
I. Benjamini, O. Häggström (eds.), Selected Works of Oded Schramm, Selected Works in Probability

and Statistics, DOI 10.1007/978-1-4419-9675-6_17, C© Springer Science+Business Media, LLC 2011

571

rSRABL JOURNAL OF MATHEMATICS 147 (200S), 22 1_243 

COMPOSITIONS OF RANDOM TRANSPOSITIONS 

BY 

0D1m SClIRAMM 

Microsoft /kset1N;h, One Microsoft Way, Redmond, WA 98052-6399, USA 

In lovin9 memory of my parents, Hanna and Mickey Schramm 

ABSTRACT 

Let \' = (YI,Y2, .. ), Ill:::: 112 :::: .,., be the list of sizes of the cycles in 

the composition of en transpositions on the set (1,2, . .. , n). We prove 

that if e > 1/2 is constant and n. -+ 00. t he distribut ion of !(e)Y/n 

converges to PD(l ), the Poisson- Dirichlet d istribution with parameter 

1, where t he function! is known explicitly. A new proof is presented 

of the theorem by Diaconis, Mayer-Wolf. ZchOUlli and I'..erner stating 

that the P D( I) measure is the unique invariant measure for t he uniform 

coagulation-fragmentation prOCCllS. 

1. Intro d uction 

Consider the composition 1I"t = Tt 0 T t _ 1 0 •.. C T2 0 Tl of random, uniform, 

independent traspositions Tj of V := {l ,2, ... ,n} . How large must t be in 

order fo r 7rt to "look like" a random-uniform permutation 7r of V? As we will 

see, the answer depends on the precise meaning given to the term "look like". 

It is easy to check that P [7r(v) = v] = l /n for all v E V . Therefore, the 

expected number of fixed points of 7r is 1. However, jf v does not appear ill any 

of the t ranspositions T J , T2 , . .. ,Tt , then 7rt{v) = v. By the fami liar solution of 

the COUpOI! collector's problem, we see that when t = o(nlogn), the probability 

that 7rt has at most one fixed point is small. In this sense, 1ft and 11" are rather 

different when t = o(n logn). On the other hand, when t > cn log n , c > 1/2, 

the tota] variation distance between the law of 7rt and that of 7r tends to zero 

as n -t 00 [DS81]. 

We now consider the situation where t '5 en with c < 1/2. Let Gt be the 

graph on V = {1,2, ... ,n} where {v,u} is an edge in Gt if and only if the 
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transposition (v, u) appears in {T. , . .. ,Tt }. Let Vb denote the set of vertices of 

the largest connected component of Gt (with arbitrary tie breaking if there is 

more than one). By the ErdOs- Renyi Theorem, when t :s; en , C < 1/2, we have 

IV61 = O(logn) asymptotically almost surely (a.a.s.). It follows that the largest 

cycle (orbit) of 7ft is also of size O(logn). When c = 1/2, the same holds, but 

with logn replaced by any function growing faster than n2
/ 3 . This contrasts 

with the fact t hat for every k E {l , 2, ... ,n} t he probability that the cycle of 

1T containing 1 has size ::; k is precisely kin. Thus, 71"t is very different from 7r 

when tin::; c::; 1/2 . 

Our main theorem deals with the case where tin ~ c > 1/2. Confirming a 

conjecture by Aldous, we prove that in this range, the large cycles of 'Jrt , when 

normalized by t heir total length , have a. distribution that is dose to t hat of the 

large cycles of 'Jr. A more precise statement of this result will be given shortly. 

Let a be some permutation of V . Let X (a ) denote the set of cycles (orbits) of 

elements of V under a . The cycle structure X(a) is then the sorted list of t he 

lengths of the cycles, that is, the list (lei : C E X(u» sorted in nonincreasing 

order. Thus, Xi (a) denotes t he size of the i-th largest cycle of 0'. If i is larger 

than the number of cycles of 0' , then we set Xi(U) = 0, by convention. Since each 

Tj is chosen uniformly among the transpositions, it follows that for each fixed 

permutation a of V the distribution of 1I't is the same as that of a01l'toO'-1. Thus, 

the distribution of 1rt is determined by the distribution of the conjugacy class of 

1rt . Now, the conjugacy class of ITt is determined by X(ITt}. Consequently, the 

distribution of X(1rt) determines the distribution of 1rt. 

We are now ready to state our main theorem, which gives a positive answer 

to a conjecture by David Aldous as stated in [BDl. 

THEOREM 1.1: Let c > 1/2, and take t ~ en. As n -t 00, the Jaw ofX(1rd/WJI 
converges weakly to the Poisson- Dirichlet distribution PD(l ) with parameter 

1 (which is deEned below) . 

A more explicit statement of t he theorem is as follows. Given c > 1/ 2 and 

€ > 0, there is an n ee, d such that for every n > n(c, €) and every t ~ en there 

is a coupling of the sequence of transpositions Tj and a PD(l ) sample Y such 

that 

P[IIY - X (~')/JVJ[lIoo < t[ > 1 - t. 

Weak convergence has several equivalent formulations (sec [Dud89]) , and we 

have opted to use the coupling version here. 

The PD(l ) distribution is a probability measure on the infinite dimensional 
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simplex 

and may be defined as follows. Let U1 , U2 , .•. be an i.i.d. sequence of random 

variables uniformly distributed in [O,IJ. Set XI := V I and inductively Xj := 

Uj (1 - "L.1:: xd· Let (Yi) be the sequence (xl) sorted in nonincreasing order. 

The PD(I) distribution is defined as the law of (Vi)' See, for example, [HoIOlJ 

for other definitions and a discussion of some of the properties of the Poisson­

Dirichlet distributions. 

The behaviour of the size of the largest cluster of C t , which is the normalizing 

quantity 1V&1 in the theorem, is known precisely. The Erdos- Renyi theorem (see, 

e.g., [ASOOJ) tells us that 

(II ) IVJI(n --> '(2t(n) 

in probability as n -t 00, where z(s) is the survival probability of a Galton­

Watson branching process with offspring distribution which is the Poisson ran~ 

dom variable with mean s . Moreover , z(s} is the positive solution of the equation 

1 - z = exp( -sz) when s > 1 and z(s) = 0 for s E [O,IJ. 

Berestycki and Durrett [BD] have analysed other aspects of the chain 1I"t which 

exhibit a phase transition near t = n/2: they investigate the minimal number 

of transpositions necessary to write 1I"t as a composition. 

In [DMP95j, Diaconis, McGrath and Pitman discuss the Riffle shuffle, which 

is another example where the large cycles appear relaxed well before the per~ 

mutation is uniformly distributed. 

The evolution of X(1I"d is also known as the discrete uniform coagulation~ 

fragmentation process. Let us briefly describe the transition from X(1I"d to 

X( 1rt+1)' Suppose that Tt+l is the transposition ( a, b). Then a and b are selected 

uniformly from V, and are "almost independent". (We could also allow a = bi 

then T = (a,a) would be the identity transposition, and a and b would be 

independent. That would not change anything significant in the following. ) 

Let X j, X j E X(nd satisfy a E Xi, b E X j . Then Xi and Xj are size biased 

selections from X(nd, and are nearly independent given 1I"t. If Xi t=- Xj, then in 

1rt+l the two cycles Xi and Xj are replaced by the single cycle whose vertices are 

XiUXj. If Xi = X j, then this cycle splits into two cycles of 1rt+I ' If k = IXll and 

mE N+ is the least positive integer sati8fying 1t;n(a) = b) then the resulting two 

cycles of 1rt+ l are (a,1I"t(a), .. . ,1I";n- I(a» and (b,1I"t(b), ... , 1I"f ~ m- l (b). Note 

that given Xi and given Xi = Xj , the resulting two new cycles have sizes m 

and !Xd - tn, where m is chosen uniformly in {I, 2, ... , IXil- I}. 
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There is a similar continuous coagulation-fragmentation process, which is a 

discrete time Markov chain on the infinite dimensional simplex fl. The transition 

kernel M of the chain operates as follows . Given Y = (Y1 , Y2, " ') E fl, we choose 

two indices i,j E N+ independently, with P [i = klYj = P [j == klY] = Yk - If 

i i- j, then let yl be obtained from Y by replacing t he two entries Yt and lj 

with t he single entry }j + Yj and resorting. If i = j, then given (Y, i,j), a 

random variable v is selected uniformly in [0, Yd and y l is obtained by splitting 

the entry Yi into t he two entries 1J and }j - v, and resorting. Then yt is the 

new state of the Markov chain. 

It is known that the probability measure P D(l) is invariant under M. Appar­

ently, this was first proved in [Wat76J; references for several other proofs of this 

fact are given in [DMWZZ]. Vershik conjectured that PD(l) is the only invari­

ant measure. Subsequently, this was proved by Diaconis , Mayer-Wolf, Zeitouni 

and Zerner: 

T HEOREM 1.2 ([DMWZZ]): The invariant measure for M is unique. 

See {DMWZZ] for more information and bibliography regarding the history 

of the problem, including some earlier established special cases. 

The proof of [DMWZZ] relies on coupling the discrete and the continuous 

coagulation-fragmentation processes, and using representation theory on the 

symmetric group to understand the discrete process. In the present paper, we 

use a different coupling to handle the continuous process directly, and thereby 

give a different proof of Theorem 1.2. Moreover, a slight modification of this 

coupling will be essential in the proof of Theorem 1.1. 

The problems addressed in this paper are a mean-field version of a statistical 

physics model suggested by T6th (T6t93], which may be described as follows. 

Consider a locally finite graph G = (V, E), and fix a parameter {3 > O. For each 

(unoriented) edge e E E, let Ze C [0, I J be an independent Poisson point process 

of intensity f3 on [0 ,1]. Let Vo E V. We now describe a walk vet) starting at 

v(O) = va. Let tl be the first t > 0 such that there is an edge el = [vo, vd 
incident with Vo such that tl E Ze\ + Z. If there is no such tl, then vet) = Vo 

for all t ~ D. But if t t exists, then let vet) = Vo for t E [0, ttl and v(tt} = Vi· 

Inductively, assume that t j and Vj are defined and v(tj) :::: Vj' Let t j +l be the 

first t > t j such that there is an edge ej+1 = IVj, vj+ J] incident with Vj such 

that t E ZeHI + Z; set vet) = Vj for t E (tj> t j+d and v(tj+l) = Vj+!' 

In the case where G is the complete graph on V , it is easy to see that the orbit 

of 1 in 1Tt is analogous to the range of this walk starting at 1, where f3 = tin. 

The essential difference between the two is the distinction between continuous 
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time and discrete time. 

There are several known open problems regarding T6th 's model. Is it true 

that for (connected) bounded degree graphs G, the simple random walk on 

G is transient iff T6th's walk Vj visil., infinitely many vertices with positive 

probability for some fJ > O? In particular, is this true for G = Zd? For finite 

graphs G, one may ask about the distribution of the size of the image of the 

walk {Vj}, for example. See [Ang03] for an analysis of Toth's model on regular 

trees and for a list of some open problems, including those mentioned above. 

Returning to the symmetric group, one may ask about the typical cycle struc­

ture near the transition point t = n/2. A very thorough analogous theory exists 

for the Erd&S- Renyi transition. See, for example, [Spe94, AsOO, JLROO] and the 

references cited there. 

NOTATIONS. For the convenience of the reader, we list here some of the no­

tations used extensively, with hyperlinks and page numbers of the definitions, 

and a brief description, where appropriate. 

V {l ,2, ... ,n} 221 

Tt, T2 , •.. Li.d. uniform transpositions on V 221 

Kt T t oTt_ I 0'" oTl 221 

X(a) set of cycles of a permutation (l 222 

X' X(K,) 226 

X(a) cycle structure of (l 222 

X '(v) cycle of 7fs containing v 226 

V{ (k) union of cycles of 7f s of size at least k 226 

Gt graph whose edges correspond to transpositions Ti , i :S t 222 

V t 
G largest cluster in Gt 222 

V,l(k) union of clusters of G t of size at least k 226 

Z(8) function in the Erd&S- Renyi theorem 223 

n {y E 10, lJN+ 'L. y, = l ,y, ~ y, ~ ... J 223 

PD(I) Poi!)son- Dirichlet distribution with parameter 1 223 

M coagulation-fragmentation transition kernel 224 

M the coupling 230 

I(Y, Z) indexes of matched entries 230 

Q sum of matched entries 232 

Y,Z,Y,Z partitions used in defining M 230 

u,v random variables used in the definition of M 230 , 
f + fragments smaller than f 233 

Nt unmatched entries larger than € 233 
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largest unmatched entries in yt and zt 

2. Big pieces 

Isr. J . Math. 

233 

The main goal of the present section is to show in a quantitative way that most 

vertices in Vb are in reasonably large cycles of trl_ 

Suppose that 1t is a permutation on V and T = (x,y) a transposition. If x 

and yare in different cycles in 1t, then in T 0 1r these two cycles are joined , and 

the other cycles remain unchanged. Now suppose that C = (XO,X l ,""Xm ) 

is a cycle of 1r which contains x and y. Say, x = Xj, Y = Xi. and j < i. 

Then in T o 1t the cycle C is split into the cycles (Xj,Xi+l, ... ,Xj_ I ) and 

(Xj,Xj+l, ... ,xm,XO,Xl, ... ,Xi_ I). The other cycles remain unchanged , of 

course. This d early implies the following 

LEMMA 2.1: Let 1f be a permutation of V and sEN. Let T be a uniform­

random transposition on V. Then the probability that some cycle of 1f is split 

in T 01f into two cycles at least one of which ha<; length::; 8 is at most 28/ (n - 1). 

This will be used in the next lemma. Let XS :::: X(11"s) be the set of cycles of 

11"8 and for v E V let X S(v) be the cycle in X S containing v. Let Vc(k) c V be 

the union of those connected components of GS which have at least k vertices, 

and let Vx(k) C V be the union of the cycles in X S t hat have at least k vertices. 

LEMMA 2.2: 

E lVc(k) \ V;(k)l:5 4sk'/(n -1) 

holds for every k, 8 E N. 

Proof: Let I be the set of t EN such that there is a cycle A E X t
-

1 which 

splits into two nonempty cycles in X t , A = At U A2 , At, A2 EXt and at least 

one of these cycles, say A t, satisfies IAI I ::; k. The above lemma shows that 

P it E 1] :5 2k/(n - 1) for every t E 1\1, and hence E[I! n [0, sill :5 2sk/(n - 1). 

Suppose that G E x S, IGI < k and C C Vc(k). There must be some vertex 

u E C and some time t ::; 8 such that Ix t(u)1 < IXt-1(u)l; otherwise, C would 

be equal to a component of GS. Among all such possible pairs (u, t) , we choose 

one that maximizes t. Then we have x t(u) C C. Consequently, tEl n [D ,s] 

and at least one of the two elements of V transposed by T t is in C. Therefore, 

the number of such C is at most 211 n [0, sll. The statement of the lemma now 

follows from the above bound on Ell n [0, 8]1. • 
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The following lemma will tell us that if X t has many vertices in reasonably 

large cycles at time t = to , then with high probability at a specified later time 

tl most of these vertices will be in cycles of size at lea8t m. 

LEMMA 2.3, Let 5 E (0,1], to ,j E N, and, E (0, 1/8). (The lemma will be 

useful primarily when (logn)2 -s; 2i -s; nO. with any constant cr < 1/2) Assume 

that 2' < ,5n and that PI1V1'(2')1 > 5n] > O. Set p'~ 2j /n and 

(2 .1) 

TIle1} tile number of vertices v that are in cycles of size at least 2i at time to 

but are not in cycles of size at least eon at time tl satisfies 

where the constant implied in the 0(1) nocation is universal. 

Two important aspects of this lemma are that the right hand side of (2.2) 

does not depend on j and that tl does not depend on e. (However, tl - to 

depends primarily on j and the right hand side of (2.2) depends primarily on 

,.J 
Before we begin with the actual proof, here is an informal outline. Let 

v E Vl<J( 2j) . Set J( := rlogAeon)l We will choose a sequence of times 

1"j,1'j+i , ... ,1'K. For s = j,j + 1, ... ,1{ , when t E [1's,1's+ll we will "expect" 

the size of Xt(v) to be at least 2s. This can fail in either of two scenarios: 

it may happen because a transposition cuts the cycle of v, or it may happen 

because no transposition merges the cycle of v with a sufficiently large cycle. 

The probabilities for each of these unfortunate situations will be appropriately 

estimated. The choice of the time interval1"s+1 - 1's is somewhat delicate. If it 

is too long, then perhaps too many cycles will be cut, while if it is too short, 

then cycles will not have enough time to merge. It turns out that 

is roughly the right choice, as will become clear in the course of the proof. 

Proof: Within the proof below, expectations and probabilities will be condi­

tioned on IV~O(2j)1 > on. Let K := rlog2(eon)l , and let as be as above. For 

s > j let ms := ra s 1 and set mj := tl -to- 2::~= j~ l ms· Set 1'8 := to+ 2:::':; mi· 

Note that 1'K = tl and as ::; ms ::; O(as ) for s = j,j + 1, ... ,I< - 1. 

Let s E {j, j + 1, ... , K - I} and t E {1"8 + 1, 1'8+ 2 .. . ,1's+1 }. Define Ft C V to 

be the set of vertices v E V such that Ixt(v)1 < IXt- 1(v)1 and Ixt(v)1 < 28+1. 
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Lemma 2.1 shows that ElFtl '$ 22H 4 /(n - 1). 

Then 
K - I 

Elf" I :> L m, 2"+< /(n - I) ~ O('llog(,o)ln). 
lI= j 

(sr . J . Math. 

We consider the vertices in Ft as vertices "failing" at time t. However, there 

are other ways in which vertices can fail. IT at time t E {1"" T.s + 1, ... , T,H I - 1} 

we have Wk(2")1 < an/2. then we consider the whole process as failed , and we 
- , ' 

set Ht := V. Otherwise, take Ht = 0. Also set H e := U t'=lo Ht . 

T he third and last way in which a vertex v may fail is if Xt(v) does not grow 

in time. Let 

8 5 := Vx'(2' ) \ (FT.+! U ir·+ 1 -
1 u v;· +I (2Hl) ), 

and iJs := U ~=j 8 k
. The vertices in B' are vertices whose cycles failed to grow 

sufficiently between t ime i , and t ime ' H I . It is clear that 

(2.3) 

If v E B tl, then it must be the case that for every t E [r,,1",+1 - 11 we have 

lVk (2')1 ?: 8n/2 (since B$ is disjoint from iF-+l - 1) and v E V{ (2") \ V{ (24'+1) 

(since B" is disjoint from FT.+I). If we condition on 25 ::; Ixt(v)l < 2&+1 and 

on W{ (2")1 > (m/2 , then there is p!obability at least 

2' (on/2 - 2' +' ) (;) - I ?: 2'-'o(n _ 1)-' 

that Te+ 1 transposes an element from X t (v) and an element from some other 

cycle of X e whose size is at least 2". [f that happens, then v E V{(2H I ) and 

this implies that v cannot be in B". Consequently, 

plv E B' I ~ (I - 2'-'8/(n - I))m. 

:> exp( -2'-'om. /(n - I) ) :> 0(2' In). 

Hence, 

EIBKI :> 0 (I)n2Kn-' ~ 0(,6n). 

It follows from the definition of Ht that in order for Ht to be nonempty, we 

must have 1Ft U iJ,,- 11 2: on/2. Therefore, 

EIH" I :> nPIIF" U liKl ?: on/2] :> 2o-' EIP" u SKI· 

When we combine this with (2 .3) and the above estimates for EIFel1 and EI.8K I, 
the lemma follows. • 
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LEMMA 2.4: Fix some c > 1/2, and let t ~ en, tEN. Let E,O' E (0,1/8) and 

let N be the minimal number of cycles in X t which cover at least (1 - f)!VJI 

vertices of VJ . Tllen 

for all n > nl, where Cl is a constant which depends only on c, and nl may 

depend on c and E. 

Proof: First , suppose that t ~ n5
/

4
. Cboose j such t hat nl / 4 ~ 2i < 2n l / 4. 

Let d = z/2, where z = z(2tln) is the Galton- Watson survival probability 

discussed in the introduction. Choose to so t hat (2. 1) holds with t in place of 

tl. Note that t - to = 0(n3
/

4 Iogn). (Here and below, the constants in the 

0(-) notation may depend on c.) We apply the Erdos- Renyi theorem at time 

to to conclude that a.a.s. !VJIJI - nz = o(n) and the second largest component 

of Gto has size less than (logn)2. Lemma. 2.2 with k = 2; and s = to implies 

that !V~ o \ V11J (2 i )1 ~ n7
/

8 a.a.s. Note also that !VJ \ V~ IJ I ~ (t - to)O(logn)2 

a.a.s., because we know that the components of Gtn other than the largest ODe 

are typically smaller than (logn)2. Hence!VJ \ V~ O (2i)1 < n7
/

8 a .a.s. Now, 

Lemma 2.3 implies that for every fixed (.' > 0 and for every sufficiently large n 

(2.4) E[1V6 \ Vk(,'n) !I < 0(\)<,[ log <'In. 

(Note that !Vci°l ~ n , and hence the conditioning in (2.2) may be ignored once 

n is large enough so that P [!V{O(2i )1 ~ dn] < ('l logE'I.) 

Now, to show that (2.4) holds also without the assumption that t ~ nS
/

4
, 

we note t hat Lemma 2.3 may be applied with j = 0, 6 = 1 and to chosen so 

that (2.1) holds with t in place of t i . (In this case, we do not need to use 

Lemma 2.2.) 

Set a(k) := jV&- \ V{-(k)l. Let io be the smallest integer i such that a(2- in) < 
m/2. Then N is bounded by the number of cycles in Vk(2- ilJ n) n VJ. Let 

i l be the least integer such t hat 2- i l < Q:E/l log(O'€)I. Then (2.4) shows that 

Plio > id = 0(0:). We may write 

ark) ~ I:{IAI ' A c V,j , A E X',IAI < k }. 

By considering the con~r ibu t i on of each cycle to the Slim 

m 

Sm := L a(2- i n)2i In, 
i=O 
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we find that N = O(Sio) ' On the other hand , (2.4) implies that 

i, 

E[Si,] ~ 0(1) L: i ~ O(I)(i.)' ~ O(I)llog(a,) I'· 
j "",O 

Because P lio > ill = O{o), this completes the proof. • 

3. Coupling 

At this point, i t seems likely that the proof of Theorem 1.1 can be completed 

using some of the results from the work of Diaconis, Mayer-Wolf, Zeitouni and 

Zerner [DMWZZ]. However, we prefer instead to usc a different coupling argu­

ment to finish off the proof and also prove the main result of [DMWZZJ. 

We now describe a coupling in the continuous setting. A similar coupling will 

also apply to couple between the discrete and continuous setting, but the purely 

continuous setting avoids several annoying minor notational issues. 

The coupling is between two Markov chains y t and zt starting at possibly dif­

ferent initial starting points yo , ZO E n with each separately evolving according 

to t he transition kernel M. 

In this coupling, the evolution of (y t, zt) will also be Markov. Its transition 

kernel will be denoted by M. 
The basic idea in the construction of if is that if we have entries in yt that 

are equal to entries in zt, then we don 't want to ruin t his . Consequently, if we 

make a change to such an entry in yt , we want to make a corresponding change 

to the corresponding entry in zt. On the other hand, as much as we can, we 

do want to produce new entries in yl and zt that match. Our measure of t he 

discrepancy between y t and zt will roughly be t he number of large unmatched 

entries, and we will strive to reduce t he discrepancy. 

In order to define if, we need some more notations. Let (Y, Z) E 0 2
• We 

will need to match entries in Y with entries in Z of the same length, if such 

exist, and makh as many entries as possible. The matching will be encoded via 

maps iz, y , jy,z: N+ --+ N, which are defined as follows. Let i E N+, let H be 

t.he set of j E N+ such t hat Yi = Zj, and let k := I{j EN: j ~ t, Yj = Yi }l. 

(Partly because we want to easily generalize to t he discrete setting, we do not 

want to rule out the possibility that Yi ;:: Yj for some i =f. j.) If IH I < k, then 

set jY,z(i) ;:: O. Otherwise, let fy,z(i) be the k'th smallest element in H. (By 

exchanging Y and Z , this also defines the map /z,y. ) Let 

frY, Z) '~Jy'~(N+) ~ {i EN, jy,zO) '" OJ . 
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The entries Yi with i E I (Y , Z) will be referred to as matched. Likewise, Zj, 

j E I (Z, V ), are the matched entries of Z. Observe that /z, y o /Y,z(i) = i 

for every i E I (Y,Z), /y,z(l (Y,Z )) = I (Z,Y) and Zlu(ij = Yi for every 

i E l ey, Z). Let 

We will now describe the transition kernel M. Given (y , Z) E fl , we need to 

perform one step of M for each of Y and Z, thereby generating new configura­

t ions Y' and Z'. We associate with Y and with Z partitions Y = (Yi : i E P4) 

and Z = (Zi : i E N+) of [0, 1] into closed intervals, as follows. (See also Fig­

ure 3.1.) The length of the interval Y; is Yi . The intervals 1';: with i E I (Y , Z) 

tile the interval [1 - Q, 1], while the intervals with i tI. I (Y, Z ) tile the interval 

[0, 1 - Q] . Within each of these classes, let the intervals be ordered according 

to the indices; that is max Y.: ::; min fi, if i < i' when i, i' E I(Y, Z) and when 

i, i' tI. I (Y , Z) . A partition Z = (Zj : j E N+) is constructed in the same way. 

Note that nece:ssarily Z /v.z (I) = Yi whenever i E I(Y, Z). 

Let tt and v be two independent uniform random variables in [0, 1]. Let 

a, a' E N+ be the indices satisfying tt E Ya and u E Za" In this way, U induces a 

size biased sample from Y and from Z. We will use v to induce a different size 

biased sample, based on different tilillgs of [0, 1J. Let Y be the tiling (Vj : i E P4) 

of [0,11 by intervals t hat is obtained from Y by shift ing the interval Yo to the 

beginning. (That is, }',.o = [0, Val, Yi = } ~ + Yj if max Yj S min Yo and "Vi = Yi 

if max Yo ::; min YI .) Similarly, Z is the tiling obtained from Z by shifting Za' 
to the beginning. Note that Zfy.z( i) = "Vi whenever i E I (Y , Z). 

Let band b' be the indices satisfying v E "Vb and v E Zb" If a -I b, let Y' 

be obtained from Y by replacing the two entries Ya and Yb by the single entry 

Ya + Yb and resorting. If a = b, let Y' be obta.ined from Y by replacing Ya with 

the two entries v and Ya -1) and resorting. Similarly, if a' -I b' , let Z' be obtained 

from Z by replacing the two entries Zo' and Zb' by the single entry Zo' + Zb' 

and resort ing. If a' = b' , let Z' be obtained from Z by replacing Zo' with the 

two ent ries v and Zo' - v and resorting. This completes the construction of the 

Markov transition kernel M. 

Let us observe a few essential features of this coupling. If Yi and Zj are split, 

then one of the two new entries in each of Y' and Z' is equal to v. If i E I(Y, Z) 

and Yi is split or merged, then the same happens to Z/yz{;) . Similarly, if 
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j E J(Z, Y) and Zj is split or merged, then the same happens to Y'z ,y(j)' 

1 1 

1 

i i 
u l - Q 

1 1 

z ,---I _----'-------'----"----'--'1 1 
i i i 
'v? v? v? 

Figure 3.1. The random variable u chooses a segment in Y and 

a segment in Z. The different illustrated choices for the random 

variable v yield a split in Y and in Z, a merge in Y and a split in 

Z, a merge in both where a matched segment is not involved, and 

merges involving matched segments, respectively. 

We first informally describe the general beha.viour of Nt, postponing the exact 

statements and proofs. When there arc several unmatched reasonably large 

entries in yt and in zt, these merge and become few quite quickly. However, 

when they are very few, it is hard for them to dissappear completely. Suppose 

that there is one large unmatched entry in yt and two unmatched entries in 

zt. When the two unmatched entries in zt are merged, the single unmatched 

entry in yt is likely to be split. Thus , the situation does not improve so quickly. 

There is a parity phenomenon here: if the number of positive entries in yt 

is finite, then its parity either stays the same as that of t, or is opposite to 

that of t. Even if the number of positive entries is infinite, if it takes a long 

time for the smaller entries to be hit, the larger entries appear to follow this 

parity periodicity. One way to handle the parity issue would be to introduce 
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a delay to either yl or zt, but not both , in order to match up their parities. 

However, another phenomenon will be used instead. An unmatched entry in yt 

often split:; into one matched entry and one unmatched entry. With any luck , 

the unmatched entry might be rather small. Thus, large unmatched entries are 

replaced by :;mall unmatched entriei. In effect, there is a diffusion of unmatched 

entries between different scales . Because of this, it is eventually unlikely to find 

a large unmatched entry, which is what we want to prove. However, this latt er 

process is much slower than the first stage where large unmatched entries merge 

and become fewer. Thus, in time t the largest unmatched entry one can expect 

to find is of order roughly 1/ log t. 

Define 

N,(V, Z) ,= I{ i E 1\1+ \ I (V, Z) , Yo > , } I· 

This is the number of entries in Y that are not matched by ent ries in Z and 

have size larger than f. 

LEMMA 3.1: J..Rt t: > 0, and let yO , ZO E n. Let (y t, zt) be the Markov 

chain given by M starting at (yO , ZO). To abbreviate notations, set Nt := 

N,(V' , Z') + N,(Z',Y'), Q' = Q(Y', Z') = Q(Z' , V'), I ' I (V',Z') and 

J t := I (Z t , y t) . A lso dcfine 

l := t:+ I)yjo:}j0 < I;} + I)Z?: Z? < f}. 

Let yl := max{Y;t : i ~ I t } be the size of the largest unmatc1lcd cntry ofy t (set 

yf = ° if all entries are matched), and let zi be the size of the largest unmatched 

entry of zt. Let q be a ralldom variable with values in N which is indepcIldent 

from tliC evolu tion of thc chain (yt , zt ). Set 

~ ,= max{Plq = 'I ' , E N). 

Then 

(3. 1) EI(1 - Q')(1 - Q' - maxiY:, , ml ~ ~NO +4[Elq + 11. 

When the right hand side in (3.1) is small , we know that with high probability 

either the sum of the unmatched entries in y q is only slightly larger than the 

largest unmatched entry, or this is true for zq. 

Proof: Let A s be the event that up to time s in every merging occurring both 

merged pieces are of size at least I; and in every splitting both resulting pieces are 

of size at least t. Let Fa be the a-field generated by «yt, zt) : t = 0, 1 •... , s). 
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Conditioned on :Ft_ 1 , the probability that at time t there is a split in any y/_l 
and one of the pieces is of size less than € is at most 2€ . Conditioned on Ft _ 1 , 

the probability that there is any y/- l with Yit -
1 < € that is merged at time t 

with some other y/-l is at most 2 L:{y/ - l : y/- I < f}. Similar considerations 

apply to zt. Consequently, for t E N+. 

(3.2) 

We now study the evolutioll of the quantity Nt, and consider several different 

cases for the transition from (y t , zt) to (y t+ l , zt+l). In each case we assume 

that A t+! holds. 

1. The transition involves splitting in y t and merging in zt. Suppose that 

lit is split and Zj is merged with Zj,. Then necessarily i ~ [ t and j,j' ¢ 

]f . Since At+ l is assumed to hold , it follows that N(yt+l , zt+ l ) ~ 

Nt(yt, zt) + 1 and N((ZtH, yt+l) .:::; Nl(Zt, yt} - 1. Thus, in this case, 

Nt+l .:::; Nt. 

2. The transition involves splitting in zt and merging in y t. By symmetry, 

also in this case we have N t+1 
.:::; Nt . 

3. The transition involves splitting in y t and splitting in zt. Note that by 

construction the size of onc of the newly created split entries is the same 

for Y as for Z. Suppose that Y'/ and Zj are split. If i E I t then also j E Jt 

and ~t = Zj. In that case, both new entries for Y are the same as the 

new entries for Z , and hence Nt+l = Nt . The same conclusion is obtained 

if j E J1
. If i f. I t and j f. J 1

, t hen in both yt and zt an unmatched 

entry is replaced by two ent ries at least one of which is matched. Thus 

NtH ~ Nt. 

4. The transition involves merging in zt and merging in y t. Suppose that 

lit is merged with li!. It is easy to verify, as above, that in this case also 

NtH ~ Nt. However, if i, i ' ~ I t, then the corresponding statement is also 

true for the merged entries in zt, and we actually have Nt+l ~ Nt - 2. 

In summary. we see that on the event AtH we have Nt+ 1 .:::; Nt and NtH ~ 

Nt _ 2 when there is merging in both y t and z t and the merging does not 

involve matched entries. 

Since Nt ~ 0, we obviously have 

and we have seen that all the summands are nonnegative. Since q is independent 
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(3.3) 

E [(Nq - Nq+l )1...4.
1
+

1
] = L E[(Nt - N t+l) l A.+, l q=t] 

, 
= LE[(N' - N'+l)1A ... [P [q = t[ ~ ~NO 

235 

Set at = 1 - Qt - max{yf, zt}. Recall the random variables u and v used in 

the transition kernel M. If in the transit ion from (y t,zt) to (yt+l,zt+l) we 

have u < 1 - Qt and max{yt ,zt } < v < I _Qt , then in both Y and Z we have 

merging of unmatched entries. Thus, 

By applying this at time t = q and taking expectations, we get 

E [(! - Q' )a'[ ~ P IN' - Nq+l 2: 2 0' ~ A ,+d 

~ ~ E [(N' - NOH )!A.+.[ + P [~ A q+ d. 

Consequently, (3.2) and (3.3) complete the proof of the lemma. • 

Assuming that we can make the right hand side of (3 .1 ) small , Lemma 3.1 

tells us that with high probability either 1 - Qq - Vr or 1 - Qq - zr is small. If 

we knew that both are small , it would follow that also yr - zr is rather small , 

since L i Yi
q 

= L j ZJ = 1. However , it might be the case that 1- Qq - zr is 

small but 1 - Qq - Vr is not. The next lemma tells us that in such a situation, 

with high probability, y q does not have more than two significant unmatched 

entries. 

L EMMA 3.2 : With the setting and notations of Lemma 3.1 , let v~ be the second 

largest unmatched entry in yt. For every p E (0, 1) 

(3.4) P [! - Q' - yl- yj > pi < 26p - 4~No + 2" p- 'E[q + 2[. 

Proof: Let V be the event {I - Qq - Vr - yi > p} and let n be the event 

{I - Qq - zf < p/4 }. Assume that V nR holds. Then zf ~ 3p/4+ Vr + vi. Let 

U be the event that the random variables u and v used in the transition from 

(y q, zq) to (yq+l , Zq+l) satisfy u < 3p/4 and zf - p/ 2 < v < zf - p/4. On 

vnnnu, the largest unmatched entry in zq will be split and the transition from 

y Q to yQ+l would involve a merge (of unmatched entries) , because zf - p/ 2 > Yl. 

Consequently, a.s. on v nn nu the two new entries of ZQ+ l will be unmatched 

in yq+l , and in particular , 1 - QQ+I ~ z~. Moreover, each of the new entries 
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of Zq+1 would be larger than p/4. Clearly, y~+1 ~ V? + y~. Consequently, 

1 - Qq+l - Vr+1 ~ zr - Vr - yg ~ 3p/4 and 1 - Qq+l - zf+1 ~ p/4. Thus, on 

D n R nU, we have 1 - Qq+1 - max:{Ur+i, zr+l } ~ p/4. Now, 

E [( I - Q'H)( I - Q,+I - max(y1+I, z1+1 })J 

~ E [(I- Q,+I - max(y1+1 A+1})'IV , R ,UJP[V, R ,UJ 

~ (p' 116)P [V, R ,UJ. 

Lemma 3.1 with q replaced by q + 1 therefore gives 

P[V, R,UJ ~ 8p - '~No + 2',p- 'E[q + 2J. 

Cieaxiy, P[U [V, RJ = 3p'/16, and hence 

P[V, RJ ~ (I6/3)p- ' P [V, R,UJ . 

On the other hand , on V \ n we have (1 - Qq)(l - Qq - max{Yf, zD) > p2 / 4. 

Thus, applying Lemma 3.1 again gives 

Since P[VJ = P[V, RJ + P[V \ RJ, the above estimates combine to give (3.4), 

and complete the proof. • 

LEMMA 3.3: With the setting and notations of Lemma 3.1 , let p E (0, 1/8) and 

assume that 0 < to < p. T hen for each t E N+ and for every n E N+ satisfying 

2f1. ::; tp 

,-, 
(3.5) t- ' E Ply! ~ pJ ~ O(p-I n- ' ) + O(2'nl p')(N° It + ft ). 

,=0 

The basic idea of the proof of the lemma is to use the fact that conditioned 

on YI ~ P there is a significant enough probability that at a later time a there 

will be some unmatched Y;'{ E 12 - k p, 2-k+1 pl, since the unmatched piece at 

time T of size ~ p may be split immediately. Lemma 3.2 is then used to show 

that when we fix a, with high probability the latter event occurs for at most 

three different k in the range {l , . .. ,n}, ifn is not too large . An appropriate 

summation over k and a completes the proof. 

Proof: For a> T, a,T E N, k E N+, let X (T,a, k) be the event that the 

transition between time T and T + I produces a splitting in yT and one of the 
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split pieces is unmatched, has size in the range [2- k
-

1p,2-k p), and this split 

piece is not modified up to time a . Suppose that Yi ~ P and that YjT = y[. If in 

the transition from -rto r+ l wehaveu E fiT and V E (YjT _ 2- k p,YjT _2- k - 1p), 

then Y{ is indeed split , and it is easy to see that the resulting piece YjT - v is 

unmatched a.s. If that happens, the conditioned probability that up to time a 

this piece is modified is bounded by 2(a - T)2 - kp, since the size of this piece is 

at most 2-k p. Thus, 

which implies 

Let V". (n) be the event that there are at least 3 distinct k E {O, 1, ... ,n - I } 

such that there is an unmatched yt in the range [2 - k- 1 p, 2- kp). We now apply 

Lemma 3 .2 with q chosen uniformly in {a, 1, . .. ,2t - I} and with p replaced by 

2-np to get 

2t - l 

(3.7) L P [V"(n)] :S 2'"+11 p- '(N0 + f(t + 2)'). 

".=0 

Now, observe that 
". - 111-1 

L L lX(T,,,.,k) < 3 + I V"(n)n. 

T=O k=O 

Therefore, by taking expectations and applying (3.7) we get 

2t - l ". - 1 11- 1 

L LLP[X(T,l1,k)] 
".=0 T=O k=O 

U-1 

:S 6t + n L P[V"(n)] :S ott) + 0(1)2'"np- '(No + ft'). 

".=0 

We now assume that 211 S tp. Then the inequalities (3.6) may be applied to the 

above, giving 

n-\ t - l T+l2k
-

2 / pj 

L L L 2- k
-

2p'p [y; 2 p] :S ott) + 0(1)2'"np-'(NO + <I') 
k=07"=O ".=T+1 

This implies (3.5), and completes the proof. • 
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COROLLARY 3.4 : Let IE (0, 1/2). Let q be a random variable with Wllues in N 

which is independent from the Markov chain (yt ) zt). Set 11 := max{p[q = tl : 
t EN}, and suppose that «)1-> ~ ~ ~ (<)'/ max{NO, lj. Then (or all A ~ 1 

and p > 0 

where C is a constant depending only on ,. 

Proof: Let 8 := LA71-1 J. We have 

• 
P [yf ~ pi ~ P [q > A~ -I I + L P [q = tlP[Yl ~ pi 

, 
~ P [q > A~ -II +~ LP[YI ~ pI· 

T=O 

Thus, the proof is completed by applying (3.5) with t = 5 + 1 and n 

1I iog €I/CJ. provided that with sufficiently large C we have 

(3.8) 

and 2Tl :'S tp. First , note that we may assume that A, p- l < lioggl and € < 1/ 10. 

T hen 2n :'S tp holds by the assumptions on 1/. It is also easy to verify that 

with an appropriate choice of C, (3.8) follows from our inequalities for '1 and 

assumptions about p and A. • 

THEOREM 3.5: Let y O and ZO be independent random samples from PD(I ), 

and let (y t,zt) denote their evolution under M. Let to E N+, a.nd let q E 

{D, 1, ... , to - I} be chosen uniformly and independently from tbe evolution of 

the chain (y t, zt). Then for each p > 0, 

P [max{yf,zf l > pi ~ O(l)p-I(logto)- I. 

Proof; Set £ ;= (to)-2, and define l as in Lemma 3.1. Recall that a size biased 

sample from t he P D ( 1) sample y o gives the uniform distribution 011 \0, 1] (this is 

well-known, but also easy to verify from the definition). Consequently, E\l] = 3€. 

Let At be the event that € ~ £3/ 4, Then P[.Ad ~ 3£1/ 4. Let A2 be the event 

that N° ~ e l l ", It is easy to see (e.g., using t he description of PD(l) from 

the introduction) that P [...,A 2] ~ 0 (£) . (In fact , NO / pog£\ is very unlikely to 

be la rge.) Define 11 as in Corollary 3.4, Then t'/ = £1 / 2 and on Al n A2 we 

have (l)l-.... ~ 11 ~ (l)'Y / max{JVO, I} with l' = 1/5, for example. On the event 
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AI n A2 • apply the corollary with>. == 1 and the corresponding statement with 

the roles of Y and Z switched, to get 

Plmax{vi, zi} > piA, n A,I S O(p- ' ll log'I-'· 

Now our estimates for P[-,A,j and P[-'Az] complete the proof. • 

Proof of Theorem 1.2: The proof is similar to the proof of Theorem 3.5 Let 

J.1 be a measure that is invariant under M , and let yO be a sample from J.1. 

Let ZO be a sample from PD(l ) (which we may take to be independent from 

yO , though this is not important). Let to E N+, to > 5, and let q be as in 

Theorem 3.5. As in the proof of that theorem, choose € == to2
. 

Note that for every tE N, yt is also a sample from J.1 , because J.L is t invariant . 

The same also holds for y q, since q is independent from the chain (y t) . 

We now explain how to get bounds on the distributions of f and NO using 

continuous analogs of Lemmas 2.3 and 2.4. Let {3(s, Y) := L:{l'i : Yi ~ s}. 

Since Iims"\,.o{3(s, yO) = 0 a.s., we may choose k = k(E ) > 0 suffiCiently large 

so that PIP(2- ', yOl > ,I < , and 2-' < ,(I - ,)/8. Set /j = 1-2- ' and 

tl = r26o-1 k2k l The proof of Lemma 2.3 applied to the continuous setting 

gives 

EIP(" y " lIP(2- ', yOl s'l s O(ll,l log' l· 

By our choice of k this implies E[{3(E, y tl )J ~ O(t:) lIogEI. Since y tl and yo 

have the same distributioIl , this gives 

(3.9l EIP(" yOll s O(<ll log ' l, 

and since E [,IJ(E, ZO)] = E, as in the proof of Theorem 3.5, we conclude that 

EI'I S O(,lllog,l· 
We now adapt the latter part of the proof of Lemma. 2.4. Let rna := n log2 1011. 

On the one hand 

mo >no 

L 2mp(2-
m

,Y0) = L L{2my" y, S 2- m} S 21{i E 111+ 1';0 2: ,}I· 
m=O m=O 

On the other hand , (3.9) gives 

E[t2mp(2-m, yol] SO(ll tm = O(ll IIOg'I' 

Consequently, we have EINO] = O(1)llog€ !2. Now, the proof of Theorem 3.5 

applies, and gives for all p > 0 
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We conclude that for every p > 0 there is a coupling of y O and ZO so that 

P[max{vr,zn > pJ < p. This implies that 11 = PD(l ). • 

4. Conclusion 

Proof of Theorem 1.1: The proof is similar to the proof of Theorem 3.5. Let 

,> O. Let q be unifocmly chosen in (2Z)n[O,,-1/9. Set z ~ z(2' ln), as in (1.1). 

Let ZO be chosen accocding to PD(I), and let yr ~ X(.,+, )/(nz). 

We now apply a coupling of z-r and y T similar to the coupling !VI given in 

Section 3. There are a few minor necessary modifications in the definition of 

the coupling. First, note that the entries of yr do not sum to 1 but to l i z . 

Thus, the random variables u and v needed in the transition kernel for M should 

be uniform in [0, l iz]. In y-r and }h we put those segments corresponding to 

cycles that do not intersect V6 in the very end; that is, roughly in the interval 

[1, l iz]. When u or v turn out to be outside of [0, 1] , we make no transition to 

Z; that is, zr+t ;:: z r, in this case. 

Another modification is necessary because the transitions of yr are discrete. 

Thus, the actual size of the splits occurring in the transitions of Y would be 

determined with r nzv l/(nz) . The definition of the matching between entries in 

y r and entries in zr needs to be modified as well. When a split is made in both 

y r and zr , pieces which would have been exactly the same may differ slightly 

now, because of the discretization in the transition of Y. This difference is of 

order lin, and may be safely ignored. Although these errors may accumulate 

over time, when matched pieces are merged and split , the total discrepancy 

would still be small , since we take n much larger than {-1 / 2, which bounds q. 

Lemma 2.4 gives us good control on NO while (2.4) gives a bound on the 

probability that ( is large. Consequently, the proof of T heorem 3.5 shows that 

for all p > 0 if n is large 

(4.1) 

Thus, the statement of Theorem 1.1 is obtained with t replaced by t + q. If 

we consider € and p as fixed, then q is bounded. Since q is even, the following 

lemma completes the proof. • 

LEMMA 4.1 : Let t ;::: en, C > 1/ 2. As n -t 00, the total variation distance 

between the law of X(trc ) and the law of X(1l"t+2) tends to zero. 

First, we give a slightly informal proof. Note that when the largest entry in 

X(1l"r) is not too small, there is probability bounded away from 0 and 1 that 



591

Vol. 147, 2005 COM POSITIONS OF RANDOM TRANSPOSIT IONS 241 

X(1I'.,.) = X(1I'.,.+2), because t.hat entry may split and then recombine. We know 

that for many r E In/2, t] the largest entry is not sma.ll. Consequently, there is 

a random "delay», which implies the statement of the lemma. For readers who 

are not convinced yet, we offer a proof with more details. 

Proof: Set W .,. = X(1I'.,.). To prove that W t and W'+2 have close distributions, 

we couple the chain (W"') with a chain (U.,.) which has the same distribution 

as (W"'). In essence, the two chains will be the same; the Significant difference 

involves a random shift in time. Set TO = rO = O. Inductively, suppose that 

Tj and Tf have been defined such that W.,., = U<. Let m = mj be the largest 

integer such that W .,.,+2i = W.,., for ail j = 1,2, ... , m. The distribution of m 

conditioned on W .,.; is geometric; that is, P lm = kIW"'i] = (1- p),f , where p = 

Pi = P [m > OIW"';]. Similarly, the largest integer m' such that U<+2j = U.,.; 

for all j = 1,2, ... , m' has the same conditioned distribution: P [m' = klW"';] = 

P[m' = klU"'q = (l -p)}f. We nowcouplemand m'. If rI = Ti+ 2, takem' = m. 

Otherwise we couple m and m' so t.hat. 1m - m'l ::; 1, but m I- m' happens 

quite frequently. For example, for all kEN take (m, m') = (k, k + 1) with 

probability P"+I(I- p)/( I + p), (m,m' ) = (k + I,k) with the same probability, 

and (m,m') = (0, 0) with probability (1 - p)/( l + pl . all conditioned on W"" . 

In this case, the conditioned probability that m' - m = ±l is 2p/(1 + pl. In 

either case, take u.,.;+) = W .,.,+j for j = 1,2, ... , min{2m, 2m' }. If m' > m 

let U.,.i+2m
+l be independent from the chain (W.,.) given (W"'; ,m,m') , and 

similarly if m > m'. Clearly, w.,.; +2m = UTt+2m'. 'fouke u.,.:+2m'+i = w .,.,+2m+i 

for j = 1, 2, Ti+ l := Ti + 2m + 2 and T:+ 1 := Ti + 2m' + 2. Then continue 

inductively. This completes the specification of the coupling. 

It clearly suffices to prove that with probability tending to 1 as n -+ 00, we 

have T: = Tj + 2 with some Tj < t. First , observe that the Pi are bounded away 

from 1. This guarantees that a.a.s. ri = O(i). Now note that Pi is bounded away 

from zero by some positive function of wt, /n (the largest entry normalized), 

because that largest entry may split in the next step, and then the same two 

parts may merge in the step after that. We know, for example from (2.4) , that 

with high probability for most values of i such that t ~ Tj ~ (en + n/2)/2 , the 

largest entry of w.,., is not too much smaller than n . Consequently, a.a. s. we 

have Pi bounded away from zero for many values of i satisfying T j < t . Similarly, 

mj I- mj for many values of i. Note that (r i - T[)/2 is a martingale, and its 

increments arc {- I,O, l}. By removing the ° increment steps, the martingale 

may be coupled with a simple random walk on Z. The martingale starts at O. 

Thus, the probability that many ± 1 steps are performed and it never gets to 1 
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tends to O. This completes the proof. • 
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