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Compositionally and functionally distinct
sinus microbiota in chronic rhinosinusitis
patients have immunological and clinically
divergent consequences
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Abstract

Background: Chronic rhinosinusitis (CRS) is a heterogeneous disease characterized by persistent sinonasal

inflammation and sinus microbiome dysbiosis. The basis of this heterogeneity is poorly understood. We sought to

address the hypothesis that a limited number of compositionally distinct pathogenic bacterial microbiota exist in

CRS patients and invoke discrete immune responses and clinical phenotypes in CRS patients.

Results: Sinus brushings from patients with CRS (n = 59) and healthy individuals (n = 10) collected during

endoscopic sinus surgery were analyzed using 16S rRNA gene sequencing, predicted metagenomics, and RNA

profiling of the mucosal immune response. We show that CRS patients cluster into distinct sub-groups (DSI-III), each

defined by specific pattern of bacterial co-colonization (permutational multivariate analysis of variance

(PERMANOVA); p = 0.001, r2 = 0.318). Each sub-group was typically dominated by a pathogenic family:

Streptococcaceae (DSI), Pseudomonadaceae (DSII), Corynebacteriaceae [DSIII(a)], or Staphylococcaceae [DSIII(b)]. Each

pathogenic microbiota was predicted to be functionally distinct (PERMANOVA; p = 0.005, r2 = 0.217) and encode

uniquely enriched gene pathways including ansamycin biosynthesis (DSI), tryptophan metabolism (DSII), two-

component response [DSIII(b)], and the PPAR-γ signaling pathway [DSIII(a)]. Each is also associated with significantly

distinct host immune responses; DSI, II, and III(b) invoked a variety of pro-inflammatory, TH1 responses, while DSIII(a),

which exhibited significantly increased incidence of nasal polyps (Fisher’s exact; p = 0.034, relative risk = 2.16),

primarily induced IL-5 expression (Kruskal Wallis; q = 0.045).

Conclusions: A large proportion of CRS patient heterogeneity may be explained by the composition of their sinus

bacterial microbiota and related host immune response—features which may inform strategies for tailored therapy

in this patient population.
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Background

The field of human microbiome research has profoundly

altered our view of the diversity of human-associated

microbes and encoded functions, and demonstrated that

the microbiome co-varies with host health status [1–3].

In healthy subjects, a diverse bacterial microbiota

colonizes the upper respiratory mucosal surface [4, 5],

and the lower airways possess a low burden and diversity

of bacteria [6]. In contrast, patients with chronic inflam-

matory airway disease exhibit opposing trends in bacter-

ial diversity and burden and compositionally distinct

mucosal microbiota, enriched for known or suspected

pathogenic species, and related to features of pulmonary

disease [1, 5, 7, 8]. Chronic rhinosinusitis (CRS), charac-

terized by persistent inflammation of the sinonasal

mucosa lasting at least 12 weeks, is a common and
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refractory respiratory disease [9, 10], not least because of

the immunologic and clinical heterogeneity exhibited by

these patients. Until recently, little was known of the

microbiome of the sinus mucosa in either healthy subjects

or diseased patients. However, several recent culture-

independent studies have now demonstrated that loss of

sinus microbiota diversity is a common feature of patients

with CRS [5, 11, 12] and, independently, that greater pre-

operative sinus microbiota diversity is associated with

improved post operative outcomes [13]. Respiratory path-

ogens such as Pseudomonas aeruginosa or Staphylococcus

aureus are commonly isolated from CRS patients [14],

while pathobionts, such as Corynebacterium tuberculos-

tearicum, also found to be enriched in CRS patients, have

demonstrable capacity to induce sinus mucosal infection

in murine models [5]. However, these pathogens do not

exist in isolation, but in mixed-species mucosal microbiota,

the composition and activities of which, we hypothesize,

explain the substantial clinical and immunological hetero-

geneity observed in CRS patients.

Previous efforts to explain CRS patient heterogen-

eity have been based on clinical [15, 16], immunologic

[17–20], or pathologic [21] endotypes, though these

studies have been relatively small and focused on specific

immune cell populations or clinical features. More

recently airway studies have examined whether subject

stratification based on microbiota composition offers an

improved approach for understanding immunological or

clinical phenotypic variation across populations. A large

study (n = 234) of the infant nasopharyngeal microbiota

identified six compositionally distinct microbiota, each

dominated by a common respiratory bacterial genus and

associated with significantly different relative risk for acute

upper respiratory infection or development of asthma at

5 years [4]. Similarly, three compositionally and function-

ally distinct pathogenic lung microbiota have been de-

scribed in HIV-infected pneumonia patients (n = 182),

each co-associate with a specific host immune response

profile and differ in mortality risk [22]. Moreover,

predicted metabolic products characteristic of each of

these three distinct pathogenic lower airway communities

were found to be enriched in paired serum samples, indi-

cating that the microbiome of the overtly colonized airway

may actively contribute both to local and systemic

immune and metabolic dysfunction. The capacity for

meaningful stratification based on microbiota composition

is perhaps most compelling in a recent study of 1-

month-old infants (n = 130), who were divisible into

three distinct gut microbiota states, one of which con-

ferred a three-fold increased risk of atopy at the age of

2 years and asthma at the age of 4 years. The associated

products of the high-risk microbiota induced CD4 + IL4+

cell population expansion and CD4 +CD25 + FoxP3+ sup-

pression ex vivo [23]. Hence, several lines of investigation

suggest that patient immunological status and clinical out-

comes differ significantly based on the specific microbiota

structure present. Given these observations, we hypothe-

sized CRS patient heterogeneity may be explained by the

presence of distinct pathogenic sinus microbiota that in-

voke discrete host immune responses and relate to clinical

phenotypes. To address this hypothesis, we examined the

sinus mucosal microbiome and parallel host immune re-

sponses of a cohort of CRS and healthy subjects and re-

lated these findings to clinical outcomes of nasal

polyposis. We demonstrate the presence of distinct patho-

genic sinus microbiota in CRS patients each predicted to

encode unique functional attributes, which co-associate

with specific innate and adaptive immune responses, and

significantly different relative risk of nasal polyposis.

Methods

Study design

The UCSF Institutional Review Board (approval number

11-07750) approved this study. All participants were

informed of the objectives of this study and signed a

written consent form prior to their participation. Adult

patients (n = 76) undergoing endoscopic sinus surgery

(ESS) for CRS were enrolled at the University of California

San Francisco. Samples from two patients did not yield

PCR product, and five patients were removed from the

analysis due to low sequence depth. Therefore, 69 subjects

(10 healthy, 59 CRS patients) were included in down-

stream analysis (Table 1).

Patient enrollment and sample collection

Disease was clinically diagnosed according to the 2007

Rhinosinusitis Task Force guidelines [24], and severity

was radiographically quantified using the Lund-Mackay

Computed Tomography (CT) scoring system. All CRS

patients had symptoms for more than 12 consecutive

weeks and CT evidence of inflammation within a month

of sampling for this study. Patient demographics are

described in Table 1. Recent clinical history, sinonasal

outcomes test (SNOT-20), and CT sinus review were

collected and used to confirm CRS diagnosis. Recent

antibiotic use and intraoperative antibiotic administra-

tions were recorded at the time of sample collection.

Co-morbidities, including physician-diagnosed asthma

or cystic fibrosis (CF), were recorded. Sinus brushings were

obtained for 11 control patients undergoing surgery for

non-CRS etiologies including oral surgery, trans-sphenoidal

pituitary surgery, or endoscopic cerebral spinal fluid leak

repair. Endoscopically guided protected brushes (ConMed

#149, NY) were used to collect mucosal samples of the

diseased sinus by brushing each surface gently while rotat-

ing the brush five times. Each sample was immediately

placed in 1 ml of RNA later, transferred to 4 °C for 24–48 h
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Table 1 Demographics of CRS patients and healthy subjects included in this study

Sample ID Age Gender Disease Pre-operative antibiotics <3 months Lund-Mackay score Polyp Status

33 47 F CRS+CF Multiple (>3) 22 N Included

36 27 F CRS+CF Multiple (>3) 18 Y Included

39 28 M CRS+CF Multiple (>3) 13 N Included

61 20 M CRS+CF Azithromycin 15 Y Included

64 71 M CRS+CF Dicloxacillin 16 Y Included

83 24 M CRS+CF Multiple 19 Y Included

90 20 F CRS+CF Ceftrioxone 19 Y Included

91 47 M CRS+CF Zithromax/dapsone 17 Y Included

108 30 M CRS+CF Multiple (>3) 16 Y Included

1 41 M CRS Augmentin 5 N Included

7 39 F CRS Augmentin 12 N Included

8 55 F CRS+Asthma Augmentin 23 Y Included

15 55 M CRS+Asthma Clarithromycin 15 N Included

16 51 M CRS Augmentin 22 N Included

17 61 F CRS+Asthma Multiple (>3) 12 N Included

22 58 M CRS+Asthma Bactrim 12 Y Included

32 19 M CRS Augmentin 22 Y Included

34 51 M CRS+Asthma Levofloxacin 5 N Included

40 72 F CRS Tobramycin 9 N Included

43 46 M CRS Augmentin 12 N Included

44 62 M CRS Levofloxacin 20 Y Included

54 71 M CRS+Asthma dicloxacillin 13 Y <10,000 sequences/sample

55 68 F CRS+Asthma Clotrimazole 21 Y Included

56 67 F CRS Augmentin/Bactrim 14 Y Included

58 85 M CRS Ampicillin/sulbactam NDa ND No PCR product

59 42 F CRS+Asthma Clindamycin 4 Y Included

60 35 M CRS Multiple (>3) 16 N Included

63 77 F CRS Levofloxacin 6 N Included

80 58 M CRS Augmentin 8 N Included

81 65 F CRS+Asthma Augmentin 10 N Included

82 28 M CRS Augmentin 9 Y Included

85 24 F CRS+Asthma Augmentin 4 N Included

86 88 F CRS None 19 Y Included

88 73 M CRS None 21 Y Included

89 52 M CRS Clarithromycin ND ND No PCR product

92 59 M CRS Multiple (>3) 13 N Included

93 48 M CRS Azithromycin/augmentin 11 Y Included

94 72 F CRS+Asthma Augmentin 8 N Included

96 54 M CRS Cephalexin 11 Y Included

97 52 M CRS Cetirizine 22 Y Included

98 39 M CRS+Asthma Multiple (>3) 16 Y Included

99 57 M CRS Levofloxacin 16 Y Included

100 62 F CRS Bactrim 4 N Included

101 27 M CRS+Asthma Azithromycin ND Y Included
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to permit the nucleic acid preservative to permeate cells

prior to storage at −80 °C [25].

DNA extraction

Nucleic acids were extracted as previously described using

the AllPrep kit (Qiagen, CA), to purify DNA and RNA in

parallel [5, 25]. Briefly, brushes were placed in Lysis Matrix

B tubes in 600 μl Buffer RLT Plus with β-mercaptoethanol

and bead beaten for 30 s at 5.5 m sec−1 for nucleic acid ex-

traction per manufacturer’s protocol. DNA and RNA were

quantified using a NanoDrop 2000 (ThermoFisher, CA).

DNA concentrations were normalized to 50 ng μl−1 per

sample for 16S rRNA gene sequence library preparation,

described below.

16S rRNA gene library preparation

Barcoded primers 515 F/806R were used to amplify the

V4 region of the 16S rRNA gene as previously described

[26, 27]. Since double bands were present, one human

mitochondrial band and a microbial 16S band, ampli-

cons of the correct size (384 bp) were gel-extracted with

a Qiagen Gel Extraction kit per manufacturer protocol.

Purified PCR product was analyzed on Bioanalyzer (Aligent,

CA, USA), quantified using the Qubit HS dsDNA kit

(Invitrogen, CA, USA), and pooled at 25 ng per sample.

Table 1 Demographics of CRS patients and healthy subjects included in this study (Continued)

103 36 M CRS Augmentin 10 Y Included

104 23 M CRS None 12 N Included

105 18 M CRS None 21 N Included

107 37 F CRS Cephalexin 7 Y Included

109 71 M CRS+Asthma Augmentin 11 Y Included

110 18 F CRS Multiple (>3) 16 N Included

111 59 M CRS Augmentin 10 N Included

112 48 F CRS Augmentin 9 N Included

114 37 F CRS Clindamycin 1 N Included

115 26 F CRS Augmentin 3 N Included

117 33 M CRS Ciprofloxacin 19 N Included

120 50 F CRS+Asthma Multiple (>3) 15 Y Included

121 33 F CRS Augmentin 9 Y Included

122 45 F CRS+Asthma Augmentin 21 Y Included

123 74 M CRS+Asthma Augmentin 16 Y Included

124 30 M CRS+Asthma Augmentin 6 N <10,000 sequences/sample

126 43 F CRS+Asthma Augmentin 11 Y <10,000 sequences/sample

128 69 M CRS+Asthma Bactrim 21 Y Included

130 59 M CRS+Asthma Augmentin 17 Y Included

132 48 M CRS Rifampin 13 N <10,000 sequences/sample

143 61 M CRS Augmentin ND N Included

30 38 M Healthy Topical bacitracin ND N <10,000 sequences/sample

31 59 M Healthy Amoxicillin/azithromycin ND N Included

131 59 F Healthyb None 1 N Included

CRS14 41 M Healthyb None ND N Included

CRS15 39 M Healthy None ND N Included

CRS16 37 F Healthy None ND N Included

CRS17 46 F Healthy None ND N Included

CRS18 46 M Healthy None ND N Included

CRS19 31 F Healthy None ND N Included

CRS20 18 F Healthy None ND N Included

ctrl4 22 M Healthy None ND N Included

a
ND not determined

b Allergic rhinitis
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The pooled library was quantified using the KAPA

QPCR Illumina Library Quantification kit (KAPA

Biosystems, MA, USA), diluted to 2 nM, denatured,

and 5 pM was loaded onto the Illumina MiSeq

cartridge (V2) in combination with a 15% (v/v) of dena-

tured 12.5 pM PhiX spike-in. In addition to negative con-

trol extraction blanks, a mock community composed of

equal genomic concentration (2 ng each per reaction) of

Escherichia coli ATCC25922, P. aeruginosa ATCC27853,

C. tuberculostearicum ATCC35692, Lactobacillus sakei

ATCC15521, and L. rhamnosus ATCC53103 was also used

to monitor runs.

16S rRNA gene sequence processing

Sequence analysis of 16S rRNA data was performed

using Quantative Insights Into Microbial Ecology

(QIIME) version 1.8.0 [28] and in the R environment.

See Supplemental Methods for details.

Sequence and statistical analyses

Since our rarefaction curves approached an asymptote

(indicating adequate community coverage) at a se-

quence depth 10,055 sequences, and all but 5 samples

were sequenced at least to this depth, the operational

taxonomic unit (OTU) table was multiple rarefied to

10,055 high-quality, chimera-checked sequences per sam-

ple for subsequent analyses using a custom script (https://

github.com/alifar76/MicroNorm). All subsequent analyses

were performed on this rarefied table. UniFrac, Canberra,

and Bray-Curtis dissimilarity matrices were generated in

QIIME 1.8.0, and Principal Coordinates Analysis (PCoA)

plots were used to visualize ordinations using emperor

[29]. Permutational multivariate analysis of variance

(PERMANOVA) using the adonis function in the R

Vegan package was used to determine significance in

dissimilarity matrices across samples by metadata cat-

egories (e.g., disease, Dirichlet state, antibiotic use, age,

and disease severity [30, 31]). Faith’s phylogenetic diver-

sity, number of unique OTUs (richness), and Pielou’s

evenness were calculated and a permutational t test

(999 Monte Carlo permutations) was used to determine

changes in alpha diversity. When multiple comparisons

were performed, we corrected for false discovery using

the Benjamini-Hochberg method and reported the

corrected p values as q values, a q < 0.05 was considered

significant [32]. Changes in taxon relative abundance were

determined per OTU using a zero-inflated negative

binomial (https://github.com/alifar76/NegBinSig-Test) dis-

tribution on a regression model. Kruskal-Wallis was used

to determine if statistically significant differences in OTU

or Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway abundances existed between more than two

groups, such as healthy patients, CRS, and CRS+CF pa-

tients. To identify clusters, the Dirichlet-multinomial

mixtures probabilistic community modeling was per-

formed using the DirichletMultinomial package [33] in

R with family-level taxonomy using absolute abun-

dances of each family. The Laplace approximation was

used to calculate model fit and to determine the num-

ber of components (clusters). Distinct sample clusters

that represented the best model fit were termed Dirichlet

states (DS). To determine whether DSIII could be

separated into two phylogenetically distinct groups,

hierarchical cluster analysis was performed on a

weighted UniFrac distance matrix using an edited version

of pvclust in R (code attached in Additional file 1,

Additional file 2, Additional file 3, Additional file 4,

Additional file 5). Kruskal-Wallis was used to determine

whether host genes were significantly up- or down-

regulated in disease. Statistical analysis was performed

using R.

Predicted metagenomics

Metagenome prediction from the closed-reference

OTUs (greengenes 13_5) of the multiple rarefied OTU

table was performed using the Phylogenetic Investigation

of Communities by Reconstruction of Unobserved States

(PICRUSt v. 1.0.0 [34]). QIIME 1.8.0 was used to analyze

the predicted metagenomes. Differential abundances of

pathways were tested using a Kruskal-Wallis test when

comparing more than two groups or a three-model

approach (negative binomial, zero-inflated negative bino-

mial, or poisson distributions) applied on a regression to

test pairwise comparisons. Model fit was determined

using Akaike information criterion (AIC) values, and the

associated statistic was reported (https://github.com/ali

far76/NegBinSig-Test). Nearest Sequenced Taxon Index

(NTSI) scores were calculated using the –a flag in

metagenome_predictions.py. These represent the average

branch length separating OTUs in a sample from a ref-

erence bacterial genome. A heatmap was constructed for

KEGG categories that were enriched or depleted in each

disease state using heatmap.3 in R. For visualization,

read counts were normalized [log2(x + 1)] and scaled by

row. See Additional file 6: Supplemental Methods for

more detail.

Quantitative PCR for bacterial burden and human gene

expression

Quantitative PCR (qPCR) was used to quantify bacterial

burden as a ratio to human beta-actin. See Supplemental

Methods for primers and PCR conditions. A custom

qPCR array was developed (SA Biosciences, Hilden,

Germany) and used to quantify host gene expression

using RNA extracted in parallel from patient sinus

brushes. See Additional file 6: Supplemental Methods
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for gene targets and reverse transcriptase (RT) PCR

conditions.

Results
Sinus mucosal microbiome perturbations characterize

CRS and are related to disease status

Our cohort consisted of 76 subjects. Sixty-five were CRS

patients and 11 were healthy subjects. CRS patients

included those with concomitant lower airway disease

i.e. cystic fibrosis (CRS+CF) or asthma (CRS+A; Table

1). Sinus brushing samples from 2 subjects yielded no

16S rRNA amplicons (both from CRS patients), and a

further 5 samples were removed due to low sequence

depth (<10,000 sequences/sample; n = 4 CRS and n = 1

healthy). Thus, 10 healthy individuals and 59 CRS patients

were included in the analyses presented.

CRS patients exhibited signifcantly higher Lund

McKay scores compared to healthy subjects (p<0.05),

however amongst CRS patients, disease severity did not

differ based on the presence or absence of concomitant

lower airway disease (Tukey’s post hoc comparison; p >

0.05, Additional file 6: Figure S1A). Mucosal bacterial

burden (based on total 16S rRNA copy number) was not

significantly different across healthy and CRS patients

(ANOVA; p = 0.781; Fig. 1a), consistent with previous re-

ports [5, 12]. Also consistent with previous findings [5,

12] was the observation that compared with healthy

subjects, CRS patients exhibited significantly lower

microbiota richness, evenness, and diversity. Of note, di-

minished alpha diversity in CRS patients was more pro-

nounced in those with concomitant lower airway disease

(permutational t test; all p < 0.01; Fig. 1b–d). Multivari-

ate analysis (PERMANOVA) of sinus bacterial beta di-

versity on a weighted UniFrac distance matrix was used

to determine whether factors such as age, antimicrobial

administration, polyposis, revision surgery (a complete

list is provided in Table 2) explained the observed vari-

ation in community composition across all subjects

(CRS and healthy), or exclusively within the CRS pa-

tients. Of these, only disease status (healthy, CRS, CRS

+CF, CRS+A) was significantly related to beta diversity,

but only explained a small portion of microbiota com-

positional variance and the effect size was small (PER-

MANOVA; p = 0.001, 8.9% of variation explained,

Fig. 1e; Table 2).

Discrete pathogenic sinus microbiota exists in CRS patients

We postulated that the microbiota dysbiosis exhibited by

CRS patients does not represent a single state, but rather

a gradient of dysbioses punctuated by a limited number of

distinct pathogenic microbiota compositional states. We

addressed this hypothesis through the application of an

unbiased probabilistic model, Dirichlet-multinomial mix-

tures (DMM) [33] which identifies clusters of samples

a

c

b

d

e

Fig. 1 CRS patients (irrespective of lower airway disease status) exhibit similar total bacterial burden compared with healthy subjects; however, their

microbiota exhibit significantly reduced richness, evenness and diversity. Comparative analyses of sinus microbiota a bacterial burden; b richness (permutation

t test; CRS vs healthy q= 0.006; CRS+A vs healthy, q= 0.0015 CRS+CF vs healthy, q= 0.0015); c Pielou’s evenness (permutation t test; CRS vs healthy q= 0.132,

CRS+A vs healthy, q= 0.015 and CRS+CF vs healthy, q= 0.003]), and d Faith’s phylogenetic diversity (permutation t test; CRS vs healthy, q= 0.007, CRS+A vs

healthy, q= 0.003 and CRS+CF vs healthy, q= 0.003) indices using V4 16S rRNA amplicon sequencing of healthy, CRS, CRS+A and CRS+CF subjects. Values

represent the median +/− 1.5 IQR. e Multivariate permutation testing of principal coordinate analysis using PERMANOVA based on a weighted UniFrac

distance matrix of all samples indicates that disease status explains 8.9% of community composition variation (p= 0.001)
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based on bacterial community composition. Based on a

Laplace approximation, three distinct sample clusters,

termed Dirichlet states (DSI-III) represented the best

model fit (Additional file 6: Figure S3A); DSI comprised

26 subjects (n = 9/10 healthy, n = 17 CRS), DSII comprised

14 CRS patients, and DSIII comprised 28 CRS patients

and one healthy subject. Upon chart review, it was noted

that this particular healthy subject had allergic rhinitis. DS

clusters were confirmed as compositionally distinct by

PERMANOVA (weighted UniFrac PERMANOVA; p =

0.001, 31.8% variation; Fig. 2a), a finding that was robust

irrespective of the distance matrix used to analyze the 16S

rRNA data (Table 3, Additional file 6: Figure S2A).

Both weighted and unweighted UniFrac distance matrices

significantly explained DS-defined sample clustering, indi-

cating that both bacterial phylogeny and rarer taxa in

these communities discriminated DS groups. To further

confirm this, sequence reads associated with the dominant

family in each sample were removed and the data reana-

lyzed. DS classification remained significantly related to

community composition (weighted UniFrac PERMA-

NOVA; p = 0.001, 18.2% variation; Additional file 6: figure

S2B) indicating that patterns of co-associated lower abun-

dance taxa are discrete and relatively conserved within

each of the three DS microbiota.

The proportion of healthy subjects and CRS patients

with or without pulmonary co-morbidities varied signifi-

cantly across DSI-III (Chi-squared; p = 0.0007; Fig. 2b),

with DSI possessing the least and DSII the greatest pro-

portion of CRS patients with concomitant lower airway

disease (CRS+CF and CRS+A). This implicates a co-

association between specific pathogenic sinus commu-

nity states and lower airway disease and also provides

the first evidence that specific pathogenic sinus micro-

biota are common to both CF and asthmatic patients.

While recent antibiotic use trended towards significance,

it only explained a very minor portion of community

compositional variance (PERMANOVA; p = 0.052, r2 =

0.036; Table 2) and did not differ across DSI-III (Chi-

squared; p = 0.149). This is likely because these micro-

biota exist in antimicrobial resistant biofilms on the

sinus mucosal surface [35]. Disease severity, as measured

by Lund-Mackay radiographic scores also did not differ

across DSI-III (ANOVA p = 0.825), suggesting that distinct

pathogenic microbiota may drive equally severe disease

symptoms, albeit via distinct mechanisms (it should be

noted that these patients were undergoing functional

endoscopic sinus surgery at the time of sample collection).

DSIII was the largest group and was comprised of

patients whose sinus mucosal microbiota represented

a compositional continuum dominated by either

Staphylococcaceae (Firmicutes) or Corynebacteriaceae

(Actinobacteria). Since these taxa are phylogenetically

distinct, are known competitors in the upper airways

[36, 37], and elicit unique immune responses [38], we

identified Corynebacteriaceae- or Staphylococcaceae-

dominated patients within this group as distinct DSIII

sub-groups, identified as DSIII(a) (n = 9) or III(b) (n = 19;

Fig. 2b), respectively. This sub-grouping strategy was

statistically supported by hierarchical clustering analysis

on a weighted UniFrac distance matrix (au, p < 0.05;

Additional file 6: Figure S3B), and we confirmed the

existence of a reciprocal relationship between Corynebac-

teriaceae [DSIII(a)] and Staphylococcaceae [DSIII(b)]

relative abundance across DSIII samples (Additional

file 6: Figure S3C).

Each pathogenic microbiota state (DSI-III) was charac-

teristically dominated by a distinct bacterial family that

co-associated with a relatively unique suite of lower

abundance taxa (Fig. 2c). To identify taxonomic differen-

tials characteristic of each CRS microbiota state, each

was compared to healthy subjects using zero-inflated

negative binomial (ZINB) regression (Fig. 2d–g,

Additional file 3). The identity and magnitude of de-

pleted taxa was relatively consistent irrespective of the

CRS microbiota state examined and included Streptococ-

cus, Rothia, Haemophilus, and Lactobacillales members

(ZINB; p < 0.05, q < 0.10; Fig. 2d–g). The magnitude and

types of taxa enriched in CRS patients differed by

Table 2 Multivariate analysis (PERMANOVA) of sinus bacterial

beta diversity on a weighted UniFrac distance matrix

PERMANOVA (patient cohort) r2 p value

Dirichlet state (disease
a
) 0.326 0.001

Dirichlet state (all
b
) 0.318 0.001

Disease (all) 0.088 0.014

Antibiotic use <3 months (disease) 0.036 0.052

Polyp presence/absence (disease) 0.025 0.152

Anatomic location (all) 0.039 0.185

Age bin 10 year (all) 0.118 0.196

Antibiotic class <3 months (all) 0.260 0.24

Age bin 5 year (all) 0.153 0.367

Antibiotic class <3 months (disease) 0.286 0.399

Anatomic location (disease) 0.0348 0.403

Age bin 10 year (disease) 0.119 0.473

Age bin 5 year (disease) 0.168 0.521

LMS Bin (low/medium/high) (disease) 0.046 0.554

Revision surgery (Y/N) (disease) 0.042 0.668

Age (disease) 0.674 0.799

Lund-Mackay score (LMS) (disease) 0.327 0.906

Age (all) 0.561 0.944

aCRS, CRS+CF, CRS+A
bHealthy, CRS, CRS+A, CRS+CF

Those in boldface are significant (the r2 value indicates the degree of

community variance explained by the specific factor)
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Fig. 2 (See legend on next page.)
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community state (Fig 2c) and were most pronounced in

DSIII(a) and III(b), which exhibited relatively large

Corynebacterium or Staphylococcus enrichments, respect-

ively. DSI, though most compositionally similar to healthy

controls, exhibited relative enrichment of Streptococcus as

well as Porphyromonas, Tannerella, Treponema, Bacter-

oides, Dialister, and Akkermansia (ZINB; p < 0.05, q <

0.05). DSII, dominated by Pseudomonadaceae, was also

relatively enriched for Fusobacterium, Aggregatibacter,

Achromobacter, and Prevotella (ZINB; p < 0.05, q < 0.05),

known airway pathobionts characteristically enriched in

CF and asthmatic lungs [1, 7, 39, 40]. Presumably, this

reflects the increased number of such patients in this sub-

group and indicates that archetypal lower airway micro-

biome dysbioses in CF and asthmatic patients may also be

reflected in the upper airway bacterial community

composition of these patients. While DSIII(a) and III(b)

shared substantial taxonomic overlap, explaining their stat-

istical grouping into a single DMM cluster, DSIII(a) was

uniquely enriched for Sphingomonas (ZINB; p < 0.0001, q

< 0.0001; Fig. 2f) and DSIII(b) uniquely co-enriched for

eight taxa absent in III(a) [Actinobacteria, Bifidobacterium,

Haemophilus, Enterobacteriaceae, Pseudomonadaceae,

Sphingomonadaceae (unclassified genus), Selenomonas,

and Streptophyta (ZINB; p < 0.05, q < 0.05; Fig. 2g)].

Because the majority of healthy individuals were classi-

fied into DSI, we also compared DSII, III(a) and III(b)

individually to DSI. General concordance was observed

between taxa enriched in DSII or III when compared to

either DSI or healthy subjects (ZINB; p < 0.05, q < 0.05;

Additional file 6: Tables S1-S3). The primary discrimin-

ating genera for each DS remained consistent; differ-

ences were only observed in a select few low abundance

taxa, validating the observation that the DSI microbiota

was compositionally similar to that of healthy subjects.

When compared to DSI, DSII remained enriched for

Aggregatibacter, Achromobacter, Fusobacterium, and Pre-

votella but was also relatively enriched for Pseudomonas

(ZINB; p = 0.004, q = 0.026). DSIII(a) and III(b) remained

highly enriched for Corynebacterium or Staphylococcus

although Cloacibacterium were uniquely co-enriched

with Corynebacterium and Serratia were uniquely co-

enriched with Staphylococcus when these groups were

compared with DSI.

Predicted functional capacity discriminates sinus bacterial

Dirichlet states

Bacterial metagenomes were predicted in silico for each pa-

tient using PICRUSt, an algorithm which uses biomarker

gene sequence data i.e., 16S rRNA to infer evolutionarily

conserved functional gene capacity using representative se-

quenced and predicted ancestral genomes. Associated

Nearest Sequenced Taxon Index (NTSI) scores which indi-

cate the degree of relatedness between OTUs and se-

quenced genomes used for PICRUSt predictions are

detailed in Additional file 7. Each microbiota state was

predicted to encode a distinct metagenome (Bray-Curtis

PERMANOVA; p = 0.001, 23.2% variation explained;

Additional file 6: Figure S4) and a total of 196 KEGG

pathways differentiated pathogenic microbiota states

compared control patients (three-model test; p < 0.05,

q < 0.10; Fig. 3a). Only 21 KEGG pathways discrimi-

nated patients with distinct lower airway co-

morbidities (asthma+/−, CF; Kruskal-Wallis; p < 0.05,

q < 0.10; Additional file 6: Table S4), indicating sub-

stantial overlap in sinus microbiota function in the

upper airways of CRS patients with distinct lower air-

way diseases. Compared to healthy microbiota, the

DSII group was the least functionally diverse (permu-

tational t test; q < 0.05; Fig. 3b) and depleted of 67

KEGG pathways for lipid, carbohydrate, terpenoid, and

xenobiotic metabolism. DSII and III(b) were both sig-

nificantly enriched in bacterial virulence pathways, includ-

ing two-component response systems, and for fatty acid

and tryptophan metabolism pathways associated with in-

flammation (negative binomial; p < 0.05, q < 0.05;

Fig. 3c–d, Additional file 6: Table S5), when com-

pared to healthy controls. DSI patients were depleted

of polyketide and folate biosynthesis and enriched for

a pathway responsible for ansamycin biosynthesis, a

(See figure on previous page.)

Fig. 2 Dirichlet-multinomial mixtures modeling identifies microbial states that explain a large portion of variation in microbiota composition. a

Multivariate permutation (PERMANOVA) testing of DS designation (I-III(b)) explains 31.8% of variation in sinus mucosal microbiota composition

(p = 0.001). The most abundant family-level taxa are indicated. Size of sphere is proportional to the average relative abundance of each dominant

taxon. b Distribution of co-morbidities (CF or physician-diagnosed asthma) signifcantly differ across microbiota states. DSI was represented by CRS

patients and 9/10 of the healthy controls. DSII was enriched for CRS+CF and CRS+A patients, whereas DSIII was comprosed primarily of CRS pa-

tients without concomitant lower airway disease, and one healthy control subject (Chi-squared; p = 0.0007). c Stacked bar chart indicating the dis-

tribution of taxa in the sinuses grouped by DS. d–g Three-model testing of differential taxon abundance indicates that each DS is associated with

enrichment for specific taxa and co-colonizers and depletion of microbiota associated with healthy individuals (ZINB; p < 0.05, q < 0.10)

Table 3 Weighted and unweighted UniFrac distance matrix

PERMANOVA (Dirichlet states) r2 p value

Weighted UniFrac 0.326 0.001

Unweighted UniFrac 0.182 0.001

Bray-Curtis 0.195 0.001

Canberra 0.099 0.001
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microbial secondary metabolite with a broad range anti-

microbial activity (poison; p < 0.0001, q < 0.0001; Additional

file 6: Table S5A) [41]. Corynebacterium-dominated

DSIII(a) was characterized by both peroxisome proliferator-

activated receptor-γ [(PPAR-γ) negative binomial; p = 0.003,

q = 0.018; Fig. 3e, Additional file 6: Table S5C] and the

retinoic acid-inducible gene-1 (RIG-I) signaling pathways

(negative binomial; p = 0.015, q = 0.062; Additional file 6:

Table S5C), both of which have been shown to be increased

in eosinophilic polyp tissue in CRS patients [42, 43].

Sinus microbial communities correlate with clinical

outcomes

Bacterial community composition within the cohort did

not correlate with polyposis (weighted UniFrac; PERMA-

NOVA; p = 0.152, 2.5% variation; Fig 4a). However, based

on the microbiota and predicted metagenome data, specif-

ically, the enrichment of RIG-I and PPAR-γ signaling

pathways (previously associated with polyposis) in the

Corynebacterium-dominated DSIII(a) patients, we pre-

dicted that these patients would exhibit significantly in-

creased incidence of polyposis. We therefore performed

an assessment of polyp relative risk across microbiologic-

ally discrete CRS patient sub-groups compared to DSII

patients, who possessed compositionally similar micro-

biota to those of healthy subjects and the lowest incidence

of polyposis (41%; 7 of 17 patients). As expected, the

DSIII(a) sub-group exhibited a significantly higher rela-

tive risk of polyposis compared to all of the other

microbiologically defined patient sub-groups, with 89%

(8 of 9 patients) of patients in this group exhibiting

polyposis (Fisher’s exact; relative risk = 2.159, p = 0.039;

Fig 4b).

Bacterial co-colonization patterns correlate with patterns

of host gene expression

To determine, as we hypothesized, whether distinct DS-

induced discrete host immune responses, we used qPCR

to measure expression of innate and adaptive genes pre-

viously associated with CRS (Th1, Th2, Th17 and Treg

cytokines, mucin, and epithelial barrier genes) using

RNA extracted in parallel with DNA used to profile mi-

crobial communities from sinus brushings of all subjects.

Fold change in gene expression (compared to healthy

a b

c d e

Fig. 3 Variation in predicted metagenomes associated with each Dirichlet state. a Heatmap of significantly enriched (red) or depleted (blue) KEGG

pathways collapsed at level 3 compared to healthy subjects (negative binomial; p< 0.05, q< 0.10, DS vs. nonCRS). For visualization, read counts were

normalized [log2(x+ 1)] and scaled by row. b DSII is significantly functionally depleted, measured by total unique KEGG pathways compared to healthy

individuals (permutational t test; q= 0.0025). c Tryptophan metabolism is enriched in DSII [Pseudomonadaceae-defined, (negative binomial; p= 0.021,

q= 0.059)] and DSIII(b) [Staphylococcaceae-defined (negative binomial; p= 0.005, q= 0.012)]. d The two-component response system virulence pathway

is enriched in DSII [Pseudomonadaceae-defined, (negative binomial; p= 0.0002, q= 0.002)] and DSIII(b) [Staphylococcaceae-defined (negative binomial;

p= 0.0002, q= 0.002)]. e PPAR-γ signaling pathway is enriched in DSIII(a) [Corynebacteriaceae-defined (negative binomial; p= 0.003, q= 0.0175)]
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subjects) was used to generate a multivariate immune

response profile for each subject.

Each CRS DS group exhibited a significantly distinct

host immune response, the specifics of which varied

across CRS patient sub-groups (Fig. 4c; full array in

Additional file 6: Figure S5). DSI, II, and III(b) patients

exhibited significantly increased IL-1β, implicating

macrophage and inflammasome involvement in these

patients. In addition to IL-1β, patients in DSII also

exhibited increased IL-6, TNF-α, IL-8, and IL-10

expression (Kruskal-Wallis; p < 0.05, q < 0.05), suggestive

of an epithelial/endothelial and/or macrophage-driven

mucosal inflammatory response. DSI patients, whose

microbiota composition differed subtly in taxonomic

content from healthy individuals, were immunologically

distinct and exhibited significantly increased IL-1β, IL-6,

and IL-10 compared to healthy individuals (Kruskal-

Wallis; p < 0.05, q < 0.05). Thus, subtle taxonomic differ-

ences may influence the activity of this microbiota, or,

alternatively, non-bacterial microbiota members

may contribute to immune-stimulation in this subset of

patients. DSIII(a) patients who are at higher relative risk

for polyposis and whose sinus mucosal microbiome

was enriched for Corynebacterium and predicted to

encode PPAR-γ and RIG-I signaling pathways were

the only group to exhibit a significant increase in IL-

5 expression (Kruskal-Wallis; p < 0.05, q < 0.05;

Fig 4d). IL-5 is a potent activator of eosinophils, the

dominant immune cell type in polyp tissue in West-

ern populations of CRS patients [44]. Furthermore,

these patients also had increased levels of IFN-γ

(Kruskal-Wallis; p = 0.017, q = 0.107), which has been

associated with non-eosinophilic polyposis [45].

Collectively, these findings indicate that distinct dys-

biotic pathogenic bacterial microbiota states exist in

CRS patient sub-groups that differ in relative risk for

polyposis and induce discrete immune responses re-

lated to their clinical phenotypes.

Discussion
Clinical diagnosis of CRS is somewhat subjective and often

does not correlate well with patient outcomes [19]. Im-

proved stratification of patients offers the opportunity to

better tailor therapeutic regimens and advance towards the

ultimate goal of personalized therapy. A previous study of

the CRS-associated microbiota demonstrated evidence for

mucosal microbiota collapse in patients with severe disease

and enrichment of C. tuberculostearicum [5]. That study

also noted that though the number of CRS patients was

very small, they parsed into two distinct groups based on

sinus microbiota composition. In the current study, we val-

idate previous findings and extend them, demonstrating

that the CRS bacterial microbiota can exist in at least four

distinct taxonomic states (one of which is dominated by

Corynebacteriaceae). We suspect that these represent a

gradient of pathogenic microbial co-colonizations that are

related to patient treatment history and/or disease progres-

sion. Previous CRS microbiota studies have described high

inter-patient taxonomic variability and dominance of com-

mon respiratory pathogens Corynebacterium, Staphylococ-

cus, Pseudomonas, and anaerobes such as Fusobacterium

and members of Prevotellaceae [11–13, 46, 47]. These gen-

era also feature prominently in our study, but we expand

upon these findings to demonstrate that these respiratory

pathogens co-associate with distinct and reproducible

microbial partners and explain a large proportion of the

a b c

Fig. 4 Microbial states confer a differential risk for polyposis and are significantly associated with distinct profiles of host immune

response. a Multivariate permutation (PERMANOVA) testing of presence or absence of polyps at time of surgery does not indicate a

significant relationship at the whole-community level (p = 0.152, 2.5% variation explained). b Patients with DSIII(a) have a significantly

increased risk for polyposis (88.9% of patients have polyps; Fisher’s exact; p = 0.032, relative risk = 2.159 compared to DSI). c Heatmap

of Z score-normalized mean fold change (2−∆∆Ct) for each gene examined indicates that immune responses distinct from that of healthy

subjects are evident in CRS patients; samples are grouped by DS and healthy individuals (*indicates Kruskal-Wallis; p < 0.05, q < 0.15;

**indicates Kruskal-Wallis; p < 0.05, q < 0.05; DS vs. nonCRS)
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observed inter-personal microbiota variation in CRS

patients. These microbiologically distinct states are pre-

dicted to encode different metagenomes, are associated

with a characteristic innate and adaptive host immune

response, and differ significantly in the incidence of nasal

polyposis, an important clinical phenotype of CRS.

Approximately one fifth of CRS patients had a mucosal

microbiota characteristically enriched for Corynebacteria-

ceae and depleted of Streptococcus. Lemon and colleagues

recently demonstrated that Corynebacterium accolens, a

common skin commensal, metabolizes triacylglycerols in

nasal secretions to oleic and linoleic acid, which inhibits

Streptococcus pneumoniae growth [48]. Metagenome

predictions indicated that the Corynebacteriaceae OTUs

in dysbiotic CRS patient microbiota also encode the cap-

acity for linoleic acid biosynthesis, suggesting that this

mechanism of Streptococcus inhibition may play a role in

deterministically shaping the pattern of co-colonizing

species around this dominant respiratory pathogen in the

chronically inflamed sinus microbiota. However, further in

vitro and in vivo studies are required to determine

whether this mechanism plays a role in defining CRS

microbiota composition. Independent of this pathway, a

recently described phylogenetic-related species, Cor-

ynbecterium pyruviciproducens, has been shown to

stimulate dendritic cell maturation and proliferation

and up-regulate Th2 responses in mice [49]. Additionally,

the lipoarabinomannan-based lipoglycans of Corynbecter-

ium glutamicum induce Th17 responses via TLR2 recog-

nition on dendritic cells [50], indicating several discrete

pathogenic pathways exist in this genus. In our study,

Corynebacteriaceae-defined microbial communities were

enriched in PPAR-γ and RIG-I pathways. PPAR-γ, a lipid-

sensing receptor, controls gene expression and metabol-

ism and has recently been shown to regulate eosinophil

activation in polyp tissue of CRS patients [42]. It has also

been associated with asthma [51] and airway remodeling

following allergic inflammation in mice [52]. RIG-I, an

intracellular sensor of viral DNA, is elevated in nasal

polyp tissue [43] and is induced by IFN-γ [53]. Consistent

with these observations, patients possessing a Corynebac-

teriaceae-dominated community state were uniquely asso-

ciated with increased IL-5 and IFN-γ gene expression and

were at a higher risk for developing polyposis. Mounting

evidence suggests that members of this family, particularly

in the context of a taxonomically and functionally de-

pleted sinus microbiota, represent a group of underappre-

ciated pathobionts, whose activities induce TH2-skewed

immune responses.

Of the remaining DMM-identified microbial states,

patients classified into DSII (Pseudomonadaceae-domi-

nated) were the least functionally diverse, the most im-

munologically active, and housed the greatest proportion

of CF and asthma patients, who also commonly exhibit

lower airway microbiota dominated by this family.

Predicted functional enrichments in DSII included path-

ways involved in tryptophan metabolism and lipopoly-

saccharide biosynthesis, both of which induce host

inflammatory responses [54]. For example, recent studies

have demonstrated that HIV-infected patients with the

greatest degree of peripheral immune activation are

enriched for Pseudomonas species in their gastrointes-

tinal microbiota and that isolates of Pseudomonas from

these patients exhibit the capacity to catabolize trypto-

phan to pro-inflammatory kynurenine in vitro [55, 56].

Interestingly, other co-colonizing members of the DSII

community are known producers of tryptophan e.g.,

Achromobacter [57], implicating metabolic cross-feeding

between the dominant respiratory pathogen and it's co-

colonizers as a deterministic mechanism that plaus-

ibly underlies their frequent co-association in Pseudo-

monas-dominated sinus microbiota. Additionally,

tryptophan metabolites increase biofilm formation [58,

59] and virulence gene expression [60, 61], indicating

that enhanced capacity for the production and metabol-

ism of this crucial amino acid by co-associated members

of this community state may be critical to enhanced

antimicrobial resistance and pathogenicity. Immuno-

logically, patients in DSII, which had the highest preva-

lence of CRS+CF patients, exhibited increases in genes

associated with neutrophil and macrophage activation,

including TNF-α and IL-8, which is consistent with CF

airway immune responses associated with strains of P.

aeruginosa specifically adapted to the lung environment

[62, 63]. IL-1β gene expression was increased in DSI, II,

and III(b), which may indicate a role for inflammasome

activation in CRS patients with TH1-skewed disease.

Inflammasomes are multi-meric protein complexes that

assemble in cells to control the production of IL-1β and

IL-18 following activation by pathogen-associated mo-

lecular patterns (PAMPs), such as peptidoglycan [64].

The goal of this study was to better understand CRS

patient heterogeneity by leveraging high-resolution

microbiota profiles to stratify patients into discrete sub-

groups and to determine whether such a stratification

strategy explained immunological and clinical outcomes

in these patients as has been demonstrated in other

chronic diseases [4, 22, 23, 65]. We demonstrate the

existence of distinct microbiota states and show that

they are robust and encode unique functional attributes

that correlate with mucosal immune responses and clin-

ical outcomes. We recognize that this cross-sectional

study cannot address whether these microbiota states

are stable or transient; however, it is plausible that they

represent a gradient of pathogenic bacterial community

successional states associated with disease progression.

It will be interesting to determine whether medical

management of CRS, such as antimicrobial treatment or
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surgery, alters a patient’s microbiota state and associated

inflammatory response towards that of a different con-

formation and whether the states we have identified are

in fact related to disease progression or duration. Antibi-

otics can rapidly and pervasively shift the composition

of the microbiota in the human gut [66, 67] and can in-

fluence sinus microbial composition, at least in the short

term [68]. Future studies will examine the effects of

medical and surgical management of CRS on the stabil-

ity of the disease microbiota. Although concomitant

lower airway co-morbidities (asthma or CF) explained a

small portion of beta diversity variation, we demonstrate

that some asthmatics and cytsic fibrosis patients share

the same sinus microbiot a state. This observation sug-

gests that subsets of patients with clinically distinct re-

spiratory diseases share the same pathogenic microbiota

and host immune response. The concept that discrete

respiratory diseases have overlapping pathophysiology

has been recently explored in asthma and chronic ob-

structive pulmonary disease (COPD) [69, 70]. Our data

suggests this phenomenon may extend to CF and be ex-

plained, at least in part, by overlapping microbiota

colonization states. Furthermore, enrichment of Proteo-

bacteria in the lower airways patients with established

asthma or CF is well documented [7, 71, 72]; our find-

ings demonstrate that lower airway bacterial biomarkers

of these respiratory diseases exist in the upper respiratory

tract, which may represent a source of pathogenic mi-

crobes for lower airway colonization. Future studies will

incorporate more thoroughly characterized asthmatics,

since asthma immune subtypes are well described and

may plausibly be explained by the microbiota states ob-

served in our study [73].

In this initial study, we did not profile viral or fungal

components of these microbiota states, which also likely

play a role in driving the observed bacterial heterogeneity

or host immune response. We also recognize the limita-

tions of using a predictive algorithm to infer metagenome

content, particularly since PICRUSt has been most

thoroughly studied in the GI tract, (though PICRUSt pre-

dictions on nasal samples from the Human microbime

Project have been shown to be robust when compared to

shotgun metagenome sequencing [33]). Future studies will

use shotgun metagenomics and transcriptomics ap-

proaches to confirm PICRUSt-predicted metagenomes as

well as to identify viral and fungal taxa in these patients.

We anticipate that metagenomics, in parallel with meta-

bolomics and transcriptomics will substantially improve

our capacity to meaningfully stratify patients based on

their microbiome.

We observed a non-significant trend towards an asso-

ciation between antibiotic usage and microbiota com-

position in our study. It is possible that this study was

not sufficiently powered to find an association between

antibiotic use and microbial composition and that the

compositional differences between CRS and healthy

subjects may, at least in part, be antibiotic-mediated. We

are continuing to recruit patients and will examine this

possibility in larger cohorts of cases and controls. Fi-

nally, though the precise cellular source of the cytokines

induced by the pathogenic bacterial community states

cannot be gleaned from our gene expression studies of

human sinus mucosa, we identified significantly up-

regulated genes associated with each state that warrant

further investigation. Despite these limitations, the mi-

crobial and immunological features described herein

provide an explanation for CRS patient heterogeneity

and provide a foundation for improved understanding

of how distinct pathogenic sinus microbiota may col-

lectively and distinctly drive mucosal disease processes

in CRS patients.

Conclusions
Heterogeneity among CRS patients is poorly understood

and represents a significant barrier to disease treatment

and to the development of more effective therapies. This

study validates and extends previous findings that show

collapse of mucosal-associated microbiota in CRS

patients [5, 12, 47]. Here, we demonstrate that CRS

microbiota can exist in at least four compositional states

that are predicted to have distinct functional attributes,

correlate with distinct host immune responses, and asso-

ciate with differential risk for nasal polyps, an important

clinical disease phenotype. The presence of Corynebac-

teriaceae-dominant microbial communities in CRS

patients were associated with increased IL-5 gene

expression and increased risk for nasal polyps while the

remaining three microbial community states were im-

munologically diverse and were not associated with

polyp risk. These findings support prior studies that

characterize the immunological heterogeneity of CRS

patients using similar clustering approaches [20], but by

examining microbial signatures, our studies may provide

an explanation for these diverse immune profiles that

exist within this patient population. The microbial and

immunological features described here may inform

strategies for tailored therapy in this patient population.
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between CRS, CRS+A or CRS+CF patients; B. CRS-CF patients are

significantly younger than CRS+A patients (ANOVA, Tukey’s p = 0.041);

however, no differences in age were observed for pairwise compari-

sons between the other groups (p > 0.05, Tukey’s post hoc test). Fig-

ure S2A. PCoA of an unweighted UniFrac distance matrix colored by

DSI-IIIb and healthy (PERMANOVA p = 0.001, 18.2% variation explained);

B. PCoA of weighted UniFrac distance matrix after dominant sequence reads

associated with the dominant family in each sample were removed

demonstrating that DS still significantly explains variation in community

composition despite removal of the dominant taxon from each sample

(PERMANOVA p = 0.001, 17.6% variation explained).

Figure S3A. Laplace model fit demonstrates three distinct Dirichlet

multinomial mixtures groups. B. Hierarchical cluster analysis using a

weighted-UniFrac distance matrix showing that microbiomes enriched in

Corynebacteriaceae forms a distinct cluster (au p = 100). Heatmap shows

relative abundance of the bacterial general that comprise >90% of the total

sequence reads. C. Reciprocal relationship between Corynebacteriaceae and

Staphylococcaceae. Figure S4. PICRUSt-predicted functional variation across

microbial Dirichlet states shows significant functional differences A. PCoA

of Canberra distance matrix; PERMANOVA p = 0.001, 21.7% of variation

explained) B. PCoA of Bray-Curtis distance matrix; PERMANOVA p = 0.001,

22.0% of variation explained). Figure S5. Expression levels of all host

immune genes measured by QPCR (*indicates Kruskal-Wallis p < 0.05,

q < 0.15; **indicates Kruskal-Wallis p < 0.05, q < 0.05; DS vs. nonCRS).

Table S1–S5. (ZIP 1671 kb)

Additional file 7: Nearest Taxon Sequence Index (NTSI) scores for

PICRUSt predictions. (XLSX 41 kb)
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