⇒ ∃U’, t’ ≥ t stateDB(0 , t’, output(DB)) |= predicted_overuse(U’,N)
Here normal_capacity(C) denotes that the use C is preferred by the utility company, and
cutdown_from(CD,CA,N) denotes that CD is the cutdown fraction offered by CA in round N.

DB2. Overuse prediction monotonicity
The component Determine Balance satisfies overuse prediction monotonicity if the following holds:

25

if based on received cut-downs CDCA
 for each Customer Agent CA, a predicted overuse U is

generated by DB, and based on received cut-downs CD’CA for each Customer Agent CA, a
predicted overuse U’ is generated by DB, then CDCA ������� CA,

 for all CA implies U’ ���

Formally:
 ∀0∈Traces(DB) ∀t , t’, N, N’, C, U0, U, U’
 stateDB(0 , t, input(DB)) |= predicted_use(U0)

 & ∀CA [stateDB(0 , t, input(DB)) |= cutdown_from(CDCA, CA, N)

 & stateDB(0 , t’, input(DB)) |= cutdown_from(CD’CA, CA, N’)

 & CDCA 	 CD’CA]
 & stateDB(0 , t, output(DB)) |= predicted_overuse(U, N)

 & stateDB(0 , t’, output(DB)) |= predicted_overuse(U’, N’)
 ⇒ U’ 	 U

Note that in this property the monotonicity is not meant over time, but for the functional relation
between input and output of DB.

DB3. Overuse prediction decrease effectiveness
The component Determine Balance satisfies overuse prediction decrease effectiveness if the
following holds:

cut-down values exist such that, if the Utility Agent’ s component Determine Balance receives
them, the predicted overuse will be at most 0.

Formally, a collection of numbers CDCA for each Customer Agent CA exists such that:
 ∀0∈Traces(DB) ∀t , N
 ∀CA stateDB(0 , t, input(DB)) |= cutdown_from(CDCA, CA, N)
 ⇒ ∃ t’
 t, U 	 0 stateDB(0 , t’, output(DB)) |= predicted_overuse(U, N)

Note that this locally defined property only refers to imaginary numbers CDCA

. A number CDCA
 is not

referring to an actual property of Customer Agent CA. In contrast to this, system level property S4
(see Section 6.1) expresses the actual (assumed) properties of Customer Agents.

7.1.3 Properties of Cooperation Management
Cooperation Management fulfills a number of properties, for example on properly generation
announcements: announcement generation effectiveness, announcement uniqueness, and
announcement generation groundedness. These are defined similarly to the corresponding
properties of the Utility Agent. In this paper only the property that guarantees that new rounds are
initiated is explicitly stated.

CM1. Round generation effectiveness
The component Determine Balance satisfies round generation effectiveness if

26

CM determines the value of the next round and makes this information available to other
components in its output interface:

Formally:
 ∀0∈Traces(CM) ∀t , N
 stateCM(0 , t, input(CM)) |= round(N) ∏ ∃ t’≥t stateCM(0 , t’, output(CM)) |= round(N+1)

7.1.4 Properties of Own Process Control
One of the properties of the component Own Process Control guarantees that decisions about
continuation of a negotiation process are made:

OPC1. New announce decision effectiveness
This property expresses:

If the predicted overuse is still more than the maximum overuse, then a new announcement is
warranted

Formally:
 ∀0∈Traces(OPC) ∀t , N, U
 stateOPC(0 , t, input(OPC)) |= current_negotiation_state(predicted_overuse(U, N))

 & stateOPC(0 , t, input(OPC)) |= current_negotiation_state(round(N))

 & U > max_overuse

 ⇒ ∃ t’≥t stateOPC(0 , t’, output(OPC)) |= new_announce

Here current_negotiation_state(predicted_overuse(U, N)) denotes that in the current state of the negotiation
process the predicted overuse is U, and current_negotiation_state(round(N)) that round N is active.
Moreover, new_announce denotes that a decision is made to make a next announcement.

7.2 Logical Relationships and Proofs within the Utility Agent

As an example, to prove the UA property U2 (negotiation round generation effectiveness),
formalized by

 ∀0∈Traces(S) ∀t , N, U, CD, R
 [stateUA(0 , t, output(UA)) |= round(N)
 & stateUA(0 , t, output(UA)) |= predicted_overuse(U, N)

 & U > max_overuse

 & stateUA(0 , t, output(UA)) |= announcement(CD, R, N)

 & R < mrUA(CD)]
 ⇒ ∃t’ ≥ t stateUA(0 , t’, output(UA)) |= round(N+1),

a number of properties of sub-components, are of importance, and also the interaction between the
components through the information links (the arrows in Figure 1) should function properly
(transfer successfulness and groundedness property U10). The proof of property U2 uses properties

27

U10, U11, DB1, OPC1, CM1, and AIM2. The round number itself is determined by CM; to
guarantee this, CM needs to satisfy the property of round generation effectiveness (CM1). This
round value is transferred to the component AIM. The component AIM must fulfil the property of
communication generation effectiveness (AIM2) to guarantee this value to be placed in the Utility
Agent’ s output interface. Activation of the link to the Utility Agent’ s output interface depends on
whether the component OPC derives the need for a new announcement. To guarantee this, the
property new announce decision effectiveness (OPC1), is needed. Properties DB1 and U11 are
needed to guarantee provision of input to CM.
 Based on the properties mentioned, a sketch of the proof is as follows. Let 0∈Traces(S) be given,
and t , N, U, CD, R such that

 stateUA(0 , t, output(UA)) |= round(N)
 & stateUA(0 , t, output(UA)) |= predicted_overuse(U, N)

 & U > max_overuse

 & stateUA(0 , t, output(UA)) |= announcement(CD, R, N)

 & R < mrUA(CD)

By the environmental property U11, for each CA a t’ � t and CD exist such that

 stateCA(0 , t’, input(UA)) |= cutdown_from(CD, CA, N)

Within the Utility Agent transfer successfulness and groundedness properties (U10) then guarantee
that some time later the bid information is available in the input of its component DB (and is
persisting there). In a similar manner it is proven that the predicted use information, round
information and normal capacity occurs at the input of DB, i.e., for some t” ≥ t it holds

 stateDB(0 , t”, input(DB)) |= predicted_use(U)

 & stateDB(0 , t”, input(DB)) |= normal_capacity(C)

 & ∀CA CD stateDB(0 , t”, input(DB)) |= cutdown_from(CD,CA,N)

 & stateDB(0 , t”, output(DB)) |= round(N)

Using property DB1 for this component then the current predicted overuse is derived:

 ∃U’, t’’’ ≥ t stateDB(0 , t’’’, output(DB)) |= predicted_overuse(U’,N)

It can be assumed that the overuse for this round is above max_overuse (otherwise the conditions for
U2 are not satisfied). Transfer to the component OPC (U10) and the property new announce
decision effectiveness (OPC1), formalized by

 ∀0∈Traces(OPC) ∀t , N, U
 stateOPC(0 , t, input(OPC)) |= current_negotiation_state(predicted_overuse(U, N))

 & stateOPC(0 , t, input(OPC)) |= current_negotiation_state(round(N))

 & U > max_overuse

 ⇒ ∃ t’≥t, stateOPC(0 , t’, output(OPC)) |= new_announce,

28

then imply that this component will derive the atom new_announce. Given property CM1, formalized
by

 ∀0∈Traces(CM) ∀t , N
 stateCM(0 , t, input(CM)) |= round(N) ∏ ∃ t’≥t stateCM(0 , t’, output(DB)) |= round(N+1),

this component will derive a new round. Given property AIM2, formalized by

 ∀0∈Traces(AIM) ∀t, N, CD

 stateAIM(0 , t, input(AIM)) |= next_communication(X)
 ⇒ ∃ t’≥t stateAIM(0 , t, output(AIM)) |= own_communication(X),

the new round information own_communication(round(N+1)) will be available on the output interface of
AIM; the transfer successfulness (U10) property related to the link outgoing communications is
conditional in having new_announce (which is the case: from OPC1). Transfer of the desired result is
therefore guaranteed: round(N+1) will occur at the output of UA. This shows how Utility Agent
property U2 is proven.

8 Verification of Properties of Primitive Components

In Sections 6 and 7 compositional verification of the multi-agent system was described, providing
logical relationships between properties at the different aggregation levels: for the system S as a
whole, properties of the agents, and, the most basic properties: the properties of subcomponents of
agents. Proofs of these logical relationships derive that the higher-level properties hold if the more
basic properties of the subcomponents within the agents hold. If these components are considered
primitive, i.e., not composed of other components, then their functionality can be described by a
functional input-output relation (e.g., specified by a domain-specific knowledge base). For these
primitive it has to be verified whether they satisfy the required properties. The primitive
components specified by a knowledge-base can be verified – for not too large knowledge bases -
making use of the more standard methods described in [25], [21]. This will be illustrated for the one
of the components of the agent UA.
 As an example, the component Determine Balance should satisfy the dynamic property ‘overuse
prediction generation effectiveness’ (DB1) which expresses that if this component has received
appropriate inputs for round N, then it will generate as an output an atom predicted_overuse(U’, N) for
some U’:

 ∀0∈Traces(DB) ∀t , N, C
 stateDB(0 , t, input(DB)) |= predicted_use(U)

 & stateDB(0 , t, input(DB)) |= normal_capacity(C)

 & ∀CA CD stateDB(0 , t, input(DB)) |= cutdown_from(CD,CA,N)

 & stateDB(0 , t, output(DB)) |= round(N)
 ⇒ ∃U’, t’ ≥ t stateDB(0 , t’, output(DB)) |= predicted_overuse(U’,N)

29

This dynamic property can be reformulated into the following static constraint C for component
DB’ s input-output functionality relation, where ∧ and ∨ stand for taking conjunctions resp.
disjunctions:

∧N [∨U predicted_use(U) ∧ ∨C normal_capacity(C) ∧ round(N) ∧ ∧CA ∨CD cutdown_from(CD, CA, N)

→ ∨U’ predicted_overuse(U’, N)]

In terms of [21], the component can safely play the proper role if it is sound and strongly complete
with respect to the domain description W(DB) defined by the constraint expressed above (i.e., the set
of complete models satisfying the constraint), i.e.,

W(DB) = { M ∈ CMod(DB) | M |= C }

In a similar manner the other dynamic properties of agents’ subcomponents can be related to
constraints on input-output relations. This shows how within a compositional verification process,
required (possibly dynamic) properties of primitive components can be formulated as static
properties of their input-output relation; cf. [25], [21].

9. Discussion

Verification of multi-agent systems is hard due to the fact that required properties for a multi-agent
system usually refer to multi-agent behaviour which has nontrivial dynamics. Organisational
structure is often used to constrain these multi-agent behavioural dynamics. An example in the area
of negotiation is the use of negotiation protocols. The purpose of these negotiation protocols is to
entail a structured process that is manageable within analysis, design and execution of such a multi-
agent system. In this paper a case study on a multi-agent system for one-to-many negotiation in the
domain of load balancing of electricity use was reported that shows that indeed verification
becomes feasible. Compositional verification was applied to (1) logically relate dynamic properties
of the multi-agent system as a whole to dynamic properties of agents, and (2) logically relate
dynamic properties of agents to properties of their subcomponents. Given that properties of these
subcomponents can be verified by more standard methods, these logical relationships provide
proofs of the dynamic properties of the multi-agent system as a whole.
 The design method DESIRE is based on compositionality of processes and knowledge at
different levels of abstraction within a system design. To formally analyse such systems, the
compositional verification method used in this paper fits well in addition to DESIRE, but it can also
be useful to any other component-based design approach. The compositional verification method
actually can be applied to a broad class of multi-agent systems. Compositional verification for one
process abstraction level deep is based on the following very general assumptions:
• a multi-agent system consists of a number of agents and external world components.
• agents and components have explicitly defined input and output interface languages; all other

information is hidden; information exchange between components can only take place via the
interfaces (information hiding).

• a formal description exists of the manner in which agents and world components are composed
to form the whole multi-agent system (composition relation).

• the semantics of the system can be described by the evolution of states of the agents and
components at the different levels of abstraction (state-based semantics).

30

This non-iterative form of compositional verification can be applied to many existing approaches,
for example, to systems designed using Concurrent METATEM (cf. [14]). Compositional verification
involving more abstraction levels assumes, in addition:
• some of the agents and components are composed of sub-components.
• a formal description exists of the manner in which agents or components are composed of sub-

components (composition relation).
• information exchange between components is only possible between two components at the

same or adjacent levels (information hiding).
Currently not many approaches to multi-agent system design exist that exploit iterative
compositionality. One approach that does is the component-based design method DESIRE. The
compositional verification method used in this paper fits well to DESIRE, but not exclusively.
 Two main advantages of a component-based approach to modelling are the transparent structure
of the design and support for reuse of components and generic models. The compositional
verification method extends these main advantages to (1) a well-structured verification process, and
(2) the reusability of proofs for properties of components that are reused. The first advantage entails
that both conceptually and computationally the complexity of the verification process can be
handled by compositionality at different levels of abstraction. The second advantage entails: if a
modified component satisfies the same properties as the previous one, the proof of the properties at
the higher levels of abstraction can be reused to show that the new system has the same properties
as the original. This has high value for a library of reusable generic models and components. The
verification of generic models forces one to find the assumptions under which the generic model is
applicable in the considered domain. A library of reusable components may consist of both
specifications of the components, and their design rationale. As part of the design rationale, at least
the properties of the components and their logical relations can be documented.
 Also due to the compositional nature of the verification method, a distributed approach to
verification is facilitated. This implies that several persons can work on the verification of the same
system at the same time, once the properties to be verified have been determined. Since the proof of
properties of a composed component depends on the properties of its sub-components, it is only
necessary to know or to agree on the properties of these sub-components.
 To obtain a more sophisticated formalisation of behavioural properties, different variants of
temporal logic (cf. [4]) can be used, depending on the type of properties to be expressed. For
example, linear or branching time temporal logic are appropriate to specify various agent (system)
behavioural properties. Examples of formal requirement specification languages based on such
variants of temporal logic are described in [9], [10], [14], [22]. However, for adaptive agents, it
might be necessary to specify adaptive properties such as ‘exercise improves skill’ for which we
have to explicitly express a comparison between different histories. This requires a form of
temporal logic language which is more expressive than those allowing to model at each time point
only one history. Therefore, in the language used in this paper, explicit reference to traces is made.
Moreover it is chosen as a first-order predicate logic, which is not the case for most temporal logics.
 To come to clearer understanding of strengths and weaknesses of a compositional approach to
verification of multi-agent systems it is important to address real-world problems. The load
balancing problem of electricity use, as addressed in this paper, belongs to the class of real-world
problems. This paper focuses on the formal analysis of a prototype system for one-to-many
negotiation between a Utility Agent and a (in principle large) number of Customer Agents, using a
(monotonic) negotiation strategy based on announcing reward tables. This system was developed in

31

co-operation with Swedish electricity industry. For the analysis of this application the relevant
behavioural properties were identified at the level of the multi-agent system as a whole, at the level
of individual agents, and at the level of components within an agent. In addition the logical
relationships between these properties were identified. As the case study aimed at analysis of this
given system, the properties were formulated in a manner closely related to the system, in particular
in terms of the information types used in input and output interfaces of agents or components within
the design as given. No attempt has been done to specify the properties in a more generic manner;
this certainly could be accomplished as a further extension of the work that might be useful for a
larger class of applications.
 As an evaluation of this exploration, in the first place it turned out that the properties that are
relevant in the power load negotiation context could be specified and proven in an adequate manner,
using the verification approach put forward. It turned out that in this application the relevant
behavioural properties at the level of the multi-agent system as a whole have a rather direct
relationship to behavioural properties of individual agents. This may seem a remarkable outcome,
since often it is thought that behavioural properties of a multi-agent system in general have a
complex relationship to properties of individual agents: the usual picture is that complex multi-
agent system properties emerge from simple agent properties in a nontrivial manner. This may
certainly be true in some classes of applications of multi-agent systems, for example, meant to
model self-organisation, but the study reported in this paper shows that this is not always the case in
industrial applications of multi-agent systems. This is also confirmed by some other case studies,
for example, in the area of co-operative information agents (cf. [19], [20]), and in the area of
organisation models for banking (cf. [13]), where relevant behavioural properties for the overall
system have been identified and related to behavioural properties of individual agents in a
transparent manner. In the application addressed in the current paper, the more nontrivial proofs can
be found for the logical relationships between behavioural properties at the level of individual
agents and components within agents.
 A future continuation of this work will address [11] the development of tools for verification. To
support the handwork of verification it would be useful to have tools to assist in the creation of the
proof. This will be done by formalising the proofs of a verification process in a suitable proof
system. Moreover, if as part of the design process, in addition to a design specification,
requirements have been (formally) specified as well at different levels of process abstraction, these
can be used as a useful starting point for a verification process; they provide a detailed map for the
verification process and thus reduce the complexity by eliminating the search space for the
requirement formulations at different process abstraction levels. Integration of the requirements
engineering process within the system design process is also being addressed, since this leads to
system designs that are more appropriate for verification than arbitrary architectures.

References

[1] Abadi, M. and Lamport, L., Composing Specifications, ACM Transactions on Programming Languages and
Systems, vol. 15, No. 1, 1993, p. 73-132.

[2] Akkermans, H., Ygge, F., and Gustavsson, R., HOMEBOTS: Intelligent Decentralized Services for Energy
Management. In: Proceedings of the Fourth International Symposium on the Management of Industrial and
Corporate Knowledge, ISMICK’96, 1996.

32

[3] Benjamins, R., Fensel, D., and Straatman, R., Assumptions of problem-solving methods and their role in
knowledge engineering. In: W. Wahlster (ed.), Proceedings of the 12th European Conference on AI, ECAI’96,
John Wiley and Sons, 1996, pp. 408-412.

[4] Benthem, J.F.A.K. van, The Logic of Time: A Model-Theoretic Investigation into the Varieties of Temporal
Ontology and Temporal Discourse, Dordrecht: Reidel, 1983.

[5] Brazier, F.M.T., Cornelissen, F., Gustavsson, R., Jonker, C.M., Lindeberg, O., Polak, B., and Treur, J., Agents
Negotiating for Load Balancing of Electricity Use. In: M.P. Papazoglou, M. Takizawa, B. Krämer, S. Chanson
(eds.), Proceedings of the 18th International Conference on Distributed Computing Systems, ICDCS'98, IEEE
Computer Society Press, 1998, pp. 622-629.

[6] Brazier, F.M.T., Jonker, C.M., and Treur, J., Principles of Component-Based Design of Intelligent Agents.
Data and Knowledge Engineering, vol. 41, 2002, pp. 1-28.

[7] Brazier, F.M.T., Jonker, C.M., and Treur, J., Dynamics and Control in Component-Based Agent Models.
International Journal of Intelligent Systems. In press, 2002.

[8] Brazier, F.M.T., Treur, J., Wijngaards, N.J.E., and Willems, M., Temporal semantics of compositional task
models and problem solving methods. Data and Knowledge Engineering, vol. 29(1), 1999, pp. 17-42.

[9] Darimont, R., and Lamsweerde, A. van, Formal Refinement Patterns for Goal-Driven Requirements
Elaboration. Proc. of the Fourth ACM Symposium on the Foundation of Software Engineering (FSE4), 1996,
pp. 179-190.

[10] Dubois, E., Du Bois, P., and Zeippen, J.M., A Formal Requirements Engineering Method for Real-Time,
Concurrent, and Distributed Systems. In: Proceedings of the Real-Time Systems Conference, RTS’ 95, 1995.

[11] Engelfriet, J., Jonker, C.M., and Treur, J., In: J.P. Mueller, M.P. Singh, A.S. Rao (eds.), Intelligent Agents V,
Proc. of the Fifth International Workshop on Agent Theories, Architectures and Languages, ATAL'98. Lecture
Notes in AI, vol. 1555, Springer Verlag, 1999, pp. 177-194.

[12] Fensel, D., Schonegge, A., Groenboom, R., and Wielinga, B., Specification and verification of knowledge-
based systems. In: B.R. Gaines, M.A. Musen (eds.), Proceedings of the 10th Banff Knowledge Acquisition for
Knowledge-based Systems workshop, KAW'96, Calgary: SRDG Publications, Department of Computer
Science, University of Calgary, 1996, pp. 4/1-4/20.

[13] Ferber, J., Gutknecht, O., Jonker, C.M., Mueller, J.P., and Treur, J., Organization Models and Behavioural
Requirements Specification for Multi-Agent Systems. In: Proc. of the Fourth International Conference on
Multi-Agent Systems, ICMAS 2000. IEEE Computer Society Press, 2000. Extended version in: Proc. of the
ECAI 2000 Workshop on Modelling Artificial Societies and Hybrid Organizations, MASHO’00, 2000.

[14] Fisher, M., and Wooldridge, M., On the Formal Specification and Verification of Multi-Agent Systems. In:
International Journal of Cooperative Information Systems, M. Huhns, M. Singh, (eds.), special issue on Formal
Methods in Cooperative Information Systems: Multi-Agent Systems, vol. 6, 1997, pp. 67-94.

[15] Gero, J.S., and Sudweeks, F., (eds.), Artificial Intelligence in Design ’ 98, Kluwer Academic Publishers,
Dordrecht, 1998.

[16] Gustavsson, R., Requirements on Information Systems as Business Enablers. Invited paper. In Proceedings of
DA/DSM Europe DistribuTECH’97, PennWell, 1997.

[17] Hooman, J., Compositional Verification of a Distributed Real-Time Arbitration Protocol. In: Real-Time
Systems, vol. 6, 1997, pp. 173-206.

[18] Jennings N. R. (2000) On Agent-Based Software Engineering. Artificial Intelligence, vol.117 (2) 277-296.

[19] Jonker, C.M., Klusch, M., and Treur, J., Design of Collaborative Information Agents. In: M. Klusch, and L.
Kerschberg (eds.), Cooperative Information Agents IV, Proceedings of the Fourth International Workshop on
Cooperative Information Agents, CIA 2000. Lecture Notes in Artificial Intelligence, vol. 1860, Springer
Verlag, 2000, pp. 262-283.

33

[20] Jonker, C.M. and Treur, J., Compositional Verification of Multi-Agent Systems: a Formal Analysis of Pro-
activeness and Reactiveness. In: W.P. de Roever, H. Langmaack, A. Pnueli (eds.), Proceedings of the
International Workshop on Compositionality, COMPOS’97. Lecture Notes in Computer Science, vol. 1536,
Springer Verlag, 1998, pp. 350-380. Extended version in: International Journal of Cooperative Information
Systems, vol. 11, 2002, pp. 51-92.

[21] Leemans, N.E.M., Treur, J., and Willems, M., A Semantical Perspective on Verification of Knowledge. Data
and Knowledge Engineering, vol. 40, 2002, pp. 33-70.

[22] Manna, Z., and Pnueli, A., Temporal Verification of Reactive Systems: Safety. Springer Verlag, 1995.

[23] Roever, W.P. de, Langmaack, H., Pnueli, A. (eds.), Proceedings of the International Workshop on
Compositionality, COMPOS’97. Lecture Notes in Computer Science, vol. 1536, Springer Verlag, 1998.

[24] Rosenschein, J.S., and Zlotkin, G., Rules of Encounter: Designing Conventions for Automated Negotiation
among Computers, MIT Press, 1994.

[25] Treur J., and Willems M., A logical foundation for verification. In: A.G. Cohn (ed.), Proc. of the 11th
European Conference on Artificial Intelligence, ECAI’94. John Wiley & Sons, Chichester, 1994, pp. 745-749

[26] Wooldridge, M., Jennings, N.R., and Kinny D. (1999). A Methodology for Agent-Oriented Analysis and
Design. Proc. 3rd Int. Conference on Autonomous Agents (Agents-99) Seattle, WA, 69-76. Extended version:
M. Wooldridge, N. R. Jennings, and D. Kinny (2000) The Gaia Methodology for Agent-Oriented Analysis and
Design. Journal of Autonomous Agents and Multi-Agent Systems , vol. 3 (3) 285-312.

