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Abstract: In this paper two probability distributions are introduced compounding inverse Weibull distri-

bution with Poisson and geometric distributions. The distributions can be used to model lifetime of series

system where the lifetimes follow inverse Weibull distribution and the subgroup size being random follows ei-

ther geometric or Poisson distribution. Some of the important statistical and reliability properties of each of

the distributions are derived. The distributions are found to exhibit both monotone and non-monotone fail-

ure rates. The parameters of the distributions are estimated using the maximum likelihood method and the

expectation-maximization algorithm. The potentials of the distributions are explored through three real life

data sets and are compared with similar compounded distributions, viz. Weibull-geometric, Weibull-Poisson,

exponential-geometric and exponential-Poisson distributions.

Keywords: Inverse Weibull distribution, Poisson distribution, Geometric distribution, Hazard function,

Maximum likelihood estimation, EM algorithm.

1 Introduction

In reliability engineering research, inverse Weibull distribution is often used in statistical analysis of life-

time and response time data. Khan et al (2008) in their theoretical analysis of inverse Weibull distribution

mention that numerous failure characteristics such as wear out periods and infant mortality can be modeled

through inverse Weibull distribution. They mention about the wide range of areas in reliability analysis where

inverse Weibull distribution model can be used successfully. Murthy et al (2004) mention that degradation

phenomena of mechanical components such as dynamic components of diesel engine can be appropriately

modeled using inverse Weibull distribution. Erto and Rapone (1984) show that inverse Weibull distribution

provides a good fit for several data sets. Interpretation of inverse Weibull in the context of load strength

relationship for a component was provided by Calabria and Pulcini (1994). Shafiei et al (2016) mention

that inverse Weibull is an appropriate model for situations where hazard function is unimodal. They further

mention the distribution as one of the popular distributions in complementary risk problems.

Recent literature suggests that several researchers have proposed compounding of useful lifetime distri-

butions to model lifetime data. Adamidis and Loukas (1998) introduced a two-parameter distribution with
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decreasing failure rate by compounding exponential and geometric distributions. Another two parameter

distribution with decreasing failure rate was introduced by Kus (2007) by compounding exponential and Pois-

son distributions. Tahmasbi and Rezaei (2008) also introduced a two parameter lifetime distribution with

decreasing failure rate by compounding exponential and logarithmic distributions. Chahkandi and Ganjali

(2009) mixed power-series and exponential distributions to arrive at a new two-parameter distribution family

with decreasing failure rate. Later Barreto-Souza and Cribari-Neto (2009), Silva et al (2010), Barreto-Souza

et al (2011), Hemmati et al (2011), Mahmoudi and Sepahdar (2013), Shafiei et al (2016) and Chowdhury et

al (2016) have come up with similar studies with generalized exponential-Poisson, generalized exponential-

geometric, Weibull-geometric, Weibull-Poisson, generalized Weibull-Poisson, inverse Weibull-power series

and geometric-Poisson distributions respectively.

In this paper we have come up with two new three parameter distributions. The distributions are derived

by compounding inverse Weibull with geometric and Poisson distributions respectively and they are applica-

ble to minimum component lifetime of a system. Shafiei et al (2016) introduced the distributions pertaining

to a parallel system, but to the best of our knowledge no papers so far have studied inverse Weibull geometric

and inverse Weibull Poisson distributions applicable to a series system.

The rest of the paper is organized as follows. In Section 2 we introduce the distributions for series system.

In Section 3 we derive and discuss the various properties pertaining to them including Rényi entropy. Param-

eters of the distributions are estimated by maximum likelihood method as well as expectation-maximization

algorithm in section 4. We also derive the Fisher information matrix in the same section. In section 5

empirical illustrations using three real life data sets are done to explore the potentials of the distributions.

In Section 6 we put down our conclusion.

2 Compounded inverse Weibull distributions

Let X i, i = 1, 2, . . .,n, be a random variable denoting failure times of the components of a system.

Suppose X i follows inverse Weibull distribution with scale parameter λ > 0 and shape parameter α > 0.

The corresponding density function is given by

f(x;λ, α) = αλx−(α+1)e−λx−α

;x, λ, α > 0. (2.1)

The corresponding cumulative distribution function (CDF) is given by

F (x;λ, α) = e−λx−α

;x, λ, α > 0. (2.2)

If N be a random variable representing number of components, then we observe random variable Y (inde-

pendent of N) representing minimum component lifetime. The random variable Y is defined by

Y = min(X1, X2, . . . , XN ).

The conditional cumulative distribution function is given by

FY |N=n(y;λ, α) = 1− (1− e−λy−α

)
n
; y, λ, α > 0. (2.3)

Therefore the conditional density function can be derived as

fY |N=n(y;λ, α) = nαλe−λy−α

(1− e−λy−α

)
n−1

y−(α+1); y, λ, α > 0. (2.4)
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2.1 Inverse Weibull geometric distribution

If we consider that the random variable N in (2.4) follows geometric distribution with parameter p, then

the unconditional density function of Y can be derived as

f(y;λ, α, p) = pαλy−(α+1)e−λy−α(
1− (1− p)(1− e−λy−α

)
)−2

; y, λ, α > 0, 0 < p < 1. (2.5)

Hence the cumulative distribution function is given by

F (y;λ, α, p) = e−λy−α(
1− (1− p)(1− e−λy−α

)
)−1

; y, λ, α > 0, 0 < p < 1. (2.6)

Figure 1 gives the plots of IWG distribution for different parameter values.

(a) α = 0.8, λ = 0.5 (b) α = 3, λ = 0.6

(c) α = 0.4, λ = 2 (d) α = 4, λ = 3

Figure 1: Density plot for IWG distribution

The hazard function associated with IWG is given by

h(y;λ, α, p) =
αλe−λy−α

y−(α+1)

(1− e−λy−α)
(
1− (1− p)(1− e−λy−α)

) ; y, λ, α > 0, 0 < p < 1. (2.7)

We now show that the failure rate of the IWG distribution can be decreasing depending on the parameter

values. A function η(y) = −f ′(y)/f (y) is defined, where f ′ denotes the first derivative of f.
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In a straightforward manner it can be shown that

η(y) = (α+ 1)y−1 + λαy−(α+1)

(
e−λy−α − p

1−p

e−λy−α + p
1−p

)
,

and the first derivative is

η′(y) = −(α+ 1)y−2 − λα(α+ 1)y−(α+2)

(
e−λy−α − p

1−p

e−λy−α + p
1−p

)
+

2pλ2α2y−2(α+1)e−λy−α

(1− p)
(
e−λy−α + p

1−p

)2 .

If α → 0+ or λ → 0+, then η′(y) < 0 ∀ y > 0. Hence from Glaser (1980) Theorem (b) we can infer that the

failure rate is decreasing. We can also see in Appendix A that for different values of parameters the failure

rate can take various modal and increasing shapes.

2.2 Inverse Weibull Poisson distribution

If we consider that the random variable N in (2.4) follows Poisson distribution with parameter β, then

the unconditional density function of Y can be derived as

f(y;λ, α, β) = βαλ(eβ − 1)−1e−λy−α

eβ(1−e−λy−α
)y−(α+1); y, λ, α, β > 0. (2.8)

Hence the cumulative distribution function is given by

F (y;λ, α, β) = (1− e−β)−1(1− e−βe−λy−α

); y, λ, α, β > 0. (2.9)

The plots of IWP distribution for different parameter values is given in Figure 2.

The hazard function associated with IWP distribution is given by

h(y;λ, α, β) = βαλe−λy−α

y−(α+1)
(
1− e−β(1−e−λy−α

)
)−1

; y, λ, α, β > 0. (2.10)

We now show that the failure rate of the IWP distribution can be decreasing depending on the parameter

values. A function η(y) = −f ′(y)/f (y) is defined, where f ′ denotes the first derivative of f.

In a straightforward manner it can be shown that

η(y) = (α+ 1)y−1 + λαβy−(α+1)e−λy−α − λαy−(α+1),

and the first derivative is

η′(y) = −(α+ 1)y−2 − βλα(α+ 1)y−(α+2)e−λy−α

+ βα2λ2y−2(α+1)e−λy−α

+ λα(α+ 1)y−(α+2).

Using Glaser (1980) Theorem (b) and the same argument as in 2.1 we can infer that the failure rate is

decreasing. The other modal and increasing shapes of failure rate for different values of parameters are

shown in Appendix A.
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(a) α = 0.8, λ = 0.5 (b) α = 3, λ = 0.6

(c) α = 0.8, λ = 2 (d) α = 4, λ = 3

Figure 2: Density plot for IWP distribution

3 Properties of compounded inverse Weibull distributions

3.1 Properties of IWG distribution

3.1.1 Quantiles, moments and order statistics

The quantile function for inverse Weibull geometric distribution for minimum component lifetime can

be derived from its cumulative distribution function given in (2.6). So the expression for quantile function

becomes

Q(π;α, λ, p) =

(
log
( πp

1− π(1− p)

)− 1
λ

)− 1
α

. (3.1)

The quantile function helps us deduce the median and inter-quartile range (IQR), the expressions are given

by the following equations respectively

M =

(
log
( p

1 + p

)− 1
λ

)− 1
α

,
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IQR =

(
log
( 3p

1 + 3p

)− 1
λ

)− 1
α

−
(
log
( p

3 + p

)− 1
λ

)− 1
α

.

The rth raw moment for inverse Weibull geometric distribution for minimum component lifetime can be

derived from its density function given in (2.5). So the expression for rth raw moment becomes

E(Y r) =

∫ ∞

0

pαλe−λy−α

y−(α+1−r)
(
1− (1− p)(1− e−λy−α

)
)−2

dy. (3.2)

The expression for rth raw moment can be rewritten in a different form as

E(Y r) = λαp
∞∑

i=0

∞∑

j=0

(
i+j−1Cj(i+ 1)(1− p)

i

∫ ∞

0

y−(α+1−r)e−λ(j+1)y−α

dy

)
. (3.3)

The Theorem below proves that the rth raw moment in equation (3.3) is convergent for α > r.

Theorem 3.1 IWG distribution has finite moments of order r for r < α.

Proof. To prove the above theorem we use the following relationship

∫
eax

n

x−mdx =
(−1)

z+1
azΓ(−z,−axn)

n
; z =

m− 1

n
, n 6= 0. (3.4)

Using the expression (3.4) to solve (3.3) we get the following gamma functions in the solution

lim
a→0

Γ
(α− r

α
, λ(j + 1)a−α

)

and

lim
b→∞

Γ
(α− r

α
, λ(j + 1)b−α

)
.

So when α < r the expression α−r
α

< 0, as a result both the expressions containing gamma functions become

undefined. Hence moments of any order can be defined if α > r.

If α > r the expression for the rth raw moment can be derived as

E(Y r) = λp
∞∑

i=0

∞∑

j=0

(
i+j−1Cj(i+ 1)(1− p)

i
(λ(j + 1))

r−α
α Γ

(α− r

α

))
.

The pdf f(k) of the k
th order statistic for a random sample Y1, Y2, ...Yn from the IWG distribution is given

by

f(k)(y) = nf(y)n−1Ck−1F (y)
k−1

(1− F (y))
n−k

.

Hence the expression is

f(k)(y) =
nn−1Ck−1αλp

n−k−1y−(α+1)e−λky−α

(1− e−λky−α

)
n−k

(
1− (1− e−λky−α)(1− p)

)n+1 .
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3.1.2 Rényi entropy

Entropy is used in a wide range of situations in engineering and other applied sciences. The entropy

of a random variable is a measure of uncertainty variation. The Rényi entropy is defined as IR(γ) =
1

1−γ
log{

∫
R
fγ(y)dy}, where γ > 0 and γ 6= 1. Using the density function of IWG distribution given in (2.5)

we have
∫ ∞

0

fγ(y;λ, α, p)dy = (αλp)
γ

∞∑

k=0

∞∑

i=0

(
2γ+k−1Ck

k+i−1Ci(1− p)
k

∫ ∞

0

y−γ(α+1)e−λ(γ+i)y−α

dy
)
.

If γ + γα > 1 then the expression for Rényi entropy becomes

IR(γ) =
1

1− γ
log

(
(λp)

γ
αγ−1

∞∑

k=0

∞∑

i=0

(
2γ+k−1Ck

k+i−1Ci(1− p)
k{λ(γ + i)}

1−γ−γα
α Γ

(γ + γα− 1

α

))
)
.

Shannon entropy is a special case of Rényi entropy and can be obtained from limγ→1 IR(γ).

3.2 Properties of inverse Weibull Poisson distribution

3.2.1 Quantiles, moments and order statistics

The quantile function for inverse Weibull Poisson distribution for minimum component lifetime can be

derived from its cumulative distribution function given in (2.9). So the expression for quantile function

becomes

Q(π;α, λ, β) =

(
log
(
log
(
1− π(1− e−β)

)− 1
β

)− 1
λ

)− 1
α

. (3.5)

The quantile function helps us deduce the median and inter-quartile range (IQR), the expressions are given

by the following equations respectively

M =

(
log
(
log
(
0.5(1 + e−β)

)− 1
β

)− 1
λ

)− 1
α

,

IQR =
(
log
(
log (0.25 + 0.75e−β)

− 1
β
)− 1

λ
)− 1

α

−
(
log
(
log (0.75 + 0.25e−β)

− 1
β
)− 1

λ
)− 1

α

.

The rth raw moment for inverse Weibull Poisson distribution for minimum component lifetime can be

derived from its density function given in (2.8). So the expression for rth raw moment becomes

E(Y r) =

∫ ∞

0

βαλ(eβ − 1)−1y−(α+1−r)e−λy−α

eβ(1−e−λy−α
)dy. (3.6)

The expression for rth raw moment can be rewritten in a different form as

E(Y r) =
αλeβ

eβ − 1

∞∑

i=0

(
(−1)

i
βi+1

i!

∫ ∞

0

y−(α+1−r)e−λ(i+1)y−α

dy

)
. (3.7)

The rth raw moment in equation (3.7) is convergent if α > r. The following Theorem is used to prove the

same.
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Theorem 3.2 IWP distribution has finite moments of order r for r < α.

Proof. Using the expression (3.4) to solve (3.7) we get the following gamma functions in the solution

lim
a→0

Γ
(α− r

α
, λ(i+ 1)a−α

)

and

lim
b→∞

Γ
(α− r

α
, λ(i+ 1)b−α

)
.

Using the same argument as in Theorem 3.1 we find that moments of any order can be defined if α > r.

If α > r the expression for the rth raw moment can be derived as

E(Y r) =
λeβ

eβ − 1

∞∑

i=0

( (−1)
i
βi+1

i!

(
λ(i+ 1)

) r−α
α Γ

(α− r

α

))
.

The pdf f(k) of the k
th order statistic for a random sample Y1, Y2, ...Yn from the IWP distribution is given

by

f(k)(y) = nf(y)n−1Ck−1F (y)
k−1

(1− F (y))
n−k

.

Hence the expression is

f(k)(y) = nn−1Ck−1αλβ
eβk

(eβ − 1)n
y−(α+1)e−(λy−α+βe−λy−α

)
(
1− e−βe−λy−α )k−1(

eβ(1−e−λy−α
) − 1

)n−k

.

3.2.2 Rényi entropy

The Rényi entropy is defined as IR(γ) =
1

1−γ
log{

∫
R
fγ(y)dy}, where γ > 0 and γ 6= 1. Using the density

function of IWP distribution given in (2.8) we get

∫ ∞

0

fγ(y;λ, α, β)dy = (αλβ)
γ
eβγ(eβ − 1)

−γ
∞∑

k=0

(
(−γβ)

k

k!

∫ ∞

0

y−γ(α+1)e−(γ+k)λy−α

dy

)
.

If γ + γα > 1 then the expression for Rényi entropy becomes

IR(γ) =
1

1− γ
log

(
(αλβeβ)

γ

α(eβ − 1)
γ

∞∑

k=0

(−βγ)
k

k!
{λ(γ + k)}

1−γα−γ
α Γ

(γα+ γ − 1

α

))
.

Shannon entropy is a special case of Rényi entropy and can be obtained from limγ→1 IR(γ).

4 Estimation of parameters

4.1 Estimation of parameters for IWG distribution

4.1.1 Maximum likelihood estimation

Let y = (y1, y2, . . . , yn) be a random sample of inverse Weibull geometric distribution with unknown

parameter vector θ = (λ, α, p). The log likelihood L = L(θ; y) for θ is

L = n(log λ+ logα+ log p)− (α+ 1)
n∑

i=1

log yi − λ
n∑

i=1

yi
−α − 2

n∑

i=1

log
(
1− (1− p)(1− e−λyi

−α

)
)
. (4.1)
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The components of the score function U(θ) = (∂L
∂λ

, ∂L
∂α

, ∂L
∂p

)T are as follows

∂L

∂λ
=

n

λ
−

n∑

i=1

yi
−α + 2(1− p)

n∑

i=1

yi
−αe−λyi

−α(
1− (1− p)(1− e−λyi

−α

)
)−1

,

∂L

∂α
=

n

α
−

n∑

i=1

log yi + λ
n∑

i=1

yi
−αlog yi − 2λ(1− p)

n∑

i=1

yi
−αlog yie

−λyi
−α(

1− (1− p)(1− e−λyi
−α

)
)−1

,

∂L

∂p
=

n

p
− 2

n∑

i=1

(1− e−λyi
−α

)
(
1− (1− p)(1− e−λyi

−α

)
)−1

.

Equation U(θ) = 0 is used to calculate maximum likelihood estimate (MLE).

4.1.2 EM algorithm

In order to obtain estimates from EM algorithm, we define a hypothetical complete data distribution

with density function

f(y, n) = nλαpy−(α+1)e−λy−α(
(1− p)(1− e−λy−α

)
)(n−1)

; y, α, λ > 0, 0 < p < 1, n ∈ N. (4.2)

Now for E-step formulation of EM cycle we require the conditional expectation of (N |Y ; θ(r)) where θ(r) =

(λ(r), α(r), p(r)) which gives the current estimates of θ. Using the conditional density function

fN |Y=y(n) = n((1− p)(1− e−λy−α

))
(n−1)(

1− (1− p)(1− e−λy−α

)
)2
; y, α, λ > 0, 0 < p < 1, n ∈ N, (4.3)

we find the conditional expectation as

E(N |Y ) =
1 + (1− p)(1− e−λy−α

)

1− (1− p)(1− e−λy−α)
. (4.4)

The M-step is completed using maximum likelihood estimation over θ with the missing Ns being replaced

by the conditional expectation given above. The EM iteration is reduced to the following

p(r+1) =
n∑n

i=1 wi
(r)

,

α(r+1) and λ(r+1) can be found using the following equations respectively.

n

λ(r+1)
−

n∑

i=1

yi
−α(r+1)

+
n∑

i=1

(wi
(r) − 1)yi

−α(r+1)

e−λ(r+1)yi
−α(r+1)

1− e−λ(r+1)yi
−α(r+1)

= 0,

n

α(r+1)
−

n∑

i=1

log yi + λ(r+1)
n∑

i=1

yi
−α(r+1)

log yi − λ(r+1)
n∑

i=1

(wi
(r) − 1)yi

−α(r+1)

e−λ(r+1)yi
−α(r+1)

1− e−λ(r+1)yi
−α(r+1)

= 0,

where

wi
(r) =

1 + (1− p(r))(1− e−λ(r)yi
−α(r)

)

1− (1− p(r))(1− e−λ(r)yi
−α(r)

)
.
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4.1.3 Fisher information matrix

Suppose I(θ) be the observed information matrix with elements Iij = −∂2l/∂θi∂θj , with i, j = 1, 2, 3.

Differentiating with respect to the parameters, the elements of the symmetric, second-order observed infor-

mation matrix are found as follows:

I11 =
n

λ2
+ 2p(1− p)

n∑

i=1

(
yi

−2αe−λyi
−α

(
1− (1− p)(1− e−λyi

−α)
)2

)
,

I12 = I21 = −
n∑

i=1

yi
−α log yi − 2(1− p)

n∑

i=1

(
yi

−αe−λyi
α

log yi
(
pλyi

−α − p− (1− p)e−λyi
−α)

(
1− (1− p)(1− e−λyi

−α)
)2

)
,

I22 =
n

α2
+ λ

n∑

i=1

yi
−α(log yi)

2 − 2λ
n∑

i=1

(
yi

−α(log yi)
2
e−λyi

−α(
p− pλyi

−α + (1− p)e−λyi
−α)

(
1− (1− p)(1− e−λyi

−α)
)2

)
,

I33 =
n

p2
− 2

n∑

i=0

(
1− e−λyi

−α

1− (1− p)(1− e−λyi
−α)

)2

,

I13 = I31 = 2
n∑

i=1

yi
−αe−λyi

−α

(
1− (1− p)(1− e−λyi

−α)
)2 ,

I23 = I32 = −2λ
n∑

i=1

yi
−αe−λyi

−α

log yi(
1− (1− p)(1− e−λyi

−α)
)2 .

The Fisher information matrix Jn(θ) = E(I; θ) is given by

Jn(θ) = n




J11 J12 J13

J21 J22 J23

J31 J32 J33




where

J11 =
1

λ2
+ 2p(1− p)E

(
Y −2αe−λY −α

(
1− (1− p)(1− e−λY −α)

)2

)
,

J12 = J21 = −E(Y −α log Y )− 2(1− p)E

(
Y −αe−λY α

log Y
(
pλY −α − p− (1− p)e−λY −α)

(
1− (1− p)(1− e−λY −α)

)2

)
,

J22 =
1

α2
+ λE(Y −α(log Y )

2
)− 2λE

(
Y −α(log Y )

2
e−λY −α(

p− pλY −α + (1− p)e−λY −α)
(
1− (1− p)(1− e−λY −α)

)2

)
,

J13 = J31 = 2E

(
Y −αe−λY −α

(
1− (1− p)(1− e−λY −α)

)2

)
,

J23 = J32 = −2λE

(
Y −αe−λY −α

log Y
(
1− (1− p)(1− e−λY −α)

)2

)
,

J33 =
1

p2
− 2E

(
1− e−λY −α

1− (1− p)(1− e−λY −α)

)2

.

Let J(θ) = limn→∞ Jn(θ). Considering usual regularity conditions, it can be shown that θ̂ has a multi-

variate normal distribution as the sample size becomes large

√
n(θ̂ − θ) → MNV (0, J(θ)

−1
).
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4.2 Estimation of parameters for IWP distribution

4.2.1 Maximum likelihood estimation

Let y = (y1, y2, . . . , yn) be a random sample of inverse Weibull Poisson distribution with unknown pa-

rameter vector θ = (λ, α, β). The log likelihood L = L(θ; y) for θ is

L = n
(
log λ+ logα− log (eβ − 1)

)
− (α+ 1)

n∑

i=1

log yi − λ
n∑

i=1

yi
−α + β

n∑

i=1

(1− e−λyi
−α

). (4.5)

The components of the score function U(θ) = (∂L
∂λ

, ∂L
∂α

, ∂L
∂β

)T are as follows

∂L

∂λ
=

n

λ
−

n∑

i=1

yi
−α + β

n∑

i=1

yi
−αe−λyi

−α

,

∂L

∂α
=

n

α
−

n∑

i=1

log yi + λ
n∑

i=1

yi
−αlog yi − λβ

n∑

i=1

yi
−αe−λyi

−α

log yi,

∂L

∂β
= − neβ

eβ − 1
+

n∑

i=1

(1− e−λyi
−α

).

Equation U(θ) = 0 is used to calculate maximum likelihood estimate (MLE).

4.2.2 EM algorithm

In order to obtain estimates from EM algorithm, we define a hypothetical complete data distribution

with density function

f(y, n) =
λαβ(eβ − 1)−1y−(α+1)e−λy−α(

β(1− e−λy−α

)
)(n−1)

(n− 1)!
; y, α, β, λ > 0;n ∈ N. (4.6)

Now for E-step formulation of EM cycle we require the conditional expectation of (N |Y ; θ(r)) where θ(r) =

(λ(r), α(r), β(r)) which gives the current estimates of θ. Using the conditional density function

fN |Y=y(n) =
e−β(1−e−λy−α

)
(
β(1− e−λy−α

)
)(n−1)

(n− 1)!
; y, α, β, λ > 0;n ∈ N, (4.7)

we find the conditional expectation as

E(N |Y ) = β(1− e−λy−α

) + 1. (4.8)

Maximum likelihood estimation over θ is used to complete M-step. The conditional expectation given above

replaces the missing Ns. The EM iteration is reduced to the following equations, solving which we can find

the expressions for λ(r+1), α(r+1) and β(r+1) respectively.

n

λ(r + 1)
−

n∑

i=1

yi
−α(r+1)

+
n∑

i=1

(wi
(r) − 1)yi

−α(r+1)

e−λ(r+1)yi
−α(r+1)

1− e−λ(r+1)yi
−α(r+1)

,

12



n

α(r+1)
−

n∑

i=1

log yi + λ(r+1)
n∑

i=1

yi
−α(r+1)

log yi − λ(r+1)
n∑

i=1

(wi
(r) − 1)yi

−α(r+1)

e−λ(r+1)yi
−α(r+1)

1− e−λ(r+1)yi
−α(r+1)

= 0,

− neβ
(r+1)

eβ(r+1) − 1
+

1

β(r+1)

n∑

i=1

wi
(r) = 0,

where

wi
(r) = 1 + β(r)(1− e−λ(r)yi

−α(r)

).

4.2.3 Fisher information matrix

We consider I(θ) as the observed information matrix with elements Iij = −∂2l/∂θi∂θj , with i, j = 1, 2, 3.

The following gives the second-order information matrix found by differentiating with respect to parameters:

I11 =
n

λ2
+ β

n∑

i=1

yi
−2αe−λyi

−α

,

I12 = I21 = −
n∑

i=1

yi
−α log yi − βλ

n∑

i=1

yi
−2αe−λyi

−α

log yi + β
n∑

i=1

yi
−αe−λyi

−α

log yi,

I22 =
n

α2
+ λ

n∑

i=0

yi
−α(log yi)

2 − λβ
n∑

i=0

yi
−α(log yi)

2
e−λyi

−α

+ λ2β
n∑

i=0

yi
−2α(log yi)

2
e−λyi

−α

,

I13 = I31 = −
n∑

i=1

yi
−αe−λyi

−α

,

I23 = I32 = λ
n∑

i=0

yi
−αlog yie

−λyi
−α

,

I33 =
neβ

eβ − 1
− ne2β

(eβ − 1)
2 .

The Fisher information matrix Jn(θ) = E(I; θ) is given by

Jn(θ) = n




J11 J12 J13

J21 J22 J23

J31 J32 J33




where

J11 =
1

λ2
+ βE

(
Y −2αe−λY −α)

,

J12 = J21 = −E
(
Y −α log Y

)
− βλE

(
Y −2αe−λY −α

log Y
)
+ β

(
Y −αe−λY −α

log Y
)
,

J22 =
1

α2
+ λE

(
Y −α(log Y )

2)− λβE
(
Y −α(log Y )

2
e−λY −α)

+ λ2βE
(
Y −2α(log Y )

2
e−λY −α)

,

J13 = J31 = −E
(
Y −αe−λY −α)

,

J23 = J32 = λE
(
Y −αlog Y e−λY −α)

,

J33 =
eβ

eβ − 1
− e2β

(eβ − 1)
2 .
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Let J(θ) = limn→∞ Jn(θ). Considering usual regularity conditions, it can be shown that θ̂ has a multi-

variate normal distribution as the sample size becomes large

√
n(θ̂ − θ) → MNV (0, J(θ)

−1
).

4.3 Simulation study

In order to evaluate the estimates obtained from EM algorithm an intensive simulation study is conducted

for both IWG and IWP distributions. No restriction on the maximum iteration was imposed but convergence

was assumed when the absolute difference between successive estimates were less than 10−3. Different

combinations of initial parameter values are looked at for both the distributions. The simulation for each set

of parameter values were conducted using 10, 000 samples each of size n = 50, 100, 500 randomly generated

using the IWG and IWP distributions respectively. The root-mean-square deviation (RMSD) was calculated

for each set of parameters and sample size. It is found that RMSD decrease as the sample size increases. The

simulation was done through software R version 3.2.2. The simulation results of IWG and IWP distributions

are given in Table 1 in Appendix D.

5 Empirical Illustrations

The applicability of the proposed models is illustrated through three real life data sets. Software R ver-

sion 3.2.2 is used for all the computations in this section.

The first data set (D1) used for analysis is widely popular in the literature as far as compounded distri-

butions are concerned. The data set consists of successive failures of air-conditioning system of each member

in a fleet of 13 Boeing 720 jet airplanes. The data consists of 213 observations. Adamidis and Loukas

(1998) considered this data set for exponential geometric distribution, Kus (2007) used this data set to fit

exponential Poisson distribution, Barreto-Souza et al (2011) fitted Weibull geometric distribution to this

data set. While Lu and Shi (2012) considered an Weibull Poisson distribution for this data set.

The second data set (D2) consists of maintenance data with 46 observations reported on active repair

times (hours) for an airborne communication transceiver by Von Alven (1964). Other than Lu and Shi

(2012), the data set was also used by Chhikara and Folks (1977) to discuss inverse Gaussian distribution

and Dimitrakopoulou et al (2007) to fit a three-parameter lifetime distribution with increasing, decreasing,

bathtub, and upside down bathtub shaped failure rates which includes Weibull distribution as a special case.

The third data set (D3) consisting of 23 observations was obtained from Lawless (1982) and represents

the number of revolution before failure of each of 23 ball bearings in the life tests. It was used by Dey

and Kundu (2009) while trying to find a discriminating procedure for lognormal and loglogistic distribution

functions while Bromideh (2012) used the data to discriminate between Weibull and lognormal distributions.

The compounded inverse Weibull distributions are fitted on the data sets mentioned above. In order to

compare the results we use Weibull, inverse Weibull (IW), exponential geometric (EG), exponential Poisson

(EP), Weibull geometric (WG) and Weibull Poisson (WP) distributions. The densities corresponding to the

distributions are given by the following functions respectively.

14



f1(x;α, λ) = αλxα−1e−λxα

;x, α, λ > 0,

f2(x;α, λ) = αλx−(α+1)e−λx−α

;x, α, λ > 0,

f3(x;λ, p) = λpe−λx
(
1− (1− p)e−λx

)−2
;x, p, λ > 0, p < 1,

f4(x;λ, β) =
λβ

1− e−β
e−β−λx+βe−λx

;x, λ, β > 0,

f5(x;λ, α, p) = pαλαxα−1e−(λx)α
(
1− (1− p)e−(λx)α

)−2
;x, p, α, λ > 0, p < 1,

f6(x;λ, α, β) =
λαβxα−1

1− e−β
e−β−λxα+βe−λxα

;x, λ, α, β > 0.

We derive,the maximum likelihood estimates, the maximized log-likelihood ℓ̂, the Akaike information

criterion (AIC), the Bayesian information criterion (BIC), the Kolmogorov-Smirnov distance (KS-dist) and

the corresponding p value for each distribution. The method suggested by Byrd et al (1995), L-BFGS-B,

is used for numerical computation of likelihood estimation. The method is used to solve large nonlinear

optimization problems with described bounds using a limited memory quasi-Newton algorithm. Q-Q plot of

IWG and IWP distributions for all three aforementioned data sets are shown in Appendix B and P-P plot

for the same is shown in Appendix C. The conclusion drawn from the empirical illustration is that both

IWG and IWP distributions can be used for data modeling. It is found that IWP distribution outperforms

other models when data sets D1 and D3 are considered, in case of data set D2 it performs better than most

of the models. Table 3 in Appendix E contains the results of all the aforementioned models.

6 Conclusion

In this paper we introduced IWG and IWP distribution by compounding inverse Weibull with geometric

and Poisson distributions respectively. The failure rates of the new distributions are observed to be of different

monotone and non monotone shapes. Various statistical and reliability properties of the distributions such

as hazard rate, quantile function, rth raw moment, kth order statistic and entropy are stated and discussed.

Estimation of parameters of both the distributions are done through maximum likelihood method as well

as expectation-maximization algorithm. The Fisher information matrix for both the distributions are also

provided. The simulation results show that the estimation performance is satisfactory. The two distributions

are also found to be of better fit than other similar distributions in three real life data sets. We recommend

the use of IWG and IWP for modeling real life maintenance data sets.
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Appendix A

Figure 3: Density plot for IWG distribution

Figure 4: Density plot for IWP distribution
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Appendix B

Figure 5: QQ plot of IWG and IWP distribution
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Appendix C

Figure 6: PP plot of IWP and IWG distribution
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Appendix D

Table 1: The parameter estimates and RMSDs using EM algorithm for IWG and IWP distribution

n IWG IWP

(α,λ,p) Parameter estimates RMSD (α,λ,β) Parameter estimates RMSD

50 0.7097,0.5954,0.2009 0.0377,0.0399,0.0093 0.7161,0.6003,0.6996 0.0740,0.0884,0.0456

100 (0.7,0.6,0.2) 0.7042,0.5982,0.2004 0.0242,0.0252,0.0066 (0.7,0.6,0.7) 0.7076,0.6003,0.6999 0.0488,0.0605,0.0323

500 0.7006,0.5999,0.2001 0.0086,0.0078,0.0029 0.7013,0.6003, 0.6999 0.0199,0.0243,0.0144

50 2.3419,1.1956,0.2009 0.2017,0.0891,0.0133 2.3586,1.2144,0.6996 0.2556,0.1524,0.0456

100 (2.3,1.2,0.2) 2.3202,1.1979,0.2004 0.0957,0.0435,0.0066 (2.3,1.2,0.7) 2.3289,1.2069,0.6999 0.1713,0.1056,0.0323

500 2.3039,1.1997,0.2001 0.0565,0.0260,0.0041 2.3061,1.2016,0.6999 0.0748,0.0456,0.0144

50 2.3355,0.5942,0.2009 0.1842,0.0636,0.0133 2.3550,0.5997,0.6996 0.2472,0.0909,0.0456

100 (2.3,0.6,0.2) 2.3161,0.5974,0.2004 0.1187,0.0422,0.0093 (2.3,0.6,0.7) 2.3264,0.5999,0.6999 0.1637,0.0632,0.0323

500 2.3024,0.5997,0.2001 0.0440,0.0158,0.0041 2.3049,0.6001,0.6999 0.0679,0.0268,0.0144

50 0.7125,1.1965,0.2009 0.0608,0.0858,0.0133 0.7134,0.5964,2.0993 0.0645,0.0719,0.0954

100 (0.7,1.2,0.2 ) 0.7059,1.1986,0.2004 0.0404,0.0583,0.0093 (0.7,1.2,0.7) 0.7088,1.2073,0.6999 0.0521,0.1051,0.0323

500 0.7011,1.2000,0.2001 0.0168,0.0231,0.0041 0.7018,1.2016,0.6999 0.0227,0.0452,0.0144

50 0.7168,0.6013,0.8002 0.0540,0.0654,0.0092 0.7134,0.5964,2.0993 0.0645,0.0719,0.0954

100 (0.7,0.6,0.8) 0.7080,0.6008,0.8001 0.0359,0.0450,0.0065 (0.7,0.6,2.1) 0.7062,0.5985,2.0999 0.0420,0.0481,0.0675

500 0.7014,0.6004,0.8000 0.0145,0.0182,0.0029 0.7009,0.5999,2.0999 0.0163,0.0178,0.0300

50 2.3605,1.2172,0.8002 0.2621,0.1616,0.0130 2.3517,1.2031,2.0992 0.2308,0.1177,0.0954

100 (2.3,1.2,0.8) 2.3298,1.2083,0.8001 0.1758,0.1117,0.0092 (2.3,1.2,2.1) 2.3254,1.2015,2.0999 0.1544,0.0821,0.0675

500 2.3063,1.2019,0.8000 0.0767,0.0482,0.0041 2.3052,1.2004,2.0999 0.0666,0.0355,0.0300

50 2.3571,0.6008,0.8002 0.2543,0.0952,0.0130 2.3468,0.5956,2.0993 0.2178,0.0760,0.0954

100 (2.3,0.6,0.8) 2.3275,0.6004,0.8001 0.1686,0.0662,0.0092 (2.3,0.6,2.1) 2.3221,0.5980,2.0998 0.1428,0.0521,0.0675

500 2.3052,0.6002,0.8000 0.0705,0.0282, 0.0041 2.3038,0.5998,2.0999 0.0568,0.0214,0.0300

50 0.7184,1.2175,0.8002 0.0797,0.1611,0.0130 0.7156,1.2037,2.0993 0.0700,0.1164,0.0954

100 (0.7,1.2,0.8) 0.7091,1.2086,0.8001 0.0535,0.1112,0.0092 (0.7,1.2,2.1) 0.7076,1.2018,2.0999 0.0468,0.0808,0.0675

500 0.7018,1.2018,0.8000 0.0233,0.0478,0.0041 0.7015,1.2006,2.0999 0.0199,0.0342,0.0300
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Appendix E

Table 2: Maximum likelihood estimates, AIC, BIC, KS-distance and p-values obtained from the fit of each

distributions

Data set Distribution α̂ λ̂ p̂ / β̂ ℓ̂ AIC BIC KS p-value

D1(n=213) IWG 0.73385 10.88719 0.98 -1205.680 2417.357 2427.441 0.10474 0.0187

IWP 0.20303 10.48353 75.18689 -1175.507 2357.014 2367.098 0.03710 0.9311

Weibull 0.92129 0.01595 - -1177.587 2359.175 2365.897 0.05067 0.6448

IW 0.73604 10.99672 - -1210.316 2424.632 2431.355 0.10246 0.0228

EG - 0.00819 0.59028 -1175.935 2355.869 2362.592 0.04856 0.6967

EP - 0.00785 1.20112 -1175.814 2355.628 2362.351 0.04614 0.7549

WG 0.96772 0.01 0.79326 -1176.811 2359.622 2369.706 0.04729 0.7277

WP 0.97407 0.01 0.82021 -1176.281 2358.563 2368.646 0.04908 0.6840

D2(n=46) IWG 1.00934 1.14127 0.985 -100.7034 207.4069 212.8928 0.08187 0.9174

IWP 1.01163 1.13838 0.023 -100.7006 207.4011 212.8870 0.08131 0.9214

Weibull 0.89858 0.33375 - -104.4697 212.9394 216.5967 0.12044 0.5170

IW 1.01272 1.13156 - -100.6907 205.3814 209.0387 0.08069 0.9255

EG - 0.16336 0.39045 -103.2994 210.5988 214.2561 0.13549 0.3671

EP - 0.108 3.42619 -102.8323 209.6645 213.3218 0.12688 0.4494

WG 1.48521 0.05342 0.0338 -100.8561 207.7123 213.1982 0.09217 0.8294

WP 1.10112 0.09245 3.52217 -102.4637 210.9274 216.4133 0.11112 0.6210

D3(n=23) IWG 0.72552 78.81357 0.02 -115.2595 236.5189 239.9254 0.11329 0.8974

IWP 0.44707 32.32339 101.44462 -112.9764 231.9528 235.3593 0.11225 0.9032

Weibull 0.91556 0.024 - -123.3889 250.7777 253.0487 0.38644 0.0013

IW 1.83437 1240.95337 - -115.7833 235.5666 237.8376 0.13289 0.7632

EG - 0.013669 0.98 -121.5195 247.0391 249.3101 0.30761 0.0198

EP - 0.01375 0.026 -121.4898 246.9796 249.2506 0.30773 0.0197

WG 2.10189 0.01222 0.99996 -113.6877 233.3754 236.7819 0.15047 0.6216

WP 1.10333 0.01 0.01 -120.0343 246.0687 249.4751 0.32756 0.0107
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