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Abstract

Despite a multitude of empirical studies, little consensus exists on whether neural networks
are able to generalise compositionally, a controversy that, in part, stems from a lack of agreement
about what it means for a neural model to be compositional. As a response to this controversy, we
present a set of tests that provide a bridge between, on the one hand, the vast amount of linguistic
and philosophical theory about compositionality of language and, on the other, the successful
neural models of language. We collect different interpretations of compositionality and translate
them into five theoretically grounded tests for models that are formulated on a task-independent
level. In particular, we provide tests to investigate (i) if models systematically recombine known
parts and rules (ii) if models can extend their predictions beyond the length they have seen in the
training data (iii) if models’ composition operations are local or global (iv) if models’ predictions
are robust to synonym substitutions and (v) if models favour rules or exceptions during training.
To demonstrate the usefulness of this evaluation paradigm, we instantiate these five tests on a
highly compositional data set which we dub PCFG SET and apply the resulting tests to three
popular sequence-to-sequence models: a recurrent, a convolution-based and a transformer model.
We provide an in-depth analysis of the results, which uncover the strengths and weaknesses of
these three architectures and point to potential areas of improvement.

1. Introduction

The advancements of distributional semantics of the word level allowed the field of natural language
processing to move from discrete mathematical methods to models that use continuous numerical
vectors (see, e.g. Clark, 2015; Erk, 2012; Turney & Pantel, 2010). Such continuous vector representa-
tions operationalise the distributional semantics hypothesis – stating that semantically similar words
have similar contextual distributions (e.g. Miller & Charles, 1991) – by keeping track of contextual
information from large textual corpora. They can then act as surrogates for word meaning and be
used, for example, to quantify the degree of semantic similarity between words, by means of simple
geometric operations (Clark, 2015). Words represented in this way can be an integral part of the
computational pipeline and have proven to be useful for almost all natural language processing tasks
(see, e.g. Hirschberg & Manning, 2015).

After the introduction of continuous word representations, a logical next step involved under-
standing how to compose these representations to obtain representations for phrases, sentences and
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even larger pieces of discourse. Some early approaches to do so stayed close to formal symbolic
theories of language and sought to explicitly model semantic composition by finding a composition
function that could be used to combine word representations. The adjective-noun compound blue
sky, for instance, would be represented as a new vector resulting from the composition of the repre-
sentations for blue and sky. Examples of such composition functions are as simple as vector addition
and (point-wise) multiplication (e.g. Mitchell & Lapata, 2008) up to more powerful tensor-based op-
erations (Plate, 1991; Smolensky, 1990) where, for instance, the adjective blue would be represented
as a matrix, which would be multiplied with the noun vector sky to return the representation for
blue sky (e.g. Baroni & Zamparelli, 2010; Coecke, Sadrzadeh, & Clark, 2010).1

A more recent trend in word composition exploits deep learning, a class of machine learning
techniques that model language in a completely data-driven fashion, by defining a loss on a down-
stream task (such as sentiment analysis, language modelling or machine translation) and learning the
representations for larger chunks from a signal back-propagated from this loss. In terms of how they
compose representations, models using deep learning can be divided into roughly two categories.

In the first category, deep learning is exploited to learn only the actual composition functions,
while the order of composition is defined by the modeller. An example is the recursive neural net-
work of Socher, Manning, and Ng (2010), in which representations for larger chunks are computed
recursively following a predefined syntactic parse tree of the sentence. While the composition func-
tion in this approach is fully learned from data using back-propagation through structure (Goller &
Kuchler, 1996), the tree structure that defines the order of application has to be provided to the
model, allowing models to be ‘compositional by design’. More recent variants lift this dependency
on external parse trees by jointly learning the composition function and the parse tree (Kim et al.,
2019; Le & Zuidema, 2015, i.a.), often at the cost of computational feasibility.

In the second type of deep learning models, no explicit notion of (linguistic) trees or arbitrary
depth hierarchy is entertained. Earlier models of this type deal with language processing sequentially
and use recurrent processing units such as LSTMs (Hochreiter & Schmidhuber, 1997) and GRUs
(Chung, Gulcehre, Cho, & Bengio, 2014) at their core (Sutskever, Vinyals, & Le, 2014) or are
based on convolutional networks (Kalchbrenner, Grefenstette, & Blunsom, 2014). An important
contribution to their effectiveness comes from attention mechanisms, which allow recurrent models
to keep track of long-distance dependencies more effectively (Bahdanau, Cho, & Bengio, 2015).
More recently, these models went all-in on attention, abandoning sequential processing in favour
of massively distributed sequence processing all based on attention (Vaswani et al., 2017). While
the architectural design of this class of models is not motivated by knowledge about linguistics or
human processing, they are – through their ability to easily process very large amounts of data –
more successful than the previously mentioned (sub)symbolic models on a variety of natural language
processing tasks.

Different types of models that compose smaller representations into larger ones can be compared
along many dimensions. Commonly, they are evaluated by the usefulness of their representations for
different types of tasks, but also scalability, how much data they need to develop their representations
(sample efficiency), and their computational feasibility play a role in their evaluation. It remains,
however, difficult to explicitly assess if the composition functions they implement are appropriate for
natural language and, importantly, to what extent they are in line with the vast amount of knowledge
and theories about semantic composition from formal semantics and (psycho)linguistics. While the
composition functions of symbolic models are easy to understand (because they are defined on a
mathematical level), it is not empirically established that their rigidity is appropriate for dealing
with the noisiness and complexity of natural language (e.g. Potts, 2019). Neural models, on the
other hand, seem very well up to handling noisy scenarios but are often argued to be fundamentally
incapable of conducting the types of compositions required to process natural language (for more
information on this debate, see Fodor & Pylyshyn, 1988; Marcus, 2003; Pinker, 1984; Smolensky,

1. For a more complete overview and an analysis of such approaches in the light of formal semantics, we refer to
Kartsaklis (2014) and Boleda and Herbelot (2016), respectively.
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1990) or at least to not use those types of compositions to solve their tasks (e.g. Lake & Baroni,
2018).

In this work, we consider the latter type of models and focus in particular on whether these
models are capable of learning compositional solutions, a question that recently, with the rise of the
success of such models, has attracted the attention of several researchers. While many empirical
studies can be found that explore the compositional abilities of neural models, they have not managed
to convince the community of either side of the debate: whether neural networks are able to learn
and behave compositionally is still an open question. One issue standing in the way of more clarity
on this matter is that different researchers have different interpretations of what exactly it means to
say that a model is or is not compositional, a point exemplified by the vast number of different tests
that exist for compositionality. Some studies focused on testing if models are able to productively
use symbolic rules (e.g. Lake & Baroni, 2018); Some instead consider models’ ability to process
hierarchical structures (Hupkes, Veldhoen, & Zuidema, 2018; Linzen, Dupoux, & Goldberg, 2016);
Yet others consider if models can segment the input into reusable parts (Johnson et al., 2017).

This variety of tests for compositionality of neural networks existing in the literature is better
understandable considering the open nature of the principle of compositionality, by Partee (1995)
phrased as “The meaning of a whole is a function of the meanings of the parts and of the way
they are syntactically combined”. While there is ample support for this principle, there is less
consensus about its exact interpretation and practical implications. One important reason for this
is that the principle is not theory-neutral: it requires a theory of both syntax and meaning, as
well as functions to determine the meaning of composed parts. Without these components, the
principle of compositionality is formally vacuous (Janssen, 1983; Zadrozny, 1994), because also
trivial and intuitively non-compositional solutions that cast every expression as one part and assign
it a meaning as a whole do not formally violate the principle of compositionality. Furthermore, the
principle of compositionality concerns the compositionality of language but does not specify what
it means for a language user or model to be compositional. Can a model be called compositional
when it can represent a compositional language? Are there any restrictions on how it has to do
so? To empirically test models for compositionality it is necessary to first establish what is to be
considered compositional behaviour. With this work, we aim to contribute to clarity on this point,
by presenting a study in which we collect different aspects of and intuitions about compositionality
of language from linguistics and philosophy and translate them into concrete tests that can be used
to better understand the composition functions learned by neural models trained end-to-end on a
downstream task.

The contribution of our work, we believe, is three-fold. First, we provide a bridge between, on
the one hand, the vast amount of theory about compositionality that underpins symbolic models
of language and semantic composition and, on the other hand, the neural models of language that
have proven to be very effective in many natural language tasks that seem to require compositional
capacities. Importantly, we do not aim to provide a new definition of compositionality, but rather we
identify different components of compositionality within the literature and design behavioural tests
that allow testing for these components independently. We believe that the field will profit from
such a principled analysis of compositionality and that this analysis will provide clarity concerning
the different interpretations that may be entertained by different researchers. A division into clearly
understood components can help to identify and categorise the strengths and weaknesses of different
models. We provide concrete and usable tests, bundled in a versatile test suite that can be applied
to any kind of model.

Secondly, to demonstrate the usefulness of this test suite, we apply our tests to three popular
sequence-to-sequence models: a recurrent, a convolution-based and a transformer model. We provide
an in-depth analysis of the results, uncovering interesting strengths and weaknesses of these three
architectures.

Lastly, we touch upon the complex question that concerns the extent to which a model needs to
be explicitly compositional to adequately model data of which the underlying structure is, or seems,
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compositional. We believe that, in a time where the most successful natural language processing
methods require large amounts of data and are not directly motivated by linguistic knowledge or
structure, this question bears more relevance than ever.

Outline In what follows, we first briefly revise other literature with similar aims and sketch how
our work stands apart from previous attempts to assess the extent to which networks implement
compositionality (Section 2). We describe previously proposed data sets to evaluate compositionality
as well as studies that evaluate the representations of pre-trained models. In Section 3, we give
a theoretical explanation of the five notions for which we devise tests, and we propose how to
behaviourally test for them. In Section 4, we describe the data set that we use for our study,
followed by a brief description of the three types of architectures that we compare in our experiments
in Section 5. We then detail our experiments and report and analyse their results in Section 6 and
further reflect upon their implications in Section 7.

2. Related Work

Whether artificial neural networks are fundamentally capable of representing compositionality, trees
and hierarchical structure has been a prevalent topic ever since the first connectionism models for
natural language were introduced. Recently, this topic has regained attention, and a substantial
number of empirical studies can be found that explore the compositional abilities of neural models,
with a specific focus on their ability to represent hierarchy. These studies can be roughly divided
into two categories: studies that devise specific data sets that models can be trained and tested on
to assess if they behave compositionally, and studies that focus on assessing the representations that
are learned by models trained on some independent (often natural) data set.

2.1 Evaluating Compositionality with Artificial Data

Specifically crafted, artificial data sets to evaluate compositionality are typically generated from an
underlying grammar. It is then assumed that models can only find the right solution to the test
set if they learned to interpret the training data in a compositional fashion. Below, we discuss a
selection of such data sets and briefly review their results.2

2.1.1 Arithmetic Language and Mathematical Reasoning

One of the first (recent) data sets proposed as a testbed to reveal how neural networks process
hierarchical structure is the arithmetic language, introduced by Veldhoen, Hupkes, and Zuidema
(2016). Veldhoen et al. (2016) test networks for algebraic compositionality by looking at their
ability to process spelled out, nested arithmetic expressions. In a follow-up paper, to gain insight
into the types of solution that networks encode, the same authors introduce diagnostic classifiers,
trained to fire for specific strategies used to solve the problem. They show that simple recurrent
networks do not perform well on the task, but gated recurrent networks can generalise well to lengths
and depths of arithmetic expressions that were not in the training set, although their performance
quickly deteriorates when the length of expressions grows (Hupkes et al., 2018).3 From this, they

2. Discussing in detail all different data sets that have been proposed to evaluate compositionality in neural networks
falls outside the scope of this paper. We aimed to make a representative selection of studies, using as a criterion
that they should involve sequential inputs and explicitly mention compositionality. We excluded grounded data
sets such as CLEVR (Johnson et al., 2017) and SQOOP (Bahdanau et al., 2018), which contain more than one
modality. Furthermore, we did not include studies whose primary focus is on how neural networks implement
compositional structures (Giulianelli, Harding, Mohnert, Hupkes, & Zuidema, 2018; Lakretz et al., 2019; McCoy,
Linzen, Dunbar, & Smolensky, 2019; Soulos, McCoy, Linzen, & Smolensky, 2019; Weiss, Goldberg, & Yahav,
2018a) or studies that evaluate compositionality only based on models’ representations (Andreas, 2019).

3. Zaremba and Sutskever (2014) also used a task based on arithmetics, which requires learning to execute computer

programs, which they use to compare different learning curricula.
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conclude that these models are – to some extent – able to capture the underlying compositional
structure of the data.

More recently, Saxton, Grefenstette, Hill, and Kohli (2019) released another data set in which
maths was used to probe the compositional generalisation skills of neural networks. Saxton et al.
(2019) compare transformers and LSTM-based architectures trained on a data set with mathematical
questions and find that the transformer models generalise better than the LSTMmodels. Specifically,
transformers outperform LSTMs on a set of extrapolation tests that require compositional skills such
as generalising to questions involving larger numbers, more numbers or more compositions. However,
performance deteriorates for questions that require the computation of intermediate values, which
Saxton et al. (2019) reason indicates that the model has not truly learned to treat the task in a
compositional manner but instead applies shallow tricks.

2.1.2 SCAN

In 2018, Lake and Baroni proposed the SCAN data set, describing a simple navigation task that
requires an agent to execute commands expressed in a compositional language. The authors test
various sequence-to-sequence models on three different splits of the data: a random split, a split
testing for longer action sequences and a split that requires compositional application of words
learned in isolation. The models obtain almost perfect accuracy on the first split while performing
very poorly on the last two, which the authors argue require a compositional understanding of the
task. They conclude that – after all these years – sequence-to-sequence recurrent networks are
still not systematic. In a follow-up paper by Loula, Baroni, and Lake (2018), the same authors
criticise these findings and propose a new set of splits which focuses on rearranging familiar words
(i.e. “jump”, “right” and “around”) to form novel meanings (“jump around right”). Although they
collect considerably more evidence for systematic generalisation within their amended setup, the
authors confirm their previous findings that the models do not learn compositionally. Very recently,
SCAN was also used to diagnose convolutional networks. Comparing to recurrent networks, Dess̀ı
and Baroni (2019) find that convolutional networks exhibit improved compositional generalisation
skills but their errors are unsystematic, indicating that the model did not fully master any of the
systematic rules.

2.1.3 Lookup Tables

Lǐska, Kruszewski, and Baroni (2018) introduce a minimal compositional test where neural networks
need to apply function compositions to correctly compute the meaning of sequences of lookup ta-
bles. The meanings of these lookup tables are exhaustively defined and presented to the model, so
that applying them does not require more than rote memorisation. The authors show that out of
many models trained with different initialisations only a very small fraction exhibits compositional
behaviour, while the vast majority does not.4

2.1.4 Logical Inference

Bowman, Manning, and Potts (2015) propose a data set which uses a slightly different setup: they
assess models’ compositional skills by testing their ability to infer logical entailment relations between
pairs of sentences in an artificial language. The grammar they use licenses short, simple sentences;
the relations between these sentences are inferred using a natural logic calculus that acts directly
on the generated expressions. Bowman et al. (2015) show that recursive neural networks, which
recursively apply the same composition function and are thus compositional by design, obtain high

4. Hupkes, Singh, Korrel, Kruszewski, and Bruni (2019) show how adding an extra supervision signal to the network’s
attention consistently results in a complete solution of the task, but it is not clear how their results extend to
other, more complicated scenarios. Korrel, Hupkes, Dankers, and Bruni (2019) propose a novel architecture with
analogous, complete solutions without the need for extra supervision.
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accuracies on this task. Mul and Zuidema (2019) show that also gated recurrent models can perform
well on an adapted version of the same task, which uses a more complex grammar. With a series of
additional tests, Mul and Zuidema (2019) provide further proof for basic compositional generalisation
skills of the best-performing recurrent models. Tran, Bisazza, and Monz (2018) report similar
findings, and furthermore show that while a transformer performs similar to an LSTM model when
the entire data set is used, an LSTM model generalises better when smaller training data is used.

2.2 Evaluating Compositionality with Natural Data

While very few studies present methods to explicitly evaluate how compositional the representations
of models that are trained on independent data sets are, there are several studies that focus on
evaluating aspects of such models that are related to compositionality. In particular, starting from
the seminal work of Linzen et al. (2016), the evaluation of the syntactic capabilities of neural language
models has attracted a considerable amount of attention. While the explicit focus of such studies
is on the syntactic capabilities of different models and not on providing tests for compositionality,
many of the results in fact concern the way that neural networks process the types of hierarchical
structures often assumed to underpin compositionality.5

2.2.1 Number Agreement

Linzen et al. (2016) propose to test the syntactic abilities of LSTMs by testing to what extent they
are capable of correctly processing long-distance subject-verb agreement, a phenomenon they argue
to be commonly regarded as evidence for hierarchical structure in natural language. They devise
a number-agreement task and find that a pre-trained state-of-the-art LSTM model (Jozefowicz,
Vinyals, Schuster, Shazeer, & Wu, 2016) does not capture the structure-sensitive dependencies.

Later, these results were contested by a different research group, who repeated and extended the
study with a different language model and tested a number of different long-distance dependencies
for English, Italian, Hebrew and Russian (Gulordava, Bojanowski, Grave, Linzen, & Baroni, 2018).
Their results do not match the findings of the earlier study: Gulordava et al. (2018) find that an
LSTM language model can solve the subject-verb agreement problem well, even when the words in
the sentence are replaced by syntactically nonsensical words, which they take as evidence that the
model is indeed relying on syntactic and not semantic clues.6 Whether the very recent all-attention
language models do also capture syntax-sensitive dependencies is still an open question. Some (still
unpublished) studies find evidence that such models score high on the previously described number-
agreement task (Goldberg, 2019; Lin, Tan, & Frank, 2019). More mixed results are reported by
others (Tran et al., 2018; Wolf, 2019).

2.2.2 Syntax in Machine Translation

The subfield of natural language processing that is most related to ours in terms of setup is the
field of machine translation (MT). There are little detailed studies concerning the compositional
behaviour of neural MT models but many that consider the representations of trained models.
Analyses in this line of work typically consider which properties are encoded by MT models, with

5. In fact, there are quite a few earlier studies relating to the ability of neural networks to implement grammatical
structure that consider a similar paradigm, albeit using artificial languages. Such studies consider how well neural
networks can represent formal languages generated by grammars from different classes of the Chomsky Hierarchy
(e.g. Batali, 1994; Christiansen & Chater, 1999; Elman, 1991; Rodriguez, 2001; Rodriguez, Wiles, & Elman, 1999;
Weiss, Goldberg, & Yahav, 2018b; Wiles & Elman, 1995). Like the studies with natural language described in
this chapter, these studies focus on rules and hierarchical structure but do not specifically target compositionality,
which requires not only syntax but also meaning.

6. The task proposed by Linzen et al. (2016) served as inspiration for many studies investigating the linguistic or
syntactic capabilities for neural language models, and also the task itself was used in many follow-up studies. Such
studies, which we will not further discuss, are generally positive about the extent to which recurrent language
models represent syntax.
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a specific focus on the difference between the representations within layers that are situated at
different levels of the hierarchy of a model. A robust finding from such analyses is that features
such as syntactic constituency, part-of-speech tags and dependency edges can be reliably predicted
from the hidden representations of both recurrent neural networks (Belinkov et al., 2017; Blevins,
Levy, & Zettlemoyer, 2018; Shi, Padhi, & Knight, 2016) and transformer models (Raganato &
Tiedemann, 2018; Tenney, Xia, et al., 2019). Generally, lower-level features are encoded in lower
layers, while higher-level syntactic and semantic features are better represented in deeper layers (e.g.
Blevins et al., 2018; Tenney, Das, & Pavlick, 2019). For transformer models, a recent wave of papers
demonstrates that such features can also be extracted from attention patterns (Lin et al., 2019;
Mareček & Rosa, 2018; Vig & Belinkov, 2019). While these results do not straightforwardly extend
to the questions about compositionality that we are considering in this work, they do demonstrate
that both recurrent and attention-based models trained in a setup similar to the one considered for
this work are able to capture the types of higher-level syntactic features that are often considered
to be key for compositional behaviour.

2.3 Intermediate Conclusions

We reviewed various attempts to assess the extent to which neural models are able to implement
compositionality and hierarchy. This overview illustrated the difficulty and importance of evaluating
the behaviour of neural models but also showed that whether neural networks can or do learn
compositionally is still an open question. Both strands of approaches we considered – approaches
that use special compositional data sets to train and test models, and approaches that instead focus
on the evaluation of pre-trained models – report positive as well as negative results.

In the first approach, researchers try to encode a certain notion of compositionality in the task
itself. While it is important, when testing for compositionality, to make sure the specific task that
networks are trained on has a clear demand for compositional solutions, we believe these studies
fall short in explicitly linking the task they propose to clearly-defined notions of compositionality.
Further, we believe that the multifaceted notion of compositionality cannot be exhausted in one single
task. In the following section, we disconnect testing compositionality from the task at hand and
disentangle five different theoretically motivated ways in which a network can exhibit compositional
behaviours that are not a priori linked to a specific downstream task.

The second type of studies roots its tests into clear linguistic hypotheses. However, by testing
neural networks that are trained on uncontrolled data, they lose the direct connection between com-
positionality and the downstream task. Although compositionality is widely considered to play an
important role for natural language, it is unknown what type of compositional skills – if any – a
model needs to have to successfully model tasks involving natural language, such as for instance
language modelling. If it cannot be excluded that successful heuristics or syntax-insensitive approx-
imations exist, a negative result can not be taken as evidence that a particular type of model cannot
capture compositionality, it merely indicates that this exact model instance did not capture it in
this exact case. While, in the long run, we also wish to reconnect the notion of compositionality
to natural data, we believe that before being able to do so, it is of primary importance to reach an
agreement about what defines compositional behaviour and how it should be tested for in neural
networks.

3. Testing Compositionality

In the previous section, we discussed various attempts to evaluate the compositional skills of neural
network models. We argued that progressing further on this question requires more clarity on
what defines compositionality for neural networks, which we address in this work by providing tests
that are more strongly grounded in the literature about compositionality. We now arrive at the
theoretical part of the core of our research, in which we set the theoretical ground for the five tests
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(a) Systematicity

+

(b) Productivity
(c) Substitutivity

(d) Localism (e) Overgeneralisation

Figure 1: Schematic depictions of the five tests we propose to test the compositionality of neural
network models. (a) To test for systematicity, we evaluate models’ ability to recombine known parts
to form new sequences. (b) While the productivity test also requires recombining known parts,
the focus there lies on unboundedness: we test if models can understand sequences longer than
the ones they were trained on. (c) In the substitutivity test, we evaluate how robust models are
towards the introduction of synonyms, and, more specifically, in which cases words are considered
synonymous. (d) The localism test targets how local the composition operations of models are: are
smaller constituents evaluated before larger constituents? (e) The overgeneralisation test evaluates
how likely models are to infer rules: is a model instantly able to accommodate exceptions, or does it
need more evidence to deviate from applying the general rule instantiated by the rest of the data?

we propose and conduct in this paper. We describe five aspects of compositionality that are explicitly
motivated by theoretical literature on this topic and propose, on a high level, how to translate them
into behavioural tests for (neural) models.

We propose to test (i) if models systematically recombine known parts and rules (systematicity)
(ii) if models can extend their predictions beyond the length they have seen in the training data
(productivity) (iii) if models’ predictions are robust to synonym substitutions (substitutivity) (iv)
if models’ composition operations are local or global (localism) and (v) if models favour rules or
exceptions during training (overgeneralisation). Below, we describe the theory that motivated us to
select these aspects, and we describe on an abstract level how we translate them into concrete tests.
A systematic depiction is shown in Figure 1.

3.1 Systematicity

The first property we propose to test for – following many of the works presented in the related work
section of this article – is systematicity, a notion frequently used in the context of compositionality.
The term was introduced by Fodor and Pylyshyn (1988) – notably, in a paper that argued against
connectionist architectures – who used it to denote that

“[t]he ability to produce/understand some sentences is intrinsically connected to the
ability to produce/understand certain others” (Fodor & Pylyshyn, 1988, p. 25)

This ability concerns the recombination of known parts and rules: anyone who understands a number
of complex expressions also understands other complex expressions that can be built up from the
constituents and syntactical rules employed in the familiar expressions. To use a classic example
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from Szabó (2012): someone who understands ‘brown dog’ and ‘black cat’ also understands ‘brown
cat’.

Fodor and Pylyshyn (1988) contrast systematicity with storing all sentences in an atomic way,
in a dictionary-like mapping from sentences to meanings. Someone who entertains such a dictionary
would not be able to understand new sentences, even if these sentences were similar to the ones
occurring in their dictionary. Since humans are able to infer meanings for sentences they have never
heard before, they must use some systematic process to construct these meanings from the ones
they internalised before. By the same argument, however, any model that is able to generalise to
a sequence outside its training space (its test set), should have learned to construct outputs from
parts it perceived during training and some rule of recombination. Thus, rather than asking if a
model is systematic, a more interesting question is whether the rules and constituents the model
uses are in line with what we believe to be the actual rules and constituents underlying a particular
data set or language.

3.1.1 Testing Systematicity

With our systematicity test, we aim to pull out that specific aspect, by testing if a model can
recombine constituents that have not been seen together during training. In particular, we focus
on combinations of words a and b that meet the requirements that (i) the model has only been
familiarised with a in contexts excluding b and vice versa but (ii) the combination a b is plausible
given the rest of the corpus.

3.2 Productivity

A notion closely related to systematicity is productivity, which concerns the open-ended nature of
natural language: language appears to be infinite, but has to be stored with finite capacity. Hence,
there must be some productive way to generate new sentences from this finite storage.7 While this
‘generative’ view of language became popular with Chomsky in the early sixties (Chomsky, 1956),
Chomsky himself traces it back to Von Humboldt, who stated that ‘language makes infinite use of
finite means’.

Both systematicity and productivity rely on the recombination of known constituents into larger
compounds. However, whereas systematicity can be – to some extent – empirically established,
productivity cannot, as it is not possible to prove that natural languages in fact contain an infinite
number of complex expressions (Pullum & Scholz, 2010). Even if humans’ memory allowed them
to produce infinitely long sentences, their finite life prevents them from doing so. Productivity of
language is therefore more controversial than systematicity.

3.2.1 Testing Productivity

To separate systematicity from productivity, in our productivity test we specifically focus on the
aspect of unboundedness. We test whether a model can understand sentences that are longer than
the ones encountered during training. To test this, we separate sequences in the data based on length
and evaluate models on their ability to cope with longer sequences after having been familiarised
with the shorter ones.

3.3 Substitutivity

A principle closely related to the principle of compositionality is the principle of substitutivity. This
principle, which finds its origin in philosophical logic, states that if an expression is altered by
replacing one of its constituents with another constituent with the same meaning (a synonym),
this does not affect the meaning of the expression (Pagin, 2003). In other words, if a substitution

7. The term productivity also has a technical meaning in morphology, which we do not imply here.
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preserves the meaning of the parts of a complex expression, it also preserves the meaning of the
whole. In the latter formulation, the correspondence with the principle of compositionality itself can
be easily seen: as substituting part of an expression with a synonym changes neither the structure
of the expression nor the meaning of its parts, it should not change the meaning of the expression
itself either.

Like the principle of compositionality, the substitutivity principle in the context of natural lan-
guage is subject to interpretation and discussion. Husserl (1913) pointed out that the substitution
of expressions with the same meaning can result in nonsensical sentences if the expressions belong
to different semantic categories (the philosopher Geach (1965) illustrated this considering the two
expressions Plato was bald and baldness was an attribute of Plato. While these expressions are syn-
onymous, it is not possible to substitute the first with the second in the sentence The philosopher
whose most eminent pupil was Plato was bald).

A second context which poses a challenge for the substitutivity principle concerns embedded
statements about beliefs. As already sketched out in the previous section, if X and Y are synony-
mous, this does not necessarily imply that the expressions Peter thinks that X and Peter thinks that
Y are both true. In this work, we do not consider these cases, but instead focus on the more general
question: is substitutivity a salient notion for neural networks and under what conditions can and
do they infer synonymity?

3.3.1 Testing Substitutivity

We test substitutivity by probing under which conditions a model considers two atomic units to be
synonymous. To this end, we artificially introduce synonyms and consider how the prediction of a
model changes when an atomic unit in an expression is replaced by its synonym. We consider two
different cases. Firstly, we analyse the case in which synonymous words occur equally often and in
comparable contexts. In this case, synonymity can be inferred from the corresponding meanings on
the output side but is aided by distributional similarities on the input side. Secondly, we consider
pairs of words in which one of the words occurs only in very short sentences, which we call primitive
contexts. In this case, synonymity can only be inferred from the (implicit) semantic mapping, which
is identical for both words, but not from the context that those words appear in.

3.4 Localism

In its basic form, the principle of compositionality states that the meaning of a complex expression
derives from the meanings of its constituents and how they are combined. It does not impose any
restrictions on what counts as an admissible way of combining different elements, which is why
the principle taken in isolation is formally vacuous.8 As a consequence, the interpretation of the
principle of compositionality depends on the type of constraints that are put on the semantic and
syntactic theories involved. One important consideration concerns – on an abstract level – how
local the composition operations should be. When operations are very local (a case also referred
to as strong or first-level compositionality), the meaning of a complex expression depends only on
its local structure and the meanings of its immediate parts (Jacobson, 2002; Pagin & Westerst̊ahl,
2010). In other words, the meaning of a compound is only dependent on the meaning of its immediate
‘children’, regardless of the way that their meaning was built up. In global or weak compositionality,
the meaning of an expression follows from its total (global) structure and the meanings of its atomic
parts. In this interpretation, compounds can have different meanings, depending on the larger
expression that they are a part of.

Carnap (1947) presents an example that nicely illustrates the difference between these two in-
terpretations, in which he considers sentences with tautologies. Under the view that the meaning

8. We previously cited Janssen (1983), who proved this claim by showing that arbitrary sets of expressions can be
mapped to arbitrary sets of meanings without violating the principle of compositionality, as long as one is not
bound to a fixed syntax.
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of declarative sentences is determined by the set of all worlds in which this sentence is true, any
two tautologies X and Y are synonymous. Under the local interpretation of compositionality, this
entails that also the phrases Peter thinks that X and Peter thinks that Y should be synonymous,
which is not necessarily the case, as Peter may be aware of some tautologies but unaware of others.
The global interpretation of compositionality does not give rise to such a conflict, as X and Y, de-
spite being identical from a truth-conditional perspective, are not structurally identical. Under this
representation, the meanings of X and Y are locally identical, but not globally, if also the phrase
they are a part of is considered. For natural language, contextual effects, such as the disambiguation
of a phrase or word by a full utterance or even larger piece of discourse, make the localist account
highly controversial. As a contrast, consider an arithmetic task, where the outcome of 14 - (2 +

3) does not change when the subsequence (2 + 3) is replaced by 5, a sequence with the same (local)
meaning, but a different structure.

3.4.1 Testing Localism

We test if a model’s composition operations are local or global by comparing the meanings the model
assigns to stand-alone sequences to those it assigns to the same sequences when they are part of
a larger compound. More specifically, we compare a model’s output when it is given a composed
sequence X, built up from two parts A and B with the output the same model gives when it is forced
to first separately process A and B in a local fashion. If the model employs a local composition
operation that is true to the underlying compositional system that generated the language, there
should be no difference between these two outputs. A difference between these two outputs, instead,
indicates that the model does not compute meanings by first computing the meanings of all subparts,
but pursues a different, more global, strategy.

3.5 Overgeneralisation

The previously discussed compositionality arguments are of mixed nature. Some – such as produc-
tivity and systematicity – are linked to the way that humans acquire and process language. Others
– such as substitutivity and localism – are properties of the mapping from signals to meanings in
a particular language. While it can be tested if a language user abides by these principles, these
principles themselves do not relate directly to language users. To complete our set of tests to assess
whether a model learns compositionally, we include also a notion that exclusively concerns the ac-
quisition of the language by a model: we consider if models exhibit overgeneralisation when faced
with non-compositional phenomena.

Overgeneralisation (or overregularisation) is a language acquisition term, which refers to the
scenario in which a language learner applies a general rule in a case that forms an exception to this
rule. One of the most well-known examples, which served also as the subject of the famous past-tense
debate between symbolism and connectionism (Marcus et al., 1992; Rumelhart & McClelland, 1986),
concerns the rule that English past-tense verbs can be formed by appending -ed to the stem of the
verb. During the acquisition of past-tense forms, learners infrequently use this rule also for irregular
verbs, resulting in forms like goed (instead of went) or breaked (instead of broke).

The relation of overgeneralisation with compositionality comes from the supposed evidence that
overgeneralisation errors provide for the presence of symbolic rules in the human language system
(see, e.g. Penke, 2012). In this work, we follow this line of reasoning and take the application of a
rule in a case where this is contradicted by the data as evidence that the model in fact internalised
this rule. As such, we regard a model’s inclination to apply rules as the expression of a compositional
bias. This inclination is most easily observed in the case of exceptions, where the correct strategy is
to ignore the rules and learn on a case-by-case basis. If a model overgeneralises by applying the rules
also in such cases, we hypothesise that this in particular demonstrates compositional awareness.
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3.5.1 Testing Overgeneralisation

We propose an experimental setup where a model’s tendency to overgeneralise is evaluated by mon-
itoring its behaviour on exceptions. We identify samples that do not adhere to the rules underlying
the data distribution – exceptions – in the training data sets and assess a model’s tendency to
overgeneralise by observing how they respond to these exceptions during training: (when) do they
consistently follow a global rule set, and (when) do they (over)fit the training samples individually?

4. Data

As observed by many others before us, insight in the compositional skills of neural networks is not
easily acquired by studying models trained on natural language directly. While it is generally agreed
upon that compositional skills are required to appropriately model natural language, successfully
modelling natural data requires far more than understanding compositional structures. As a conse-
quence, a negative result may stem not from a model’s incapability to model compositionality, but
rather from the lack of signal in the data that should induce compositional behaviour. A positive
result, on the other hand, cannot necessarily be explained as successful compositional learning, since
it is difficult to establish that a good performance cannot be reached through heuristics and memo-
risation. In this article, we therefore consider an artificial translation task, in which sequences that
are generated by a probabilistic context free grammar (PCFG) should be translated into output
sequences that represent their meanings. These output sequences are constructed by recursively
applying the string edit operations that are specified in the input sequence. The task, which we dub
PCFG SET, does not contain any non-compositional phenomena, and we can thus be certain that
compositionality is in fact a salient feature. At the same time, we construct the input data such
that in other dimensions – such as the lengths of the sentences and depths of the parse trees – it
matches the statistical properties of a corpus with sentences from natural language (English).

4.1 Input Sequences: Syntax

The input alphabet of PCFG SET contains three types of words: words for unary and binary func-
tions that represent string edit operations (e.g. append, copy, reverse), elements to form the string
sequences that these functions can be applied to (e.g. A, B, A1, B1), and a separator to separate the
arguments of a binary function (,). The input sequences that are formed with this alphabet are
sequences describing how a series of such operations are to be applied to a string argument. For
instance:

repeat A B C

echo remove first D K , E F

append swap F G H , repeat I J

We generate input sequences with a PCFG, shown in Figure 2 (production probabilities are
omitted). As the grammar that we use is recursive, we can generate an infinite number of admissible
input sequences. Because the operations can be nested, the parse trees of valid sequences can be
arbitrarily deep and long. Additionally, the distributional properties of a particular PCFG SET
data set can be controlled by adjusting the probabilities of the grammar and varying the number
of input characters. We will use this to naturalise the data set such that its distribution of lengths
and depths correspond to the distribution observed in a data set containing English sentences.

4.2 Output Sequences: Semantics

The meaning of a PCFG SET input sequence is constructed by recursively applying the string edit
operations specified in the sequence. This mapping is governed by the interpretation functions
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Non-terminal rules

S → FU S | FB S , S

S → X

X → XX

Lexical rules

FU → copy | reverse | shift | echo | swap | repeat

FB → append | prepend | remove first | remove second

X → A | B | . . . | Z | A2 | . . . | B2 | . . .

Figure 2: The context free grammar that describes the entire space of grammatical input sequences in
PCFG SET. The rule probabilities (not depicted) can be used to control the distributional properties
of a PCFG SET. We use this property to make sure that our data matches a corpus with natural
English sentences in terms of length and depth distributions.

Unary functions FU : Binary functions FB :

copy x1 · · · xn → x1 · · · xn append x, y → x y

reverse x1 · · · xn → xn · · · x1 prepend x, y → y x

shift x1 · · · xn → x2 · · · xn x1 remove first x, y → y

swap x1 · · · xn → xn x2 · · · xn−1 x1 remove second x, y → x

repeat x1 · · · xn → x1 · · · xn x1 · · · xn

echo x1 · · · xn → x1 · · · xn xn

Figure 3: The interpretation functions describing how the meaning of PCFG SET input sequences
is formed.

listed in Figure 3. Following these interpretation functions, the three sequences listed above would
be mapped to output sequences as follows:

repeat A B C → A B C A B C

echo remove first D K , E F → E F F

append swap F G H , repeat I J → H G F I J I J

The definitions of the interpretation functions specify the systematic procedure by which an
output sequence should be formed from an input sequence, without having to enumerate particular
input-output pairs. In this sense, PCFG SET is similar to SCAN (Lake & Baroni, 2018) but differs
from a task such as the lookup table task introduced by Lǐska et al. (2018), where functions must be
exhaustively defined because there is no systematic connection between arguments and the values
to which functions map them.

4.3 Data Construction

PCFG SET describes a general framework for producing many different data sets. We used several
criteria to select the PCFG SET input-output pairs for our experiments.

4.3.1 Naturalisation of Structural Properties

The probabilistic nature of the PCFG SET input grammar offers a high level of control over the
generated input sequences. We use this control to enforce an input distribution that resembles
the statistics of a more natural data set in two relevant respects: the length of the expressions,
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Figure 4: Distribution of lengths and depths in the PCFG SET (left) and English WMT 2017 test
data (right).

and the depth of their parse trees. To obtain these statistics, we use the English side of a large
machine translation corpus: WMT 2017 (Bojar et al., 2017). We parse this corpus with a statistical
parser (Manning et al., 2014) and extract the distribution of length and depths from the annotated
corpus. We then use expectation maximisation to tune the PCFG parameters in such a way that
the resulting bivariate distribution of the generated data mimics the one extracted from the WMT
data. For a more detailed description of the naturalisation procedure we refer to Appendix A. In
Figure 4a and Figure 4b, we plot the distributions of the WMT data and a sample of around ten
thousand sentences of the resulting PCFG SET data.

4.3.2 Sentence Selection

We set the size of the string alphabet to 520 and create a base corpus of around 100 thousand distinct
input-output pairs. We limit the length of the string arguments given to the functions to 5. We
use 85% of this corpus for training, 5% for validation and 10% for testing. During data generation,
further care is taken to make memorisation as unattractive as possible by controlling the string
sequences that feature as primitive arguments in the input expressions: we make sure that the same
string arguments are never repeated. While we do not control re-occurrence of specific subsequence
in general, the relatively large string alphabet makes it improbable that particular subsequences
occur often enough to make memorisation a profitable learning strategy.

5. Architectures

To showcase our compositionality test suite, we compare three currently popular neural architectures
for sequence-to-sequence language processing tasks such as machine translation, speech processing
and language understanding: recurrent neural networks (Sutskever et al., 2014), convolutional neural
networks (Gehring, Auli, Grangier, Yarats, & Dauphin, 2017) and transformer networks (Vaswani
et al., 2017). In this section we explain their most important features, we give a brief overview of
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their potential strengths and weaknesses in relation to compositionality, and we describe how we
implemented them in our experiments.

w1
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Attention

(a) LSTMS2S

w1 w2 w3 w4

Conv Conv
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(b) ConvS2S
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(c) Transformer

Figure 5: High-level graphical depictions of the most important features of the encoding mecha-
nisms in LSTMS2S, ConvS2S and Transformer, as well as how these encoded representations can be
attended to by the decoder. (a) LSTMS2S processes the input in a fully sequential way, iterating
over the embedded elements one by one in both directions before applying an attention layer. (b)
ConvS2S divides the input sequence into local fragments of consecutive items that are processed by
the same convolutions, before applying attention. (c) Transformer immediately applies several global
attention layers to the input, without incrementally constructing a representation of the input.

5.1 LSTMS2S

The first architecture we consider is a recurrent encoder-decoder model with attention. This setup
is considered to be the most basic of the three setups we consider, but is still the basis of many
MT applications (e.g. OpenNMT, Klein, Kim, Deng, Senellart, & Rush, 2017) and has also been
successful in the fields of speech recognition (e.g. Chorowski, Bahdanau, Serdyuk, Cho, & Bengio,
2015) and question answering (e.g. He & Golub, 2016). We consider the version of this model
in which both the decoder and encoder are LSTMs and refer to this setup with the abbreviation
LSTMS2S.

5.1.1 Model Basics

LSTMS2S is a fully recurrent, bidirectional model. The encoder processes an input by iterating
over all of its elements in both directions and incrementally constructing a representation for the
entire sequence. Upon receiving the encoder output, the decoder performs a similar, sequential
computation to unroll the predicted sequence. Here, LSTMS2S uses an attention mechanism, which
allows it to focus on the parts of the encoded input that are estimated to be most important at each
moment in the decoding process.

The sequential fashion with which the LSTMS2S architecture processes each input potentially
limits the model’s abilities to recombine components hierarchically. While depth – and, as shown by
Blevins et al. (2018), thus hierarchy – can be created by stacking neural layers, the number of layers
in popular recurrent sequence-to-sequence setups tends to be limited. The attention mechanism
of the encoder-decoder setup positively influences the skills of LSTMS2S to hierarchically process
inputs, as it allows the decoder to focus on input tokens out of the sequential order.
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5.1.2 Implementation

We use the LSTMS2S implementation of the OpenNMT-py framework (Klein et al., 2017). We set
the hidden layer size to 512, number of layers to 2 and the word embedding dimensionality to 512,
matching their best setup for translation from English to German with the WMT 2017 corpus, which
we used to shape the distribution of the PCFG SET data. We use mini-batches of 64 sequences and
stochastic gradient descent with an initial learning rate of 0.1.

5.2 ConvS2S

The second architecture we consider is a convolutional-based architecture. Convolutional sequence-
to-sequence models have obtained competitive results in machine translation (Gehring, Auli, Grang-
ier, & Dauphin, 2017) and abstractive summarisation (Denil, Demiraj, Kalchbrenner, Blunsom, &
de Freitas, 2014). In this paper, we follow the setup described by Gehring, Auli, Grangier, Yarats,
and Dauphin (2017) and use also their nomenclature: we refer to this model with the abbreviation
ConvS2S.

5.2.1 Model Basics

ConvS2S uses a convolutional model to encode input sequences, instead of a recurrent one. The
decoder uses a multi-step attention mechanism – every layer has a separate attention mechanism
– to generate outputs from the encoded input representations. Although the convolutions already
contextualise information in a sequential order, the source and target embeddings are also combined
with position embeddings that explicitly encode order. As at the core of the ConvS2S model lies the
local mechanism of one-dimensional convolutions, which are repeatedly and hierarchically applied,
ConvS2S has a built-in bias for creating compositional representations. Its topology is also biased
towards the integration of local information, which may hinder modelling long-distance relations.
However, convolutional networks have been found to maintain a much longer effective history than
their recurrent counterparts (Bai, Kolter, & Koltun, 2018). Within ConvS2S, distant portions in
the input sequence may be combined primarily through the multi-step attention, which has been
shown to improve the generalisation abilities of the model compared to single-step attention (Dess̀ı
& Baroni, 2019).

5.2.2 Model Implementation

In the ConvS2S setup that was presented by Gehring, Auli, Grangier, Yarats, and Dauphin (2017)
that we use in this work, word vectors are 512-dimensional. Both the encoder and decoder have
15 layers, with 512 hidden units in the first 10 layers, followed by 768 units in two layers, all using
kernel width 3. The final three layers are 2048-dimensional. We train the network with the Fairseq
Python toolkit9, using the predefined fconv wmt en de architecture. Unless mentioned otherwise,
we use the default hyperparameters of this library. We replicate the training procedure of Gehring,
Auli, Grangier, Yarats, and Dauphin (2017), using Nesterov’s accelerated gradient method and an
initial learning rate of 0.25. We use mini-batches of 64 sentences, with a maximum number of tokens
of 3000. The gradients are normalised by the number of non-padded tokens in a batch.

5.3 Transformer

The last architecture we consider is the recently introduced transformer model (Vaswani et al.,
2017). Transformers constitute the current state of the art in machine translation and are becoming
increasingly popular also in other domains, such as language modelling (e.g. Radford et al., 2019).
We refer to this setup with simply the name Transformer.

9. Fairseq toolkit: https://github.com/pytorch/fairseq
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5.3.1 Model Basics

Transformers use neither recurrent cells nor convolutions to convert an input sequence to an output
sequence. Instead, they are fully based on a multitude of attention mechanisms. Both the encoder
and decoder of a transformer are composed of a number of feed-forward layers, each containing two
sub-layers: a multi-head attention module and a traditional feed-forward layer. In the multi-head
attention layers, several attention tensors (the ‘heads’) are computed in parallel, concatenated and
projected. In addition to a self-attention layer, the decoder has a layer that computes multi-head
attention over the outputs of the encoder.

Since transformers do not have any inherent notion of sequentiality, the input embeddings are
combined with position embeddings, from which the model can infer order. For transformers, the cost
of relating symbols that are far apart is thus not higher than relating words that are close together,
which – in principle – should make it easier to model long-distance dependencies. Furthermore,
the relatively many stacked layers in a transformer model should facilitate modelling hierarchical
structure. On the other hand, the non-sequential nature of the transformer could be a handicap as
well, particularly for relating consecutive portions in the input sequence. A transformer’s receptive
field is inherently global, which can be challenging in such cases.

5.3.2 Implementation

We use a transformer model with an encoder and decoder that both contain six stacked layers.
The multi-head self-attention module of the model has eight heads, and the feed-forward network
has a hidden size of 2048. All embedding layers and sub-layers in the network produce outputs of
dimensionality 512. In addition to word embeddings, positional embeddings are used to indicate
word order. We use OpenNMT-py10 (Klein et al., 2017) to train the model according to the guidelines
provided by the framework11: with the Adam optimiser (β1 = 0.9 and β2 = 0.98) and a learning
rate increasing for the first 8000 ‘warm-up steps’ and decreasing afterwards.

6. Experiments and Results

We now proceed to test our tests on the three previously described architectures. Below, we describe
the precise experiments we conducted and report their results, going test by test. We train all models
of all architectures for 25 epochs, or until convergence, and select the best-performing model based on
the performance on the validation set. For every experiment, we conduct three runs per architecture
and report both the average and standard deviation of their scores.12 A summary of the results is
shown in Table 1. The data and scripts to run these experiments as well as the trained models are
all available online.13

As described before, we did not run a grid-search to optimise the hyper-parameters of the three
architectures we investigate, but instead selected reasonable hyper-parameters from papers that
previously used these architectures for comparable data. It is possible that changing the hyper-
parameters would also change the results of the experiments. It is thus important to keep in mind
that the described experiments and result serve as an illustration of the usefulness of our tests.
With fixed data and a varying training seed, our tests show consistent and interesting differences
and similarities between the three setups we used, but these results should not be taken as general
claims about LSTMs, convolutional networks or transformers.

10. Pytorch port of OpenNMT: https://github.com/OpenNMT/OpenNMT-py.
11. Visit http://opennmt.net/OpenNMT-py/FAQ.html for the guidelines.
12. Some experiments, such as the localism experiment, can be conducted directly on models trained for other tests

and thus do not require training new models.
13. https://github.com/i-machine-think/am-i-compositional
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Experiment LSTMS2S ConvS2S Transformer

Task accuracy∗ 0.79 ± 0.01 0.85 ± 0.01 0.92 ± 0.01

Systematicity∗ 0.53 ± 0.03 0.56 ± 0.01 0.72 ± 0.00

Productivity∗ 0.30 ± 0.01 0.31 ± 0.02 0.50 ± 0.02

Substitutivity, equally distributed† 0.80 ± 0.00 0.95 ± 0.00 0.98 ± 0.00

Substitutivity, primitive† 0.60 ± 0.01 0.58 ± 0.01 0.90 ± 0.00

Localism† 0.46 ± 0.00 0.59 ± 0.01 0.54 ± 0.02

Overgeneralisation∗ 0.68 ± 0.04 0.79 ± 0.06 0.88 ± 0.07

Table 1: General task performance and performance per test for PCFG SET. The results are averaged
over three runs and the standard deviation is indicated. Two performance measures are used:
sequence accuracy, indicated by ∗, and consistency score, indicated by †.

6.1 Task Accuracy

We first consider the correctness of the output sequences of the three different architectures on
the data as described in Section 4.3. In particular, we consider their sequence accuracy, where
only instances for which the entire output sequence equals the target are considered correct. We
use this accuracy measure to evaluate the overall task performance, and we use it later also for
the systematicity, productivity, and overgeneralisation tests. In the rest of this paper, we denote
accuracy scores with ∗.

The average task performance on the PCFG SET data for the three different architectures is
shown in the first row of Table 1. The Transformer outperforms both LSTMS2S and ConvS2S
(p ≈ 10−4 and p ≈ 10−3, respectively), with a surprisingly high accuracy of 0.92. ConvS2S, in turn,
is with its 0.85 accuracy significantly better than LSTMS2S (p ≈ 10−3), which has an accuracy 0.79.
The scores of the three architectures are robust with respect to initialisation and order of presentation
of the data, as evidenced by the low variation across runs. We now present a breakdown of this task
accuracy on different types of subsets of the data.

6.1.1 Impact of Length, Depth and Number of Functions

We explore how the accuracy of the three different architectures develops with increasing difficulty
of the input sequences, as measured in the input sequence’s depth (the maximum level of nested-
ness observed in a sequence), the input sequence’s length (number of tokens) and the number of
functions in the input sequence. In Figure 6, we plot the average sequence accuracy for all three
architectures as a function of those difficulty measures. Unsurprisingly, the accuracy of all architec-
ture types decreases with the length, depth and number of functions in the input. All architectures
have learned to successfully model sequences with low depths and lengths and a small number of
functions (reflected by accuracies close to 1). Their performance drops for longer sequences with
more functions. Overall the Transformer > ConvS2S > LSTMS2S trend is preserved across the
different data subsets.

6.1.2 Function Difficulty

Since the input sequences typically contain multiple functions, it is not possible to directly evaluate
whether some functions are more difficult for models than others. On sequences that contain only
one function, all models achieve a maximum accuracy. To compare the difficulty of the functions,
we create one corpus with composed input sequences and derive for each function a separate corpus
in which this function is applied to those composed input sequences. We then express the com-
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Figure 6: Average sequence accuracy of the three architectures as a function of several properties
of the input sequences for the general PCFG SET test set: the depth of the input’s parse tree, the
input sequence’s length and the number of functions in the input sequence. The results are averaged
over three runs and computed over ten thousand test samples.
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Figure 7: Accuracy of the three models per PCFG SET function, as computed by applying the
different functions to the same complex input sequences.

parative difficulty of a function for a model as this model’s accuracy on the corpus corresponding
to this function. For example, to compare the functions echo and reverse, we create two mini-
mally different corpora that only differ with respect to the first input function in the sequence (e.g.
echo append swap F G H , repeat I J and reverse append swap F G H , repeat I J), and
compute the model’s accuracy on both corpora.14 We plot the results in Figure 7.

The ranking of functions in terms of difficulty is similar for all models, suggesting that the
difficulties are to a large extent stemming from the objective complexity of the functions themselves,
rather than from specific biases in the models. In some cases, it is very clear why. The function
echo requires copying the input sequence and repeating its last element – regardless of the bias
of the model, this should be at least as difficult as copy which requires just to copy the input.
Similarly, prepend and append require repeating two string arguments, whereas for remove first

and remove second only one argument needs to be repeated. The latter functions should thus be
easier, irrespective of the architecture. The relative difficulty of repeat reflects that generating
longer output sequences proves challenging for all architectures. As this function requires to output
the input sequence twice, its output is on average twice as long as the output of another unary
function applied to an input string of the same length.

An interesting difference between architectures occurs for the function reverse. For both
LSTMS2S and ConvS2S this is a difficult function (although repeat is even harder than reverse for

14. Note that since inputs to unary and binary functions are different, we have to use two different corpora to
compare binary and unary function difficulty. The unary and binary function scores in Figure 7 are thus not
directly comparable.
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LSTMS2S). For Transformer, the accuracy for reverse is on par with the accuracies of echo, swap
and shift, functions that are substantially easier than reverse for the other two architectures. This
difference follows directly from architectural differences: while LSTMS2S and ConvS2S are forced
to encode ordered local context – as they are recurrent or apply local convolutions – Transformer is
not bound to such an ordering and can thus more easily deal with inverted sequences.

6.2 Systematicity

The task success results for PCFG SET already reflect whether models can recombine functions
and input strings that were not seen together during training. In the systematicity test, we focus
explicitly on models’ ability to interpret pairs of functions that were never seen together while
training.

6.2.1 Test Details

We evaluate four pairs of functions: swap repeat, append remove second, repeat remove second

and append swap.15 We redistribute the training and test data such that the training data does
not contain any input sequences including these specific four pairs and all sequences in the test data
contain at least one. After this redistribution, the training set contains 82 thousand input-output
pairs, while the test set contains 10 thousand examples. Note that while the training data does
not contain any of the function pairs listed above, it still may contain sequences that contain both
functions. E.g. reverse repeat remove second A B , C D cannot appear in the training set, but
repeat reverse remove second A B , C D might.

6.2.2 Results

The results of the systematicity test are reported in row 2 of Table 1. In Table 2, we show the
average accuracies of the three architectures on all four held out function pairs. Following the task
accuracy, also for the systematicity test, Transformer obtains higher scores than both LSTMS2S and
ConvS2S (p ≈ 10−2 and p ≈ 10−3, respectively). The difference between the latter two, however,
is for this test statistically insignificant (p ≈ 10−1). The relative differences between Transformer
and the other two architectures gets larger. Intriguingly, the systematicity scores of all models are
substantially lower than their overall task accuracies. This large difference is surprising, since PCFG
SET is constructed such that a high task accuracy requires systematic recombination. As such, these
results serve as a reminder that models may find unexpected solutions, even when the data is very
carefully constructed.

One potential explanation for this score discrepancy is that, due to the slightly different distri-
bution of examples in the systematicity data set, the models learn a different solution than before.
Since the functions occurring in the held out pairs are slightly under-sampled, it could be that the
models’ representations of these functions are not as good as the ones they develop when trained
on the regular data set. A second explanation, to which our localism test will lend more support,
is that models do treat the inputs and functions systematically, but analyse the sequences in terms
of different units. Obtaining a high accuracy for PCFG SET undoubtedly requires being able to
systematically recombine functions and input strings, but it does not necessarily require developing
separate representations that capture the semantics of the different functions individually.

For instance, if there is enough evidence for repeat copy, a model may learn to directly apply
the combination of these two functions to an input string, rather than consecutively appealing to
separate representations for the two functions. Thus, to compute the output of a sequence like
repeat copy swap echo X, the model may apply two times a pair of functions, instead of four

15. To decrease the number of dimensions of variation, we keep the specific pairs of functions fixed during evaluation:
rather than varying the function pairs evaluated across runs, we vary the initialisation and order of presentation
of the training examples.
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LSTMS2S ConvS2S Transformer

swap repeat 0.40 ± 0.04 0.49 ± 0.02 0.53 ± 0.03

append remove second 0.54 ± 0.04 0.46 ± 0.03 0.80 ± 0.02

repeat remove second 0.66 ± 0.02 0.67 ± 0.01 0.80 ± 0.01

append swap 0.48 ± 0.03 0.56 ± 0.01 0.73 ± 0.01

All 0.53 ± 0.03 0.56 ± 0.01 0.72 ± 0.00

Table 2: The average sequence accuracy per pair of held out compositions for the systematicity test.

separate functions. Such a strategy would not necessarily harm performance in the overall data
set, since plenty of evidence for all function pairs is present, but it would affect performance on
the systematicity test, where this is not the case. While larger chunking to ease processing is not
necessarily a bad strategy, we argue that it is desirable if models can also maintain a separate
representation of the units that make up such chunks, which may be needed in other contexts.

6.3 Productivity

In Figure 6, we saw that longer sequences are more difficult for all models, even if their length
and depth fall within the range of lengths and depths observed in the training examples. There
are several potential causes for this drop in accuracy. It could be that longer sequences are simply
more difficult than shorter ones: they contain more functions, and there is thus more opportunity
to make an error. Additionally, simply because they contain more functions, longer sequences are
more likely to contain at least one of the more difficult functions (see Figure 7). Lastly, due to the
naturalisation of the distribution of lengths, longer sequences are underrepresented in the training
data. There is thus fewer evidence for long sequences than there is for shorter ones. As such, models
may have to perform a different kind of generalisation to infer the meaning of longer sequences than
they do for shorter ones. Their decrease in performance when sequences grow longer could thus also
be explained by a general poor ability to generalise to lengths outside their training space, a type
of generalisation sometimes referred to with the term extrapolation. With our productivity test, we
focus purely on this extrapolation aspect, by studying models’ ability to successfully generalise to
longer sequences, which we will call the model’s productive power.

6.3.1 Test Details

To test for productivity, we redistribute the training and testing data such that there is no evidence
at all for longer sequences in the training set. Sequences containing up to eight functions are collected
in the training set, consisting of 81 thousand sequences, while input sequences containing at least
nine functions are used for evaluation and collected in a test set containing 11 thousand sequences.
The average, minimum and maximum length, depth and number of functions for the train and test
set of the productivity test are shown in Table 3.

6.3.2 Results

The overall accuracy scores on the productivity test in Table 1 demonstrate that all models have
great difficulty with extrapolating to sequences with a higher length than those seen during training.
Transformer drops to a mean accuracy of 0.50; LSTMS2S and ConvS2S have a test accuracy of 0.30
and 0.31, respectively. Relatively speaking, removing evidence for longer sequences thus resulted in
a 62% drop for LSTMS2S, a 64% drop in ConvS2S, and a 46% drop for Transformer. Both in terms
of absolute and relative performance, Transformer thus has a much greater productive potential
than the other models, although its absolute performance is still poor.
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Depth Length #Functions

min max avg min max avg min max avg

Productivity
Train 1 8 3.9 3 53 16.3 1 8 4.3
Test 4 17 8.2 14 71 32.9 9 35 11.5

PCFG SET
Train 1 17 4.4 3 71 18.4 1 35 5.2
Test 1 17 4.4 3 71 18.2 1 28 5.1

Table 3: The average, minimum and maximum length, depth and number of functions for the train
and test set of the productivity test. We provide the same measures for the PCFG SET test data
set for comparison.

.

Comparing just the task accuracy and productivity accuracy of models shows that models have
difficulty with longer sequences but does still not give a definitive answer about the source of the
performance decrease. Since the productivity test set contains on average longer sequences, we
cannot see if the drop in performance is caused by poor productive power or by the inherent difficulty
of longer sequences. In Figure 8, we show the performance of the three models in relation to depth,
length and number of functions of the input sequences (blue lines) compared with the task accuracy
of the standard PCFG SET test data for the same lengths as plotted in Figure 6. For all models, the
productivity scores are lower for almost every depth, length and number of functions. This decrease
in performance is solely caused by the decrease in evidence for such sequences: the total number
of examples that models were trained on is roughly the same across the two conditions, and the
absolute difficulty of the longer sequences is as well. With these two components factored out, we
conclude that models in fact struggle to productively generalise to longer sequences.16

The depth plot in Figure 6 also provides some evidence for the inherent difficulty of deeper
functions: it shows that all models suffer from decreasing test accuracies for higher depths, even if
these depths are well-represented in the training data. When looking at the number of functions, the
productivity score of Transformer is worse than its overall task success for any considered number of
functions. The scores for LSTMS2S and ConvS2S are instead very similar to the ones they reached
after training on the regular data. This shows that functions with high depths are difficult for
LSTMS2S and ConvS2S, even when some of them are included in the training data.

Interestingly, considering only the development of the productivity scores (in blue), it appears
that both the LSTMS2S and ConvS2S are relatively insensitive to the increasing length as measured
by the number of tokens. Their performance is just as bad for input sequences with 20 or 50
characters, which is on a par with the scores they obtain on the longest sequences after training
on the regular data. Apparently, shorter sequences of unseen lengths are as challenging for these
models as sequences of extremely long lengths. Later, in the localism experiment, we will find more
evidence that this sharp difference between seen and unseen lengths is not accidental for LSTMS2S
but characteristic for the representations learned by this architecture.

16. To stop their generation of the answer, models have to explicitly generate an end of sequence symbol (<eos>).
A reasonable hypothesis concerning the low scores on longer sequences is that they are due to models’ inability
to postpone the emission of this <eos> symbol. Following Dubois, Dagan, Hupkes, and Bruni (2019), we call
this problem the <eos>-problem. To test whether the low scores are due to early <eos> emissions, we compute
how many of the wrongly emitted answers were contained in the right answer. For LSTMS2S, ConvS2S and
Transformer this was the case in 22%, 6% and 8% of the wrong predictions. These numbers illustrate that the
<eos>-problem indeed exists, but is not the main source of the poor productive capacity of the different models.
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Figure 8: General task accuracy (in red) and accuracy of the three architectures on the productivity
test set (in blue) as a function of several properties of the input sequences: the depth of the input’s
parse tree, the input sequence’s length and the number of functions in the input sequence. All results
are averaged over three runs and computed over 11 thousand test samples.

6.4 Substitutivity

While the previous two experiments were centred around models’ ability to recombine known phrases
and rules to create new phrases, we now focus on the extent to which models are able to draw
analogies between words. In particular, we study under what conditions models treat words as
synonyms: we consider what happens when synonyms are equally distributed in the input sequences
and when one of the synonyms only occurs in primitive contexts.

6.4.1 Test Details

We select two binary and two unary functions (swap, repeat, append and remove second), for
which we artificially introduce synonyms during training: swap syn, repeat syn, append syn and
remove second syn. Like in the systematicity test, we keep those four functions fixed across all
experiments, varying only the model initialisation and order of presentation of the training data.
The introduced synonyms have the same interpretation functions as the terms they substitute, so
they are semantically equivalent to their counterparts. We consider two different conditions that
differ in the syntactic distribution of the synonyms in the training data.

Equally distributed synonyms For the first substitutivity test we randomly replace half of the
occurrences of the chosen functions F with Fsyn, keeping the target constant. On average, the
individual functions appeared in 39% of the training samples. After synonym substitution, they
appear in approximately 19% of the training samples, on average. In this test, F and Fsyn are
distributionally similar, which should facilitate inferring that they are synonyms.

Primitive synonyms In the second and more difficult substitutivity test, we introduce Fsyn only
in primitive contexts, where F is the only function call in the input sequence. Fsyn is introduced
in 0.1% of the training set samples. In this primitive condition, the function F and its synonymous
counterpart Fsyn are distributionally not equivalent

Evaluation For the substitutivity test, we do not evaluate models’ accuracy but assess their
robustness to meaning-invariant synonym substitutions in the input sequence. The most important
point is not whether a model correctly predicts the target for an adapted input sequence, but whether
its prediction matches the prediction it made before the transformation. We evaluate models based
on this interchangeability of F with Fsyn. We quantify this with a consistency score, which expresses
a pairwise equality, where a model’s outputs on two different inputs are compared to each other,

779



Hupkes, Dankers, Mul & Bruni

LSTMS2S ConvS2S Transformer

Token ED P Other ED P Other ED P Other

repeat 0.46 0.41 0.96 0.10 0.41 0.84 0.08 0.39 0.79
remove second 0.27 0.28 0.94 0.16 0.60 0.86 0.08 0.34 0.79
swap 0.35 0.33 0.93 0.17 0.38 0.88 0.08 0.39 0.79
append 0.34 0.29 1.00 0.12 0.54 0.82 0.07 0.37 0.75

Average 0.36 0.33 0.96 0.14 0.48 0.85 0.08 0.37 0.78

Consistency 0.80 0.60 0.95 0.58 0.98 0.90

Table 4: The average cosine distance between the embeddings of the indicated functions and their
synonymous counterparts in the equally distributed (ED) and primitive (P) setups of the substitu-
tivity experiments. For comparison, the average distance from the indicated functions to all other
regular function embeddings is given under ‘Other’. As those distances were very similar across
conditions, we averaged them in one column instead of showing them separately.

instead of to the target output. As with accuracy, also here only instances for which there is a
complete match between the compared outputs are considered correct.

The consistency metric allows us to evaluate compositionality aspects isolated from task perfor-
mance. Even for models that may not have a near-perfect task performance and therefore have not
mastered the rules underlying the data, we want to evaluate whether they consistently apply and
generalise the knowledge they did acquire. We use the consistency score for the current substitu-
tivity test and later for the localism tests. In the next sections, consistency scores are marked with
†.

6.4.2 Equally Distributed Substitutions

For the substitutivity experiment where words and synonyms are equally distributed, Transformer
and ConvS2S perform nearly on par. They both obtain a very high consistency score (0.98 and
0.95, respectively). In Table 4, we see that both architectures put words and their synonyms
closely together in the embedding space, truly respecting the distributional hypothesis. Surprisingly,
LSTMS2S does not identify that two words are synonyms, even in this relatively simple condition
where the words are distributionally identical. Words and synonyms are at very distinct positions
in the embedding space, although the distance between them is smaller than the average between
all words in the embedding space. We hypothesise that this low score of the LSTMS2S reflects the
architecture’s inability to draw the type of analogies required to model PCFG SET data, which is
also mirrored in its relatively low overall task accuracy.

6.4.3 Primitive Substitutions

The primitive substitutivity test is substantially more challenging than the equally distributed one,
since models are only shown examples of synonymous expressions in a small number of primitive
contexts. This implies that words and their synonyms are no longer distributionally similar and that
models are provided much fewer evidence for the meaning of synonyms, as there are simply fewer
primitive than composed contexts.

While the consistency scores for all models decrease substantially compared to the equally dis-
tributed setup, all models do pick up that there is a similarity between a word and its synonym.
This is reflected not only in the consistency scores (0.60, 0.58 and 0.90 on average for LSTMS2S,
ConvS2S and Transformer, respectively), but is also evident from the distances between words and
their synonyms, which are substantially lower than the average distances to other function embed-
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LSTMS2S ConvS2S Transformer

Consistency across all 0.60 ± 0.01 0.58 ± 0.01 0.90 ± 0.00

Consistent correct 0.53 ± 0.01 0.53 ± 0.01 0.84 ± 0.00

Consistent incorrect 0.07 ± 0.01 0.04 ± 0.00 0.05 ± 0.00

Consistency across incorrect samples 0.14 ± 0.01 0.09 ± 0.01 0.34 ± 0.02

Table 5: Consistency scores for the primitive substitutivity experiment, expressing pairwise equality
for the outputs of synonymous sequences. We show the overall consistency (consistency across
all), the consistency of sequences for which the model’s output was correct (consistent correct),
sequences for which the model’s output was incorrect (consistent incorrect), and the percentage of
all incorrect predictions that were consistent. A pair is considered incorrect if at least one of its
parts is incorrect. NB: consistent correct and consistent incorrect together sum up to consistent
across all ; due to rounding, this is not the case in all columns of the table.

dings (Table 4). For LSTMS2S, the average distance is very comparable to the average distance
observed in the equally distributed setup. Its consistency score, however, goes down substantially,
indicating that word distances (computed between embeddings) give an incomplete picture of how
well models can account for synonymity when there is a distributional imbalance.

Synonymity vs few-shot learning The consistency score of the primitive substitutivity test
reflects two skills that are partly intertwined: the ability to few-shot learn the meanings of words
from very few samples and the ability to bootstrap information about a word from its synonym.
As already observed in the equally distributed experiment for LSTMS2S, it is difficult to draw
hard conclusions about a model’s ability to infer synonymity when it is not able to infer consistent
meanings of words in general. When a model has a high score, on the other hand, it is difficult to
disentangle if it achieved this high score because it has learned the correct meaning of both words
separately, or because it has in fact understood that the meaning of those words is similar. That
is: the consistency score does not tell us whether output sequences are identical because the model
knows they should be the same, or simply because they are both correct. In the equally distributed
setup, the low word embedding distances for the ConvS2S and the Transformer strongly pointed to
the first explanation. For the primitive setup, the two aspects are more difficult to take apart.

Error consistency To separate a model’s ability to few-shot learn the meaning of a word from
very few primitive examples and its ability to bootstrap information about synonyms, we compute
the consistency score for model outputs that do not match the target output (incorrect outputs).
When a model makes identical but incorrect predictions for two input sequences with a synonym
substitution, this cannot be because the model merely correctly learned the meanings of the two
words. It can thus be taken as evidence that it treats the word and its synonyms indeed as synonyms.

In Table 5, we show the consistency scores for all output pairs (identical to the scores in Table 1),
the breakdown of this score into correct (consistent correct) and incorrect (consistent incorrect) out-
put pairs, and the ratio of incorrect output pairs that is consistent. The scores in row two and
three show that the larger part of the consistency scores for all models is due to correct outputs.
In row 4, we see that models are seldom consistent on incorrect outputs. The Transformer main-
tains its first place, but none of the architectures can be said to treat a word and its synonymous
counterpart as true synonyms. An interesting difference occurs between LSTMS2S and ConvS2S,
whose consistency scores on all outputs are similar, but differ in consistency of erroneous outputs.
These scores suggest that ConvS2S is better at few-shot learning than LSTMS2S, but LSTMS2S is
better at inferring synonymity. These results are in line with the embedding distances shown for the
primitive substitutivity experiment in Table 4, which are on average also lower for LSTMS2S than
for ConvS2S.
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Figure 9: An example of the unrolled computation of the meaning of the sequence echo append C

, prepend B , A for the localism test. We unroll the computation of the meaning of the sequence
by first asking the model to compute the meaning o1 of the smallest constituent prepend B , A

and then replace the constituent by this predicted meaning o1. In the next step, we use the model
to compute the meaning of the then smallest constituent echo o1, and replace the constituent in
the sequence with the model’s prediction for this constituent. This process is repeated until the
meaning of the entire sequence is computed, in steps, by the model. This final prediction (C A B B

in the picture) is then compared with the model’s prediction on the entire sequence (not shown in
the picture). If a model follows a local compositional protocol to predict the meaning of an output
sequence, these two outputs should be the same.

6.5 Localism

In the localism test, we investigate whether models compute the meanings of input sequences us-
ing local composition operations, following the hierarchical trees that specify their compositional
structure.

6.5.1 Test Details

We test for localism by considering models’ behaviour when a subsequence in an input sequence is
replaced with its meaning (see Figure 9 for an example). Thanks to the recursive nature of the PCFG
SET expressions and interpretation functions, this is a relatively straightforward substitution in our
data. If a model uses local composition operations to build up the meanings of input sequences,
following the hierarchy that it is dictated by the underlying system, its output meaning should not
change as a consequence of such a substitution.

Unrolling computations We compare the output sequence that is generated by a model for a
particular input sequence with the output sequence that the same model generates when we explicitly
unroll the processing of the input sequence. That is, instead of presenting the entire input sequence
to the model at once, we force the model to evaluate the outcome of smaller constituents before
computing the outcome of bigger ones, in the following way: we iterate through the syntactic tree
of the input sequence and use the model to compute the meanings of the smallest constituents.
We then replace these constituents by the model’s output and use the model to again compute the
meanings of the smallest constituents in this new tree. This process is continued until the meaning
for the entire sequence is found. A concrete example is visualised in Figure 9.

We conduct the localism test on sentences from the PCFG SET test set. On average, unrolling
the computation of these sequences involves five steps.

Evaluation We evaluate a model by comparing the final output of the enforced recursive method
to the output emitted when the sequence is presented in its original form. Again, during evaluation
we focus on checking whether the two outputs are identical, rather than if they are correct. If a model
wrongfully emits B A for input sequence prepend B , A, this is not penalised in this experiment,
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provided that the regular input sequence yields the same prediction as its hierarchical variant. This
method of evaluation matches the previously mentioned consistency score that was also used in the
previous section for the substitutivity test.

6.5.2 Results

None of the evaluated architectures obtains a high consistency score for this experiment (0.46, 0.59
and 0.54 for LSTMS2S, ConvS2S and Transformer, respectively). Also in this test, Transformer
ranks high, but the best-performing architecture is ConvS2S (significant in comparison with both
LSTMS2S and Transformer with p ≈ 10−4 and p ≈ 10−2, respectively). Since the ConvS2S models
are explicitly using local operations, this is in line with our expectations.

Input string length To understand the main cause of the relatively low scores on this experiment,
we manually analyse 300 samples (100 per model type), in which at least one mistake was made
during the unrolled processing of the sample. We observe that the most common mistakes involve
unrolled samples that contain function applications to string inputs with more than five characters.
An example of such a mistake would be a model that is able to compute the meaning of reverse echo

A B C D E but not the meaning of reverse A B C D E E. As the outputs for these two phrases are
identical, it is clear that this inadequacy does not stem from models’ inability to generate the correct
output string. Instead, it indicates that the model does not compute the meaning of reverse echo

A B C D E by consecutively applying the functions echo and reverse. We hypothesise that, rather,
models generate representations for combinations of functions that are then applied to the input
string at once.

Function representations While developing ‘shortcuts’ to apply combinations of functions all at
once instead of explicitly unfolding the computation does not necessarily contradict compositional
understanding – imagine, for instance, computing the outcome of the sum 5 + 3 - 3 – the results
of the localism experiment do point to an interesting aspect of the learned representations. Since
unrolling computations mostly leads to mistakes when the character length of unrolled inputs is
longer than the maximum character string length of five seen during training, it casts some doubt
on whether the models have developed consistent function representations.

If a model truly understands the meaning of a particular function in PCFG SET, it should in
principle be able to apply this function to an input string of arbitrary length. Note that, in our
case, this ability does not require productivity in generating output strings, since the correct output
sequences are not distributionally different from those in the training data (in some cases, they
may even be exactly the same). Contrary to in other setups, a failure to apply functions to longer
sequence lengths can thus not be explained by distributional or memory arguments. Therefore, the
consistent failure of all models to apply functions to character strings that are longer than the ones
seen in training suggests that, while models may have learned to adequately copy strings of length
two to five, they do not necessarily consider those operations the same.

To check this hypothesis, we test all functions in a primitive setup where we vary the length
of the string arguments they are applied to.17 For a model that develops several length-specific
representations for the same function, we expect the performance to go down abruptly when the
input string length exceeds the maximum length seen during training. If a model instead develops a
more general representation, it should be able to apply learned functions also to longer input strings.
Its performance on longer strings may drop for other, practical, reasons, but this drop should be
more smooth than for a model that has not learned a general-purpose representation at all.

The results of this experiment, plotted in Figure 10, demonstrate that all models have learned to
apply all functions to input strings up until length five, as evidenced by their near-perfect accuracy
on the samples of these lengths. On longer lengths, however, none of the models performs well. For
all runs, the performance of LSTMS2S immediately drops to zero when string arguments exceed

17. For binary functions, only one of the two string arguments exceeds the regular argument lengths.
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Figure 10: Accuracy of the three architectures on different functions with increasingly long character
string inputs. The maximum character string length observed during training is 5. While Trans-
former and ConvS2S can, for most functions, generalise a little beyond this string length, LSTMS2S
models cannot.

length five, the maximum string length seen during training. The model does not seem to be able
to leverage a general concept of any of the functions. ConvS2S and Transformer do exhibit some
generalisation beyond the maximum string input length seen during training, indicating that their
representations are more general. The accuracy of Transformer reaches zero only for input arguments
of more than nine characters, ConvS2S outputs some correct responses even for input arguments of
12 or 13 characters. This suggests that the descending scores may be due to factors of ‘performance’
rather than ‘competence’. The accuracies for Transformer and ConvS2S are comparable for almost
all functions, except reverse, for which the ConvS2S accuracy drops to almost zero for length six
in all three runs. Interestingly, none of the three architectures suffers from increasing the character
length of the first and second argument to remove first and remove second, respectively (not
plotted).

6.6 Overgeneralisation

In our last test, we focus on the learning process, rather than on the final solution that is implemented
by converged models. In particular, we study if – during training – a model overgeneralises when
it is presented with an exception to a rule and – in case it does – how much evidence it needs to
see to memorise the exception. Whether a model overgeneralises indicates its willingness to prefer
rules over memorisation, but while strong overgeneralisation characterises compositionality, more
overgeneralisation is not necessarily better. An optimal model, after all, should be able to deal with
exceptions as well as with the compositional part of the data.

6.6.1 Test Details

As the language defined through the PCFG is designed to be strictly compositional, it does not
contain exceptions. We therefore manually add them to the data set, which allows us to have a large
control over their occurrence and frequency.

Exceptions We select four pairs of functions that are assigned a new meaning when they appear
together in an input sequence: reverse echo, prepend remove first, echo remove first and
prepend reverse. Whenever these functions occur together in the training data, we remap the
meaning of those functions, as if an alternative set of interpretation functions is used in these few
cases. As a consequence, the model has no evidence for the compositional interpretation of these
function pairs, unless it overgeneralises by applying the rule observed in the rest of the training data.
For example, the meaning of echo remove first A , B C would normally be B C C, but has now
become A B C. The remapped definitions, which we call exceptions, can be found in Table 6.
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Input Remapped to Target

Original Exception

reverse echo A B C echo copy A B C C C B A A B C C

prepend remove first A , B , C remove second append A , B , C C B A B

echo remove first A , B C copy append A , B C B C C A B C

prepend reverse A B , C remove second echo A B , C C B A A B B

Table 6: Examples for the overgeneralisation test. The input sequences in the data set (first column,
Input) are usually presented with their ordinary targets (Original). In the overgeneralisation test,
these input sequences are interpreted according to an alternative rule set (Remapped to), effectively
changing the corresponding targets (Exception).

Exception frequency In our main experiment, the number of exceptions in the data set is 0.1%
of the number of occurrences of the least occurring function of the function pair F1F2. We present
also the results of a grid-search in which we consider exception percentages of 0.01%, 0.05%, 0.1%
and 0.5%.

6.6.2 Results

We monitor the accuracy of both the original and the exception targets during training and compare
how often a model correctly memorises the exception target and how often it overgeneralises to the
compositional meaning, despite the evidence in the data. To summarise a model’s tendency to over-
generalise, we take the highest overgeneralisation accuracy that is encountered during training. For
more qualitative analysis, we visualise the development of both memorisation and overgeneralisation
during training, resulting in overgeneralisation profiles. During training, we monitor the number of
exception samples for which a model does not generate the correct meaning, but instead outputs the
meaning that is in line with the rule instantiated in the rest of the data. At every point in training,
we define the strength of the overgeneralisation as the percentage of exceptions for which a model
exhibits this behaviour.

Overgeneralisation peak We call the point in training where the overgeneralisation is highest
the overgeneralisation peak. In Table 1, we show the average height of this overgeneralisation peak
for all three architectures, using an exception percentage of 0.1%. This quantity equals the accuracy
of the model predictions on the input sequences whose outputs have been replaced by exceptions,
but measured on the original targets that follow from the interpretation functions of PCFG SET.
The numbers in Table 1 illustrate that all models show a rather high degree of overgeneralisation.
At some point during the learning process, Transformer applies the rule to 88% of the exceptions
and LSTMS2S and ConvS2S to 68% and 79% respectively.

Overgeneralisation profile More interesting than the height of the peak is the profile that
different architectures show during learning. In Figure 11, we plot this profile for four different
exception percentages. The lower areas (in red), indicate the overgeneralisation strength, whereas
the memorisation strength – the accuracy of a model on the adapted outputs, which can only be
learned by memorisation – is indicated in the upper part of the plots, in blue. The grey area in
between indicates the percentage of exception examples for which a model outputs neither the correct
answer nor the rule-based answer.

Exception percentage The profiles show that, for all architectures, the degree of overgenerali-
sation strongly depends on the number of exceptions present in the data. All architectures show
overgeneralisation behaviour for exception percentages lower than 0.5% (first three rows), but hardly
any overgeneralisation is observed when 0.5% of a function’s occurrence is an exception (bottom row).

785



Hupkes, Dankers, Mul & Bruni

% LSTMS2S ConvS2S Transformer

0.01

0.00

0.25

0.50

0.75

1.00

ac
cu

ra
cy

overgeneralisation overgeneralisation

memorisation

overgeneralisation

0.05

0.00

0.25

0.50

0.75

1.00

ac
cu

ra
cy

overgeneralisation overgeneralisation

memorisation

overgeneralisation

memorisation

0.1

0.00

0.25

0.50

0.75

1.00

ac
cu

ra
cy

overgeneralisation overgeneralisation

memorisation

overgeneralisation

memorisation

0.5

0 5 10 15 20 25
epoch

0.00

0.25

0.50

0.75

1.00

ac
cu

ra
cy

memorisation

0 5 10 15 20 25
epoch

memorisation

0 5 10 15 20 25
epoch

memorisation

Figure 11: Overgeneralisation profiles over time for LSTMS2S, ConvS2S and Transformer for ex-
ception percentages of 0.01%, 0.05%, 0.1% and 0.5% (in increasing order, from top to bottom). The
lower area of the plots, in red, indicates the mean fraction of exceptions (with standard deviation)
for which an overgeneralised output sequence is predicted (i.e. not the ‘correct’ exception output
for the sequence, but the output that one would construct following the meaning of the functions
as observed in the rest of the data). We denote this area with ‘overgeneralisation’. The upper
areas, in blue, indicate the mean fraction of the exception sequences (with standard deviation) for
which the model generates the true output sequence, which – as it falls outside of the underlying
compositional system – has to be memorised. We call this the ‘memorisation’ area. The grey area
in between corresponds to the cases in which a model does not predict the correct output, nor the
output that would be expected if the rule were applied.

When the percentage of exceptions becomes too low, on the other hand, all models have difficulties
memorising them at all: when the exception percentage is 0.01% of the overall function occurrence,
only ConvS2S can memorise the correct answers to some extent (middle column, top row). LSTMS2S
and Transformer keep predicting the rule-based output for the sequences containing exceptions, even
after the training converged.

Learning an exception LSTMS2S, in general, appears to find it difficult to accommodate both
rules and exceptions at the same time. Transformer and ConvS2S overgeneralise at the beginning
of training, but then, once enough evidence for the exception is accumulated, gradually change to
predicting the correct output for the exception sequences. This behaviour is most strongly present
for ConvS2S, as evidenced by the thinness of the grey stripe separating the red and the blue area
during training. For LSTMS2S, on the other hand, the decreasing overgeneralisation strength is not
matched by an increasing memorisation strength. After identifying that a certain sequence is not
following the same rule as the rest of the corpus, LSTMS2S does not predict the correct meaning but
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instead starts generating outputs that match neither the correct exception output nor the original
target for the sequence. After convergence, its accuracy on the exception sequences is substantially
lower than the overall corpus accuracy. As the bottom plot (with an exception percentage of 0.5%)
indicates that LSTMS2S models do not have problems with learning exceptions per se, they appear
to struggle with hosting exceptions for words if little evidence for such anomalous behaviour is
present in the training data.

7. Discussion

With the rising successes of models based on deep learning, evaluating the compositional skills of
neural network models has attracted the attention of many researchers. Many empirical studies have
been presented that evaluate the compositionality of neural models in different ways, but they have
not led to a consensus about whether neural models can in fact adequately model compositional data.
We argue that this lack of consensus stems from a deeper issue than the results of the proposed tests:
while many researchers have a strong intuition about what it means for a model to be compositional,
there is no explicit agreement on what defines compositionality of a model or how it should be tested
for in a neural model.

7.1 An Evaluation Framework to Evaluate Compositionality

In this paper, we proposed an evaluation framework that addresses this problem, with a series of tests
that translate theoretical concepts related to compositionality of language into behavioural tests
for models of language. Our evaluation framework contains five independent tests that consider
complementary aspects of compositionality that are frequently mentioned in the literature about
compositionality. These five tests allow us to investigate (i) if models systematically recombine
known parts and rules (systematicity) (ii) if models can extend their predictions beyond the length
they have seen in the training data (productivity) (iii) if models’ predictions are robust to synonym
substitutions (substitutivity) (iv) if models’ composition operations are local or global (localism)
and (v) if models favour rules or exceptions during training (overgeneralisation). We formulated
these tests on a task-independent level, disentangled from a specific downstream task. With this,
we offer a versatile evaluation paradigm which can be used to evaluate the compositional abilities of
a model on five different levels, that can be instantiated for any chosen sequence-to-sequence task.
Importantly, our collection of tests should not be taken as a normative specification of what models
should and should not do. Rather, they are meant to discover which aspects of compositionality a
model does or does not implement and learn more about a model’s strengths and weaknesses.

To showcase our evaluation paradigm, we instantiated the five tests on a highly compositional
artificial data set we dub PCFG SET: a sequence-to-sequence translation task which requires to
compute meanings of sequences that are generated by a probabilistic context-free grammar by re-
cursively applying string edit operations. This data set is designed such that modelling it adequately
should require a compositional solution, and it is generated such that its length and depth distribu-
tions match those of a natural corpus of English. We then used these instantiated tests to compare
three popular sequence-to-sequence architectures: an LSTM-based (LSTMS2S ), a convolution-based
(ConvS2S ) and an all-attention model (Transformer). For each test, we conducted a number of aux-
iliary tests that can be used to further increase the understanding of how this aspect is treated by
a particular architecture. Below, we provide a summary of the results of these experiments.18

18. At the risk of being redundant, we repeat that these results should not be taken as general claims about LSTMs,
convolutional networks or transformers. Neural models can be sensitive to small changes in hyper-parameters and
learning regimes and we did not investigate the effect of changing the hyper-parameters. Perhaps using a deeper
LSTM, a transformer with more attention heads, or convolutions with a wider kernel width would show different
patterns. We leave these questions open for future work. With the results below, we merely want to show that –
keeping the tests fixed – interesting differences but also similarities between different models can be found.
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7.2 Summary of Results

While the overall accuracy on PCFG SET was relatively high for all models, a more detailed picture
is given by the five compositionality tests. These tests indicated that, despite our careful data
design, high scores do still not necessarily imply that the trained models fully represent the true
underlying generative system and illustrated how different models handle different aspects that could
be considered important for compositional learning.

Firstly, our systematicity test showed that none of the architectures successfully generalises to
pairs of words that were not observed together during training, a result that confirms earlier studies
such as the ones from Loula et al. (2018) and Lake and Baroni (2018). The difference between
the systematicity scores and the overall task accuracy is quite stark for all models: a drop of 33%,
34% and 22% for LSTMS2S, ConvS2S and Transformer, respectively. This suggests that the low
accuracy on the systematicity test does not stem from poor systematic capacity in general, but
that rather from the fact that the models use different segmentations of the input, applying – for
instance – multiple functions at once, instead of all of the functions in a sequential manner. While
larger chunking to ease processing is not necessarily a bad strategy, it is desirable if models can also
maintain a separate representation of the units that make up such chunks, as these units could be
useful or needed in other sequences.

With our productivity test, we assessed if models can productively generalise to sequences that
are longer than the ones they observed in training. To evaluate this, we redistributed the training
examples such that there is a strict separation of the input sequence lengths in the train and test
data. To tease apart the overall difficulty of modelling longer sequences from the ability to generalise
to unseen lengths, we compared the results with the accuracies of models that are trained on data
sets that contain at least some evidence for longer sequences. None of the architectures exhibited
strong productive power to sequences of unseen lengths. By computing how often models’ predictions
were strictly contained within the true output sequence, we assess if the poor productive power of
all models is caused by early emission of the end-of-sequence symbol. We find that such cases indeed
exist, but that early stopping of the generation is not the main cause of the low productivity scores.

With our substitutivity test, we compared how models react to artificially introduced synonyms
occurring in different types of scenarios. Rather than considering their behaviour in terms of sequence
accuracy, in this test, we computed how consistent models’ predictions are – correct or incorrect –
when a word is substituted with a synonym. When synonyms are equally distributed in the input
data, both Transformer and ConvS2S obtain high consistency scores, while LSTMS2S is substantially
less consistent. This difference is also reflected in the distance between the embeddings of words and
synonyms, which is much lower for Transformer and ConvS2S. When one of the synonyms is only
presented in a few very short sequences, the consistency score of ConvS2S drops to the same level
as LSTMS2S, while Transformer still maintains a relatively high synonym consistency. Also the
embeddings of synonyms remain relatively close in Transformer models’ embedding space, despite
the fact that they are distributionally dissimilar.

To tease apart the ability to learn from very few examples and to infer synonymity, we also
considered how consistent models are on incorrect outputs. Here, we observed that none of the
models can be said to truly treat words and their counterparts as synonyms. Transformer is the
most consistent, but with a low score of only 0.34. This test shows an interesting difference between
LSTMS2S and ConvS2S: where the former appears to be better at inferring that words are synonyms,
the latter is better at few-shot learning a word’s meaning from very few examples.

With our localism test, we considered if models apply local composition operations that are true
to the syntactic tree of an input sequence, or rather compute the meaning of a sequence in a more
global fashion. In line with the results of the systematicity test, models do not appear to truly follow
the syntactic tree of the input to compute its meaning. In 54%, 41% and 46% of the test samples
for LSTMS2S, ConvS2S and Transformer, respectively, enforcing a local computation results in a
different answer than the original answer provided by the model. An error analysis suggests that
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these results are largely due to function applications to longer string sequences. With an additional
test in which we monitored the accuracy of models on functions applied to increasingly long string
inputs, we find evidence that models may not learn general-purpose representations of functions, but
instead use different protocols for copy once or copy twice. We saw that the accuracy of LSTMS2S
immediately drops to 0 when string inputs are longer than the ones observed in training. The
performance of ConvS2S and Transformer, instead, drops rapidly, but remains above 0 for slightly
longer string inputs. These results indicate that LSTMS2S may indeed not have learned a general-
purpose representation for functions, while the decreasing accuracy of ConvS2S and Transformer
could be related more to performance rather than competence issues.

In our last test, we studied overgeneralisation during training, by monitoring the behaviour
of models on artificially introduced exceptions to rules for four function pairs. We found that
for small amounts of exceptions (up to 0.1% of the number of occurrences of the least occurring
function of a function pair) all architectures overgeneralise at the beginning of their training. As
overgeneralisation implies that models overextend rules in cases where this is explicitly contradicted
by the data, we take this as a clear indication that models in fact capture the underlying rule at that
point. For very small amounts of exceptions (0.01%), both Transformer and LSTMS2S failed to learn
the exception at all: even after their training has converged they overgeneralise on the sequences
containing exceptions. To a lesser extent, also ConvS2S struggles with capturing exceptions that
have a low frequency. LSTMS2S generally appears to have difficulty with accommodating both
rules and exceptions. Often, after learning that a certain rule should not be applied, LSTMS2S
models do not memorise the true target but proceed to predict something which matches neither
this target nor the general rule. ConvS2S and Transformer do not show such patterns: when their
overgeneralisation score goes down, their memorisation score goes up. Aside from at the beginning
of their training, they rarely predict something outside of these options. For larger percentages of
exceptions (from 0.5%), none of the architectures really exhibits overgeneralisation behaviour.

7.3 Conclusion and Future Work

With a proposed collection of tests, we aimed to cover several facets of compositionality. We believe
that as such, this collection of tests can serve as an evaluation paradigm to probe the ability of
different neural network architectures in the light of compositionality. We hope that the tests
and their results can help facilitate a general discussion of what it means for neural models to
be compositional and what we would like them to represent. There are, of course, also aspects of
compositionality that we did not cover. We therefore do not consider our evaluation an endpoint, but
rather a stepping stone on the way, which we hope can provide the grounds for a clearer discussion
concerning the role and importance of compositionality in neural networks, including both aspects
that we did and did not include.

We instantiated our tests on an artificial data set that is entirely explainable in terms of composi-
tional phenomena. This permitted us to focus on the compositional ability of different models in the
face of compositional data and allowed us to isolate compositional processing from other signals that
are found in more realistic data sets. However, it leaves open the question of how much the com-
positional traits we identified are expressed and can be exploited by networks when facing natural
data. Despite the fact that they are not informed by knowledge of language or semantic composition,
neural networks have achieved tremendous successes in almost all natural language processing tasks.
While their performance is still far from perfect, it is not evident that their remaining failures stem
from their inability to deal with compositionality. In the future, we plan to instantiate our tests also
in natural language domains such as translation and summarisation. The results of such a study
would provide valuable information about how well models pick up compositional patterns in more
noisy environments, but – perhaps even more importantly – could also provide insights about the
importance of these different aspects of compositionality to model natural data.
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In summary, we provided an evaluation paradigm that allows a researcher to test the extent to
which five distinct, theoretically motivated aspects of compositionality are represented by artificial
neural networks. By instantiating these tests for an artificial data set and applying the resulting tests
on three different successful sequence-to-sequence architectures, we shed some light on which aspects
of compositionality may prove problematic for different architectures. These results illustrate well
that to test for compositionality in neural networks it does not suffice to consider an accuracy score
on a single downstream task, even if this task is designed to be highly compositional. Models may
capture some compositional aspects of this data set very well, but fail to model other aspects that
could be considered part of a compositional behaviour. As such, the results themselves demonstrate
the need for the more extensive set of evaluation criteria that we aim to provide with this work. We
hope that future researchers will use our collection of tests to evaluate new models, to investigate the
impact of hyper-parameters or to study how compositional behaviour is acquired during training.
To facilitate the usage of our test suite we have made the PCFG SET data generator, all test sets
and the models trained by us available online.19 We further hope that our theoretical motivation,
the tests themselves and the analysis that we presented of its application on three different sequence-
to-sequence architectures will prove to be a step in the direction of having a clearer discussion about
compositionality in the context of deep learning, both from a practical and a theoretical perspective.
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Appendix A. Naturalisation of Artificial Data

The artificially generated PCFG SET data are transformed so as to mimic the distribution of a
natural language data set according to the following procedure:

1. Use a natural language data set DN , define a set of features F , and for each f ∈ F , compute
the value f(s) for each sentence s ∈ DN .

2. Generate a large sample DR of PCFG SET data using random probabilities on production
rules for each instance.

3. Transform DR as follows:

(i) For each feature f ∈ F , specify a feature increment if .

(ii) For each s ∈ DN , compute the partitioning vector v(s), which is the concatenation of the
values ⌊f(s)/if⌋ for each feature f ∈ F .

(iii) Partition DN into subsets by clustering instances with the same partitioning vector. For
any such subset Di

N , let v(Di
N ) denote the partitioning vector of its members. And for

any partitioning vector v, let v−1
N (v) denote the subset Di

N ⊆ DN whose members have
partitioning vector v (so that v(Di

N ) = v).

19. https://github.com/i-machine-think/am-i-compositional
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(iv) Of the identified subsets, determine the largest set Di
N ⊆ DN . Call this set Dmax

N .

(v) Partition DR in the same way as DN , yielding subsets Di
R. Let the subset Di

R such that
v(Di

R) = v(Dmax
N ) be Dmax

R .

(vi) Initialise an empty set D′
R.

(vii) Of each Di
R, randomly pick

|v−1

N
(v(Di

R
))|×|Dmax

R
|

|Dmax

N
| members, and assign them to D′

R.

(viii) If necessary, repeat (i) - (vii) for different feature increments fi. For n features, fit an
n-variate Gaussian to each of the transformed sets D′

R. Choose the set with the lowest
Kullback-Leibler divergence from the n-variate Gaussian approximation of DN .

4. Use maximum likelihood estimation to estimate the PCFG parameters of D′
R and generate

more PCFG SET data using these parameters.

5. If necessary, apply step 3 to the data thus generated.
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Mareček, D., & Rosa, R. (2018). Extracting syntactic trees from transformer encoder self-attentions.
In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP (pp. 347–349).

McCoy, R. T., Linzen, T., Dunbar, E., & Smolensky, P. (2019). RNNs implicitly implement tensor-
product representations. In Proceedings of the 7th International Conference on Learning Rep-
resentations (ICLR).

Miller, G. A., & Charles, W. G. (1991). Contextual correlates of semantic similarity. Language and
cognitive processes, 6 (1), 1–28.

Mitchell, J., & Lapata, M. (2008). Vector-based models of semantic composition. In Proceedings of
the 46th Annual Meeting of the Association for Computational Linguistics: Human Language
Technology (ACL-HLT) (pp. 236–244).

Mul, M., & Zuidema, W. (2019). Siamese recurrent networks learn first-order logic reasoning and
exhibit zero-shot compositional generalization. CoRR, abs/1906.00180 .

Pagin, P. (2003). Communication and strong compositionality. Journal of Philosophical Logic,
32 (3), 287–322.

Pagin, P., & Westerst̊ahl, D. (2010). Compositionality i: Definitions and variants. Philosophy
Compass, 5 (3), 250–264.

Partee, B. (1995). Lexical semantics and compositionality. An invitation to cognitive science:
Language, 1 , 311–360.

Penke, M. (2012). The dual-mechanism debate. In The Oxford handbook of compositionality. Oxford
University Press.

Pinker, S. (1984). Language learnability and language development. Cambridge, MA: Harvard
University Press.

Plate, T. (1991). Holographic reduced representations: convolution algebra for compositional dis-
tributed representations. In Proceedings of the 12th International Joint Conference on Artificial
Intelligence (IJCAI) (Vol. 1, pp. 30–35).

Potts, C. (2019). A case for deep learning in semantics: Response to pater. Language.
Pullum, G. K., & Scholz, B. C. (2010). Recursion and the infinitude claim. Recursion in human

language, 104 , 113–38.
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are

unsupervised multitask learners. OpenAI Blog , 1(8).
Raganato, A., & Tiedemann, J. (2018). An analysis of encoder representations in transformer-based

machine translation. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP (pp. 287–297).

Rodriguez, P. (2001). Simple recurrent networks learn context-free and context-sensitive languages
by counting. Neural computation, 13 (9), 2093–118.

Rodriguez, P., Wiles, J., & Elman, J. L. (1999). A recurrent neural network that learns to count.
Connection Science, 11 (1), 5–40.

Rumelhart, D. E., & McClelland, J. L. (1986). Parallel distributed processing: explorations in the
microstructure of cognition. In (Vol. 2, pp. 216–271). MIT Press, Cambridge.

Saxton, D., Grefenstette, E., Hill, F., & Kohli, P. (2019). Analysing mathematical reasoning

794



Compositionality Decomposed: How do Neural Networks Generalise?

abilities of neural models. In Proceedings of the 7th International Conference on Learning
Representations (ICLR).

Shi, X., Padhi, I., & Knight, K. (2016). Does string-based neural MT learn source syntax? In
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing
(EMNLP) (pp. 1526–1534).

Smolensky, P. (1990). Tensor product variable binding and the representation of symbolic structures
in connectionist systems. Artificial intelligence, 46 (1-2), 159–216.

Socher, R., Manning, C. D., & Ng, A. Y. (2010). Learning continuous phrase representations
and syntactic parsing with recursive neural networks. In Proceedings of the NIPS2010 Deep
Learning and Unsupervised Feature Learning Workshop (pp. 1–9).

Soulos, P., McCoy, T., Linzen, T., & Smolensky, P. (2019). Discovering the compositional structure
of vector representations with role learning networks. In Proceedings of the NeurIPS 2019
Workshop on Context and Compositionality in biological and artificial neural systems.

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Systems (NIPS) (pp. 3104–3112).
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