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ABSTRACT 

The vast majority of the literature evaluates the performance of 

classification models using only the criterion of predictive 

accuracy. This paper reviews the case for considering also the 

comprehensibility (interpretability) of classification models, and 

discusses the interpretability of five types of classification models, 

namely decision trees, classification rules, decision tables, nearest 

neighbors and Bayesian network classifiers. We discuss both 

interpretability issues which are specific to each of those model 

types and more generic interpretability issues, namely the 

drawbacks of using model size as the only criterion to evaluate the 

comprehensibility of a model, and the use of monotonicity 

constraints to improve the comprehensibility and acceptance of 

classification models by users. 
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1. INTRODUCTION 
The vast majority of works on classification model evaluation use 

predictive accuracy as the only evaluation criterion [34], [36], 

[64]. However, in real-world applications where the goal is to 

produce a classification model that is useful to the user, the 

comprehensibility (interpretability) of the model to the user is also 

important – see Section 2. Model interpretability was stressed in 

early machine learning research [57]; but in the last two decades, 

popular classification methods like ensembles [60], support vector 

machines (SVM) and kernel-based learning methods [13] have 

been designed to maximize predictive accuracy only. Indeed, the 

models produced by SVMs are in general black box models that 

can be hardly interpreted by users; whilst an ensemble of models 

tends to be harder to be interpreted by users, by comparison with 

a single classification model [23], [26], [69].  

Despite the dominance of predictive accuracy as the evaluation 

criterion, there has been significant progress in methods proposed 

for improving the comprehensibility of classification models [6], 

[21], [47], [49], [53], [55], [70]. In addition, the importance of 

comprehensible classification models continues to be emphasized 

in many application domains, like medicine [5], [46], [55], [59], 

[76]; credit scoring [4], [35]; churn prediction [47], [70]; and 

bioinformatics [26], [67]. However, most of these works focus on 

improving the comprehensibility of just one type of classification 

model representation (e.g. decision trees or classification rules).  

1.1 Goals and Scope of the Paper 
This paper has two broad goals: (a) discussing the pros and cons 

of five types of classification knowledge representation – decision 

trees, classification rules, decision tables, nearest neighbors, and 

Bayesian network classifiers, with respect to their interpretability; 

and (b) discussing how to improve the comprehensibility of 

classification models in general.  

We focus on the comprehensibility of classification models, rather 

than on the trade-off between predictive accuracy and 

comprehensibility. Although that trade-off is important, it is out 

of the scope of this paper since it is extensively discussed in the 

literature – see e.g. works on multi-objective optimization 

concepts such as Pareto dominance [25], [38] and lexicographic 

optimization [25], [42]; the minimum description length principle 

[30]; and Occam’s razor [17], [74]. It is important to note, 

though, that nearly all works on the accuracy-comprehensibility 

trade-off measure comprehensibility in terms of model size, an 

over-simplistic notion of comprehensibility, as discussed in 

Subsection 4.1. In contrast, this paper discusses comprehensibility 

in a broader sense, involving several issues related to the 

interpretability of a model, as discussed in Sections 3 and 4. 

Another topic out of the scope of this paper is the extraction of 

comprehensible classification models (e.g. rule sets or decision 

trees) from the “black box” models produced by methods such as 

SVMs and artificial neural networks (ANNs) or from the complex 

models produced by ensembles of classifiers. This topic is left out 

of the scope of this paper for two reasons. First, it is already 

extensively discussed in the literature – see e.g. [8], [39], [3], 

[28], [14], [69]. Second, the concepts and methods discussed in 

this paper are applicable to classification models expressed in the 

aforementioned five types of knowledge representation in general, 

regardless of whether the model was induced directly from the 

data (as usual) or extracted from a black box model. This is 

because this paper focuses on classification models (the outputs of 

classification algorithms), rather than on classification algorithms. 

1.2 Structure of the Remainder of the Paper 
Section 2 reviews the case for discovering comprehensible 

classification models. Section 3 discuss issues in the interpretation 

of each of the above five types of classification knowledge 

representations, and reviews works comparing the interpretability 

of different types of representations. Section 4 focuses on more 

generic issues of classification model interpretability: it first 

discusses the limitations of model size as a single criterion for 

measuring a model’s comprehensibility, and then discusses the 

use of semantic monotonicity constraints. Section 5 concludes the 

paper with a summary and discussion of its main points. 

2. THE CASE FOR COMPREHENSIBLE 

CLASSIFICATION MODELS 
The importance of comprehensible classification models stems 

from several issues. First, understanding a computer-induced 

model is often a prerequisite for users to trust the model’s 

predictions and follow the recommendations associated with those 

predictions. The need for trusting computational predictions tends 
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to be particularly strong in medical applications [19], [39], [46], 

[59], [69], where lives are at stake. Model comprehensibility is 

also important for the model’s acceptance by users in financial 

applications [15] and in customer churn prediction applications 

[70]. In bioinformatics, understanding a model’s predictions often 

helps biologists to trust the predictions [16], [26], [67], increasing 

the chances that users will invest a lot of time and money in the 

execution of sophisticated biological experiments to try to confirm 

the model’s predictions. Arguably, the ultimate value of a model’s 

predictions for bioinformatics is determined by the cumulative 

success of the experiments inspired by those predictions [37]. 

The need for comprehensible models in order to improve the 

user’s trust on the model is also strengthened when the system 

produces an unexpected model to the user, in which case the user 

requires good explanations from the system as a requirement for 

model acceptance [46]. A real-world example of this point (not 

involving data mining, but relevant to our discussion) is given in 

[33]. Shortly before a major accident happened in the Three-Mile 

Island nuclear power plant, the plant’s automated system 

recommended that a human operator shutdown some system, but 

the operator did not implement the shutdown because she/he did 

not believe in the system’s recommendation.  

In addition, in some application domains users need to understand 

the system’s recommendations enough to legally explain the 

reason for their decisions to other people. For instance, according 

to the Danish Public Administration Act, an administrative 

decision is required to be accompanied with its main reasons [40]. 

In the medical domain, if a doctor makes a decision (say, 

recommends surgery) based on the prediction of a classification 

model and that leads to major harm to the patient, the doctor 

should understand the reason for the model’s predictions in order 

to defend her/his decisions in court if she/he is sued for medical 

negligence [59]. Legal requirements are also common in credit 

scoring applications, where a bank often has the legal obligation 

of explaining why a customer was denied credit [35], [49]. 

Furthermore, comprehensible classification models can give new 

insights to users about important predictive relationships in the 

data, i.e., identifying which attributes are the strongest predictors 

of the class variable. In some scientific application domains, the 

analysis of a comprehensible classification model can even lead to 

the formulation of new theories or hypothesis about the target 

problem – see e.g. [26], [41] for examples in bioinformatics; and 

[59], [73] for examples in medical applications. 

Of course, model comprehensibility is not always important, and 

in some applications users might be happy in accepting the 

predictions of a model based only on its high predictive accuracy, 

regardless of its comprehensibility. The relative importance of 

comprehensibility and predictive accuracy is a subjective issue, 

which depends on the user’s interests and the application domain. 

In cases where users are happy to accept the predictions of a non-

comprehensible model based only on its predictive accuracy, one 

caveat should be mentioned, though. Although the classes of test 

set instances are unknown by the algorithm, the test instances’ 

classes are known by the user – i.e., both training and test sets 

contain data about the “past”. The predictions that really matter to 

the user are the predictions to be made for “future” data, whose 

classes are unknown by the user at the time the classification 

algorithm is run. We use predictive accuracy in the test set as an 

estimate of the predictive accuracy in future data, but that estimate 

may not be reliable if the future dataset has a probability 

distribution significantly different from the past data. This 

involves the “datashift” problem [58]. Understanding a very 

accurate classification model might give us more confidence that 

the model is really capturing the correct patterns in the target 

domain (rather than patterns valid in past data that would not be 

valid in “future” data), helping us to cope with the datashift 

problem. It should be noted, though, that research on methods to 

cope with the datashift problem typically focus only on predictive 

accuracy, unfortunately ignoring model comprehensibility issues. 

We conclude this section with a story about the effectiveness of 

an ANN in a military application. It is not clear if this story is 

based on a real or hypothetical application of ANNs, but it is 

related to the datashift problem. In this story, the military trained 

an ANN to classify images of tanks into enemy and friendly tanks. 

The predictive accuracy of the ANN in in the test set images was 

very high. However, when the ANN was deployed in the field 

(corresponding to “future data”), it had a poor accuracy rate. 

Later, users noted that all photos of friendly (enemy) tanks were 

taken on a sunny (overcast) day. I.e., the ANN learned to 

discriminate between the colors of the sky in sunny vs. overcast 

days! If the ANN had output a comprehensible model (explaining 

that it was discriminating between colors at the top of the images), 

such a trivial mistake would immediately be noted. 

3. INTERPRETING SPECIFIC TYPES OF 

CLASSIFICATION MODELS 

3.1 Interpreting Decision Trees 
The comprehensibility of decision trees is facilitated by several 

factors [56], [61]. First, a decision tree has a graphical structure. 

Second, a decision tree typically contains a subset of (rather than 

all) attributes, helping users to focus their analysis on the most 

relevant attributes. Third, the hierarchical tree structure provides 

information about the relative importance of different attributes: 

broadly speaking, the smaller the depth (the closer to the root) of 

an attribute, the more relevant the attribute is for classification. 

Note that an attribute might occur two or more times in the same 

path from the root to a leaf – due, e.g., to multiple binary 

partitions on nodes with numerical attributes. In this case we 

consider the attribute’s depth as the shallowest occurrence of the 

attribute in that path. In the case of multiple occurrences of an 

attribute in paths with non-overlapping sets of edges, an 

aggregated measure of the depths of those occurrences (e.g. the 

mean depth) would need to be computed. 

The criterion of assigning greater relevance to attributes with 

smaller depth has a caveat, however; even in the simplest case of 

comparing the relevance of two attributes which occur just once 

in the tree. An attribute A might have smaller depth than another 

attribute B, yet B might be more relevant in the sense of being 

used to classify more instances. This suggests that a more intuitive 

criterion for determining the relevance of an attribute in a decision 

tree is the number of instances whose classification used a value 

of that attribute – i.e. the summation of the number of instances 

assigned to any leaf node whose associated path (from the root to 

that leaf) includes the attribute in question. This criterion takes 

into account attributes occurring in multiple paths in the tree, and 

the measure of relevance (total number of instances classified by 

that attribute) has a very clear interpretation by users. 
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Another caveat in decision tree interpretation is that some 

subtree(s) of the constructed tree can contain irrelevant attributes, 

even when the data is not noisy. This is because the decision tree 

structure imposes the rigid requirement that once an attribute is 

selected to label a tree node, each value of that attribute has to be 

included in the tree. Hence, some branch(es) may have to be 

added to the tree just to preserve the structure of a tree, even if 

that branch is associated with an irrelevant attribute value [9], 

[10], [24], [29]. Such irrelevant values mislead the user’s 

interpretation of the tree and may lead to overfitting. 

For example, suppose a disease has the following patterns: (a) 

patients who are old and smoke are very likely to get the disease; 

(b) a positive blood test result is a reasonably good predictor that 

a patient will get a disease regardless of age and smoking status. 

In this scenario, it is plausible that a decision-tree induction 

algorithm would create the tree shown in Figure 1. The leftmost 

path in the tree captures the above pattern (a). That pattern refers 

only to the old value of age; the values middle-age and young had 

to be put as extra branches in the tree just to preserve the tree 

structure, even though the latter two values are irrelevant. As a 

result, the information about the above pattern (b) had to be 

replicated in two different subtrees of the tree shown in Figure 1.  

 

                                                  age 

 

                           old         middle-age                 young 

 

             smoking                   blood test                   blood test 

 

           yes          no                 +          –                   +           – 

 

            yes           no             yes           no            yes             no 

 

Figure 1: Example of a decision tree illustrating the problem of 

irrelevant branches and a replicated subtree. 

In addition to mislead the user’s interpretation of the tree, such 

replication is associated with the data fragmentation problem, 

since the instances supporting pattern (b) will be divided between 

the two subtrees, reducing the number of instances available for 

attribute selection at each just-created node. Note that in general 

tree pruning methods do not help to avoid this problem, since the 

only way to remove the irrelevant values middle-age and young 

from the tree would be to remove the age attribute, but for this we 

would need to remove the relevant old value too. 

3.2 Interpreting Classification Rules 
Classification rules – of the form: IF (conditions) THEN (class) – 

are a logics-based representation, like decision trees – since a path 

from the root to a leaf in a decision tree is equivalent to an IF-

THEN rule. However, there are important differences in the 

interpretation of rules and decision trees.  

First, classification rules have a textual representation, rather than 

the graphical representation of decision trees. The “flat” textual 

representation gives no direct clue about which attributes are more 

important than others in a rule, unlike the hierarchical positional 

information of attributes in a tree. Some positional information 

related to the relative importance of attributes could be added to 

rules, by showing rule conditions in the order in which they were 

added to a rule, in decreasing order of relevance as estimated by a 

rule induction algorithm. However, this would still leave us with 

the problem of how to estimate the relevance of an attribute in the 

entire classification model (with all rules).  One solution is the 

same type of attribute relevance measure proposed for decision 

trees in Subsection 3.1, I.e., the relevance of an attribute can be 

measured by the summation of the number of instances classified 

by any rule whose antecedent includes the attribute in question. 

Although the textual rule representation makes it difficult for 

users to get the “full picture” about the model, it allows users to 

analyze individual rules as modular pieces of knowledge (“local 

patterns”), one at a time. It is possible for users to focus on such 

modular/local patterns in a decision tree, by analyzing separately 

each path from the root to a leaf node; but it has been argued that 

converting a decision tree into a set of rules and analyzing the 

rules separately often improves a model’s comprehensibility [56]. 

Note that after converting a decision tree into a set of rules, one 

can prune those rules in a way more flexible than the pruning of 

decision trees. Any condition can be removed from a rule, 

regardless of the order in which conditions were added to the rule. 

By contrast, in decision trees, a typical pruning method removes 

deep attribute tests more easily than removing shallow ones.  

Another important difference between decision tree and rule 

representations is that in a tree the set of leaves represent mutually 

exclusive and exhaustive class predictions, i.e., each instance in 

the test set is classified by exactly one leaf node. This is not the 

case with rules, where some instances may satisfy the antecedent 

of several rules predicting conflicting classes for that instance. 

This characteristic of rule sets has the disadvantage of requiring 

an extra method for resolving conflicting class predictions [9], 

[12], [51], [72] – which is not needed in a decision tree. Many 

rule induction systems cope with this problem by outputting an 

ordered rule list (decision list), rather than an unordered rule set. 

In such lists, a test instance is given to each rule in the list in turn, 

until the instance’s attribute values match a rule’s antecedent. 

Then the instance is assigned the class predicted by that rule, 

ignoring the other rules in the list. However, an ordered rule list 

makes it harder for users to interpret rules which are not at the 

start of the list, since such rules only make sense in the context of 

all previous rules in the list [12], [51], [72].  

Although the simplicity of a rule list is usually measured by the 

total number of conditions in all rules, this is not a fair measure of 

simplicity since different test instances require different numbers 

of rules to be evaluated in the ordered rule list. A fairer measure 

of an ordered rule list’s simplicity is the average number of rule 

conditions that were evaluated in the rule list in order to classify 

an instance, where the average is computed over all test instances 

[51]. This is a measure of the “prediction-explanation size” of a 

rule list, rather than a measure of the rule list’s size, considering 

that the rule conditions evaluated in order to classify an instance 

are an explanation of that class prediction to the user.  

The fact that rules do not have to make mutually exclusive and 

exhaustive predictions facilitates the representation of models 

containing only relevant conditions, by comparison with the less 

flexible decision tree representation – as discussed earlier. Re-

visiting the example of a tree with irrelevant branches in Figure 1, 

the below rule set represents the correct patterns in that example: 

IF (age = old) AND (smoking = yes) THEN (disease = yes) 

IF (blood test = positive) THEN (disease = yes) 

IF none of the above rules is satisfied THEN (disease = no) 
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This rule set is similar to the tree in Figure 1, but the rule set has 

only 3 rules, rather than the 6 paths from the root to a leaf in that 

tree – although the rule set requires a method for resolving 

conflicting class predictions by different rules, as mentioned 

earlier. Note that this rule set does not have any replicated 

information, since the positive blood test pattern appears only 

once in the rule set (whilst it appears twice in the tree), and the 

rules do not represent irrelevant conditions (whilst the tree has 

irrelevant branches referring to the middle-age and young values 

of age). An explanation is that decision tree induction algorithms 

typically select one attribute at a time when expanding the tree, 

whilst rule induction algorithms typically select one attribute-

value at a time when expanding a classification rule [24]. Of 

course, selecting an entire attribute would be more appropriate if 

all the attribute’s values were relevant in the target dataset. 

Finally, it should be noted that, when interpreting a discovered 

rule set (or ordered rule list), it is often worth to analyze not only 

the rules themselves, but instances which are exceptions of the 

rules – i.e. instances that satisfy a rule antecedent but have a class 

different from the class predicted by the rule. Although this kind 

of rule exception analysis is rarely performed, it can lead to 

further insight about the application domain– see e.g. [52]. 

3.3 Interpreting Decision Tables 
Decision tables are a tabular knowledge representation where the 

state of a set of conditions jointly determines one or more 

outcomes [47]. When used as classification models, the 

conditions are attribute-value conditions and each set of 

conditions (table cell) is associated with a class prediction. We 

focus on single-hit tables, with mutually exclusive rules (cells), 

since they do not have redundancy and facilitate the interpretation 

of decision tables by users [48]. To classify a new instance, the 

table cell matching that instance is found, and then the instance is 

assigned the most frequent class among all instances matching 

that table cell. If there are no instances matching that cell, it is 

common to assign to the new instance the most frequent class in 

the training set, but other approaches can be used [44]. 

Decision tables can be induced from data in different ways. For 

instance, they can be induced by performing attribute selection 

with a wrapper [43] or a (faster) filter approach [44]. In [47] a 

decision table is extracted from an induced decision tree; whilst in 

[4] first rules were extracted from an ANN, and then decision 

tables were constructed from those rules with a semi-automated 

approach. Note that generating decision tables from a rule set may 

lead to a very large number of columns in the table, requiring a 

table contraction method to produce a table with near-optimal 

condition order and size – i.e., the smallest possible table size that 

is logically equivalent to the rule set where the table was derived 

from. In [4] exhaustive search was used, but much larger rule sets 

would require search methods like branch-and-bound or heuristic 

search. In experiments reported in [44], although decision tables 

used much fewer attributes than C4.5 in most datasets, in many 

cases the tables still had hundreds or thousands of cells. 

3.4 Interpreting Nearest Neighbors 
Although nearest neighbor algorithms in general do not discover 

an explicit, abstract classification model, they still provide an 

explanation for the classification of each new instance. That 

explanation consists of the attribute values in the nearest 

neighbors, which are used to predict the class of the new instance.  

There are two caveats, though. First, the details of the explanation 

(the attribute values of the nearest training instances) are normally 

different for each new test instance being classified. This is in 

contrast with decision trees and classification rules, where a single 

path to a leaf node or a single rule can provide an explanation for 

the classification of a (potentially large) set of instances.  

Secondly, the conventional explanation for each test instance’s 

classification consists of the set of values of all attributes in the 

data. In datasets with a very large number of attributes, the 

concept of “nearest neighbors” seems intuitively unsatisfactory as 

an explanation for the classification of a new instance, because 

even the nearest training instance will probably differ from the 

new one being classified in a very large number of attributes [49]. 

Two approaches for improving the interpretability of nearest 

neighbors are as follows. First, instead of using the entire training 

set in the distance computations to find the nearest neighbors, the 

system can produce a small set of prototypes (typical instances), 

and then search for nearest neighbors computing the distance 

between a test instance and the prototypes only. The test instance 

is then assigned the most frequent class among its nearest 

prototype(s). In this case the set of prototypes represent an 

abstract, summarized form of knowledge which can be directly 

shown to users, analogous to an abstract model like a decision tree 

or rule set. Several methods for selecting prototypes have been 

proposed [63], [66], [75]. However, usually prototypes have been 

selected with the purpose of increasing predictive accuracy, rather 

than improving interpretability as suggested here. 

A second approach to improve the comprehensibility of nearest 

neighbor predictions involves computing attribute weights [71], 

where the weight of an attribute is proportional to its predictive 

power. This is a natural approach to try to improve predictive 

accuracy anyway, because an unweighted-attribute nearest 

neighbor algorithm uses the strong simplifying assumption that all 

attributes are equally relevant for predicting the class, which is 

unlikely to be the case in most applications. A set of attribute 

weights could be considered a comprehensible form of knowledge 

by itself, helping to identify the most relevant attributes. In 

addition, attribute weights can improve the comprehensibility of 

explanations for the classifications of test instances, as follows. 

When the user asks to see the attribute values in the nearest 

neighbors for a given test instance being classified (as an 

explanation for that classification), the system could show the 

attributes in decreasing order of weight (relevance). Hence, users 

could focus their attention on analyzing the neighbors’ attribute 

values for the most relevant attributes only. 

3.5 Interpreting Bayesian Network Classifiers 
Unlike the interpretation of decision trees, which contain a subset 

of relevant attributes, interpreting the model produced by Naïve 

Bayes requires the user to analyze the probabilities associated 

with all attributes. However, in some cases users might prefer to 

interpret the probabilities computed by Naïve Bayes for all 

attributes, rather than focusing on just the set of attributes in a 

decision tree. This can occur e.g. in medical applications [45], 

[46], [76]. To cite from [46]: “One of the main advantages of this 

[Naïve Bayes] approach, which is appealing to physicians, is that 

all the available information is used to explain the decision; such 

an explanation seems to be ‘natural’ for medical diagnosis and 

prognosis.” Note, however, that in these cases the medical 

doctors’ preference for the use of all original attributes seems 
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biased by the fact that the original attributes had been carefully 

selected by experts, which is not the case in many real-world data 

mining applications. 

Furthermore, in some applications users might prefer the natural 

probabilistic interpretation of naïve Bayes, rather than the 

Boolean logic-based nature of classifiers like decision trees, 

classification or decision tables. E.g., it has been argued that 

modeling probabilities is very important in clinical practice [5].  

However, Naïve Bayes makes the assumption that attributes are 

independent from each other given the class. This assumption 

reduces the number of conditional probabilities to be interpreted 

by the user, but it misses the opportunity of detecting interesting 

correlations among attributes. Although that assumption is usually 

unrealistic, it might be realistic in some cases where predictor 

attributes are created by medical doctors, who tend to “think 

linearly” and create independent attributes [45], [50]. 

More sophisticated types of Bayesian Network Classifiers (BNCs) 

do not have the Naïve Bayes’ strong assumption of attribute 

independence; they allow the modeling of attribute dependencies, 

represented by edges between attributes (nodes) in a network [27], 

[11]. There are two broad approaches to construct a BNC. In the 

class-constrained approach, the class attribute is given a special 

treatment, being inserted at the root of the network, with edges 

pointing from it to other nodes in the network. In the 

unconstrained approach, no special treatment is given to the class 

attribute, which can be inserted anywhere in the network.  

An example of a class-constrained BNC method is the Bayesian 

Network-Augmented Naïve Bayes (BAN) illustrated in Figure 2. 

In a BAN there are two types of edges: (a) an edge from class C to 

each predictor attribute Ai, i = 1,…,N (where N = number of 

predictor attributes) – these edges are also used by Naïve Bayes; 

and (b) edges representing dependencies among attributes – these 

edges are not used by Naïve Bayes. In order to avoid overfitting 

or to improve the simplicity of the model, a BAN-building 

algorithm often has a user-defined parameter K specifying the 

maximum number of parents for a node, not counting the class 

node (which is a parent of every other node). If K is set to 1 we 

have a Tree Augmented Naïve Bayes (TAN) [27].  

 

                                       Class                                                                                      

 

 

                       A1                    A2                               A3                                              

 

                      A4                              A5                           
                                                                                  

Figure 2: Bayesian network-Augmented Naïve Bayes (BAN) 
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Figure 3: General Bayesian Network (GBN), with the Class’ 

Markov blanket shown in boldface 

An example of the unconstrained approach for building a BNC is 

the General Bayesian Network (GBN) classifier, illustrated in 

Figure 3, where the class attribute has both incoming and 

outgoing edges. In order to classify test instances with a GBN, we 

only need to use the Markov blanket of the class node, which is 

the set of attributes which the class variable depends on [11], and 

consists of set of nodes that are parents, children or parents of the 

children of the class node in the GBN. In Figure 3 the set of nodes 

in the Markov blanket of the class node is shown in boldface.  

The comprehensibility of a BNC depends partially on its graphical 

model’s size, since a BNC with a very large number of edges 

would be difficult to interpret. This is particularly the case for 

BANs. In the case of GBNs, it is the size of the Markov blanket of 

the class node that matters for interpreting the model. The Markov 

blanket of a class node tends to be much smaller than a full BAN 

network. Actually, the Markov blanket of the class node can be 

considered a form of discovered knowledge by itself, analogous to 

the knowledge represented by a subset of relevant attributes 

selected by an attribute selection method.  

However, size by itself is not enough to evaluate the 

comprehensibility of a BNC. Even relatively small BNCs might 

be somewhat confusing to users, unless they have the proper 

training to interpret such classifiers. In particular, the use of 

directed edges to represent dependencies can be confusing to 

users, since users usually think of probabilistic dependencies as 

undirected (or “bidirectional”) dependencies. Note also that most 

statistical tests of attribute dependence are symmetric with respect 

to the attributes, i.e., for a given pair of attributes A, B and a 

dependence measure Dep, usually we have Dep(A,B) = Dep(B,A). 

Heckerman et al. [32] give an example of the situation where 

users get confused by unidirectional edges in Bayesian networks, 

based on their experience of showing Bayesian networks to users, 

as follows. Consider a Bayesian network where attributes gender 

and age are parents of the attribute income. Users understand that 

gender and age are predictors of income, but they also think that 

income is a predictor of gender and age and wonder why there are 

no edges pointing from income to those two attributes.  

To avoid this and other problems in the interpretation of Bayesian 

networks, Heckerman et al. [32] proposed the use of dependency 

networks, which represent bidirectional dependencies among 

attributes by using a cyclic directed graph (where a set of directed 

edges can form a cycle). The use of dependence networks in 

classification is relatively rare, and this type of model seems 

worth more attention and research than it has received so far. 

3.6 User-based Experiments Comparing the 

Comprehensibility of Different Types of 

Classification Model 
There have been few experiments directly comparing the 

subjective comprehensibility of different types of classification 

models to the user, as summarized next. 

In [35], an experiment measured the accuracy, response time and 

confidence with which a user answered questions about 

classification models expressed in different representations, 

namely: single-hit decision tables, binary decision trees, rule lists 

with univariate conditions and oblique rules (with multivariate 

conditions). The experiments involved only the credit scoring 

domain, and the models were induced only for the two-class 

problem of accepting or rejecting a credit application. The 
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experiment involved 51 non-expert users with no prior experience 

with any of the knowledge representations or credit scoring. Most 

users found decision tables the most comprehensible, easiest to 

use type of representation. This was attributed mainly to the 

physical conciseness of the decision table format, and also partly 

attributed to the fact that in each column of a decision table the 

attributes are considered in the same order [35]. The latter is in 

contrast with a decision tree, where different paths from the root 

to a leaf consist of attributes in different orders, which seems to 

slow down users when they had to do a fast search within the tree 

in order to answer classification questions. In addition, most users 

found oblique rules very difficult to use and the least 

comprehensible representation. Decision trees with oblique splits 

were also considered less comprehensible than decision trees with 

univariate splits in a bioinformatics problem [31]. 

In [1], 100 non-expert users were asked to compare the 

understandability of decision trees and rule lists induced from two 

small datasets from the UCI ML repository – namely, Contact 

Lenses and Labor. Decision trees were in general deemed by users 

to be more understandable than rule lists for both datasets.  

A different type of experiment, not directly related to data mining, 

compared decision trees and tables in the context of a computer 

game where users had to interpret trees and tables to make 

investment decisions that maximized their profit in the game [65]. 

Among a group of 67 non-expert users, decision trees were 

overall found to be more comprehensible than decision tables. 

The greater comprehensibility of decision trees was attributed to 

their ability in graphically revealing the patterns in the data and 

the ease with which users can follow a tree path until its leaf node. 

Such experiments comparing the users’ preferences for different 

types of knowledge representation are useful and should be done 

more often, but note that the results of such experiments are 

naturally biased by the background of the users [65], [35]. For 

instance, some users might be familiar with sophisticated 

mathematical equations and find them more comprehensible than 

graphical or linguistic models like decision trees or rules. E.g., in 

an application in the Earth Sciences [62], where users were 

familiar with differential equations, the authors suggested data 

mining should produce that kind of model, to facilitate users’ 

acceptance of the model.  

Overall, however, it is usually agreed that representations like 

decision trees, classification rules or decision tables tend to be 

more comprehensible to most users than mathematical equations 

(like linear combinations of attributes in oblique decision trees) 

and non-linear models like ANN or SVM [26], [49], [70]. 

4. INTERPRETING CLASSIFICATION 

MODELS: GENERIC ISSUES 

4.1 The Drawbacks of Model Size as the 

Single Measure of Comprehensibility 
In the vast majority of papers where the comprehensibility of a 

classification model is evaluated, that evaluation is done in an 

over-simplistic way, by measuring only the size of the model – 

e.g. the number of nodes in a decision tree, or the number of 

edges in a Bayesian network classifier. The assumption is that the 

smaller the model is, the more comprehensible it would be to the 

user. However, there are several problems with that assumption. 

First of all, the size of a model is just a syntactical aspect of that 

model; it does not capture any aspect of its semantics. Clearly, the 

comprehensibility of a model depends strongly (and subjectively) 

on the actual “contents” of the model, i.e. the attributes in the 

decision tree, the attribute-value conditions in classification rules, 

the parent attributes of each attribute in a Bayesian network 

classifier, etc.. It is quite possible that a larger decision tree be 

more comprehensible to the user than a short one, because the 

larger tree uses attributes which make more sense to the user.  

For example, in [46] medical experts preferred larger trees over 

shorter ones, because the shorter trees contained fewer 

informative attributes and described the patient too poorly for 

supporting the medical doctor’s decisions. In [1], in experiments 

with 100 non-expert users who subjectively evaluated the 

understandability of decision trees and rule lists induced from the 

UCI Labor dataset, in general the larger a model was, the more 

understandable it was considered by the users. This was attributed 

possibly to larger models providing more classification-relevant 

information to the user, and also to the fact that the small size of 

the Labor dataset did not lead to very large models. 

In addition, extreme simplicity is not acceptable for users. For 

instance, a trivial decision tree with a single leaf node predicting 

the most frequent class in the training set for all instances in the 

test set can hardly be accepted by users. Also, a model can be 

non-trivial and still be considered too simple to be accepted by 

users. An example of this point in the medical domain is given in 

[20], where the only internal node of the tree is the attribute 

Fever. Medical doctors cannot accept such an over-simplistic 

explanation. To cite from [20]: “Humans by nature are mentally 

opposed to too simplistic representations of complex relations.” 

Intuitively, the size of a model can have a significant effect on its 

comprehensibility, particularly when the model is “too large”, 

since in such case the user could not even have time to analyze the 

full model. One caveat, though, is that maybe the user could make 

time to analyze part of the model (e.g. a rule subset or a subtree of 

a decision tree) and still find that part comprehensible or useful. 

In addition, the definition of “too large” varies hugely among 

users. For instance, in [62] a rule induction system discovered 41 

rules, and that number was considered an “overwhelming” 

number of rules by the user. By contrast, in [68] apparently a user 

patiently analyzed a set of 29,050 rules – which led to the 

identification of a small subset of 220 (< 1%) interesting rules. 

Despite the difficulty in predefining a maximum model size that 

would allow a user’s interpretation of a model, some authors have 

suggested to impose strict user-defined size constraints on the 

classification model, in order to improve the model’s 

comprehensibility [62], [69]. For instance, in [62] it is suggested 

that “a useful feature for future machine learning algorithms 

would be the ability to directly specify the maximum number of 

rules in the model as a parameter to the learning algorithm”. 

Although this approach might be useful in some specific cases – 

when more sophisticated approaches would not be cost-effective – 

we would not recommend this approach in general, since it is not 

flexible and seems over-simplistic. We favor instead a more 

principled approach for coping with the accuracy-

comprehensibility trade-off, such as multi-objective optimization 

based on Pareto dominance [25], [38] or lexicographic 

optimization [25], [42]. 
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The assumption that smaller models are more comprehensible to 

users was also empirically tested in [35] in experiments with 51 

non-expert users. Overall, the users’ comprehensibility of induced 

models tended to increase with the models’ sizes, for different 

types of knowledge representation – namely: decision tables, 

decision trees and classification rules. Another work reports the 

results of experiments where two expert users (neurologists) 

subjectively evaluated many classification rules predicting 

whether a patient is normal or has early signs of dementia [53]. 

Although the results showed that there was some correlation 

between a rule’s size and its acceptance by users, that correlation 

was overall quite weak. A stronger correlation existed between the 

rule’s acceptance by users and the number of rule conditions that 

violate the user’s background knowledge: the smaller this number, 

the more likely the rule is to be accepted by users. Such violations 

of background knowledge will be discussed in Subsection 4.2. 

4.2 Incorporating Semantic Monotonicity 

Constraints in Classification Models 
Users are more like to trust and accept classification models when 

they are built by respecting monotonicity constraints provided by 

the users or experts in the application domain [49], [55], [70]. A 

monotonic relationship between a numerical predictor attribute 

and the class attribute occurs when increasing the value of the 

attribute tends to either monotonically increase or monotonically 

decrease the probability of an instance’s membership to a class. 

Monotonicity constraints seem to be quite common in real-world 

applications [6]. For instance, when predicting whether or not a 

customer will buy a product, the probability of class “buy = yes” 

tends to decrease monotonically with an increase in the product’s 

price [21]. Also, the probability of class “cancer = yes” is usually 

expected to increase monotonically with the patient’s age.   

When such monotonicity constraints are provided by the user or 

an expert, they can be incorporated in a classification algorithm in 

several different ways. Let us consider first the case of decision 

trees, where a tree is said to be “monotone” if it respects all the 

predefined monotonicity constraints, i.e. if the tree has no pair of 

leaves leading to a violation of some monotonicity constraints for 

some instances classified by those two leaves. 

In [6], the attribute selection criterion of a decision-tree algorithm 

was modified to consider a combination of entropy and a measure 

of the degree to which monotonicity constraints are respected. 

Strictly enforcing all monotonicity constraints during tree 

construction is difficult because monotonicity is a global property 

of a full tree [21]; whilst typical decision tree algorithms treat the 

selection of an attribute test for a given tree node as independent 

from the test selection in other tree paths. Hence, in [22] a 

standard (not necessarily monotone) tree is first built, and then the 

tree is pruned with a method that guarantees that the pruned tree is 

monotone. The monotone trees turned out to be slightly more 

accurate and much smaller than standard trees.  

Note that strictly enforcing all monotonicity constraints, as hard 

constraints, is not always desirable, since there is a trade-off 

between maximizing accuracy and respecting monotonicity 

constraints [6], [7]. Considering the monotonicity constraints as 

soft constraints, which may be violated if this increases the 

model’s accuracy, may be more suitable sometimes. In some 

cases, though, strictly enforcing monotonic constraints does not 

lead to loss of accuracy, and may even improve accuracy [47], [2]. 

So far we have discussed monotonic relationships for numerical 

attributes, but monotonic relationships may involve nominal 

attributes too. The latter case occurs when one or more of the 

attribute’s values either increases or decreases the probability of 

an instance belonging to a class. In an extreme case, a nominal 

value indicates membership in a given class at the exclusion of 

other classes. An example of this case is shown in the rule below 

[55], where the underlined conditions are counter-intuitive to the 

user, since the rule predicts that the patient is normal.  

IF the years of education of the patient is > 5  

AND the patient does not know the date 

AND the patient does not know the name of a nearby street 

THEN the patient is “normal” 

To avoid the discovery of such rules, in [55], if a nominal 

attribute takes a value that is indicative of membership in a given 

class at the exclusion of other classes, that attribute value is not 

considered when building a rule to predict those other classes. In 

the above example rule, “patient does not know the date” is 

indicative of membership in the class mentally impaired, and so it 

should not be used in a rule predicting class normal. 

In [2], monotonic constraints were considered only when learning 

the parameters of Bayesian networks, not when learning a network 

structure. Moreover, an algorithm for checking if decision tables 

violate monotonicity constraints is presented in [47]. In addition, 

in [18] the training data is first relabeled to make it monotone, and 

then a nearest-neighbor algorithm is modified to predict class 

labels in a way that respects the monotonicity constraints. 

So far we focused on monotonicity constrains provided by expert 

users, but those constraints can be automatically derived from the 

data – e.g., using the concept of globally predictive tests 

(conditions) [54]. A test Ti is globally predictive of a given class 

Cj iff P(Cj|Ti) > P(Cj) –  e.g., Ti = (age > 70), Cj = (cancer = yes). 

Rule induction algorithms often create rules with tests that are 

locally (not globally) predictive, in the local context of a rule. Ti is 

locally predictive of Cj in context Ctx iff P(Cj|Ti,Ctx) > P(Cj|Ctx), 

where Ctx is a Boolean combination of tests. Using such 

probabilities, computed from the data, two modified versions of a 

rule induction algorithm were proposed in [54]. One version is 

allowed to add, to a rule antecedent, only tests that are globally 

predictive of the class in the rule consequent – a hard constraint. 

The other version can add to a rule antecedent a test that is not 

globally predictive if it is significantly better than the best 

globally predictive test – a soft constraint. 

Automatically deriving monotonicity constraints from the data has 

the advantage of not requiring expert users, but the disadvantage 

of relying on the high quality of the data. It has been argued that, 

even when there are monotonic constraints in the application 

domain, real-world datasets usually have some non-monotonic 

noise, with purely monotonic datasets being rare [7]. For 

researchers who need benchmarking datasets for evaluating 

classification algorithms that respect monotonicity constraints, 

information on monotonic constraints for five UCI datasets is 

given in [2]. For a further discussion about how to incorporate 

monotonicity constraints in classification models, see [49].  

5. SUMMARY AND DISCUSSION 
Different knowledge representations have different pros and cons, 

in terms of their interpretability by users, and none of them can be 

considered the “most comprehensible” in all applications. The 
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choice of a knowledge representation should be made by taking 

into account the user’s background and subjective preferences, 

and characteristics of the target dataset.  

For instance, contrasting the interpretability of decision trees and 

classification rules, if the dataset contains many attributes having 

a single value that is relevant for class prediction, decision trees 

would have the drawback of including irrelevant values. This 

would mislead the user’s interpretation of the tree and may lead to 

overfitting. In such datasets, a rule-based model could be more 

suitable, since rule induction algorithms can select a single 

relevant attribute value, instead of selecting all values of an 

attribute. On the other hand, if the dataset contains many 

attributes where all of their values are relevant, a decision tree 

could represent those patterns more naturally than a rule set/list.  

We suggested that, when analyzing decision trees and rule sets or 

lists, a simple yet effective measure of the relevance of an 

attribute in those models would be the number of test instances 

whose classification used a value of that attribute. The 

interpretation of decision trees and rule sets or lists could also 

include an analysis of the exceptions (or counter-examples) 

associated with some rules – i.e., instances which satisfy a rule’s 

antecedent (or decision tree path from root to leaf) but do not 

have the class predicted by the rule. Such counter-example 

analyses could lead to more insight about the application domain. 

Concerning graphical models, although both Bayesian network 

classifiers and decision trees are graphical models, the correct 

interpretation of the former seems more difficult to users, 

although we are not aware of any experimental study comparing 

their interpretability by users. It has been pointed out that 

dependence networks may represent more comprehensible 

probabilistic graphical models than Bayesian network classifiers 

[32], since the former (unlike the latter) can represent cyclic 

dependences among attributes, which are often intuitive to users. 

The use of both dependence networks and the class attribute’s 

Markov blanket as types of comprehensible classification models 

seems relatively under-explored in the literature.  

Although nearest neighbor algorithms usually do not produce an 

explicit, abstract classification model, the attribute values of the 

found nearest neighbor(s) can sometimes be used to explain the 

classification of new instances. That explanation could be 

improved by showing attributes to users in decreasing order of 

relevance as computed by an attribute-weighting method, and 

perhaps using prototypes of training instances. 

Turning to evaluation issues, there have been few experiments 

where users subjectively evaluated the comprehensibility of 

classification models expressed in different types of knowledge 

representations. There is a need for more experiments, e.g. along 

two directions: including user evaluations of Bayesian network 

classifiers, since previous experiments have focused mainly on 

decision trees, classification rules and decision tables; and 

involving more users who are experts in the application domain –

previous experiments have used mainly students as “users”. 

We have also noted that the widely used assumption that smaller 

models are more comprehensible than larger models is 

problematic. First, in some studies users found larger models to be 

more comprehensible than smaller models [1], [35], [46], 

apparently because larger models provided more classification-

relevant information to users. Second, users are unlikely to accept 

models that are very simple when the underlying concept being 

learned by the algorithm is considered complex [20]. In addition, 

although a model that is “too large” can hardly be interpreted by a 

user, it might be possible for a user to focus on the analysis of an 

interesting subset of the model – e.g. a substree of the decision 

tree. Note also that it is very hard to define a priori which model 

size would be considered “too large” to be analyzed by a user. 

Hence, instead of specifying the maximum size of a classification 

model as a parameter of a classification algorithm, we prefer a 

more principled approach to cope with the accuracy-

comprehensibility trade-off, such as a multi-objective approach 

based on Pareto dominance or lexicographic optimization [25]. 

We also discussed the use of monotonicity constraints in 

classification models, to improve their comprehensibility and 

acceptance by users. Such constraints involve a semantic aspect of 

classification models, instead of just considering a syntactical 

aspect such as model size. Also, monotonicity constraints seem to 

have a good degree of generality: they seem to exist in many (but 

not all) real-world applications, and they can be incorporated in 

all the types of classification model representations discussed 

earlier – although each classification algorithm has to be adapted 

to consider monotonicity constraints in a specific way. 

Monotonicity constraints can be considered as hard constraints 

(which can never be violated during model induction) or soft 

constrains (which can be violated if this leads to significantly 

higher predictive accuracy), depending on the application domain 

and the user’s interests. Monotonicity constraints can be specified 

by an expert on the application domain or automatically extracted 

from (high-quality) data, depending on the application. More 

research is needed to determine to what extent an automated 

approach to extract semantic monotonicity constraints from data 

leads to improved classification models. 
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