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Abstract

In recent years, Support Vector Machines (SVMs) were successfully applied to

a wide range of applications. Their good performance is achieved by an implicit

non-linear transformation of the original problem to a high-dimensional (possibly

infinite) feature space in which a linear decision hyperplane is constructed that

yields a nonlinear classifier in the input space. However, since the classifier is

described as a complex mathematical function, it is rather incomprehensible for

humans. This opacity property prevents them from being used in many real-

life applications where both accuracy and comprehensibility are required, such as

medical diagnosis and credit risk evaluation. To overcome this limitation, rules

can be extracted from the trained SVM that are interpretable by humans and
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keep as much of the accuracy of the SVM as possible. In this paper, we will

provide an overview of the recently proposed rule extraction techniques for SVMs

and introduce two others taken from the artificial neural networks domain, being

Trepan and G-REX. The described techniques are compared using publicly avail-

able datasets, such as Ripley’s synthetic dataset and the multi-class iris dataset.

We will also look at medical diagnosis and credit scoring where comprehensibility

is a key requirement and even a regulatory recommendation. Our experiments

show that the SVM rule extraction techniques lose only a small percentage in

performance compared to SVMs and therefore rank at the top of comprehensible

classification techniques.

1 Introduction

Support Vector Machines are a state-of-the art data mining technique which have proven

their performance in many applications [8], such as credit scoring [2], financial time series

prediction [13], spam categorization [9] and brain tumor classification [17]. The strength

of this technique lies with its ability to model non-linearities, resulting in complex math-

ematical models. This advantage is also its main weakness: the models may provide a

high accuracy compared to other data mining techniques [2] but their comprehensibility

is limited. In some domains, such as credit scoring, this lack of comprehensibility is a

major drawback and causes a reluctance to use the model [10]. It goes even further:

when credit has been denied to a customer, the Equal Credit Opportunity Act of the

U.S. requires that the financial institution provides specific reasons why the application

was rejected; indefinite and vague reasons for denial are illegal. In the medical diag-

nostic field as well, clarity and explainability are key constraints. To be able to use the

extra accuracy of the SVM, which can result in lives saved or money gained, as well as

to obtain a usable, readable model, rules can be extracted from the complex, black-box

SVM models. These rules are interpretable by humans and keep as much of the accuracy

of the black box as possible.

Two approaches exist to extract rules: decompositional and pedagogical. The first

approach is closely intertwined with the internal structure of the SVM, while decom-
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positional techniques directly extract rules which relate the inputs and outputs of the

model. Although rule extraction for neural networks has been extensively researched

(a.o. [1, 3]), very little literature is available on SVM rule extractions. Because de-

compositional techniques typically use the trained model as an oracle to label training

examples, decompositional neural network rule extraction techniques lend themselves as

well to Support Vector Machines, which, unlike artificial neural networks, do not suffer

from local optima and the need of architectural design choices based on trial and error.

Other ways to simplify the complex SVM models exist, such as sensitivity analysis [16]

and inverse classification [18], but do not provide the same extent of explainability as

rule extraction techniques.

2 Support Vector Machines

Given a training set of N data points {(xi, yi)}N
i=1, with input data xi ∈ IRn and cor-

responding binary class labels yi ∈ {−1, +1}, the SVM classifier, according to Vapnik’s

original formulation satisfies the following conditions [8, 25]:







wT ϕ(xi) + b ≥ +1, if yi = +1

wT ϕ(xi) + b ≤ −1, if yi = −1
(1)

which is equivalent to

yi[w
T ϕ(xi) + b] ≥ 1, i = 1, ..., N. (2)

The non-linear function ϕ(·) maps the input space to a high (possibly infinite) dimen-

sional feature space. In this feature space, the above inequalities basically construct a

hyperplane wT ϕ(x) + b = 0 discriminating between both classes.

In primal weight space the classifier then takes the form

y(x) = sign[wT ϕ(x) + b], (3)

but, on the other hand, is never evaluated in this form. One defines the convex opti-
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Figure 1: Illustration of SVM optimization of the margin in the feature space.

mization problem:

min
w,b,ξ J (w, b, ξ) = 1

2
wTw + C

∑N

i=1 ξi (4)

subject to






yi[w
T ϕ(xi) + b] ≥ 1 − ξi, i = 1, ..., N

ξi ≥ 0, i = 1, ..., N.
(5)

The variables ξi are slack variables which are needed in order to allow misclassifications

in the set of inequalities (e.g. due to overlapping distributions). The first part of the

objective function tries to maximize the margin between both classes in the feature

space, whereas the second part minimizes the misclassification error. The positive real

constant C should be considered as a tuning parameter in the algorithm.

The Lagrangian to the constraint optimization problem (4) and (5) is given by

L(w, b, ξ; α,ν) = J (w, b, ξ) − ∑N

i=1 αi{yi[w
T ϕ(xi) + b] − 1 + ξi} −

∑N

i=1 νiξi (6)

The solution to the optimization problem is given by the saddle point of the La-

grangian, i.e. by minimizing L(w, b, ξ; α,ν) with respect to w, b, ξ and maximizing it

with respect to α and ν. This leads to the following classifier:

y(x) = sign[
∑N

i=1 αi yi K(xi,x) + b], (7)
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whereby K(xi,x) = ϕ(xi)
T ϕ(x) is taken with a positive definite kernel satisfying the

Mercer theorem. The Lagrange multipliers αi are then determined by means of the

following optimization problem (dual problem):

maxαi
−1

2

N
∑

i,j=1

yiyjK(xi,xj)αiαj +
N

∑

i=1

αi (8)

subject to














N
∑

i=1

αiyi = 0

0 ≤ αi ≤ C, i = 1, ..., N.

(9)

The entire classifier construction problem now simplifies to a convex quadratic pro-

gramming (QP) problem in αi. Note that one does not have to calculate w nor ϕ(xi) in

order to determine the decision surface. Thus, no explicit construction of the nonlinear

mapping ϕ(x) is needed. Instead, the kernel function K will be used. For the kernel

function K(·, ·) one typically has the following choices:

K(x,xi) = xT
i x, (linear kernel)

K(x,xi) = (1 + xT
i x/c)d, (polynomial kernel of degree d)

K(x,xi) = exp{−‖x − xi‖2
2/σ

2}, (RBF kernel)

K(x,xi) = tanh(κxT
i x + θ), (MLP kernel),

where d, c, σ, κ and θ are constants.

Typically, many of the αi will be equal to zero (sparseness property). The training

observations corresponding to non-zero αi are called support vectors and are located

close to the decision boundary.

As equation (7) shows, the SVM classifier is a complex, non-linear function. Trying

to comprehend the logics of the classifications made is quite difficult, if not impossible.
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3 Rule Extraction Techniques

Comprehensibility can be added to SVMs by extracting symbolic rules from the trained

model. Rule extraction techniques attempt to open up the SVM black box and generate

symbolic, comprehensible descriptions with approximately the same predictive power as

the model itself. An advantage of using SVMs as a starting point for rule extraction

is that the SVM considers the contribution of the inputs towards classification as a

group, while decision tree algorithms like C4.5 measure the individual contribution of

the inputs one at a time as the tree is grown.

Andrews, Diederich and Tickle [1] propose a classification scheme for neural network

rule extraction techniques that can easily be extended to SVMs, and is based on the

following criteria:

1. Translucency of the extraction algorithm with respect to the underlying neural

network;

2. Expressive power of the extracted rules or trees;

3. Specialized training regime of the neural network;

4. Quality of the extracted rules;

5. Algorithmic complexity of the extraction algorithm.

The translucency criterion considers the technique’s perception of the SVM. A decom-

positional approach is closely intertwined with the internal workings of the SVM and

its constructed hyperplane. On the other hand, a pedagogical algorithm considers the

trained model as a black box. Instead of looking at the internal structure, these algo-

rithms directly extract rules which relate the inputs and outputs of the SVM. These

techniques typically use the trained SVM model as an oracle to label or classify (ar-

tificially generated) training examples which are then used by a symbolic learning al-

gorithm. The idea behind these techniques is the assumption that the trained model

can better represent the data than the original dataset. That is, the data is cleaner,

free of apparent conflicts. Since the model is viewed as a black box, most pedagogical
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Figure 2: Pedagogical (a) and decomposional (b) rule extraction technique

algorithms lend themselves very easily to rule extraction from other machine learning

algorithms. This allows us to extrapolate rule extraction techniques from the neural

networks domain to our domain of interest, Support Vector Machines. The difference

between decompositional and pedagogical rule extraction techniques is schematicly il-

lustrated in Figure 2.

The expressive power of the extracted rules depends on the language used to express

the rules. Many types of rules have been suggested in the literature. The most relevant

rule types are propositional rules (simple If... Then... expressions) , M-of-N rules (If

at least M of N conditions (C1,C2,...,CN) Then ...) and fuzzy rules that allow

for more flexibility.

Table 1 provides an overview of SVM rule extraction techniques, and describes the

translucency and rule expressiveness.
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Technique Translucency Rule Expressiveness

SVM+Prototype Decompositional Propositional rules
Fung et al. Decompositional Propositional rules

C4.5 Pedagogical Decision tree
Trepan Pedagogical M-of-N rules

G-REX Pedagogical
Propositional rules

Fuzzy rules

Table 1: Characteristics of SVM Rule Extraction Techniques

We will evaluate the rule extraction techniques using three performance measures:

accuracy, fidelity and number of extracted rules. The accuracy measures the percentage

of correctly classified test points and provides a measure for the ability to make accurate

predictions on previously unseen cases. The fidelity determines the percentage of test

points where the classifier and the extracted rules agree on the class label and determines.

3.1 Decompositional Rule Extraction Techniques

3.1.1 SVM+Prototype

A decompositional method for extracting rules from SVMs has been introduced by

Nùñez et al. [19] and creates rule-defining regions based on prototype and support

vectors. Prototype vectors are generated using clustering and are the representatives

of the obtained clusters. Nùñez et al. use vector quantization for the clustering task.

Two types of rules can be generated: equation rules and interval rules, respectively

corresponding to an ellipsoid and interval region, which can be built in the following

manner. Using the prototype vector as centre, an ellipsoid is built where the axes

are determined by the support vector within the partition that lies the furthest from

the centre. The straight line connecting these two vectors defines the long axes of the

ellipsoid. Simple geometrics allow for the other axes to be determined. The interval

regions are defined from ellipsoids parallel to the coordinate axes.

An incremental approach is followed where first a single prototype and associated

ellipsoid is generated. A following partition test determines whether the region is trans-

formed into a rule (negative test) or whether new regions will be created (positive

partition test). This process is continued untill there are no regions with positive par-
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tition test or when a predefined number of iterations has passed. The partioning test

tries to keep the number of overlapping regions with different classes as low as possible.

The partioning test will succeed when either the generated prototype belongs to another

class, when one of the vertices belong to another class, or when a support vector with

different class exists within the region.

This approach may be intuitive and have good accuracy on small datasets, but it

does not scale well: with a high number of patterns come just as many rules resulting in

low comprehensibility. Also, the clustering will be negatively impacted by overlapping

dependent variables.

3.1.2 Fung et al.

Fung et al. extract non-overlapping rules by constructing hypercubes with axis-parallel

surfaces [11]. This approach is similar to the one discussed previously, but requires no

computationally expensive clustering. Instead, the algorithm transforms the problem to

a simpler, equivalent variant and constructs the hypercubes by solving linear programs

in 2n variables with n being the feature space dimension, reducing the required run time

to a time order of less than a second.

Each extracted rule represents a hypercube in the n-dimensional space with edges

parallel to the axis and is therefore of the form:

∧n
i=1 li ≤ xi < ui (10)

Each hypercube corresponding to an extracted rule has one vertex that lies on the

hyperplane, which simplifies the problem and allows generating disjoint rules. Given a

region I of equal class label, Fung et al. show the optimal rule can be defined in different

ways. The first one is by maximizing the volume of the axis-parallel hypercube, and

the second one is by maximizing the point coverage. Using the Volume Maximization

Criteria rules are generated corresponding to hypercubes with maximal volume. For the

Point Coverage Criteria, the cardinality of the generated hypercube is maximized.
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3.2 Pedagogical Rule Extraction Techniques

3.2.1 C4.5

A first pedagogical rule extraction technique is based on the popular C4.5 algorithm [22].

C4.5 induces decision trees based on information theoretic concepts. Let p1 (p0) be the

proportion of examples of class 1 (0) in sample S. The entropy of S is then calculated

as follows:

Entropy(S) = −p1 log2(p1) − p0 log2(p0), (11)

whereby p0 = 1 − p1. Entropy is used to measure how informative an attribute is in

splitting the data. Basically, the entropy measures the order (or disorder) in the data

with respect to the classes. It equals 1 when p1 = p0 = 0.5 (maximal disorder, minimal

order) and 0 (maximal order, minimal disorder) when p1 = 0 or p0 = 0. In the latter

case, all observations belong to the same class. Gain(S, xj) is defined as the expected

reduction in entropy due to sorting (splitting) on attribute xj:

Gain(S, xj) = Entropy(S) −
∑

v ∈ values(xj)

|Sv|
|S| Entropy(Sv), (12)

where values(xj) represents the set of all possible values of attribute xj, Sv the subset

of S where attribute xj has value v and |Sv| the number of observations in Sv. The

Gain criterion was used in ID3, the forerunner of C4.5, to decide upon which attribute

to split at a given node [21]. However, when this criterion is used to decide upon the

node splits, the algorithm favors splits on attributes with many distinct values. In order

to rectify this, C4.5 applies a normalization and uses the gainratio criterion which is

defined as follows:

Gainratio(S, xj) =
Gain(S, xj)

SplitInformation(S, xj)
with

SplitInformation(S, xj) = −
∑

k ∈ values(xj)

|Sk|
|S| log2

|Sk|
|S| .

(13)

The tree induction algorithm is applied to the data where the output has been changed
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to the SVM predicted value, so that the tree approximates the SVM. This approach has

been used in [4] to extract rules from SVMs. A problem that arises however is that the

deeper a tree is expanded, the less data points are available to use to decide upon the

splits. The next technique we will discuss tries to overcome this issue.

3.2.2 Trepan

Trepan was first introduced in [6, 7]. It is originally conceived as a pedagogical tree ex-

traction algorithm extracting decision trees from trained neural networks with arbitrary

architecture. Trepan grows a tree by recursive partitioning, using a best-first expansion

strategy. Trepan allows splits with at least M-of-N type of tests. At each step, a queue

of leaves is further expanded into sub-trees until a stopping criterion is met. In order to

mimic the behavior of the generated black-box model Trepan first relabels the training

observations according to the classifications made by the model. The relabelled training

dataset is then used to initiate the tree growing process.

To deal with the problem of having fewer and fewer training observations available for

deciding upon the splits or leaf node class labels at lower levels of the tree, Trepan can

enrich the training data with additional training instances which are then also labelled

(classified) by the model itself. The black box model (be it a neural network, a support

vector machine or any other classification model) is thus used as an oracle to answer

class membership queries about artificially generated data points. This way, it can be

assured that each node split or leave node class decision is based upon at least Smin

data points where Smin is a user defined parameter. In other words, if a node has

only m training data points available and m < Smin, then Smin − m data points are

additionally generated and labelled by the network. This process is often referred to as

active learning.

These extra data points are generated taking into account the distribution of the data

and the constraints from the root of the tree to the node under consideration. More

specifically, at each node of the tree, Trepan estimates the marginal distribution of each

input. For a discrete valued input, Trepan simply uses the empirical frequencies of the

various values whereas for a continuous input x, a kernel density estimation method is
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used to model the probability distribution f(x) as follows [24]:

f(x) =
1

m

m
∑

j

[
1√
2π

exp−(
x−µj

2σ
)2 ], (14)

whereby m is the number of training examples used in the estimate, µj is the value of

the input for the jth example, and σ is the width of the Gaussian kernel. Trepan sets σ

to 1√
m

.

Trepan has been mainly used to generate rules from neural networks. In this paper we

propose to use an SVM model as an oracle to label data points. A MATLAB toolbox to

generate rules using any black box model as oracle has been implemented [5] and made

publicly available.

3.2.3 G-REX

A technique recently suggested, named G-REX (Genetic Rule EXtraction) [15], is a ped-

agogical method to extract rules from artificial neural networks with the use of genetic

programming, which is based on Darwin’s principle of ‘survival of the fittest’. Each

individual in the population represents a rule, which can be a boolean rule, a decision

tree or even a fuzzy rule. All requirements on comprehensibility, fidelity and accuracy

are declared in the fitness function. The selection operator chooses an individual that is

allowed to reproduce with a probability that is proportional to its fitness; this operator

is known as roulette wheel selection. The reproduction phase encompasses crossover

and mutation. After a number of generations the most fit program, according to the

defined fitness function, is chosen as the extracted rule.

As for C4.5 and Trepan, the trained black-box model is mimiced by relabeling training

data according to its predictions. An alike extension from artificial neural networks to

support vector machines presents itself.
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4 Experiments

4.1 Experimental Setup

To evaluate and compare the rule extraction techniques described previously, we applied

them to a number of datasets. Tests were done on Ripley’s synthetic dataset [23] which

has two variables and thus allows for visualization of the model and extracted rules. We

also tested on the commonly used iris dataset, the breast cancer and australian credit

scoring dataset from the UCI data repository [14], and a real-life bankruptcy dataset, all

from domains where comprehensibility is a major requirement. We also included C4.5

(on the actual data) and logistic regression (logit) to benchmark the resulting rules with

traditionally used classification techniques.

To get a fair view of the performances, we conducted 20 runs for each dataset, using

the following setup each time. First we randomly shuffled the data, and a training and

test set was chosen in a 2-1 ratio. Next, the SVM model with RBF kernel was trained,

where grid-search was used to determine the σ and γ hyperparameters. Rules were

extracted with Trepan, which uses the actual training data and the trained SVM model

as an oracle. C4.5 was trained on the modified training set, that is the training set

with class labels changed to the SVM predicted labels. Similarly G-REX was run on

the modified dataset. The actual and modified test sets were then used to determine

respectively the accuracy and fidelity of the generated rules.

4.2 Credit Scoring

Two credit scoring datasets are included in our experiments. The first one is the Aus-

tralian credit approval dataset, which concerns credit card applications and is retrieved

from [14]. For confidentiality reasons, all attribute names and values have been changed

to meaningless symbols.

The second credit scoring datset consists of bankruptcy data of firms with middle-

market capitalization (mid-cap firms) in the Benelux countries (Belgium, The Nether-

lands, Luxembourg) [12], and is obtained from a major Benelux financial institution.

Firms in the mid-cap segment are defined as follows: they are not stocklisted, the book
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Figure 3: Trepan tree scoring Belgian and Dutch corperations.

value of their total assets exceeds 10 million euro, and they generate a turnover that is

smaller than 0.25 billion euro. A trepan tree for this Bene-C dataset with accuracy of

87.9% and fidelity of 90.5% is shown in Figure 3.
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4.3 Ripley
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Figure 4: (a) SVM and (b) logit prediction values on Ripley’s dataset. Setting the
cut-off at respectively 0 and 0.5 results in the two-dimensional (c) SVM(–) and logit(·)
classifiers. Also shown are the Trepan rules (–), with (d) the accompanying Trepan tree.

Ripley’s dataset has two variables and two classes, where the classes are drawn from

two normal distributions with a high degree of overlap. Since as many datapoints can

be taken as wanted, we deviated from our 2-1 ratio for training and test set, and used

a training set of size 250 and a test set of 1000 data points.

Figure 4 shows the prediction values of both the SVM (accuracy 91.4%) and logit

(accuracy 88.6%) classifiers, together with the generated Trepan tree (accuracy 90.2%

and fidelity 97.6%). Note that the splits in the Trepan tree are all of the form 1 of

condition and are simply shown as condition.
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4.4 Iris

The iris dataset is a commonly used dataset in the pattern recognition literature and

contains 3 classes of 50 instances each, where each class refers to a type of iris plant.

The following rule, with an accuracy of 96.0% and fidelity of 94.0%, was extracted

by G-REX:

if (petal width ≤ 1.6) then

if (petal length ≤ 2.6) then Setosa

else Versicolour

else Virginica

A generated Trepan tree with an accuracy of 98%, A4 being the petal width is shown

in Figure 5.

Y es

Y es

No

No
1 of {A4 ≤ 0.75}

1 of {A4 ≤ 1.75}

setosa

versicolor virginica

Figure 5: Trepan tree classifying iris plants.

4.5 Medical Diagnostic

For the Wisconsin Diagnostic Breast Cancer dataset, the task consists of classifying

breast masses as being either benign or malignant. For this, nine attributes of a sample

are listed that are deemed relevant. Our experiments show a very good performance

achieved by SVM (average accuracy of 96.3%); but their lack of clarity makes them

useless for doctors who need to make the diagnosis. The extracted rules on the other

hand, provide very comprehensible guidelines while keeping a high performance.
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For the technique proposed by Fung et al., the generated rule [11] is:

if (Cell Size≤3) & (Bare Nuclei≤1) & (Normal Nucleoli≤7)

then benign

and has an accuracy of 95.2%. SVM+Prototype has also been applied to the Wisconsin

Diagnostic Breast Cancer datasets [20]. The equation rules have an accuracy and fidelity

of respectively 96.6% and 98.5% .

4.6 Results

Table 2 summarizes the properties of the datasets and results of our experiments. For

each dataset, the number of instances (inst), continuous (co) and categorical (ca) at-

tributes, as well as the accuracy, fidelity (if applicable) and number of generated rules

are displayed. The best performances are in boldface, the ones with no significant dif-

ference at the 5% level from the top with respect to a paired t-test are in italic, and

the others in normal script. Furthermore, to easily see the rule extraction technique

with the highest accuracy for each dataset, we additionally underlined this performance

measure. Note that the performance measures for SVM+Prototype and the technique

by Fung et al. come from published papers and not our own experiments. Therefore we

only list them and do not use them in our comparison.

Ripley Iris BCW Austr Bene-C

inst co ca inst co ca inst co ca inst co ca inst co ca
1250 2 0 150 4 0 699 0 9 690 6 8 844 40 0

Technique Acc Fid #R Acc Fid #R Acc Fid #R Acc Fid #R Acc Fid #R

logit 88.0 96.4 96.1 85.7 87.0
C4.5 88.0 5.2 94.5 3.4 94.6 9 84.2 5.6 80.2
SVM 90.3 97.0 96.3 85.7 96.5

Trepan 89.5 97.5 7.3 96.2 97.0 6.7 95.0 97.2 5.4 85.1 99.0 2.6 82.0 84.3 6.1
C4.5 89.1 96.5 5.7 95.1 96.8 4.3 94.4 96.4 5.2 85.1 98.8 2.9 80.2 84.4 16.6

G-REX 89.0 95.8 2.4 94.8 97.2 4.0 95.1 97.0 2.2 71.5 71.5 4.1 83.6 85.1 4.0
SVM+Pr 96.0 98.0 7 96.3 98.2 5.1

Fung et al. 95.2 2

Table 2: Average out-of-sample performance for rule extractions from SVMs

Trepan obtained the best average performance in our experiments. It consistenly

performed better than C4.5 with comparable comprehensibility but was more computa-

tionally demanding to reach these results. Since G-REX allows for the comprehensibility

requirements to be included in the fitness function, it was overall able to extract very
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compact rules with no significant performance degradation. It can be observed that the

SVM classifiers performed best on all datasets. The rules extracted from these SVM

models have an accuracy that is comparable or better than the included traditional

classification techniques with a comprehensibility that even surpasses them.

5 Conclusion

Rule extraction techniques generate classification models that have clear advantages.

First of all, they are comprehensible and therefore easy to incorporate in real-life ap-

plications where clarity of the classifications made is needed. Secondly, the extracted

rules only lose a small percentage in accuracy of the black box model from which they

are generated. Since Support Vector Machines are among the best performing classi-

fiers, rules extracted from SVMs achieve an accuracy that often surpasses that of the

classical methods, such as C4.5 and logit. Using the SVM model instead of the orig-

inal data points eliminates the apparent conflicts and creates a cleaner dataset. In

our experiments, the rules generated by C4.5 on the data with labels predicted by the

SVM even outperform the C4.5 rules that result from the dataset with the actual class

labels. These advantages make it appropriate to consider SVMs and their extracted

rules for applications where both accuracy and comprehensibility are required. One no

longer needs to settle for the traditional comprehensible, yet less accurate classification

methods.

Acknowledgment

We would like to thank the Flemish Research Council (FWO, Grant G.0615.05) for

financial support to David Martens.

References

[1] Robert Andrews, Joachim Diederich, and Alan B. Tickle. Survey and critique of

techniques for extracting rules from trained artificial neural networks. Knowledge-

18



Based Systems, 8(6):373–389, 1995.

[2] B. Baesens, T. Van Gestel, S. Viaene, M. Stepanova, J. Suykens, and J. Vanthienen.

Benchmarking state-of-the-art classification algorithms for credit scoring. Journal

of the Operational Research Society, 54(6):627–635, 2003.

[3] B. Baesens, R. Setiono, C. Mues, and J. Vanthienen. Using neural network rule

extraction and decision tables for credit-risk evaluation. Management Science,

49(3):312–329, 2003.

[4] N. Barakat and J. Diederich. Learning-based rule-extraction from support vector

machines. In 14th International Conference on Computer Theory and Applications

ICCTA 2004 Proceedings, Alexandria, Egypt, 2004.

[5] A. Browne, B. Hudson, D. Whitley, and P. Picton. Biological data mining with

neural networks: Implementation & application of a flexible decision tree extraction

algorithm to genomic problem domains. Neurocomputing, 57:275–293, 2004.

[6] M. W. Craven. Extracting comprehensible models from trained neural networks.

PhD thesis, University of Winsconsin-Madison, 1996. Supervisor-J. W. Shavlik.

[7] M.W. Craven and J.W. Shavlik. Extracting tree-structured representations of

trained neural networks. Advances in Neural Information Processing Systems, 8:24–

30, 1996.

[8] N. Cristianini and J. Shawe-Taylor. An introduction to Support Vector Machines

and Other Kernel-Based Learning Methods. Cambridge University Press, New York,

NY, USA, 2000.

[9] H. Drucker, D. Wu, and V. Vapnik. Support vector machines for spam categoriza-

tion. IEEE-NN, 10(5):1048–1054, 1999.

[10] D.W. Dwyer, A.E. Kocagil, and R.M. Stein. Moody’s kmv riskcalc v3.1 model,

2004.

19



[11] G. Fung, S. Sandilya, and R. Bharat Rao. Rule extraction from linear support vector

machines. In KDD ’05: Proceeding of the eleventh ACM SIGKDD international

conference on Knowledge discovery in data mining, pages 32–40, New York, NY,

USA, 2005. ACM Press.

[12] T. Van Gestel, B. Baesens, J. Suykens, D. Van den Poel, D.-E. Baestaens, and

M. Willekens. Bayesian kernel based classification for financial distress detection.

European Journal of Operational Research, 2005. In Press.

[13] T. Van Gestel, J.A.K. Suykens, D.-E. Baestaens, A. Lambrechts, G. Lanckriet,

B. Vandaele, B. De Moor, and J. Vandewalle. Financial time series prediction

using least squares support vector machines with the evidence framework.

[14] S. Hettich and S. D. Bay. The uci kdd archive [http://kdd.ics.uci.edu], 1996.

[15] U. Johansson, R. König, and L. Niklasson. The truth is in there - rule extraction

from opaque models using genetic programming. In 17th International Florida AI

Research Symposium Conference FLAIRS Proceedings, 2004.

[16] J.T.Yao. Sensitivity analysis for data mining. In 22nd International Conference of

NAFIPS Proceedings, pages 272–277, 2003.

[17] C. Lu, T. Van Gestel, J.A.K. Suykens, S. Van Huffel, I. Vergote, and D. Timmer-

man. Preoperative prediction of malignancy of ovarium tumor using least squares

support vector machines. Artificial Intelligence in Medicine, 28(3):281–306, 1999.

[18] M.V. Mannino and M.V. Koushik. The cost-minimizing inverse classification prob-

lem: a genetic algorithm approach. Decision Support Systems, 29(3):283–300, 2000.
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