

Comprehensible Classification Models – a position paper
Alex A. Freitas

School of Computing
University of Kent

Canterbury, CT2 7NF, UK

A.A.Freitas@kent.ac.uk

ABSTRACT

The vast majority of the literature evaluates the performance of

classification models using only the criterion of predictive

accuracy. This paper reviews the case for considering also the

comprehensibility (interpretability) of classification models, and

discusses the interpretability of five types of classification models,

namely decision trees, classification rules, decision tables, nearest

neighbors and Bayesian network classifiers. We discuss both

interpretability issues which are specific to each of those model

types and more generic interpretability issues, namely the

drawbacks of using model size as the only criterion to evaluate the

comprehensibility of a model, and the use of monotonicity

constraints to improve the comprehensibility and acceptance of

classification models by users.

Keywords

Decision tree, rule induction, decision table, nearest neighbors,

Bayesian network classifiers, monotonicity constraint.

1. INTRODUCTION
The vast majority of works on classification model evaluation use

predictive accuracy as the only evaluation criterion [34], [36],

[64]. However, in real-world applications where the goal is to

produce a classification model that is useful to the user, the

comprehensibility (interpretability) of the model to the user is also

important – see Section 2. Model interpretability was stressed in

early machine learning research [57]; but in the last two decades,

popular classification methods like ensembles [60], support vector

machines (SVM) and kernel-based learning methods [13] have

been designed to maximize predictive accuracy only. Indeed, the

models produced by SVMs are in general black box models that

can be hardly interpreted by users; whilst an ensemble of models

tends to be harder to be interpreted by users, by comparison with

a single classification model [23], [26], [69].

Despite the dominance of predictive accuracy as the evaluation

criterion, there has been significant progress in methods proposed

for improving the comprehensibility of classification models [6],

[21], [47], [49], [53], [55], [70]. In addition, the importance of

comprehensible classification models continues to be emphasized

in many application domains, like medicine [5], [46], [55], [59],

[76]; credit scoring [4], [35]; churn prediction [47], [70]; and

bioinformatics [26], [67]. However, most of these works focus on

improving the comprehensibility of just one type of classification

model representation (e.g. decision trees or classification rules).

1.1 Goals and Scope of the Paper
This paper has two broad goals: (a) discussing the pros and cons

of five types of classification knowledge representation – decision

trees, classification rules, decision tables, nearest neighbors, and

Bayesian network classifiers, with respect to their interpretability;

and (b) discussing how to improve the comprehensibility of

classification models in general.

We focus on the comprehensibility of classification models, rather

than on the trade-off between predictive accuracy and

comprehensibility. Although that trade-off is important, it is out

of the scope of this paper since it is extensively discussed in the

literature – see e.g. works on multi-objective optimization

concepts such as Pareto dominance [25], [38] and lexicographic

optimization [25], [42]; the minimum description length principle

[30]; and Occam’s razor [17], [74]. It is important to note,

though, that nearly all works on the accuracy-comprehensibility

trade-off measure comprehensibility in terms of model size, an

over-simplistic notion of comprehensibility, as discussed in

Subsection 4.1. In contrast, this paper discusses comprehensibility

in a broader sense, involving several issues related to the

interpretability of a model, as discussed in Sections 3 and 4.

Another topic out of the scope of this paper is the extraction of

comprehensible classification models (e.g. rule sets or decision

trees) from the “black box” models produced by methods such as

SVMs and artificial neural networks (ANNs) or from the complex

models produced by ensembles of classifiers. This topic is left out

of the scope of this paper for two reasons. First, it is already

extensively discussed in the literature – see e.g. [8], [39], [3],

[28], [14], [69]. Second, the concepts and methods discussed in

this paper are applicable to classification models expressed in the

aforementioned five types of knowledge representation in general,

regardless of whether the model was induced directly from the

data (as usual) or extracted from a black box model. This is

because this paper focuses on classification models (the outputs of

classification algorithms), rather than on classification algorithms.

1.2 Structure of the Remainder of the Paper
Section 2 reviews the case for discovering comprehensible

classification models. Section 3 discuss issues in the interpretation

of each of the above five types of classification knowledge

representations, and reviews works comparing the interpretability

of different types of representations. Section 4 focuses on more

generic issues of classification model interpretability: it first

discusses the limitations of model size as a single criterion for

measuring a model’s comprehensibility, and then discusses the

use of semantic monotonicity constraints. Section 5 concludes the

paper with a summary and discussion of its main points.

2. THE CASE FOR COMPREHENSIBLE

CLASSIFICATION MODELS
The importance of comprehensible classification models stems

from several issues. First, understanding a computer-induced

model is often a prerequisite for users to trust the model’s

predictions and follow the recommendations associated with those

predictions. The need for trusting computational predictions tends

SIGKDD Explorations Volume 15, Issue 1 Page 1

to be particularly strong in medical applications [19], [39], [46],

[59], [69], where lives are at stake. Model comprehensibility is

also important for the model’s acceptance by users in financial

applications [15] and in customer churn prediction applications

[70]. In bioinformatics, understanding a model’s predictions often

helps biologists to trust the predictions [16], [26], [67], increasing

the chances that users will invest a lot of time and money in the

execution of sophisticated biological experiments to try to confirm

the model’s predictions. Arguably, the ultimate value of a model’s

predictions for bioinformatics is determined by the cumulative

success of the experiments inspired by those predictions [37].

The need for comprehensible models in order to improve the

user’s trust on the model is also strengthened when the system

produces an unexpected model to the user, in which case the user

requires good explanations from the system as a requirement for

model acceptance [46]. A real-world example of this point (not

involving data mining, but relevant to our discussion) is given in

[33]. Shortly before a major accident happened in the Three-Mile

Island nuclear power plant, the plant’s automated system

recommended that a human operator shutdown some system, but

the operator did not implement the shutdown because she/he did

not believe in the system’s recommendation.

In addition, in some application domains users need to understand

the system’s recommendations enough to legally explain the

reason for their decisions to other people. For instance, according

to the Danish Public Administration Act, an administrative

decision is required to be accompanied with its main reasons [40].

In the medical domain, if a doctor makes a decision (say,

recommends surgery) based on the prediction of a classification

model and that leads to major harm to the patient, the doctor

should understand the reason for the model’s predictions in order

to defend her/his decisions in court if she/he is sued for medical

negligence [59]. Legal requirements are also common in credit

scoring applications, where a bank often has the legal obligation

of explaining why a customer was denied credit [35], [49].

Furthermore, comprehensible classification models can give new

insights to users about important predictive relationships in the

data, i.e., identifying which attributes are the strongest predictors

of the class variable. In some scientific application domains, the

analysis of a comprehensible classification model can even lead to

the formulation of new theories or hypothesis about the target

problem – see e.g. [26], [41] for examples in bioinformatics; and

[59], [73] for examples in medical applications.

Of course, model comprehensibility is not always important, and

in some applications users might be happy in accepting the

predictions of a model based only on its high predictive accuracy,

regardless of its comprehensibility. The relative importance of

comprehensibility and predictive accuracy is a subjective issue,

which depends on the user’s interests and the application domain.

In cases where users are happy to accept the predictions of a non-

comprehensible model based only on its predictive accuracy, one

caveat should be mentioned, though. Although the classes of test

set instances are unknown by the algorithm, the test instances’

classes are known by the user – i.e., both training and test sets

contain data about the “past”. The predictions that really matter to

the user are the predictions to be made for “future” data, whose

classes are unknown by the user at the time the classification

algorithm is run. We use predictive accuracy in the test set as an

estimate of the predictive accuracy in future data, but that estimate

may not be reliable if the future dataset has a probability

distribution significantly different from the past data. This

involves the “datashift” problem [58]. Understanding a very

accurate classification model might give us more confidence that

the model is really capturing the correct patterns in the target

domain (rather than patterns valid in past data that would not be

valid in “future” data), helping us to cope with the datashift

problem. It should be noted, though, that research on methods to

cope with the datashift problem typically focus only on predictive

accuracy, unfortunately ignoring model comprehensibility issues.

We conclude this section with a story about the effectiveness of

an ANN in a military application. It is not clear if this story is

based on a real or hypothetical application of ANNs, but it is

related to the datashift problem. In this story, the military trained

an ANN to classify images of tanks into enemy and friendly tanks.

The predictive accuracy of the ANN in in the test set images was

very high. However, when the ANN was deployed in the field

(corresponding to “future data”), it had a poor accuracy rate.

Later, users noted that all photos of friendly (enemy) tanks were

taken on a sunny (overcast) day. I.e., the ANN learned to

discriminate between the colors of the sky in sunny vs. overcast

days! If the ANN had output a comprehensible model (explaining

that it was discriminating between colors at the top of the images),

such a trivial mistake would immediately be noted.

3. INTERPRETING SPECIFIC TYPES OF

CLASSIFICATION MODELS

3.1 Interpreting Decision Trees
The comprehensibility of decision trees is facilitated by several

factors [56], [61]. First, a decision tree has a graphical structure.

Second, a decision tree typically contains a subset of (rather than

all) attributes, helping users to focus their analysis on the most

relevant attributes. Third, the hierarchical tree structure provides

information about the relative importance of different attributes:

broadly speaking, the smaller the depth (the closer to the root) of

an attribute, the more relevant the attribute is for classification.

Note that an attribute might occur two or more times in the same

path from the root to a leaf – due, e.g., to multiple binary

partitions on nodes with numerical attributes. In this case we

consider the attribute’s depth as the shallowest occurrence of the

attribute in that path. In the case of multiple occurrences of an

attribute in paths with non-overlapping sets of edges, an

aggregated measure of the depths of those occurrences (e.g. the

mean depth) would need to be computed.

The criterion of assigning greater relevance to attributes with

smaller depth has a caveat, however; even in the simplest case of

comparing the relevance of two attributes which occur just once

in the tree. An attribute A might have smaller depth than another

attribute B, yet B might be more relevant in the sense of being

used to classify more instances. This suggests that a more intuitive

criterion for determining the relevance of an attribute in a decision

tree is the number of instances whose classification used a value

of that attribute – i.e. the summation of the number of instances

assigned to any leaf node whose associated path (from the root to

that leaf) includes the attribute in question. This criterion takes

into account attributes occurring in multiple paths in the tree, and

the measure of relevance (total number of instances classified by

that attribute) has a very clear interpretation by users.

SIGKDD Explorations Volume 15, Issue 1 Page 2

Another caveat in decision tree interpretation is that some

subtree(s) of the constructed tree can contain irrelevant attributes,

even when the data is not noisy. This is because the decision tree

structure imposes the rigid requirement that once an attribute is

selected to label a tree node, each value of that attribute has to be

included in the tree. Hence, some branch(es) may have to be

added to the tree just to preserve the structure of a tree, even if

that branch is associated with an irrelevant attribute value [9],

[10], [24], [29]. Such irrelevant values mislead the user’s

interpretation of the tree and may lead to overfitting.

For example, suppose a disease has the following patterns: (a)

patients who are old and smoke are very likely to get the disease;

(b) a positive blood test result is a reasonably good predictor that

a patient will get a disease regardless of age and smoking status.

In this scenario, it is plausible that a decision-tree induction

algorithm would create the tree shown in Figure 1. The leftmost

path in the tree captures the above pattern (a). That pattern refers

only to the old value of age; the values middle-age and young had

to be put as extra branches in the tree just to preserve the tree

structure, even though the latter two values are irrelevant. As a

result, the information about the above pattern (b) had to be

replicated in two different subtrees of the tree shown in Figure 1.

 age

 old middle-age young

 smoking blood test blood test

 yes no + – + –

 yes no yes no yes no

Figure 1: Example of a decision tree illustrating the problem of

irrelevant branches and a replicated subtree.

In addition to mislead the user’s interpretation of the tree, such

replication is associated with the data fragmentation problem,

since the instances supporting pattern (b) will be divided between

the two subtrees, reducing the number of instances available for

attribute selection at each just-created node. Note that in general

tree pruning methods do not help to avoid this problem, since the

only way to remove the irrelevant values middle-age and young

from the tree would be to remove the age attribute, but for this we

would need to remove the relevant old value too.

3.2 Interpreting Classification Rules
Classification rules – of the form: IF (conditions) THEN (class) –

are a logics-based representation, like decision trees – since a path

from the root to a leaf in a decision tree is equivalent to an IF-

THEN rule. However, there are important differences in the

interpretation of rules and decision trees.

First, classification rules have a textual representation, rather than

the graphical representation of decision trees. The “flat” textual

representation gives no direct clue about which attributes are more

important than others in a rule, unlike the hierarchical positional

information of attributes in a tree. Some positional information

related to the relative importance of attributes could be added to

rules, by showing rule conditions in the order in which they were

added to a rule, in decreasing order of relevance as estimated by a

rule induction algorithm. However, this would still leave us with

the problem of how to estimate the relevance of an attribute in the

entire classification model (with all rules). One solution is the

same type of attribute relevance measure proposed for decision

trees in Subsection 3.1, I.e., the relevance of an attribute can be

measured by the summation of the number of instances classified

by any rule whose antecedent includes the attribute in question.

Although the textual rule representation makes it difficult for

users to get the “full picture” about the model, it allows users to

analyze individual rules as modular pieces of knowledge (“local

patterns”), one at a time. It is possible for users to focus on such

modular/local patterns in a decision tree, by analyzing separately

each path from the root to a leaf node; but it has been argued that

converting a decision tree into a set of rules and analyzing the

rules separately often improves a model’s comprehensibility [56].

Note that after converting a decision tree into a set of rules, one

can prune those rules in a way more flexible than the pruning of

decision trees. Any condition can be removed from a rule,

regardless of the order in which conditions were added to the rule.

By contrast, in decision trees, a typical pruning method removes

deep attribute tests more easily than removing shallow ones.

Another important difference between decision tree and rule

representations is that in a tree the set of leaves represent mutually

exclusive and exhaustive class predictions, i.e., each instance in

the test set is classified by exactly one leaf node. This is not the

case with rules, where some instances may satisfy the antecedent

of several rules predicting conflicting classes for that instance.

This characteristic of rule sets has the disadvantage of requiring

an extra method for resolving conflicting class predictions [9],

[12], [51], [72] – which is not needed in a decision tree. Many

rule induction systems cope with this problem by outputting an

ordered rule list (decision list), rather than an unordered rule set.

In such lists, a test instance is given to each rule in the list in turn,

until the instance’s attribute values match a rule’s antecedent.

Then the instance is assigned the class predicted by that rule,

ignoring the other rules in the list. However, an ordered rule list

makes it harder for users to interpret rules which are not at the

start of the list, since such rules only make sense in the context of

all previous rules in the list [12], [51], [72].

Although the simplicity of a rule list is usually measured by the

total number of conditions in all rules, this is not a fair measure of

simplicity since different test instances require different numbers

of rules to be evaluated in the ordered rule list. A fairer measure

of an ordered rule list’s simplicity is the average number of rule

conditions that were evaluated in the rule list in order to classify

an instance, where the average is computed over all test instances

[51]. This is a measure of the “prediction-explanation size” of a

rule list, rather than a measure of the rule list’s size, considering

that the rule conditions evaluated in order to classify an instance

are an explanation of that class prediction to the user.

The fact that rules do not have to make mutually exclusive and

exhaustive predictions facilitates the representation of models

containing only relevant conditions, by comparison with the less

flexible decision tree representation – as discussed earlier. Re-

visiting the example of a tree with irrelevant branches in Figure 1,

the below rule set represents the correct patterns in that example:

IF (age = old) AND (smoking = yes) THEN (disease = yes)

IF (blood test = positive) THEN (disease = yes)

IF none of the above rules is satisfied THEN (disease = no)

SIGKDD Explorations Volume 15, Issue 1 Page 3

This rule set is similar to the tree in Figure 1, but the rule set has

only 3 rules, rather than the 6 paths from the root to a leaf in that

tree – although the rule set requires a method for resolving

conflicting class predictions by different rules, as mentioned

earlier. Note that this rule set does not have any replicated

information, since the positive blood test pattern appears only

once in the rule set (whilst it appears twice in the tree), and the

rules do not represent irrelevant conditions (whilst the tree has

irrelevant branches referring to the middle-age and young values

of age). An explanation is that decision tree induction algorithms

typically select one attribute at a time when expanding the tree,

whilst rule induction algorithms typically select one attribute-

value at a time when expanding a classification rule [24]. Of

course, selecting an entire attribute would be more appropriate if

all the attribute’s values were relevant in the target dataset.

Finally, it should be noted that, when interpreting a discovered

rule set (or ordered rule list), it is often worth to analyze not only

the rules themselves, but instances which are exceptions of the

rules – i.e. instances that satisfy a rule antecedent but have a class

different from the class predicted by the rule. Although this kind

of rule exception analysis is rarely performed, it can lead to

further insight about the application domain– see e.g. [52].

3.3 Interpreting Decision Tables
Decision tables are a tabular knowledge representation where the

state of a set of conditions jointly determines one or more

outcomes [47]. When used as classification models, the

conditions are attribute-value conditions and each set of

conditions (table cell) is associated with a class prediction. We

focus on single-hit tables, with mutually exclusive rules (cells),

since they do not have redundancy and facilitate the interpretation

of decision tables by users [48]. To classify a new instance, the

table cell matching that instance is found, and then the instance is

assigned the most frequent class among all instances matching

that table cell. If there are no instances matching that cell, it is

common to assign to the new instance the most frequent class in

the training set, but other approaches can be used [44].

Decision tables can be induced from data in different ways. For

instance, they can be induced by performing attribute selection

with a wrapper [43] or a (faster) filter approach [44]. In [47] a

decision table is extracted from an induced decision tree; whilst in

[4] first rules were extracted from an ANN, and then decision

tables were constructed from those rules with a semi-automated

approach. Note that generating decision tables from a rule set may

lead to a very large number of columns in the table, requiring a

table contraction method to produce a table with near-optimal

condition order and size – i.e., the smallest possible table size that

is logically equivalent to the rule set where the table was derived

from. In [4] exhaustive search was used, but much larger rule sets

would require search methods like branch-and-bound or heuristic

search. In experiments reported in [44], although decision tables

used much fewer attributes than C4.5 in most datasets, in many

cases the tables still had hundreds or thousands of cells.

3.4 Interpreting Nearest Neighbors
Although nearest neighbor algorithms in general do not discover

an explicit, abstract classification model, they still provide an

explanation for the classification of each new instance. That

explanation consists of the attribute values in the nearest

neighbors, which are used to predict the class of the new instance.

There are two caveats, though. First, the details of the explanation

(the attribute values of the nearest training instances) are normally

different for each new test instance being classified. This is in

contrast with decision trees and classification rules, where a single

path to a leaf node or a single rule can provide an explanation for

the classification of a (potentially large) set of instances.

Secondly, the conventional explanation for each test instance’s

classification consists of the set of values of all attributes in the

data. In datasets with a very large number of attributes, the

concept of “nearest neighbors” seems intuitively unsatisfactory as

an explanation for the classification of a new instance, because

even the nearest training instance will probably differ from the

new one being classified in a very large number of attributes [49].

Two approaches for improving the interpretability of nearest

neighbors are as follows. First, instead of using the entire training

set in the distance computations to find the nearest neighbors, the

system can produce a small set of prototypes (typical instances),

and then search for nearest neighbors computing the distance

between a test instance and the prototypes only. The test instance

is then assigned the most frequent class among its nearest

prototype(s). In this case the set of prototypes represent an

abstract, summarized form of knowledge which can be directly

shown to users, analogous to an abstract model like a decision tree

or rule set. Several methods for selecting prototypes have been

proposed [63], [66], [75]. However, usually prototypes have been

selected with the purpose of increasing predictive accuracy, rather

than improving interpretability as suggested here.

A second approach to improve the comprehensibility of nearest

neighbor predictions involves computing attribute weights [71],

where the weight of an attribute is proportional to its predictive

power. This is a natural approach to try to improve predictive

accuracy anyway, because an unweighted-attribute nearest

neighbor algorithm uses the strong simplifying assumption that all

attributes are equally relevant for predicting the class, which is

unlikely to be the case in most applications. A set of attribute

weights could be considered a comprehensible form of knowledge

by itself, helping to identify the most relevant attributes. In

addition, attribute weights can improve the comprehensibility of

explanations for the classifications of test instances, as follows.

When the user asks to see the attribute values in the nearest

neighbors for a given test instance being classified (as an

explanation for that classification), the system could show the

attributes in decreasing order of weight (relevance). Hence, users

could focus their attention on analyzing the neighbors’ attribute

values for the most relevant attributes only.

3.5 Interpreting Bayesian Network Classifiers
Unlike the interpretation of decision trees, which contain a subset

of relevant attributes, interpreting the model produced by Naïve

Bayes requires the user to analyze the probabilities associated

with all attributes. However, in some cases users might prefer to

interpret the probabilities computed by Naïve Bayes for all

attributes, rather than focusing on just the set of attributes in a

decision tree. This can occur e.g. in medical applications [45],

[46], [76]. To cite from [46]: “One of the main advantages of this

[Naïve Bayes] approach, which is appealing to physicians, is that

all the available information is used to explain the decision; such

an explanation seems to be ‘natural’ for medical diagnosis and

prognosis.” Note, however, that in these cases the medical

doctors’ preference for the use of all original attributes seems

SIGKDD Explorations Volume 15, Issue 1 Page 4

biased by the fact that the original attributes had been carefully

selected by experts, which is not the case in many real-world data

mining applications.

Furthermore, in some applications users might prefer the natural

probabilistic interpretation of naïve Bayes, rather than the

Boolean logic-based nature of classifiers like decision trees,

classification or decision tables. E.g., it has been argued that

modeling probabilities is very important in clinical practice [5].

However, Naïve Bayes makes the assumption that attributes are

independent from each other given the class. This assumption

reduces the number of conditional probabilities to be interpreted

by the user, but it misses the opportunity of detecting interesting

correlations among attributes. Although that assumption is usually

unrealistic, it might be realistic in some cases where predictor

attributes are created by medical doctors, who tend to “think

linearly” and create independent attributes [45], [50].

More sophisticated types of Bayesian Network Classifiers (BNCs)

do not have the Naïve Bayes’ strong assumption of attribute

independence; they allow the modeling of attribute dependencies,

represented by edges between attributes (nodes) in a network [27],

[11]. There are two broad approaches to construct a BNC. In the

class-constrained approach, the class attribute is given a special

treatment, being inserted at the root of the network, with edges

pointing from it to other nodes in the network. In the

unconstrained approach, no special treatment is given to the class

attribute, which can be inserted anywhere in the network.

An example of a class-constrained BNC method is the Bayesian

Network-Augmented Naïve Bayes (BAN) illustrated in Figure 2.

In a BAN there are two types of edges: (a) an edge from class C to

each predictor attribute Ai, i = 1,…,N (where N = number of

predictor attributes) – these edges are also used by Naïve Bayes;

and (b) edges representing dependencies among attributes – these

edges are not used by Naïve Bayes. In order to avoid overfitting

or to improve the simplicity of the model, a BAN-building

algorithm often has a user-defined parameter K specifying the

maximum number of parents for a node, not counting the class

node (which is a parent of every other node). If K is set to 1 we

have a Tree Augmented Naïve Bayes (TAN) [27].

 Class

 A1 A2 A3

 A4 A5

Figure 2: Bayesian network-Augmented Naïve Bayes (BAN)

 A1 A2 A3

 A4 Class A5

 A6 A7 A8 A9

Figure 3: General Bayesian Network (GBN), with the Class’

Markov blanket shown in boldface

An example of the unconstrained approach for building a BNC is

the General Bayesian Network (GBN) classifier, illustrated in

Figure 3, where the class attribute has both incoming and

outgoing edges. In order to classify test instances with a GBN, we

only need to use the Markov blanket of the class node, which is

the set of attributes which the class variable depends on [11], and

consists of set of nodes that are parents, children or parents of the

children of the class node in the GBN. In Figure 3 the set of nodes

in the Markov blanket of the class node is shown in boldface.

The comprehensibility of a BNC depends partially on its graphical

model’s size, since a BNC with a very large number of edges

would be difficult to interpret. This is particularly the case for

BANs. In the case of GBNs, it is the size of the Markov blanket of

the class node that matters for interpreting the model. The Markov

blanket of a class node tends to be much smaller than a full BAN

network. Actually, the Markov blanket of the class node can be

considered a form of discovered knowledge by itself, analogous to

the knowledge represented by a subset of relevant attributes

selected by an attribute selection method.

However, size by itself is not enough to evaluate the

comprehensibility of a BNC. Even relatively small BNCs might

be somewhat confusing to users, unless they have the proper

training to interpret such classifiers. In particular, the use of

directed edges to represent dependencies can be confusing to

users, since users usually think of probabilistic dependencies as

undirected (or “bidirectional”) dependencies. Note also that most

statistical tests of attribute dependence are symmetric with respect

to the attributes, i.e., for a given pair of attributes A, B and a

dependence measure Dep, usually we have Dep(A,B) = Dep(B,A).

Heckerman et al. [32] give an example of the situation where

users get confused by unidirectional edges in Bayesian networks,

based on their experience of showing Bayesian networks to users,

as follows. Consider a Bayesian network where attributes gender

and age are parents of the attribute income. Users understand that

gender and age are predictors of income, but they also think that

income is a predictor of gender and age and wonder why there are

no edges pointing from income to those two attributes.

To avoid this and other problems in the interpretation of Bayesian

networks, Heckerman et al. [32] proposed the use of dependency

networks, which represent bidirectional dependencies among

attributes by using a cyclic directed graph (where a set of directed

edges can form a cycle). The use of dependence networks in

classification is relatively rare, and this type of model seems

worth more attention and research than it has received so far.

3.6 User-based Experiments Comparing the

Comprehensibility of Different Types of

Classification Model
There have been few experiments directly comparing the

subjective comprehensibility of different types of classification

models to the user, as summarized next.

In [35], an experiment measured the accuracy, response time and

confidence with which a user answered questions about

classification models expressed in different representations,

namely: single-hit decision tables, binary decision trees, rule lists

with univariate conditions and oblique rules (with multivariate

conditions). The experiments involved only the credit scoring

domain, and the models were induced only for the two-class

problem of accepting or rejecting a credit application. The

SIGKDD Explorations Volume 15, Issue 1 Page 5

experiment involved 51 non-expert users with no prior experience

with any of the knowledge representations or credit scoring. Most

users found decision tables the most comprehensible, easiest to

use type of representation. This was attributed mainly to the

physical conciseness of the decision table format, and also partly

attributed to the fact that in each column of a decision table the

attributes are considered in the same order [35]. The latter is in

contrast with a decision tree, where different paths from the root

to a leaf consist of attributes in different orders, which seems to

slow down users when they had to do a fast search within the tree

in order to answer classification questions. In addition, most users

found oblique rules very difficult to use and the least

comprehensible representation. Decision trees with oblique splits

were also considered less comprehensible than decision trees with

univariate splits in a bioinformatics problem [31].

In [1], 100 non-expert users were asked to compare the

understandability of decision trees and rule lists induced from two

small datasets from the UCI ML repository – namely, Contact

Lenses and Labor. Decision trees were in general deemed by users

to be more understandable than rule lists for both datasets.

A different type of experiment, not directly related to data mining,

compared decision trees and tables in the context of a computer

game where users had to interpret trees and tables to make

investment decisions that maximized their profit in the game [65].

Among a group of 67 non-expert users, decision trees were

overall found to be more comprehensible than decision tables.

The greater comprehensibility of decision trees was attributed to

their ability in graphically revealing the patterns in the data and

the ease with which users can follow a tree path until its leaf node.

Such experiments comparing the users’ preferences for different

types of knowledge representation are useful and should be done

more often, but note that the results of such experiments are

naturally biased by the background of the users [65], [35]. For

instance, some users might be familiar with sophisticated

mathematical equations and find them more comprehensible than

graphical or linguistic models like decision trees or rules. E.g., in

an application in the Earth Sciences [62], where users were

familiar with differential equations, the authors suggested data

mining should produce that kind of model, to facilitate users’

acceptance of the model.

Overall, however, it is usually agreed that representations like

decision trees, classification rules or decision tables tend to be

more comprehensible to most users than mathematical equations

(like linear combinations of attributes in oblique decision trees)

and non-linear models like ANN or SVM [26], [49], [70].

4. INTERPRETING CLASSIFICATION

MODELS: GENERIC ISSUES

4.1 The Drawbacks of Model Size as the

Single Measure of Comprehensibility
In the vast majority of papers where the comprehensibility of a

classification model is evaluated, that evaluation is done in an

over-simplistic way, by measuring only the size of the model –

e.g. the number of nodes in a decision tree, or the number of

edges in a Bayesian network classifier. The assumption is that the

smaller the model is, the more comprehensible it would be to the

user. However, there are several problems with that assumption.

First of all, the size of a model is just a syntactical aspect of that

model; it does not capture any aspect of its semantics. Clearly, the

comprehensibility of a model depends strongly (and subjectively)

on the actual “contents” of the model, i.e. the attributes in the

decision tree, the attribute-value conditions in classification rules,

the parent attributes of each attribute in a Bayesian network

classifier, etc.. It is quite possible that a larger decision tree be

more comprehensible to the user than a short one, because the

larger tree uses attributes which make more sense to the user.

For example, in [46] medical experts preferred larger trees over

shorter ones, because the shorter trees contained fewer

informative attributes and described the patient too poorly for

supporting the medical doctor’s decisions. In [1], in experiments

with 100 non-expert users who subjectively evaluated the

understandability of decision trees and rule lists induced from the

UCI Labor dataset, in general the larger a model was, the more

understandable it was considered by the users. This was attributed

possibly to larger models providing more classification-relevant

information to the user, and also to the fact that the small size of

the Labor dataset did not lead to very large models.

In addition, extreme simplicity is not acceptable for users. For

instance, a trivial decision tree with a single leaf node predicting

the most frequent class in the training set for all instances in the

test set can hardly be accepted by users. Also, a model can be

non-trivial and still be considered too simple to be accepted by

users. An example of this point in the medical domain is given in

[20], where the only internal node of the tree is the attribute

Fever. Medical doctors cannot accept such an over-simplistic

explanation. To cite from [20]: “Humans by nature are mentally

opposed to too simplistic representations of complex relations.”

Intuitively, the size of a model can have a significant effect on its

comprehensibility, particularly when the model is “too large”,

since in such case the user could not even have time to analyze the

full model. One caveat, though, is that maybe the user could make

time to analyze part of the model (e.g. a rule subset or a subtree of

a decision tree) and still find that part comprehensible or useful.

In addition, the definition of “too large” varies hugely among

users. For instance, in [62] a rule induction system discovered 41

rules, and that number was considered an “overwhelming”

number of rules by the user. By contrast, in [68] apparently a user

patiently analyzed a set of 29,050 rules – which led to the

identification of a small subset of 220 (< 1%) interesting rules.

Despite the difficulty in predefining a maximum model size that

would allow a user’s interpretation of a model, some authors have

suggested to impose strict user-defined size constraints on the

classification model, in order to improve the model’s

comprehensibility [62], [69]. For instance, in [62] it is suggested

that “a useful feature for future machine learning algorithms

would be the ability to directly specify the maximum number of

rules in the model as a parameter to the learning algorithm”.

Although this approach might be useful in some specific cases –

when more sophisticated approaches would not be cost-effective –

we would not recommend this approach in general, since it is not

flexible and seems over-simplistic. We favor instead a more

principled approach for coping with the accuracy-

comprehensibility trade-off, such as multi-objective optimization

based on Pareto dominance [25], [38] or lexicographic

optimization [25], [42].

SIGKDD Explorations Volume 15, Issue 1 Page 6

The assumption that smaller models are more comprehensible to

users was also empirically tested in [35] in experiments with 51

non-expert users. Overall, the users’ comprehensibility of induced

models tended to increase with the models’ sizes, for different

types of knowledge representation – namely: decision tables,

decision trees and classification rules. Another work reports the

results of experiments where two expert users (neurologists)

subjectively evaluated many classification rules predicting

whether a patient is normal or has early signs of dementia [53].

Although the results showed that there was some correlation

between a rule’s size and its acceptance by users, that correlation

was overall quite weak. A stronger correlation existed between the

rule’s acceptance by users and the number of rule conditions that

violate the user’s background knowledge: the smaller this number,

the more likely the rule is to be accepted by users. Such violations

of background knowledge will be discussed in Subsection 4.2.

4.2 Incorporating Semantic Monotonicity

Constraints in Classification Models
Users are more like to trust and accept classification models when

they are built by respecting monotonicity constraints provided by

the users or experts in the application domain [49], [55], [70]. A

monotonic relationship between a numerical predictor attribute

and the class attribute occurs when increasing the value of the

attribute tends to either monotonically increase or monotonically

decrease the probability of an instance’s membership to a class.

Monotonicity constraints seem to be quite common in real-world

applications [6]. For instance, when predicting whether or not a

customer will buy a product, the probability of class “buy = yes”

tends to decrease monotonically with an increase in the product’s

price [21]. Also, the probability of class “cancer = yes” is usually

expected to increase monotonically with the patient’s age.

When such monotonicity constraints are provided by the user or

an expert, they can be incorporated in a classification algorithm in

several different ways. Let us consider first the case of decision

trees, where a tree is said to be “monotone” if it respects all the

predefined monotonicity constraints, i.e. if the tree has no pair of

leaves leading to a violation of some monotonicity constraints for

some instances classified by those two leaves.

In [6], the attribute selection criterion of a decision-tree algorithm

was modified to consider a combination of entropy and a measure

of the degree to which monotonicity constraints are respected.

Strictly enforcing all monotonicity constraints during tree

construction is difficult because monotonicity is a global property

of a full tree [21]; whilst typical decision tree algorithms treat the

selection of an attribute test for a given tree node as independent

from the test selection in other tree paths. Hence, in [22] a

standard (not necessarily monotone) tree is first built, and then the

tree is pruned with a method that guarantees that the pruned tree is

monotone. The monotone trees turned out to be slightly more

accurate and much smaller than standard trees.

Note that strictly enforcing all monotonicity constraints, as hard

constraints, is not always desirable, since there is a trade-off

between maximizing accuracy and respecting monotonicity

constraints [6], [7]. Considering the monotonicity constraints as

soft constraints, which may be violated if this increases the

model’s accuracy, may be more suitable sometimes. In some

cases, though, strictly enforcing monotonic constraints does not

lead to loss of accuracy, and may even improve accuracy [47], [2].

So far we have discussed monotonic relationships for numerical

attributes, but monotonic relationships may involve nominal

attributes too. The latter case occurs when one or more of the

attribute’s values either increases or decreases the probability of

an instance belonging to a class. In an extreme case, a nominal

value indicates membership in a given class at the exclusion of

other classes. An example of this case is shown in the rule below

[55], where the underlined conditions are counter-intuitive to the

user, since the rule predicts that the patient is normal.

IF the years of education of the patient is > 5

AND the patient does not know the date

AND the patient does not know the name of a nearby street

THEN the patient is “normal”

To avoid the discovery of such rules, in [55], if a nominal

attribute takes a value that is indicative of membership in a given

class at the exclusion of other classes, that attribute value is not

considered when building a rule to predict those other classes. In

the above example rule, “patient does not know the date” is

indicative of membership in the class mentally impaired, and so it

should not be used in a rule predicting class normal.

In [2], monotonic constraints were considered only when learning

the parameters of Bayesian networks, not when learning a network

structure. Moreover, an algorithm for checking if decision tables

violate monotonicity constraints is presented in [47]. In addition,

in [18] the training data is first relabeled to make it monotone, and

then a nearest-neighbor algorithm is modified to predict class

labels in a way that respects the monotonicity constraints.

So far we focused on monotonicity constrains provided by expert

users, but those constraints can be automatically derived from the

data – e.g., using the concept of globally predictive tests

(conditions) [54]. A test Ti is globally predictive of a given class

Cj iff P(Cj|Ti) > P(Cj) – e.g., Ti = (age > 70), Cj = (cancer = yes).

Rule induction algorithms often create rules with tests that are

locally (not globally) predictive, in the local context of a rule. Ti is

locally predictive of Cj in context Ctx iff P(Cj|Ti,Ctx) > P(Cj|Ctx),

where Ctx is a Boolean combination of tests. Using such

probabilities, computed from the data, two modified versions of a

rule induction algorithm were proposed in [54]. One version is

allowed to add, to a rule antecedent, only tests that are globally

predictive of the class in the rule consequent – a hard constraint.

The other version can add to a rule antecedent a test that is not

globally predictive if it is significantly better than the best

globally predictive test – a soft constraint.

Automatically deriving monotonicity constraints from the data has

the advantage of not requiring expert users, but the disadvantage

of relying on the high quality of the data. It has been argued that,

even when there are monotonic constraints in the application

domain, real-world datasets usually have some non-monotonic

noise, with purely monotonic datasets being rare [7]. For

researchers who need benchmarking datasets for evaluating

classification algorithms that respect monotonicity constraints,

information on monotonic constraints for five UCI datasets is

given in [2]. For a further discussion about how to incorporate

monotonicity constraints in classification models, see [49].

5. SUMMARY AND DISCUSSION
Different knowledge representations have different pros and cons,

in terms of their interpretability by users, and none of them can be

considered the “most comprehensible” in all applications. The

SIGKDD Explorations Volume 15, Issue 1 Page 7

choice of a knowledge representation should be made by taking

into account the user’s background and subjective preferences,

and characteristics of the target dataset.

For instance, contrasting the interpretability of decision trees and

classification rules, if the dataset contains many attributes having

a single value that is relevant for class prediction, decision trees

would have the drawback of including irrelevant values. This

would mislead the user’s interpretation of the tree and may lead to

overfitting. In such datasets, a rule-based model could be more

suitable, since rule induction algorithms can select a single

relevant attribute value, instead of selecting all values of an

attribute. On the other hand, if the dataset contains many

attributes where all of their values are relevant, a decision tree

could represent those patterns more naturally than a rule set/list.

We suggested that, when analyzing decision trees and rule sets or

lists, a simple yet effective measure of the relevance of an

attribute in those models would be the number of test instances

whose classification used a value of that attribute. The

interpretation of decision trees and rule sets or lists could also

include an analysis of the exceptions (or counter-examples)

associated with some rules – i.e., instances which satisfy a rule’s

antecedent (or decision tree path from root to leaf) but do not

have the class predicted by the rule. Such counter-example

analyses could lead to more insight about the application domain.

Concerning graphical models, although both Bayesian network

classifiers and decision trees are graphical models, the correct

interpretation of the former seems more difficult to users,

although we are not aware of any experimental study comparing

their interpretability by users. It has been pointed out that

dependence networks may represent more comprehensible

probabilistic graphical models than Bayesian network classifiers

[32], since the former (unlike the latter) can represent cyclic

dependences among attributes, which are often intuitive to users.

The use of both dependence networks and the class attribute’s

Markov blanket as types of comprehensible classification models

seems relatively under-explored in the literature.

Although nearest neighbor algorithms usually do not produce an

explicit, abstract classification model, the attribute values of the

found nearest neighbor(s) can sometimes be used to explain the

classification of new instances. That explanation could be

improved by showing attributes to users in decreasing order of

relevance as computed by an attribute-weighting method, and

perhaps using prototypes of training instances.

Turning to evaluation issues, there have been few experiments

where users subjectively evaluated the comprehensibility of

classification models expressed in different types of knowledge

representations. There is a need for more experiments, e.g. along

two directions: including user evaluations of Bayesian network

classifiers, since previous experiments have focused mainly on

decision trees, classification rules and decision tables; and

involving more users who are experts in the application domain –

previous experiments have used mainly students as “users”.

We have also noted that the widely used assumption that smaller

models are more comprehensible than larger models is

problematic. First, in some studies users found larger models to be

more comprehensible than smaller models [1], [35], [46],

apparently because larger models provided more classification-

relevant information to users. Second, users are unlikely to accept

models that are very simple when the underlying concept being

learned by the algorithm is considered complex [20]. In addition,

although a model that is “too large” can hardly be interpreted by a

user, it might be possible for a user to focus on the analysis of an

interesting subset of the model – e.g. a substree of the decision

tree. Note also that it is very hard to define a priori which model

size would be considered “too large” to be analyzed by a user.

Hence, instead of specifying the maximum size of a classification

model as a parameter of a classification algorithm, we prefer a

more principled approach to cope with the accuracy-

comprehensibility trade-off, such as a multi-objective approach

based on Pareto dominance or lexicographic optimization [25].

We also discussed the use of monotonicity constraints in

classification models, to improve their comprehensibility and

acceptance by users. Such constraints involve a semantic aspect of

classification models, instead of just considering a syntactical

aspect such as model size. Also, monotonicity constraints seem to

have a good degree of generality: they seem to exist in many (but

not all) real-world applications, and they can be incorporated in

all the types of classification model representations discussed

earlier – although each classification algorithm has to be adapted

to consider monotonicity constraints in a specific way.

Monotonicity constraints can be considered as hard constraints

(which can never be violated during model induction) or soft

constrains (which can be violated if this leads to significantly

higher predictive accuracy), depending on the application domain

and the user’s interests. Monotonicity constraints can be specified

by an expert on the application domain or automatically extracted

from (high-quality) data, depending on the application. More

research is needed to determine to what extent an automated

approach to extract semantic monotonicity constraints from data

leads to improved classification models.

6. REFERENCES
[1] Allahyari, H., and Lavesson, N. User-oriented assessment of

classification model understandability. Proc. 11th

Scandinavian Conf. on Artificial Intelligence. IOS, 2011.

[2] Altendorf, E.E., Restificar, A.C., and Dietterich, T.G.

Learning from sparse data by exploiting monotonicity

constraints. Proc. 21st Annual Conf. on Uncertainty in

Artificial Intelligence (UAI-05), 18-26. AUAI, 2005.
[3] Augusta, M.G., and Kathirvalavakumar, T. Reverse

engineering the neural networks for rule extraction in

classification problems. Neural Processing Letters 35(2):

131-150, April 2012.
[4] Baesens, B., Mues, C., De Backer, M., and Vanthienen, J.

Building intelligent credit scoring systems using decision

tables. In: Enterprise Information Systems V, 131-137.

Kluwer, 2004.

[5] Bellazzi, R., and Zupan, B. Predictive data mining in clinical

medicine: current issues and guidelines. International

Journal of Medical Informatics 77(2): 81-97, Feb. 2008.
[6] Ben-David, A. Monotonicity maintenance in information-

theoretic machine learning algorithms. Machine Learning

19(1): 29-43. 1995.

[7] Ben-David, A., Sterling, L., and Tran, T. Adding

monotonicity to learning algorithms may impair their

accuracy. Expert Systems with Applications 36(3): 6627-

6634. April 2009.

[8] Boz, O. Extracting decision trees from trained neural

networks. Proc. 8th ACM SIGKDD Int. Conf. on Knowledge

SIGKDD Explorations Volume 15, Issue 1 Page 8

Discovery and Data Mining (KDD’02), 456-461. ACM,

2002.

[9] Bramer, M. Principles of Data Mining. Springer, 2007.

[10] Cendrowska, J. PRISM: an algorithm for inducing modular

rules. International Journal of Man-Machine Studies 27(4):

349-370. 1987.

[11] Cheng, J., and Greiner, R. Learning Bayesian belief

classifiers: algorithms and system. Proc. 14th Biennial

Conference of Canadian Society on Computational Studies

of Intelligence (AI’01), 141-151. Springer, 2001.
[12] Clark, P., Boswell, R. Rule induction with CN2: some recent

improvements. In: Machine Learning – Proc. Fifth European

Conf. (EWSL-91), 151-163. Springer, 1991.

[13] Cristianini, N., and Shawe-Taylor, J. An Introduction to

Support Vector Machines and other kernel-based learning

methods. Cambridge University Press, 2000.
[14] Dejaeger, K., Goethals, F., Giangreco, A., Mola, L., and

Baesens, B. Gaining insight into student satisfaction using

comprehensible data mining techniques. European Journal

of Operational Research, 218(2): 548-562, 2012.

[15] Dhar, V., Chou, D., and Provost, F. Discovering interesting

patterns for investment decision making with GLOWER – a

genetic learner overlaid with entropy reduction. Data Mining

and Knowledge Discovery 4(4): 251-280, 2000.

[16] Doderer, M., Yoon, K., Salinas, J., and Kwek, S. Protein

subcellular localization prediction using a hybrid of

similarity search and error-correcting output code techniques

that produces interpretable results. In Silico Biology 6(5):

419-433, 2006.

[17] Domingos, P. Occam’s two razors: the sharp and the blunt.

Proc. 4th Int. Conf. on Knowledge Discovery and Data

Mining (KDD’98), 37-43. AAAI, 1998.

[18] Duivesteijn, W., and Feelders, A. Nearest neighbour

classification with monotonicity constraints. Proc. ECML

PKDD 2008, Part I, LNAI 5211, 301-316. Springer, 2008.

[19] Elazmeh, W., Matwin, W., O’Sullivan, D., Michalowski, W.,

and Farion, W. Insights from predicting pediatric asthma

exacerbations from retrospective clinical data. In: Evaluation

Methods for Machine Learning II – Papers from 2007 AAAI

Workshop, 10-15. Technical Report WS-07-05. AAAI, 2007.

[20] Elomaa, T. In Defense of C4.5: Notes on learning one-level

decision trees. Proc. 11th Int. Conf. on Machine Learning

(ICML-94), pp. 62-69. Morgan Kaufmann, 1994.

[21] Feelders, A.J. Prior knowledge in economic applications of

data mining. Proc. European Conf. on Principles and

Practice of Knowledge Discovery and Data Mining (PKDD-

2000), LNAI 1910, 395-400. Springer, 2000.

[22] Feelders, A., and Pardoel, M. Pruning for monotone

classification trees. Proc. Intelligent Data Analysis (IDA)

Conf., LNCS 2810, 1-12. Springer, 2003.

[23] Ferri, C., Hernandez-Orallo, J., and Ramirez-Quintana, M.J.

From ensemble methods to comprehensible models. Proc.

5th Int. Conf. on Discovery Science (DS-2002), LNCS 2534,

165-177. Springer, 2002.

[24] Freitas, A.A. Data Mining and Knowledge Discovery with

Evolutionary Algorithms. Springer, 2002.

[25] Freitas, A.A. A critical review of multi-objective

optimization in data mining: a position paper. ACM SIGKDD

Explorations, 6(2): 77-86. ACM, Dec. 2004.
[26] Freitas, A.A., Wieser, D.C. and Apweiler, R. On the

importance of comprehensible classification models for

protein function prediction. ACM/IEEE Transactions on

Computational Biology and Bioinformatics 7(1): 172-182,

Jan.-Mar. 2010.

[27] Friedman, N., Geiger, D., and Goldszmidt, M. Bayesian

network classifiers. Machine Learning 29(2-3): 131-163,

Nov./Dec. 1997.

[28] Fung, G., Sandilya, S., and Rao, R.B. Rule extraction from

linear support vector machines. Proc. 11th ACM SIGKDD

Int. Conf. on Knowledge Discovery and Data Mining (KDD-

2005), 32-40. ACM, 2005.

[29] Furnkranz, J. Separate-and-conquer rule learning. Artificial

Intelligence Review 13(1): 3-54. 1999.

[30] Grunwald, P.D. The Minimum Description Length Principle.

MIT Press, 2007.

[31] Hayete, B., and Bienkowska, J.R. GOTrees: predicting GO

associations from protein domain composition using decision

trees. Proc. Pacific Symp. on Biocomput. 10, 127-138, 2005.
[32] Heckerman, D., Chickering, D.M., Meek, C., Rounthwaite,

R., and Kadie, C. Dependency networks for inference,

collaborative filtering and data visualization. Journal of

Machine Learning Research 1: 49-75, 2000.

[33] Henery, R.J. Classification. In: Michie, D., Spiegelhalter,

D.J., and Taylor, C.C. Machine Learning, Neural and

Statistical Classification, 6-16. Ellis Horwood, 1994.

[34] Huang, J., and Ling, C. Using AUC and accuracy in

evaluating learning algorithms. IEEE Transactions on

Knowledge and Data Engineering 17(3): 299-310, 2005.

[35] Huysmans, J., Dejaeger, K., Mues, C., Vanthienen, J., and

Baesens, B. An empirical evaluation of the comprehensibility

of decision table, tree and rule based predictive models.

Decision Support Systems 51(1): 141-154. 2011.

[36] Japkowicz, N., and Shah, M. Evaluating learning

algorithms: a classification perspective. Cambridge

University Press, 2011.

[37] Jiang, T., and Keating, A.E. AVID: an integrative framework

for discovering functional relationships among proteins.

BMC Bioinformatics 6:136, 2005.

[38] Jin, Y. (Ed.) Multiobjective Machine Learning. Springer,

2006.

[39] Johansson, U., and Niklasson, U. Evolving decision trees

using oracle guides. Proc. 2009 IEEE Symp. on

Computational Intelligence and Data Mining (CIDM 2009),

238-244. IEEE Press, 2009.

[40] Karpf, J. Inductive modelling in law: example based expert

systems in administrative law. Proc. 3rd Int. Conf. on

Artificial Intelligence in Law, 297-306. ACM, 1991.

[41] Karwath, A., and King, R.D. Homology induction: the use of

machine learning to improve sequence similarity searches.

BMC Bioinformatics 3:11, 2002.

[42] Kaufmann, K.A., and Michalski, R.S. Learning from

inconsistent and noisy data: the AQ18 approach.

Foundations of Intelligent Systems (Proc. ISMIS-99). LNAI

1609, 411-419. Springer, 1999.

[43] Kohavi, R. The power of decision tables. Proc. 1995

European Conf. on Machine Learning (ECML-95), LNAI

914, 174-189. Springer, 1995.

[44] Kohavi, R., and Sommerfield, D. Targeting business users

with decision table classifiers. Proc. 4th Int. Conf. on

Knowledge Discovery and Data Mining (KDD-98), 249-253.

AAAI, 1998.

SIGKDD Explorations Volume 15, Issue 1 Page 9

[45] Kononenko, I. Inductive and Bayesian learning in medical

diagnosis. Applied Artificial Intelligence 7(4): 317-337,

1993.

[46] Lavrac, N. Selected techniques for data mining in medicine.

Artificial Intelligence in Medicine 16(1): 3-23, May 1999.

[47] Lima, E., Mues, C., and Baesens, B. Domain knowledge

integration in data mining using decision tables: case studies

in churn prediction. Journal of the Operational Research

Society 60: 1096-1106, 2009.

[48] Maes, R., and Van Dijk, J.E.M. On the role of ambiguity and

incompleteness in the design of decision tables and rule-

based systems. The Computer Journal 31(6): 481-489. 1988.

[49] Marteens, D., Vanthienen, J., Verbeke, W., and Baesens, B.

Performance of classification models from a user perspective.

Decision Support Systems 51(4): 782-793. 2011.

[50] Michie, D., Spiegelhalter, D.J., and Taylor, C.C. (Eds.)

Machine Learning, Neural and Statistical Classification.

Ellis Horwood, 1994.

[51] Otero, F.E.B. and Freitas, A.A. Improving the interpretability

of classification rules discovered by an ant colony algorithm.

Proc. 2013 Genetic and Evolutionary Computation

Conference (GECCO’13), 73-80. ACM, 2013.

[52] Pappa, G.L., Baines, A.J., and Freitas, A.A. Predicting post-

synaptic activity in proteins with data mining. Bioinformatics

21(Suppl. 2): ii19-ii25, 2005.

[53] Pazzani, M. Comprehensible Knowledge Discovery: Gaining

Insight from Data. Proc. First Federal Data Mining Conf.

and Exposition, 73-82. Washington, D.C., 1997.

[54] Pazzani, M.J. Learning with globally predictive tests. Proc.

Discovery Science (DS’98), LNAI 1532. Springer, 1998.

[55] Pazzani, M.J., Mani, S., and Shankle, W.R. Acceptance of

rules generated by machine learning among medical experts.

Methods of Information in Medicine, 40(5): 380-385, 2001.

[56] Quinlan, J.R. C4.5: Programs for Machine Learning.

Morgan Kaufmann, 1993.

[57] Quinlan, J.R. Some elements of machine learning. Proc. 16th

Int. Conf. on Machine Learning (ICML-99), 523-525.

Morgan Kaufmann, 1999.

[58] Quinonero-Candela, J., Sugiyama, M., Schwaighofer, A., and

Lawrence, N.D. (Eds.) Dataset Shift in Machine Learning.

MIT Press, 2009.

[59] Richards, G., Rayward-Smith, V.J., Sonksen, P.H., Carey, S.,

and Weng, C. Data mining for indicators of early mortality in

a database of clinical records. Artificial Intelligence in

Medicine 22(3): 215-231, June 2001.

[60] Rokach, L. Pattern Classification Using Ensemble Methods.

World Scientific, 2010.
[61] Rokach, L. and Maimon, O. Data Mining with Decision

Trees: theory and applications. World Scientific, 2008.
[62] Schwabacher, M., and Langley, P. Discovering

communicable scientific knowledge from spatio-temporal

data. Proc. 18th Int. Conf. on Machine Learning (ICML-

2001), 489-496. Morgan Kaufmann, 2001.

[63] Sen, S., and Knight, L. A genetic prototype learner. Proc.

14th Int. Joint Conf. on Artificial Intelligence (IJCAI-95).

1995.

[64] Sokolova, M., and Lapalme, G. A systematic analysis of

performance measures for classification tasks. Information

Processing and Management 45(4): 427-437, July 2009.

[65] Subramanian, G.H., Nosek, J., Raghunathan, S.P., and

Kanitkar, S.S. A comparison of the decision table and tree.

Communications of the ACM 35(1): 89-94, Jan. 1992.

[66] Suri, N.R., Srinivas, V.S. and Murty, M.N. A cooperative

game theoretic approach to prototype selection. Proc. 2007

European Conf. on Machine Learning (ECML 2007), LNAI

4701, 556-564. Springer, 2007.

[67] Szafron, D., Lu, P., Greiner, R., Wishart, D.S., Poulin, B.,

Eisner, R., Lu, Z., Anvik, J., Macdonell, C., Fyshe, A., and

Meeuwis, D. Proteome analyst: custom predictions with

explanations in a web-based tool for high-throughput

proteome annotations. Nucleic Acids Research 32(Supp. 2):

W365-W371, 2004.

[68] S. Tsumoto. Clinical knowledge discovery in hospital

information systems: two case studies. Proc. Europ. Conf. on

Principles and Practice of Knowledge Discovery and Data

Mining (PKDD-2000), LNAI 1910, 652-656. Springer, 2000.

[69] van Assche, A., and Blockeel, H. Seeing the forest through

the trees: learning a comprehensible model from an

ensemble. Proc. 2007 European Conf. on Machine Learning

(ECML 2007), LNAI 4701, 418-429. Springer, 2007.

[70] Verbeke, W., Marteens, D., Mues, C., and Baesens, B.

Building comprehensible customer churn prediction models

with advanced rule induction techniques. Expert Systems

with Applications 38(3): 2354-2364. 2011.

[71] Wettschereck, D., Aha, and D.W., Mohri, T. A review and

empirical evaluation of feature weighting methods for a class

of lazy learning algorithms. In: Aha, D.W. (Ed.) Lazy

Learning, 273-314. Kluwer, 1997.

[72] Witten, I.H., Frank, E., and Hall, M.A. Data Mining:

practical machine learning tools and techniques. 3rd Ed.

Morgan Kaufman, 2011.

[73] Wong, M.L., and Leung, K.S. Data Mining Using Grammar-

Based Genetic Programming & Applications. Kluwer, 2000.

[74] Zahalka, J., and Zelesny, F. An experimental test of Occam’s

Razor in classification. Machine Learning 82(3): 475-481,

March 2011.

[75] Zhang, J. Selecting typical instances in instance-based

learning. Proc. 9th Int. Workshop on Machine Learning

(ML-92), 470-479. 1992.

[76] Zupan, B., Demsar, J., Kattan, M.W., Beck, J.R., and Bratko,

I. Machine learning for survival analysis: a case study on

recurrence of prostate cancer. Artificial Intelligence in

Medicine 20(1): 59-75, Aug. 2000.

About the author:
Alex A. Freitas is a Professor of Computational Intelligence at the

University of Kent, UK. He received his PhD in Computer

Science from the University of Essex, UK, in 1997. His

publications include three (co)-authored research-oriented books

and about 50 peer-reviewed journal papers and 110 peer-reviewed

papers in conference proceedings. His publications have over

7,000 citations in Google Scholar, with an H-index of 43. His

main research interests are classification (supervised learning)

methods and their application to the life sciences (including

biology and pharmaceutical sciences) – with a special interest in

applying classification methods to the biology of ageing.

SIGKDD Explorations Volume 15, Issue 1 Page 10

