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Abstract 

 

In this paper a new type of numbers is discovered called by „Compound Numbers‟ 
which is a generalized concept of the complex numbers. A new theory entitled 
“Theory of Objects” and the corresponding “Object Algebra” are first of all 
introduced where we can talk about various operations over the objects of a set, 
about a new concept of „infinity‟, about zero object, and signed objects called by 
positive and negative objects; categorizations like prime objects, composite 
objects, neither prime nor composite objects, etc. The traditional notion of 
„numbers‟ that we use in classical arithmetic is a particular case of „object‟ of a 
„region‟ algebraic structure. The introduction of imaginary number i in the 
classical „Theory of Numbers‟ is very interesting but its history says that it took a 
long span of years to convince the mathematicians about the role and necessity of 
it in mathematics. Since then i has been playing extraordinary roles in various 
branches of Science, Engineering and many other broad fields. In our newly 
proposed “Theory of Objects”, the notion of „imaginary object‟ is introduced for a 
region  where the existing concept of „imaginary number‟ is a particular instance 
of the concept of „imaginary object‟. It is unearthed that the region C (set of 
complex numbers) does also have imaginary objects. The adjective  „imaginary‟ is 
completely a local issue with respect to the concerned region. Something may be 
an imaginary object for a region A, but may be a core internal member of another 
region B. For example, i is an imaginary object for a region R, but it is a core 
internal member of the region C. In the “Theory of Objects” developed in this 
paper, two imaginary objects e  and w are unearthed for the region C (set of 
complex numbers). These imaginary objects e and w of C are called by 
„compound numbers‟, and consequently a new number theory is introduced in the 
subject Number Theory entitled „Theory of Compound Numbers‟. In fact it is  
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shown here that every complete region has at least one imaginary object. Finally a 
new type of Number Theory is introduced called by „Theory of A-numbers‟. All 
the results here open a new type of algebra called by „Object Algebra‟.  
 
Mathematics Subject Classification: 08, 11 
 
Keywords:   region,  object,  positive object,  negative object, onteger, bachelor,  
prime object,  composite object,  real object,  imaginary object,  complex object,  
compound  number,  im-number,   rim,  cim.    
 
 

1.  Introduction 
 

Biswas in [7] introduced a new algebraic structure „region‟ in Abstract Algebra. 
With several examples, it is shown in [7] in details with sufficient explanations 
that all the existing important algebraic structures viz. group, ring, module,  field, 
linear space, algebra over a field, associative algebra over a field, Division 
Algebra are having a serious weakness in justifying many of the very fundamental 
operations of Elementary Algebra (and hence in justifying the fluent fundamental 
computations involved in the giant subject Mathematics, in different branches of 
Sciences and Engineering subjects). Region is the minimal algebraic structure 
which can validate the fundamental operations of Elementary Algebra, whereas  
the division algebra or any other existing standard algebraic structure can not. It is 
established in [7] that the subject Abstract Algebra has become now more 
complete and sound with the introduction and characterizations of this new 
algebraic structure „region‟.  
 
In this paper a new number called by „compound numbers‟ is discovered as a 
generalized notion of the complex numbers, and a corresponding new kind of 
algebra called by „Compound Algebra‟ is developed. The work is initiated by 
introducing “Object Algebra” in the “Theory of Objects”. And then another type 
of number theory is also discovered called by “Theory of A-numbers” 
corresponding to a complete region A. As a particular case, the existing theory of 
numbers is nothing but “Theory of R-numbers” where the complete region R is 
the set of real numbers.  
 
History is regarded to be one of the greatest source of energy which encourages 
for new thoughts. Before going for detailed introduction of this work, let us make 
a quick visit to the history of numbers, which could be an interesting at this stage 
just for a quick perusal. History of Prime Numbers says that from around 1550 
BC the Rhind Mathematical Papyrus made Egyptian fraction expansions of 
different forms for prime and composite numbers. However, the earliest surviving 
available records of the explicit study of prime numbers and composite come from 
Ancient Greek mathematics. Euclid's Elements (circa 300 BC) first time proved 
that there are infinite number of prime numbers. Even for constructing a list of  
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prime numbers the Sieve of Eratosthenes was used. An Islamic mathematician Ibn 
al-Banna' al-Marrakushi observed that the sieve of Eratosthenes can be sped up by 
testing only the divisors up to the square root of the number to be tested for prime. 
Fibonacci migrated the innovations from Islamic mathematics back to Europe. His 
book Liber Abaci (1202) was the first book to describe trial division for testing 
the primality of a number using divisors which are less than or equal to the square 
root of the number. The theory of prime numbers has a lot of applications in 
computer science too, in particular in cryptography. In the Theory of Objects here 
a new notion of prime objects and composite objects are introduced, and it is 
observed that prime numbers are special cases of prime objects, composite 
numbers are special cases of composite objects.  
 
In the existing mathematics i is the only imaginary number. But imaginary 
number i was not instantly created, was not instantly accepted by the 
mathematicians after its discovery.  Its history says that it took several centuries to 
convince certain mathematicians to accept this new number i, and people now use 
i in everyday mathematics!. For example, it is used in studying various kinds of 
infinite series, to study that every polynomial equation has a solution if complex 
numbers are used, and there is a large list to mention the application domains of i 
in mathematics.  Besides that, engineers use i to study stresses on beams and to 
study resonance, complex numbers are used to study the flow of fluid around 
objects like water flowing around a pipe, complex numbers are used in electric 
circuits, and help in transmitting radio waves, etc.  Thus it was a revolutionary 
issue that i was created and accepted to be an essential element to enrich the 
subject mathematics. The surviving record of history of mathematics says that 
people were trying to use imaginary number even in 1st century.  In 50 A.D., 
Heron of Alexandria studied the volume of an impossible section of a pyramid.  

But the problem then arose while facing to compute the value of 81 114 , and 
consequently he gave up his attempt.  After that for a very long time, none took 
interest to deal with imaginary number, although it wasn‟t for a lack of trying.  In 
around 1500 A.D., the peculiar issue of computing square roots of negative 
numbers was reconsidered.  Formulas for solving 3rd and 4th degree polynomial 
equations were discovered, and people realized that the necessity of work with 
square roots of negative numbers is genuine to proceed further for extension of 
the subject mathematics. In 1545 the first major work with imaginary numbers 
was the book entitled Ars Magna by Girolamo Cardan, in which he solved the 

equation x(10-x) = 40 and found the answer 5 15 . Although he successfully 
found the answer, but he did not like  imaginary numbers to be included in 
mathematics as an element for study.  Rather his comment about such solution 
was “as subtle as it would be useless”, and referred to working with the imaginary 
numbers as a kind of “mental torture.” Most of the mathematicians supported 
Cardan for nearly one century years of time!. It is Rene Descartes who introduced 

the standard form a b 1  for complex numbers in 1637 A.D. But, it is again a 
fact that Descartes too didn‟t like complex numbers in mathematics. However,  
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Euler in 1777 used the symbol i to stand for √-1, writing the complex number 

a b 1  in the form a+ib which seems to be now easier to the mathematicians. 
Argand in 1806 proposed how to plot complex numbers in a plane, and thereafter 
this plane is being called by „Argand Plane‟. In 1833, Hamilton proposed to 
express complex numbers as pairs of real numbers, like as the complex number 
a+bi to be expressed as (a,b). Although this idea was simple but it made the topic 
more popular and useful in a easy manner. It took several genius mathematicians 
such as Weierstrass, Schwarz, Dedekind, Holder, Poincare, Eduard, Burnet, 
Cauchy, Niels Henrik Able, Mobius, to name a few only out of many, to work 
several years to convince  the world to accept complex numbers.   
 
In the Theory of Objects developed in this paper, a new concept of „imaginary 
object‟ is introduced. It is observed that the classical concept of „imaginary 
numbers‟ (or, complex numbers)  are just one particular instance of the notion of  
„imaginary objects‟.  Although the birth of the „imaginary numbers‟ took place 
long before, but interestingly it is observed now that the same happened out of a 
very particular „region‟, not out of a set or out of a Division Algebra!. This fact is 
unearthed and explained in details in this work. It is explained that by virtue of 
their respective definitions and independently owned properties, neither Division 
Algebra  nor any of the existing algebraic structures alone can produce a sound 
theory on the prime numbers, composite numbers, imaginary numbers and 
complex numbers. The basic philosophy introduced in the Theory of Objects is 
that the status „imaginary‟ is purely local with respect to the region concerned. 
According to this philosophy, one object could be imaginary with respect to one 
set, and may not be imaginary with respect to another set. This could be realized 
by an example of our social life. See that a person may be a „guest‟ for a family 
but could be well a „core member‟ of another family in our society!. The status of 
„guest‟ is thus local to the concerned family, and similarly the status of „core 
family member‟ is also a local issue with respect to another family. For another 
example, a person may be a „foreigner‟ in one country, but he is very well a true 
citizen of another country! The status of „foreigner‟ is thus local to the concerned 
country, and similarly the status of „bonafide citizen‟ is also a local issue with 
respect to another country. Similarly, for instance, in the „Theory of Objects‟ it is 
shown that 2i is an imaginary object for the set R  but not so for the set C.  But C 
itself has its own imaginary objects according to the Theory of Objects. Two 
imaginary objects e and w are unearthed for C in this paper and then „Theory of 
Compound Numbers‟ is developed. In fact it is shown here that every complete 
region has at least one imaginary object. This result opens a new kind of 
elementary algebra which may be called as „Object Algebra‟.  
 
After that, another concept in the Theory of Objects is introduced. It is shown that 
every complete region A has its own „Theory of Numbers‟ called by „Theory of 
A-numbers‟. The classical „Theory of Numbers‟ of the existing volume of 
mathematics is just one instance of it to be called by „Theory of RR-numbers‟ 
corresponding to the particular complete region RR. It is claimed that the “Theory  
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of Objects” will play a huge role to the Number Theorists in a new direction.  In 
due time, the „Number Theorists‟ may alternatively be re-designated with the 
broader title „Object Theorists‟ as they may need to cultivate the broad area 
„Theory of Objects‟ in pursuance of cultivating the „Theory of Numbers‟ in a 
much better style and in a generalized fashion. In fact, one of the major 
contributions in this work is that several new type of numbers are discovered and 
it is established that every complete region has its own Theory of Numbers. 
Consequently the existing „Theory of Numbers‟ needs to be updated, extended 
and viewed  in a new style.  
 
 

2.  Preliminaries of the „Region‟  
 
The important algebraic structures viz. groups, rings, modules,  fields, linear 
spaces, algebra over a field, associative algebra over a field, Division Algebras 
have made the subject „Algebra‟ very rich and well equipped to deal with various 
algebraic computations at elementary level to higher level. Nevertheless it is 
unearthed in [7] that these algebraic structure and huge volume of literature on 
them are not sufficient for Mathematics. There are many serious problems and 
issues in mathematics which do not fall under the jurisdictions of these algebraic 
structures to deal appropriately. There is a genuine vacuum unearthed in the 
family of all existing standard algebraic structures. Consequently, in [7] it is 
sufficiently justified that this family needs inclusion of an appropriate member 
who can take the responsibility unlike the existing standard algebraic structures. 
An algebraist can introduce a number of algebraic structures if he desires. But the 
question arises about their role in Algebra, in Mathematics. A new algebraic 
structure is not supposed to be a redundant one to the subject „Algebra‟ to 
unnecessarily cater to the existing huge volume of literature of Algebra.  It must 
have some unique as well as advance kind of roles which the existing algebraic 
structures do not have by their respective definitions and independently owned 
properties. It must have unique capabilities to enrich Mathematics which none of 
the existing algebraic structures can claim. And this objective a new and very 
important algebraic structure called by “Region” is developed in Abstract 
Algebra. Few definitions which are used in this paper in our subsequent work are 
presented below from Region Algebra.  
 
 
2.1 Region 
Consider a non-null set A with three binary operators  , * and   defined over it  
such that  for a given field  (F,+,.),  the following three conditions are satisfied:- 
(i)   (A, ,*)  forms a field, 
(ii)  (A, , )  forms a linear space over the field  (F,+,.),   and   
(iii)  A satisfies  the   property  of  “Compatibility with the scalars of the field F”, 
i.e.  a, b  F and  x,y A,  

               (a x ) * (b y )  =  (a.b) (x*y).    
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Then the algebraic structure (A, ,*, ) is called a  Region over the field (F, +, .).   
If  there  is  no confusion,  we may simply use the notation  A to  represent the 
region  (A, ,*, ),   for brevity. 
 
2.1     Partitioned Region   
Consider a real region A = (A, ,*, ). Suppose that A forms a chain with respect 
to a total order relation (say, denoted by the  notation „ ‟). Then the real region A 
is called a chain region with respect to the total order relation  „ ‟.    A real 
region A = (A, ,*, )  is called a Partitioned Region  if the following conditions  
are satisfied : 
(i) A is an infinite region,  
(ii) A is a chain region with respect to a total order relation  „ ‟,   and       
(iii)  the characteristic of A is zero.  
 
Here A is called a „partitioned region‟ because of the fact that it induces  a 
partition PA of A  into three mutually disjoint non-null sets denoted by A+, A- and 
{0A}  such that  
(i)    A+  =  { a  :  a   A  and 0A < a} 
(ii)   A-   =  { a  :  a   A  and  a < 0A}.  

Clearly,  a   A+,  ~a   A-  and  b   A-,  ~b A+.  
 
(Note :   It may be recalled from the properties of the chain that :  a < b  iff  a ≤ b  
and   a ≠ b, where “≤” is the total order relation of the chain A, and similarly  a > 
b  iff  b ≤ a  and  b ≠ a). 
This partition PA, once made, is regarded as an absolute partition of the region A 
corresponding to its total order relation  „  ‟   in the sense that this partition 
generates the sign of every object of the complete region A, positive or negative, 
which will remain absolute throughout the complete literature henceforth. 
However for a different type of total order relation defined over the region A we 
will get a different partition of A. But the set {0A} is common to all such possible 
partitions.  
 
2.2    Extended Region 
Consider an infinite region A  =  (A, ,*, ). The extended region of A is the 
region itself with all its infinity objects, if any. The infinity objects are not 
basically the core member of the region A, but to be included into it. At this point 
of time we do not consider any method about „how to find out all the infinity 
objects of an infinite region‟. However for a portioned region the method is rather 
easier.  
 
Consider  a partitioned region   A  =  (A, ,*, ).    If we now include two more 
objects  +A  and  - A in  A as two permanent guests,  then the set AE  =  A 
 {+A, -A}  is the „extended region‟ of the region A.  
The two guest objects + A  and  - A  are called infinities, and are defined as 
below:  
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(i)   +A  =  
0

A

A

x
 where  

Ax  (≠0A)  is any positive object of the region A,  and  

(ii)   -A =  
0

A

A

z
  where 

Az  (≠0A)  is any negative object of the region A.   

The extended region of the partitioned region A is denoted by the notation AE. 
However, if there is no confusion then we may use the notation A itself to denote 
the extended region of A. Note that an extended region is not a region.  For a 
partitioned region, it is just a superset of the set A containing two more objects.  
But whenever we say that „A is an extended region‟, it will simply mean that A is 
a region with all its infinities as permanent guests.  At this stage we do not explore 
to study whether there are more infinities other than the two guest objects + A  
and  - A for a partitioned region.  
An extended region AE may also be called as „extended real region‟  if the 
corresponding region A is a real region by virtue of the definition of a partitioned 
region.  
For the region C, there are many infinities to be included into it to call it an 

extended region. For example  a, b   R,  the object  a+ib is an infinity object for 
C if either a or b or both are the infinity object of the region R. The extended 
region of C is denoted by the notation CE. Further future study on the topic of 
extended region will make the literature richer.  
 

 
3.  Theory of Objects 
 

„Region‟ is the most practiced algebra in school/college education, research, 
scientific and engineering calculations, etc. It is the minimum mandatory algebra 
to study science, mathematics, engineering, and other areas. Its objects (elements) 
with the support of the axioms play various roles to expose themselves for 
induction in various branches of mathematics, and they exercise  among 
themselves too with various characteristic properties. This phenomenon develops 
a new direction in mathematics called by “Theory of Objects”.   
 
This work provides the beginning of the “Theory of Objects”. Presently the theory 
is at its baby stage, and is initiated in this work with the following three topics:-  
 
1.   “Prime Objects” and “Composite Objects” in a Region 
2.  “Imaginary Objects” and “Compound Objects” in a Region, and  
3.   “Theory of  Numbers”  : Every Complete Region has its own. 
 
The subsection 3.1 introduces the topic “Prime Objects” and “Composite Objects” 
in a Region,  and then the work  introduces the topics  “Imaginary Objects” and 
“Compound Objects” in a Region, and also then  introduces the topic “Theory of  
Numbers” : Every Complete Region has its own.  
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3.1     „Prime Objects‟  and  „Composite Objects‟    
 
In our school mathematics, we speak about „prime numbers‟ and „composite 
numbers‟.  They are members of the set R of real numbers. A prime number (or a 
prime) is a natural number greater than 1 that has no positive divisors other than 1 
and itself. A natural number greater than 1 that is not a prime number is called a 
composite number. In the Theory of Objects, they are basically objects of the 
region R. In this subsection we introduce the notion of „prime object‟ and 
„composite object‟ in any arbitrary region A = (A, ,*,  ). We consider here 
simple regions only, not necessarily the complete regions.   First of all we 
introduce  the notion of  „bachelor set‟  in a given region, and then we use the 
notion of bachelor set to define the concept of „exact division‟ in a bachelor set.   
 
3.1.1 „Bachelor Set‟  in a Region   
 
Let A be a region. A subset B  of the region A  is called  a  „bachelor set‟  in  A   if 
(i) 1A   B,  0A  B   and    

(ii)   x  (≠ 1A)   B ,   x-1 B. 
 
A bachelor set can never be a null set  because the smallest bachelor set in a 
region A is the singleton {1A}. Also, it is obvious from the above definition that 
the self-inverse objects  (like an element x, where x2  = 1A)  other than 1A  of the 
region A  are not the members of any bachelor set of A.  Clearly A itself can not 
be a bachelor set in A.  
 
Any subset S of a bachelor set B in the region A is also a bachelor set in A if 1A   
S. 
 
It can be verified that if  B is a bachelor set in a region A, then the set 

            B   =  {y  :  y  =  x-1 where x   B} 

is also a bachelor set in A. This set B  is called the  „conjugate bachelor‟ of the  
bachelor set B in the region A. 
 
Clearly, conjugate of  the conjugate of B is B itself. The union of two bachelors in 
A need not be a bachelor in A, but the intersection of two bachelors will  be a 
bachelor in A.      

For every bachelor set B in A,   B B  = {1A }.    
If B and C are two bachelors in the region A, then  the conjugate of  (BC)  = 

B  C .  If B = B ,  then the only case is that  B = B  = {1A}.    
 
Example 3.1.1 
Consider the region RR. Clearly the following are true :  
 
(i) the set N of natural numbers is a bachelor set in the region RR.  
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(ii) The set M = {1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, …} =  { m  :   m  =  1/n,   n 
  N,  where N is the set of natural numbers} is a bachelor set in the region RR.    
(iii) The set L = {1, 78.261, 9287, 83.5}  is also a bachelor set in the region RR.   
 
Example 3.1.2 
The set R+

  of all positive real numbers is not a bachelor set in the region RR.   
 
Proposition 3.1.1 
If  the set B of cardinality n  is a bachelor set  in the region A, then B  has  2n-1  
number of distinct sub-bachelors.   
 
Proof:    
For n = 1, the result is true because the only possibility is that B = {1A}.      
Now consider the case n > 1. The two trivial sub-bachelors are {1A}  and B.  The 
cardinality of  the set  B–{1A} is  (n-1)  which is having  2n-1 number of subsets 
including the null set and the set   B–{1A}  itself. Adding the common element 1A  
to each of these 2n-1 subsets will create 2n-1 number of bachelor sets of A, being all 
the sub-bachelors of B.  Hence proved.  
 
There are four types of division operations defined in a region. We introduce here 
the operation of „Exact Division‟ in a bachelor set in the region A, which is a kind 
of division of an element of a bachelor set B  by another element of the same 
bachelor set B. 
 
3.1.2 „Exact Division‟  in a Bachelor Set 
 
Let B be a bachelor set in the region A. Consider  two objects x, y   B. We say 
that  the object x exactly divides  the object y  in B, denoted by the notation  “x  |B  

y”,  if   z   B  such that 
y

x
 = z  holds good  in the region A.   

In another words, we say that  the object  x exactly divides  the object y  in B, 
denoted by the notation  “x  |B  y”, if y*x-1  B.  
The notation “|B” signifies the operation of  „exact division‟  in  the bachelor set B 
of the region A = (A, ,*, ),  and  the notation “ |B ” signifies the operation “can 
not exactly divide”  in  B. 
 
The following results are straightforward.  
 
Proposition 3.1.2 
(i)     x |B  x    x   B.  

(ii)    1A  |B   x   x   B. 
(ii)    for  x ≠ y,   if  x |B y   then  y |B  x,  where  x, y   B. 
         
Proof:  
(i) Since 1A  B, we have x*x-1  B.  Hence proved.  
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(ii) Obvious. 
(iii)   if  x |B y then we have y*x-1  B.   
        Therefore (y*x-1)-1B, which means  x*y-1B.  Hence Proved.  
 
Proposition 3.1.3 
It may happen that for a given pair of objects x, y  in a bachelor B in a region A,  
neither  x |B y  nor y |B  x. 
 
Proof:   
Consider a bachelor C in the region A where x, y  are in C and  x |C y   (such that 
y

x
 =  z).  Now consider the set  B  =  C – {z}.    

Clearly B is a bachelor in the region A, where both  x and y  are in a bachelor B  
but neither  x |B y  nor  y |B  x.   Hence proved.  
 
 
3.1.3 „Composite Objects‟ and „Prime Objects‟   
 
We introduce  now the notion of „Composite Objects‟ and „Prime Objects‟ in a 
region with respect to a bachelor set B of it. 
 
„Composite Object‟   
Let B be a bachelor set of a region A. An object  x B   is  called  a „Composite 
Object‟ in  B,  if   p, q   B – {1A}  such that  x = p*q   in A. 
 
„Prime Object‟   
An object  x   B – {1A}  is called a „Prime Object‟ in  B  if  x  is not a composite 
object in B.   
 
It may be noted that any composite or prime object in B must be a member of B. 
By virtue of the construction here, there is no reason to check whether the element 
0A  and the self-inverse elements (other than 1A) of the region A are „prime‟ or 
„composite‟ or „neither prime nor composite‟  in any bachelor set  in the region A,  
as they can not be members of any bachelor set in A.   
However, 1A is the only element in any bachelor B which is neither a prime object  
nor a composite object. For every other object x (i.e. if x ≠1A) in B,  x is by 
default either a prime object or a composite object. Thus the following proposition 
is straightforward. 
 
Proposition 3.1.4 
 
There can not be any object x in the bachelor B in the region A which is both 
prime and composite.  
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If may be noted here that an object x may be prime in a bachelor B of a region A, 
but may not be so in another bachelor C of the same region A, even if  x   B, C  
both.  
Thus, for a given region,  the property of prime, composite and „neither prime nor 
composite‟ is dependent upon the concerned bachelor set, and they must be 
members of the concerned bachelor set.  For a given bachelor set, checking an 
object of a region whether prime or composite or „neither prime nor composite‟ 
with respect to this  bachelor set is an invalid issue if the object itself be not a 
member of the bachelor set.   
 
3.1.4 Partition of a Bachelor Set 
 
For a bachelor set V in a region A, an important partition of the set V can be made 
into three subsets :  the set of Prime objects in V, the set of Composite objects in 
V, and the set of neither Prime nor Composite objects in V, as shown in Figure 
3.1 below.  This is a partition of the bachelor set V because there can not be any 
object in the set V which is both a prime object and a composite object 
simultaneously in V.  

 
 

Figure 3.1.  Prime, Composite and „neither prime nor composite‟ objects  in a 
bachelor set V in the region A : partitioned into three subsets 

 
 
The following proposition is now straightforward. 
 
Proposition 3.1.5 
If x is a prime (composite) object in a bachelor B of a region R  then x-1 is a prime 

(composite) object in the conjugate bachelor B , and conversely.  
 
We present below  examples of the notion of prime objects and composite objects 
in a bachelor set in a region. 
 
Example 3.1.3 
Consider the region RR. Consider the bachelor set N of the region RR  where N =   
{1, 2, 3, 4, 5, 6, 7, 8, …} =  the set of natural numbers. 
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Clearly, the members 4, 6, 8, 9, 10, 12, 14, .….  are composite objects of the 
bachelor N here in the region RR;  and the members 2, 3, 5, 7, 11, 13, .…  are 
prime objects of the bachelor N in RR. Actually these are popularly known as 
„composite numbers‟  and  „prime numbers‟ respectively in the existing literature 
of the classical „Theory of Numbers‟. There can not be any object in the bachelor 
N which is both prime and composite. It is known to us that a prime number (or a 
prime) is a natural number greater than 1 that has no positive divisors other than 1 
and itself. A natural number greater than 1 that is not a prime number is called a 
composite number.  
 
And 1 is the only object in the bachelor N which is neither a prime object  nor  a 
composite object (see Figure 3.2). There is no object in the bachelor N which is 
both prime and composite object.  In fact this is a very much known result in the 
existing classical „Theory of Numbers‟ that the integer 1 is neither a prime 
number nor a composite number.  
 

 
 

Figure 3.2.   Partitioned into :  Prime, Composite and „neither prime nor 
composite‟ numbers in the bachelor set N (of natural numbers) in the region RR 

 
 
Another example of prime and composite objects is given below. 
 
Example 3.1.4 
 
Consider the region RR. Consider the bachelor set M of the region RR  where  M  
=   {1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, …} = { m :  m =  1/n,  n N,  where N is 
the set of natural numbers}.   Clearly, the members 1/4, 1/6, 1/8, 1/9, 1/10, 1/12, 
..…  are composite objects of the bachelor M here in the region RR;  and the 
members  1/2, 1/3, 1/5, 1/7, 1/11, 1/13, ..…  are prime objects of M in RR (see 
Figure 3.3).  And 1 is the only object in the bachelor M which is neither a prime 
object  nor  a composite object. There is no object in the bachelor M which is both 
prime and composite.   
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Figure 3.3.   Partitioned into : Prime, Composite and „neither prime nor 
composite‟ numbers  in the bachelor set M in the region RR 

 
 
Example 3.1.5 
 
Consider the bachelor L = {1, 78.261, 9287, 83.5} of the region RR.   Clearly, the 
members 78.261, 9287, 83.5 are prime objects in the bachelor L;  there does not 
exist any composite object in L. And 1 is the only object in the bachelor L which 
is neither  prime object  nor  composite object. There can not be any object in any 
bachelor which is both prime and composite (which may be verified to be true for 
the bachelor L here).  
 
 
The above mentioned examples show that the classical prime numbers (in the 
existing classical „Theory of Numbers‟)  are particular case of prime objects in the 
region RR with respect to its bachelor set N.  It may be noted that the notion of 
prime objects and composite objects are defined over any region, need not 
necessarily be in a complete region.  
 

 
4.  Compound Algebra 
 

In this section we introduce the notion of „imaginary object‟ and „complex object‟ 
of a region. However, we will also see here that a region A may or may not have 
imaginary object. A region even may have more than one imaginary objects too.  
Imaginary objects of a region A are not members of A and so they are called 
„imaginary‟ with respect to the concerned region A only (i.e. it is purely a local 
characteristics property with respect to the region concerned). An imaginary 
object of a region A could be core member of other regions (other than A).  
Consequently, a core member of a region A could be imaginary object of some 
other region(s). Just imagine an analogous concept that a person Mr. P may be a 
stranger to a family, but he is a core member of another family. And similarly a  
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person Mr. P may be the core family member of a family but he may be a stranger 
to another family. Thus an object of a region A could be an imaginary object of 
another region B, but can not be an imaginary object of the same region A itself. 
Every region has its own set of imaginary objects (if exist). This set could be null 
set too for a region. Two sets of imaginary objects corresponding to two distinct 
regions may be disjoint or overlapping.   
 
 
4.1   „Existence‟ of Imaginary Objects  
 
Consider an extended region AE of the region A =  (A, ,*, ) as defined in the 
previous section. For the region A, any member of the set A is  called a  “real 
object” of  the region A.   
If something is not a member of the extended region AE, we can not call it a real 
object of the region A. But quite naturally curiosity arises about: When do we say 
that a region A has an imaginary object ?   
 
We present here an important set of two conditions called by  „Qualification 
Conditions‟ which are to be fulfilled in order to have guarantee that there exists at 
least one Imaginary Object of a Region A.  
 
A region may or may not have an imaginary object. First of all we define the 
terms „valid expression‟ and „constant expression‟ over a region A.  
 
 
Valid Expression in a Region 
 
Let E1(x) and E2 (x) be two single variable expressions valid in the region A.  In 
region mathematics we say that an expression is regarded to be a valid expression 
in a region A if it can be computed in A with the valid operations of A, assuming 
the inclusion of two infinities in A.  Thus for a valid expression E(x), every 
computed value of E(x) for any x of A must be in the extended region of A.  
 
Constant Expression in a Region 
 
Let E(x) be a single variable expression valid in the region A. Then an expression 
like E(x)   a, where a is a given real object of A, is called a constant expression 
in A.  
 
Imaginary Object of a Region A: „Qualification Conditions‟    
 
We define here two necessary conditions to be fulfilled for existence of an 
Imaginary Object of a region A.   
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Consider two distinct valid expressions E1(x) and E2 (x) in the extended region of 
A. Then we say that the region A has an „imaginary object‟ if  the following two 
conditions are fulfilled:   
(i) at least one of the two expressions E1(x) and E2 (x) is not a constant 
expression in the region A,  and    
(ii) the equality (not identity)  E1(x) = E2(x)  is not satisfied by any element of 
the extended region of A.   
These two conditions are called „Qualification Conditions‟ corresponding to the 
pair of distinct expressions E1(x) and E2 (x) which are necessarily to be fulfilled 
for possible existence of an imaginary object of the region A.   
 
 
We may choose infinite number of pairs of expressions for E1(x) and E2 (x) over a 
given region A. But there is no method described here for choosing two 
appropriate expressions for E1(x) and E2 (x) which can offer us or guarantee us the 
existence of at least one imaginary object of the region A.  At present let us do the 
exercise by trial and failure to explore the possibility of the existence of at least 
one imaginary object of the region A.  
 
For example, if we choose two distinct expressions f(x) = 2x+3 and g(x) = 7 then 
the pair of functions f and g satisfies the condition(i) of the „qualification 
conditions‟ in the region R, but does not satisfy the condition(ii).  
 
If we choose two distinct expressions f(x) = x+3 and g(x) = x+7 then the pair of 
functions f and g satisfies the condition(i) of the „qualification conditions‟ in the 
region R, but does not satisfy the condition(ii) because the infinity objects of the 
extended region of R satisfy the equation f(x) = g(x).  
 
However, if we choose two distinct expressions f(x) = x2+4 and g(x) = 0 then the 
pair of expressions f and g satisfies both the conditions of the „qualification 
conditions‟ in the region R.  
 
Consider the region C. If we choose f(z) = 5z+3 and g(z) = 9+3i then the pair of 
distinct functions f and g satisfies the condition(i) of the „qualification conditions‟ 
in the region C, but does not satisfy the condition(ii). But if we choose f(z) = 5+3i 
and g(z) = 9+3i then the pair of these distinct functions f and g does not satisfy the 
condition(i) of the „qualification conditions‟ in the region C.  
 
If we choose two distinct expressions f(z) = z+3i and g(z) = z+7i  then the pair of 
functions f and g satisfies the condition(i) of the „qualification conditions‟ in the 
region C, but does not satisfy the condition(ii) because many of the infinity 
objects of the extended region of C satisfy the equation f(z) = g(z).  
 
Now let us suppose that i is an imaginary object of the region A coming out of the 
equation E1(x) = E2(x) where E1(x) and E2 (x) are two valid distinct expressions in  
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the extended  region of A satisfying the above two conditions.  Then we accept 
that both E1(i) and E2(i) can be computed satisfying the equality  E1(i) = E2(i).    
Suppose that E1(i) = E2(i) = a (say). Here a is obviously a member of the region A,  
but i is not a member of the region A.   
 
Let us designate this imaginary object i of A to be an atomic imaginary object. 
Then any expression E(i, x1, x2, x3, …., xn) with respect to the operations  ,*,  
of the region A over its outer field F is called a “complex object” of the region A 
if the value of  E(i, x1, x2, x3, …., xn) is not a member of the extended region of A,  
where  the variables x1, x2, x3, …., xn assume objects from A. There may exist nil 
or one or more number of atomic imaginary object in a region A, and 
corresponding to every imaginary object (if exists) there exists a set of complex 
objects of the region A.  

 
It may be noted here that by definition (as stated and explained above) we can 
only realize about the existence of an imaginary object of a region A if exists, but 
we can not trace its identity immediately. Because  an imaginary object of a 
region A is not a member of A, and consequently we do not know where we can 
search it from, where it has come from. It is fact that on this issue we officially 
know nothing beyond the boundary of the set A  at this stage. It is an open 
problem to us at this moment for further study and research on this issue.  
 
Example  4.1.1 
Consider the region RR. If we take  E1(x)   x2 +1  and  E2(x)   2x - 1, then E1(x) 
and E2(x) are distinct satisfying both the conditions of the „Qualification 
Conditions‟. Therefore, there exists at least one imaginary object of RR.       
If we take  E1(x)   x2 +1 and E2(x)   0, then in this case too we observe that both 
the „Qualification Conditions‟ are fulfilled. This guarantees that the RR region 
does have at least one imaginary object.   
 
But, by the above examples, we are not sure here whether there exist only finite 
number of imaginary objects or infinite number of imaginary objects for the 
region RR.   
 
Example  4.1.2 
Consider the region RR.  Let us take  two distinct expressions E1(x)   3/(x-1)  
and  E2(x)   3/(x-4). Then we can not conclude from this example whether there 
exists at least one imaginary object of the region RR, although both E1(x) and 
E2(x) are valid expressions E1(x) and E2 (x) in the extended region of RR. It is in 
fact because of the reason that the condition(ii) of the „Qualification Conditions‟ 
is not fulfilled here.     
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Example  4.1.3 
Consider the region RR. Let us take  E1(x)   3/(x-1)  and  E2(x)   7/(x-4). Then 
we can not conclude from this example whether there exists at least one imaginary 
object of the region RR.  
 
Example  4.1.4 
Consider the simple trivial region ( Z2, , . , . )  where Z2 = {0, 1},   is the 
“addition modulus 2” operator and „.‟  is the „multiplication modulus 2‟ operator 
of real numbers. We see that if we consider the two expressions E1(x)   2x+1 and 
E2(x)   0 in the region ( Z2, , . , . ) , then we observe that the „Qualification 
Conditions‟ are fulfilled here. Therefore, there exists at least one imaginary object 
of this region Z2.  
 
However, if we take E1(x)   x2 +1 and E2(x)   0  then it does not help us to know 
the existence of any imaginary object of Z2.  It is in fact because of the reason that 
the condition(ii) of the „Qualification Conditions‟ is not fulfilled here for Z2.   
 
It is justified in in region algebra that mathematically there exist infinite number 
of distinct 1-D complete regions.  
 
Proposition 4.1.1 
Every complete region has at least one imaginary object.  
Proof.  (This proposition is established in the next section) 
 
4.2     Im-numbers  and  Imaginary Numbers : rim  and  cim   
 
Instead of any region A = (A, ,*, ), let us consider now a particular region RR. 
Since RR is a complete region, its characteristic is zero. Therefore according to 
the Proposition 5.2 (established in the next section) it has at least one imaginary 
object. In the Theory of Objects, let us call these imaginary objects of the region 
RR by a special name „imaginary numbers‟.  
But now there arises a conflict (of title)  because of the fact that the existing 
„Theory of Numbers‟ has also a notion of „imaginary numbers‟. To avoid 
confusion between the existing concept of „imaginary numbers‟ and our notion of 
„imaginary numbers‟ for the particular region RR, we will henceforth call our 
notion of „imaginary numbers‟ by the abbreviated term „im-numbers‟. It is 
obvious that all the imaginary numbers are im-numbers, but at this moment we 
can not answer whether the converse is true or not.  
 
We call the im-numbers for the set of real numbers R by the term R-im or rim (in 

short). The existing „Theory of Numbers‟ says that i (= 1 )  is a rim.  
 
Similarly, if there exist „imaginary objects‟ of the region C of complex numbers 
then we will call each of them by the term C-im or cim (in short).  
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4.3   “Square Root”  of an object  
 
For a given object z of a region A,  if x   A  such that  x2  =  z   then we say 
that  x is a  real square root  object (or, simply may be called „square root‟) of the 
object z,  denoted by  z  =  x.    
 
An object of a region A may have nil or more number of real square roots.  
Clearly  0A  and  1A  are the only objects for which the object itself is the square 
root of it respectively.  However 1A  may have more than one square roots which 
are 1A and ~1A.  
 
Example  4.3.1 
Consider the region RR. Clearly the object 9 of RR has a square root  and  the  
object  -9 does not have any square root.  Hence  -9  has at least one imaginary 
square root.  It implies that the region RR does have at least one imaginary object. 
 
4.4    “nth Root”  of an object  
For a given object z of a region A,  if   x A  such that  xn  =  z   then we say 
that  x is a  real nth root object (or, simply may be called „nth root‟) of the object z  

denoted by n z , where n is a positive integer.   
An object may have nil or more number of real nth roots. In case, for a given z the 
equation  xn = z  is not satisfied by any x A,  then we say that z has at least one 
„imaginary nth root‟;  and at the same time we understand the existence of at least 
one „imaginary object‟ of the region A.  
 
4.5  Classical set of Complex Numbers :  a particular instance 
 
For an arbitrary region A,  knowing about the „possible existence‟ of some 
imaginary objects of it  is not a straightforward task. Consequently,  knowing the  
„identities‟  of the imaginary objects of it (if exist)  is also not a straightforward 
task,  unlike knowing the imaginary objects of the region RR which is a particular 
case.  Nevertheless, according to our Theory of Objects there is no guarantee at 
this stage that : “the set of all imaginary objects of the region RR is exactly equal 
to the set of complex numbers”. It is an open problem now for us. However it is 
now guaranteed that  the classical set C of complex numbers is a subset of the set 
of all imaginary objects of the region RR.  
 
4.6    Logarithm of Objects 
 
Consider a region A.  For two objects x and y of the region A, the logarithm of  an 
object x to the base y is denoted by the notation logy(x) which is the real 
number b  such that yb = x. We will discuss the issue for x = 0A  or  for y = 0A 
later on. We could see that if A and B are two distinct complete regions, then the  
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real numbers like  2log 4
A A  (i.e.  logarithm of the object 4A to the base 2A) and 

2log 4
B B  are not equal. The objects like 4A , 4B  etc. are introduced later here.  

 
 
4.7     Compound Numbers   
 
In this section we discover a new concept termed as “Compound Numbers”:  
which is another new direction unearthed in the classical „Theory of Numbers‟.  
 
Consider the two distinct expressions f(x)   x2 + 1 and g(x)   0. Clearly f and g 
satisfy the qualification conditions mentioned in subsection 4.1. There is no x in 
the region RR (set R)  which satisfies the equation f(x) = g(x).  It indicates that 
there is at least one rim in R.  

It is in fact well known to everybody that R has one rim which is  i (= 1 ) . At 
this moment we will not debate on the issue “How many distinct atomic rims R 
does have of kind i”, unless we do further work on it. As in the existing literatures 
on the classical Theory of Numbers, there is one and only one atomic rim which is 
i, of course along with infinite number of other rims of kind (a+ib).  
 
Now  let us consider the following analysis very carefully:  
 
The analysis is done with the help of examples.  
Consider the region C. Consider the function  f :  C → C  given by  
               f(z)  =   (|z|2 + 2)  + 3i.           
Consider another function  g :  C → C  given by 
                g(z)  =   1 + 3i.           
Both f and g are functions of complex variable. It is obvious that f(z) is not a 
constant expression. It outputs different results for different values of z in general. 
Now, it may be observed that there is no object z of the region C which satisfies 
the equation  f(z) = g(z). Thus the pair of expressions f(z) and g(z) satisfies the 
„Qualification Conditions‟ which are necessarily to be fulfilled for possible 
existence of an imaginary object of the region C (as mentioned in subsection-4.1). 
Consequently,  it indicates that there is at least one imaginary object (cim) in C. 
Say e is one atomic cim in C generated from the above equation f(z) = g(z).  It 
means that e is an imaginary object  of C for which the equality  f(e) = g(e) = z0  

holds good,  where z0   C. And hence we define this imaginary object e for the 
region C to be such that |e| = i.  
 
Clearly e does not belong to C (analogous to the statement that:  i does not belong 
to R). Therefore e can not be written in the form of e = a+ib  where a, b are real 
numbers. The notion of rim i has provided the mathematicians a unique scope to 
solve any real equation of type  f(x) = g(x) where both f(x) and g(x) are 
simultaneously  not constant functions with unequal values. Similarly the notion 
of cim e has provided the scope to solve a complex equation of above type  f(z) =  
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g(z) where both f(z) and g(z) are simultaneously not constant functions with 
unequal values.  
Both i and e are philosophically discovered in a common way. See that on 
executing an operation over i the result happens to be in R, and similarly on 
executing an operation over e the result happens to be in C. Because square of i is 
in R and modulus of e is in C.  
 
Let us now solve the following problem to show an application of e in 
Mathematics.  
 
Problem  
Solve the complex equation    
                          |f(z)|2 +z  =  g(z),   
where f(z) = (4+3i)z+(3-5i)  and  g(z) = z-1.   
 
If we solve this complex equation, we get one of its roots given by  z =  z1 + e z2,  

where z1 = 
4 3

25

i
 and  z2 = 

3 29

25

i
.    

It is to be noted that i is an im-member of the region R, not of the region C. And 
similarly e is an imaginary member of the region C, not of the region R.  Thus for 
the real objects z1 and non-zero z2 of C,  if e is one cim of C  then  the  object d = 
(z1 + e z2)  is not a member in C,  i.e. d is not a real object of C (this situation is 
analogous to the case where for  x1 and non-zero x2 of R, the object d = (x1 + i x2) 
is not a member in R). Such an object d = (z1 + e z2)  is a complex object of the 
region C and is called by the term compound number in C.   
 
A cim or a compound number of C is not a core member of C. It has taken birth 
by virtue of the definition of „imaginary object of a region‟ as defined earlier in 
subsection 4.1.  
 
Next  let us consider another example as below.   
Consider the region C. Consider the function  f :  C → C  given by  
                           f(z)  =  z + arg(z).           
Consider another function  g :  C → C  given by 
                           g(z)  =   2z.           
Both f and g are functions of complex variable. It is obvious that f(z) is not a 
constant expression. It outputs different results for different values of z in general. 
Similarly  g(z) is also not a constant expression as it outputs different results for 
different values of z. Now, it may be observed that there is no object z of the 
region C which satisfies the equation  f(z) = g(z). Thus the pair of expressions f(z) 
and g(z) satisfies the „Qualification Conditions‟ which are necessarily to be 
fulfilled for possible existence of an imaginary object of the region C (as 
mentioned in subsection-4.1). Consequently,  it indicates that there is at least one 
more imaginary object (cim) in C. Say w is the cim in C generated from the above 
equation f(z) = g(z).  It means that w is an imaginary object of C for which the  
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equality f(w) = g(w) = z0  holds good, where z0   C. Clearly w does not belong to 
C (analogous to the statement that: e does not belong to C, i does not belong to R), 
but z0  is obviously a member of the region C. Therefore w can not be written in 
the form of w = a+ib  where a, b are real numbers. Thus the notion of cim e has 
provided the scope to solve here the complex equation of type  f(z) = g(z).  
 
It is to be noted that i is an im-member of the region R, not of the region C. And 
similarly w is an imaginary member of the region C, not of the region R.  Thus for 
the real objects z1 and non-zero z2 of C,  if w is one cim of C  then  the  object d = 
(z1 + w z2)  is not a member in C,  i.e. d is not a real object of C (this situation is 
analogous to the case where for  x1 and non-zero x2 of R, the object d = (x1 + i x2) 
is not a member in R). Such an object d = (z1 + w z2)  is a complex object of the 
region C and is another example of compound number in C.   
 
The cim w or the compound number of C is not a core member of C. It has taken 
birth by virtue of the definition of „imaginary object of a region‟ as defined 
earlier.  
 
 
4.7.1 Two parts of a compound number   
 
Let us consider the imaginary object e of the region C.  Consider a compound 
number d = (z1 + e z2)  of the region C. Here the complex number z1 is a real 
object of C and is called the  „complex part‟ of the compound number d; and the 
complex number z2 is also a real object of C and is called the „imaginary part‟ of 
the compound number d.    
 
If  d = (3+4i) + e (7-2i) is a compound number of the region C then the complex 
number (3+4i) is the „complex part‟ of d and the complex number (7-2i) is the 
„imaginary part‟ of d. Both the „complex part‟ and „imaginary part‟ of a 
compound number are complex numbers. As a trivial case the „complex part‟ of 
the cim e  is (0+i0) and the „imaginary part‟ is (1+i0). Corresponding to every 
atomic cim, there exist infinite number of compound numbers.  
 
Similarly let us consider the imaginary object w of the region C and a 
corresponding compound number d = (z1 + w z2)  of the region C. Here the 
complex number z1 is a real object of C and is called the  „complex part‟ of the 
compound number d; and the complex number z2 is also a real object of C and is 
called the „imaginary part‟ of the compound number d. If  d = (9+2i) + w(3-8i) is 
a compound number of the region C then the complex number (9+2i) is the 
„complex part‟ of d and the complex number (3-8i) is the „imaginary part‟ of d. 
Both the „complex part‟ and „imaginary part‟ of a compound number are complex 
numbers. As a trivial case the „complex part‟ of the cim w  is (0+i0) and the 
„imaginary part‟ is (1+i0). Corresponding to every atomic cim, there exist infinite 
number of compound numbers.  
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In general, suppose that R1, R2, R3, ….., Rn are n number of regions. A region may 
or may not have imaginary object. Even if a region Ri has an imaginary object, we 
need to explore how many more imaginary objects does Ri have. If ei is an  
imaginary object of the region Ri and if a, b are real objects of Ri then (a + b ei) is 
a complex object of the region Ri. However, for the particular region C, its 
complex objects  are called by compound numbers.  
 
 
4.7.2    No confusion about the „existence‟ of cim 
 
If x is in R then the equation x2 + 1 = 0 is not satisfied by any x of R and thus 
there may exist one or more solutions of this equation in the form of x = x1 + i x2   
which are „imaginary objects‟ of the region R in the Theory of Objects (which we 
call as complex numbers in our classical Number Theory).  
 
The equation  f(z) = g(z) where  f(z) =  (|z|2 + 2) + 3i  and  g(z) = 1 + 3i  can not 
be solved for z in C. This situation leads to the existence of at least one cim. 
Consequently, it is to be very carefully noted that searching for x from R for 
satisfying the equation x2 + 1 = 0  and searching for z satisfying the equation f(z) 
= g(z)  where f(z) = (|z|2 + 2) + 3i  and  g(z) = 1 + 3i  are basically same type of 
problems in our new mathematics on Theory of Objects. Only difference is that 
these two searching problems are to be executed on two different platforms (two 
different regions). In the first case we do search for real numbers x and y from the 
jurisdiction R only, whereas in the second case we do search for a complex 
number z from the jurisdiction C only. We must be careful about our boundary of 
the concerned region while searching for solutions of valid equations in that 
region. Thus, there is no confusion in the existence of at least one atomic cim of 
C, but its further characterization are to be done in future research work.   
 
History says that after the discovery of the rim i for the set R of numbers, a new 
number system took birth which is the set C of complex numbers. The giant C 
came into existence by the birth of one object which is i for R.  It is to be 
philosophically viewed that the existing notion of „complex numbers‟ is with 
respect to its base-root which is  „real numbers‟. Also for an example, see that „5i‟ 
is an imaginary number to the set R, not to the set C!.  To the set C, the number 
„5i‟ is a core family-member having 100% degree of belongingness in C. It is to 
be clearly understood that the issue of „imaginary‟ or „complex‟ is an relative 
issue, but local to the concerned region. One object may be a core family (not an 
imaginary object) to a region A, but it could be an imaginary object to another 
region B (not a core family member)!. 
 
The set R of real numbers is conceptualized first, and later by the discovery of i 
the mathematicians discovered the  birth of the classical set C of complex 
numbers. In an analogous way we claim that picking-up the region C and by the 
discovery of the cim e (and other atomic cims, if exist of C)  has led to the  
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discovery of a new set of numbers. Let us call this new set by the set of 
“Compound Numbers” denoted by E which is corresponding to the imaginary 
object e. Our immediate need is to discover the fundamental operations on E (like 
additions, multiplications, etc.) and then to study E as a possible algebra, and 
more.   
 
It is obvious that E forms a group with respect to the binary operator  „+‟  defined 
as below : 
 
for the compound numbers   d1 =  z11 + e z12  and  d2 =  z21 + e z22  of  E,  define 
(d1 + d2 ) by :    
 
                 d1 + d2   =  (z11+ z21) + e (z12 + z22),  
 
which is obviously a compound number in E.    
 
It may be observed that the philosophy behind the birth of i and e is almost 
analogous. The following table will show a comparative information about the 
birth and growth of i and e.  
 
Unearthing the cim w  has led to the discovery of another new set of numbers. Let 
us call this new set by the set of “Compound Numbers” denoted by W which is 
corresponding to the imaginary object w. Our immediate need is to discover the 
fundamental operations on W (like additions, multiplications, etc. ) and then to 
study W as a possible algebra, and more.  It is obvious that W forms a group with 
respect to the binary operator  „+‟  defined as below : 
for the compound numbers   d1 =  z11 + w z12  and  d2 =  z21 + w z22  of  W,  define 
(d1 + d2 ) by :    
 
                 d1 + d2   =  (z11+ z21) + w (z12 + z22),  
 
which is obviously a compound number in W.    
 
In the “Theory of Objects”, the two sets E and W of Compound Numbers 
introduced here are just at their own infant stage, but undoubtedly they are two 
new sets of numbers discovered here. With a rigorous amount of research work on 
the two sets E and W of numbers, it will surely take its own shape in future to 
update the existing classical “Theory of Numbers”. Without giving further 
justifications, we claim that there are possibly many more sets of numbers 
(besides the two sets E and W of numbers) yet to be unearthed.  
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Table 1.  A comparative datatable about i and e  
 

Sr. 
No. 

about i about e 

1 It is an „imaginary object‟ of 
the region R.  

It is an „imaginary object‟ 
of the region C.  

2 In the existing Theory of 
Numbers it is called 
„imaginary number‟.  

In the newly developed 
Theory of Objects it is 
called „compound number‟.  

3 It is created with some issues 
arose while working with the 
set R of real numbers 
(however in our new 
mathematics we say in a 
different way like: It is 
created with some issues 
arose while working with the 
region R).  

It is created with some 
issues arose while working 
with the region C.  

4 Its definition by birth says 
that : On executing an 
operation over i the result 
happens to be in R. The 
operation is „square‟.  

Its definition by birth says 
that : On executing an 
operation over e the result 
happens to be in C. The 
operation is „modulus‟.  

5 The complex number a+ib 
has two parts. Both the parts 
are real numbers.    

The compound number 
g+ez has two parts. Both 
the parts are complex 
numbers.   

6 A complex number a+ib can 
be considered in a 2-D 
geometry.  

A compound number 
z1+ez2 can be considered in 
a 4-D geometry. 

7 Set of complex numbers is 
denoted by C. It plays a huge 
role in Mathematics, Science 
and many other giant 
domains. Complex Algebra is 
a rich algebra in 
Mathematics.  

Set of compound numbers 
corresponding to the 
imaginary object e is 
denoted by E. This set E 
forms an abelian group 
with respect to the binary 
operation „+‟ defined 
above. Compound Algebra 
is yet to be developed 
further in the context of  
our proposed new 
mathematics.   
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5.     Theory of  A-Numbers     
 

In earlier sections, while introducing the notion of prime and composite objects 
and then the notion of imaginary and compound objects, we have considered a 
general region which need not be a complete region. There are regions which are 
complete and there are regions which are not. In this section we introduce the 
“Theory of Objects” corresponding to every complete region A titled as “Theory 
of A-Numbers”. It has been shown that corresponding to a region A, there may 
exist infinite number of distinct complete regions (i.e. 1-D complete regions).  
 
In this subsection we develop a new theory called by “Theory of A-numbers” 
corresponding to a complete region A. If a region K  is not a complete region, the 
“Theory of K-numbers” does not exist for it;  however the topics of prime and 
composite objects, imaginary and compound objects, can be well studied in any 
region K, be it a complete region or not. Suppose that A is a complete region. We 
first of all define the concept of „Object Linear Continuum Line‟ in the complete 
region A.  
 
 
5.1      Object Linear Continuum Line   
 
The notion of „Object Linear Continuum Line‟ in a complete region A  is 
explained as below.  
A line can be drawn on plain paper on which one point may be fixed to be the 
location for the zero object 0A,  with all positive objects of A having their 
respective locations to the right and all negative objects of A having their 
respective locations to the left of the zero object 0A, as explained earlier.  Thus the 
„positive direction‟ of the line can be called to be XA-axis and the „negative 
direction‟ of the line can be called to be XA

1-axis. And the line which the objects 
of the complete region A is considered to lie upon is called the Object Linear 
Continuum Line for the complete region A (see Figure 5.4).   
 
 

 
Figure 5.4.     Object Linear Continuum Line of the complete  

region A, a general view 
 
 
By the distance between two objects x and y of the complete region A, we mean 
the corresponding metric distance ρ(x,y) of the normed complete metric space A. 
The distance of a positive object xA  from the origin is A

x  = ρ(xA,0A) = xa, and 

the distance of a negative object  xA from the origin is = -xa (imposing minus  
 



284                                                                                                        Ranjit Biswas 
 
 
sign). For example, see a collection of consecutive equi-spaced points on the 
object line as shown in the Figure 5.5 below.  
 
 

 
 

Figure 5.5.    Object Linear Continuum Line of the complete region A with a 
collection of consecutive equi-spaced object points 

 
 
 
The term „equi-spaced‟ in the caption of Figure 5.5 is well understood in the sense 
of the corresponding metric (or norm) of the complete region A,    
i.e. for any real number r,  ρ(r  1A, (r+1) 1A)  = positive constant  (independent 
of the real number r), in the complete region A.     
 
Since A = (A, ,*, ) is complete (normed complete metric space), there are no 
"points missing" from it (inside or at the boundary). Since A is a chain, every 
object of A has a unique address on this Object Linear Continuum Line  XA

1XA;  
and conversely i.e. corresponding to every address (point) on this Object Linear 
Continuum Line XA

1XA  there is a unique object of the region A. 
 
5.2     Unit Length   
 
We define now the concept of „Unit Length‟ in a complete region A. Consider a 
complete region A = (A, ,*, ).  If xA is a positive object on the object linear 
continuum line, then the distance of the point xA from the point O (the location of 
the object 0A on the object linear continuum line XA

1XA)  is a positive real number 
denoted by the notation xa . We use the classical practiced convention to say that 
~xA is at a distance of –xa (imposing minus sign) from the point O, although as per 
definition of metric a distance can not be a negative quantity.   
 
For xA A, we have  

A
x

 
= 

A A

A A

x if x is a positiveobject

x if x is a negativeobject




    

because   ρ(0A, xA) = ρ(0A, xA) = a
x .   

 
Corresponding to the unit element 1A of the complete region A, the positive real 
number 1a (where 1a = ║1A║ = ρ(0A,1A))  is called the „unit length‟ in the Theory 
of A-numbers. Thus the unit length is defined by the the distance of the object 1A 
from 0A. Clearly 0a being the ║0A║ is equal to the real number 0.  
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Proposition 5.1 
For every complete region A, the unit length is equal to 1.  
 
Proof.   Straightforward from the axiom of the normed linear space.   
From the identity  ║1a  1A║ = ║1A║,   we have  |1a|.║1A║ = ║1A║.   
Therefore,  |1a| = 1,  i.e.  1a = 1.   Hence proved.    
 
 
 
An Important Note 
 
We have  xa = x.1a = x,  where xA = xa 1A and ║xA║ = |xa| = ρ(0A, xA).     
In the Theory of Objects, we will use the notation xa instead of x (although xa = x) 
in most part of its literature because of the following fact:   
(i) the small letter „a‟ in xa tells that the name of the concerned region is „A‟.  
(ii) the real number xa signifies that corresponding to it there is a unique object 
xA of the region A situated on the Object Linear Continuum Line of A  at a 
distance  xa  from the origin 0A.  
(iii) if xa is a positive real number then the corresponding object xA is a 
positive object in A, if if xa is a negative real number then the corresponding 
object xA is a negative object in A, and if if xa is equal to zero(0) then the 
corresponding object xA is 0A.  
 
5.3     Ontegers in a complete region 
 
In this subsection we introduce the notion of „Onteger‟ in a complete region A = 
(A, ,*, ). The word „onteger‟ is not a valid word in English dictionary. It is an 
abbreviated word for “Object Integer”. The concept of „ontegers‟ will be the basic 
element in developing the new number theory entitled „Theory of A-numbers‟.  
 
Consider an object xA in the complete region A.  

Therefore  xA = 1a Ax  , ║xA║ = xa where xA is a positive object. And  xA  = 

1a Ax  , ║ xA║ = xa  where  xA  is a negative object;.  

 
Onteger 
If m is any real integer, then the object mA of the complete region A is called an 
„object integer‟ or „onteger‟ in the  „Theory of A-numbers‟.  
 
Thus the ontegers in the „Theory of A-numbers‟  are  0A, 1A, ~1A, 2A, ~2A, 
 3A, ~3A, …..  etc. The ontegers  1A,  2A,  3A,  4A, …….. etc. are 
„positive ontegers‟ and the ontegers  ~1A, ~2A, ~3A, ~4A, …….. etc.  are „negative 
ontegers‟ in the „Theory of A-numbers‟. The onteger 0A is neither a positive 
onteger nor a negative onteger. Obviously, the set of all ontegers of the complete 
region A is a countable set. However, it may be true that norm of some of the  
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ontegers of the complete region A are integers in R. In a complete region A, the 
ontegers 0A, 2A, ~2A,  4A, ~4A,  …..  are even ontegers  and  the ontegers  
1A, ~1A, 3A, ~3A 5A, ~5A  …….. are odd ontegers.  
 
For a given complete region A the distance between two consecutive ontegers on 
the object linear continuum line will be always a constant real number.  
 
Thus, we have for the complete region A,  
……  = ρ( 3A,  2A)  = ρ( 2A,  1A)  =  ρ( 1A, 0A)  =  1  =  ρ(0A, 1A)  = ρ(1A, 
2A)  = ρ(2A, 3A)  = ρ(3A, 4A)  =   ……… ,    
and similarly for the complete region B, 
……   = ρ1( 3B,  2B)   =  ρ1 ( 2B,  1B) =  ρ1( 1B, 0B) = 1 =  ρ1(0B, 1B)  = 
ρ1(1B, 2B)  = ρ1(2B, 3B)  =  ρ1(3B, 4B)  =   ……….  .   
 
For any real number r, ρ(r  1A, (r+1)  1A)  =  positive constant 1,  which is 
independent of the real number r. For any two real numbers r and k,  we have  
ρ(r 1A, (r+k) 1A)  =  |k|.1 .  
 
5.4.      „RA value‟ of a real number x  
 
Let A be a complete region. Corresponding to the complete region A, consider the 
1-to-1 mapping  RA : R → R  defined by  
              RA(x)  =  x.1a   =  xa    x R.  
Then the real number xa is called the „RA value‟ of the real number x denoted by 
RA(x) = xa corresponding to the complete region A.   
 
Clearly, in that case RA(-x) = -xa.  Also RA(0) = 0a = 0,  and  RA(1) = 1a = 1.    
 
For xA A, we have   

A
x   =  ( )

A
R x   =    

a A

a A

x if x is a positiveobject

x if x is a negativeobject




 

because  ρ(0A, xA) =  ρ(0A, xA)  = a
x .   

 
Consider the above defined 1-to-1 mapping  RRR : R → R  for the complete region 
RR. It is obvious that RRR : R → R is an identity mapping.  
 
 
5.5     „Natural A-ontegers‟   
In the Theory of A-numbers, the  positive ontegers 1A, 2A, 3A, 4A, …  
are called the Natural A-ontegers.  
 
Proposition 5.2 
Every complete region has at least one imaginary object.  
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Proof.   Consider any complete region A  =  (A,  ,*,  ).  By definition of 
complete region, its characteristic is zero. In our literature, by complete region we 
mean 1-D region calculus. We take help of an example here. Consider the 

equation 2 1 0A A Ax    in the region A.  

We will show that the equation 2 1 0A A Ax    is not satisfied by any object of A, 

where both LHS and RHS of this equation are valid expressions in A satisfying 
the necessary „qualification conditions‟ as mentioned in subsection 4.1.    
 
Let us prove it by contradiction.  
i.e. if possible, suppose that for an object 

Ax  of A we have  

        
2 1 0A A Ax    

Or,  2( 1 ) 1 0a A A Ax     

Or,  2 21 1 0a A A Ax     

Or,  2 1 1 1 0a A a A Ax      

Or,  ( 2
ax +1a) 1A  =  0A  

 

Or,  ( 2
x +1) 1A  =  0A  

 

 

We must have either ( 2
x +1) = 0  or 1A = 0A , which is a contradiction because the 

equality ( 2
x +1) = 0  is not true for any real number.  

 
Therefore,  there is no real object xA  of the region A which can satisfy the 
equation  

           
2 1 0A A Ax     

Consequently, it produces one imaginary object of the complete region A which 
is   (say).    Hence the result.

 
 
 

(Note: It may be noted that the equation 2 1 0A A Ax   produces different 

imaginary objects for different complete region A. It may also be noted that 
although C does not form an 1-D region calculus (i.e. 1-D complete region), but it 
does not mean that C will not have any imaginary object.) 
 
Proposition 5.3 
If A is a complete region then for any real numbers x and y the following results 
are true:  
(i) xa ya  =  (x y)a  
(ii) (xa)

n  =  (xn)a where n is an integer.  
(iii) xAyA  =  (x+y)A  
(iv) xA ~ yA  =  (x-y)A  
(v) (xA)n  =  (xn)A where n is an integer.  
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Proof.  
(i)    xa ya = x.1a y.1a =  (x y).1a = (x y)a .  Hence Proved.  
(ii)   (xa)

n = (x.1a)
n = xn.(1a)

n =  xn.1a = (xn)a.          Hence Proved.   
(iii)  xAyA =   (xa 1Aya  1A) =  (xaya) 1A =  (x+y)a  1A =  (x+y)A .    
Hence Proved.   
(iv)  proof is similar to (iii).  
(v)   (xA)n = (xa 1A)n = (xa)

n
  (1A)n

  =  (xa)
n
  1A =    

(xn)a  1A  = (xn)A. Hence Proved.   
 
Proposition 5.4 
If A is a complete region, then   infinite set of trio x, y, z   A such that the 

relation  n n n
x y z   is satisfied for n = 2.  

Proof.  Take  the case for  x = 3A ,  y = 4A  
and  z = 5A .    

Now,   2 23 4A A  =   ( 3a
1A )2    ( 4a

1A )2   

=    ( 3a )2  (1A )2   ( 4a )2   (1A )2 

=    9a

21A    16a

21A   

=   25a

21A   

=    ( 5a
1A )2          

=    25 A  

This particular result can be used to generate infinite number of similar but 
distinct results.  Hence proved. 
 
 
5.6     ƐA-Complex Objects  
 
Consider any complete region A = (A, ,*, ). Since it is a complete region, by 
definition its characteristic is zero. As per Proposition 5.2 every such region has at 
least one imaginary object; this is an important result because existence of any 
new such imaginary object leads to a new object algebra. Consider any imaginary 
object of A, which is ƐA (say).  

Then ,A Ax y A  the object ( )A A Ax y  is called an “ƐA-Complex Objects”  
corresponding to the region A. In that case the object xA 

 is called the „real part‟ 
and the object yA is called the „imaginary part‟ of the ƐA-Complex object.  
Obviously both real part and imaginary part of an ƐA-Complex object are real 
objects of the region A.  
 
5.7     Ɛ-Complex Object  
 
The Ɛ-Complex Object is in fact  a particular case of ƐA-Complex objects. 
Consider the infinite region A = (A, ,*, ) whose characteristic is zero. It is 

shown that the equation 2 1 0A A Ax   is not satisfied by any object of A. Suppose  
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that the corresponding particular imaginary object ƐA is denoted by another 
notation Ɛ. 
Thus we have the result 2 1 0A A      i.e.  Ɛ2

 = 1A . 

Then ,A Ax y A  , the object ( )A A Ax y  is called an Ɛ-Complex Object   

corresponding to the region A.  
 

The set  CA = {
Az  = ( )A A Ax y : ,A Ax y A }   is called the set of all Ɛ-Complex 

Objects corresponding to the region A.  
 
(There should not be any confusion between the two notations CA and cA.  In the 
Theory of A-numbers, cA is an object of the region A where CA is the set of all Ɛ-
Complex Objects corresponding to the region A).   
 
5.8   Algebra of Ɛ-Complex Object  
 
In this section a new type of algebra is developed called by „Algebra of Ɛ-
Complex Object‟. Consider the set CA of all Ɛ-Complex Objects corresponding to 

the region A. Denote the Ɛ-Complex Object (0 0 )A A A  by the notation  Ɛ0  and 

the Ɛ-Complex Object (1 0 )A A A  by the notation Ɛ1.   

If  
Az  = ( )A A Ax y  be  an Ɛ-complex object,   then  we define  its  conjugate Ɛ-

complex object given by  

                             Az  = ( )A Ax y . 

Define the following operations over the set CA corresponding to the region A  =  
(A, ,*, ).  If there is no confusion, let us use the same notations   and * of A  
for the case of the set CA too (although their definitions are different in A and CA).  
 
(1)   Addition  &  Subtraction 

If 1Az  = 1 1( )A Ax y and 2Az  = 2 2( )A Ax y   be two Ɛ-complex objects, then 

define addition of them using the identical notation   as  below:              

1Az  2Az = 1 1( )A Ax y  2 2( )A Ax y = 1 2 1 2( ) ( )A A A Ax x y y    

which clearly belongs to CA;  
 
and  define subtraction as  below:  

1Az  2Az =  1 1( )A Ax y  2 2( )A Ax y  = 1 2 1 2( ) ( )A A A Ax x y y   

which clearly belongs to CA. 
 
(2)   Multiplication 

If 1Az  = 1 1( )A Ax y and 2Az  = 2 2( )A Ax y  be two Ɛ-complex objects, then 

define multiplication of them using the identical notation    as  below 

1Az  2Az  = 1 1( )A Ax y  2 2( )A Ax y  

     = 1 2 1 2 1 2 1 2( ) ( )A A A A A A A Ax x y y x y y x        
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which clearly belongs to CA. 
 
(3)   Scalar Multiplication 

For kR  and  for Az  = ( )A Ax y   CA,  define the scalar multiplication as 

below : 
        k

Az  =  (k 
Ax   Ɛ  k Ay ),   which clearly belongs to CA. 

 
Proposition 5.5  

If 1Az  = 1 1( )A Ax y and 2Az  = 2 2( )A Ax y  be two Ɛ-complex objects in CA, 

then 1Az  2Az  =   Ɛ0    iff  at least one of 1Az  and 2Az  is Ɛ0 (i.e. there is no  zero 

divisor).  
Proof :   

Suppose that 1Az  2Az  =   Ɛ0 .    

  1 2 1 2 1 2 1 2( ) ( )A A A A A A A Ax x y y x y y x       =   Ɛ0 .    

  1 2 1 2( )A A A Ax x y y   = 0A  and  1 2 1 2( )A A A Ax y y x    = 0A.  

  1 2 1 2A A A Ax x y y     and  1 2 1 2A A A Ax y y x    

   either 2 2
1 1 0A A Ax y   or   2 2

2 2 0A A Ax y     or  both.   

Hence proved.  
 
It may be observed that the set CA forms a group with respect to the binary 
operation  , and the set CA – {Ɛ0}  forms a group with respect to the binary 
operation *.    
Several other algebraic properties of CA can be studied in future work.  
 

 
6.    Conclusion 
 

In this paper a new theory called by “Theory of Objects” along with its algebra 
called by „Object Algebra‟ is introduced at the outset. Although this theory is at 
its baby stage, but it is initiated here with four topics as follows: 
1. “Prime Objects” and “Composite Objects” in a Region 
2.  “Imaginary Objects” and “Compound Objects” in a Region,  
3.   Compound Numbers : a generalized concept of the complex numbers, and  
3.  a new type of  “Theory of  Numbers” : Every Complete Region has its own.   
 
The existing notion of „prime numbers‟ is a special case of „prime objects‟, and 
the existing notion of „composite numbers‟ is a special case of „composite 
objects‟. We define imaginary objects (if exist) of a region. As a particular case of 
imaginary object we study the existing notion of imaginary number i of the set R 
of real numbers, which is called by „rim‟ in the Theory of Objects. 

 



‘Compound algebra’ :  generalization of complex algebra                                 291 
  

Another major breakthrough in Object Algebra we unearth is that the region C 
(set of complex numbers) has at least two imaginary objects. Any atomic 
imaginary object of C is called by the notation „cim‟ of C. Two distinct cims of C 
we have unearthed here which we name by e and w. If x and y are in R, then 
corresponding to the rim i of R the object (x+iy) is a complex number. The object 
(x+iy) is a complex object in the jurisdiction of R, but in the jurisdiction of some 
other region it may not be a complex object.  The basic unique property of an 
imaginary object is that it is a local property in some region, but may be a core 
member of some other region. Analogously, if z1 and z2 are in C then 
corresponding to the cim e of C the  object (z1 + e z2) is a compound number for 
the set C. The rim i is imaginary for R, not for C;  and thus the rim i is a core 
member of C, not of R. Therefore rim i is a real object of C as per definition of 
real object of a region. The cim e is imaginary for C, not for any other region in 
general. Being the imaginary object in C, the cim e is not a member of C, i.e. not a 
real object of C.  Thus we have happened to see now the birth of a new type of 
numbers called by „compound numbers‟ of the form (z1 + e z2)  where z1 and z2 
are in C. All the compound numbers of the form (z1 + e z2)  are compound 
numbers with respect to the cim e. But there is another cim w  of C is also 
discoveres. The set of all compound numbers corresponding to the cim e is 
denoted by E and the set of all compound numbers corresponding to the cim w is 
denoted by W. We need to analyze the two sets E and W more precisely, by 
identifying precisely all its members, characteristic properties, results, etc. which 
will be our future course of research work. In the “Theory of Objects”, the two 
sets E and W of Compound Numbers introduced here is just at its infant stage, but 
undoubtedly it is a new set of numbers discovered here. With a rigorous amount 
of research work on the sets E and W of numbers, it will surely take its own shape 
in future to update the existing classical “Theory of Numbers”. For studying 
prime and composite objects, imaginary objects, etc. we have considered simple 
regions, not complete regions. But, mathematically there are infinite number of 
distinct complete regions exist in our mathematics of Object Algebra. We then 
introduce “Theory of A-numbers” which is developed if A is a complete region, 
otherwise not valid. We have identified „What are the minimum properties which 
need to be satisfied by a set A so that a new Geometry can be developed over the 
platform A?‟. In every complete region A, there are ontegers   ……,  3A,  2A, 
 1A, 0A,  1A,  2A, 3A, 4A, 5A, …..,  and a particular instance of ontegers are the 
integers  ….., -3, -2, -1, 0, 1, 2, 3, 4, …..  which are the ontegers in the complete 
region RR.   

Consequently, upon the discovery of the Theory of Objects and new types of 
numbers, we need to revisit many of the existing famous results in our future 
work, viz:  
(i)   R, C, H, O  are the only normed division algebras.  
(ii)  the associative real division algebras are real numbers, complex numbers,  and 
quaternions.  
(iii) The Cayley algebra is the only non-associative division algebra.  
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(iv) The algebras of real numbers, complex numbers, quaternions,  and  Cayley 
numbers are the only ones where multiplication by unit "vectors" is distance-       
preserving.  
 
With the notion of “Theory of Objects” introduced here, it is sure that in due time 
the „Number Theorists‟ can be re-designated with a new title „Object Theorists‟ as 
the areas of cultivation will not be limited to just numbers but to the objects.  
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