
BIG DATA & ANALYTICS IN NETWORKED BUSINESS

COMPREHENSIBLE PREDICTIVE MODELS FOR

 BUSINESS PROCESSES
1

Dominic Breuker

Hitfox Group GmbH, Rosa-Luxemburg-Str 2, 10178 Berlin, GERMANY {dominic.breuker@hitfoxgroup.com}

Martin Matzner

European Research Center for Information Systems (ERCIS), University of Muenster, Leonardo-Campus 3,

48149 Münster, GERMANY {martin.matzner@ercis.uni-muenster.de}

Patrick Delfmann

Institute for IS Research, University of Koblenz-Landau, Universitätsstraße 1,

56070 Koblenz, GERMANY {delfmann@uni-koblenz.de}

Jörg Becker

European Research Center for Information Systems (ERCIS), University of Muenster, Leonardo-Campus 3,

48149 Münster, GERMANY {joerg.becker@ercis.uni-muenster.de}

Predictive modeling approaches in business process management provide a way to streamline operational busi-

ness processes. For instance, they can warn decision makers about undesirable events that are likely to happen

in the future, giving the decision maker an opportunity to intervene. The topic is gaining momentum in process

mining, a field of research that has traditionally developed tools to discover business process models from data

sets of past process behavior. Predictive modeling techniques are built on top of process-discovery algorithms.

As these algorithms describe business process behavior using models of formal languages (e.g., Petri nets),

strong language biases are necessary in order to generate models with the limited amounts of data included

in the data set. Naturally, corresponding predictive modeling techniques reflect these biases. Based on theory

from grammatical inference, a field of research that is concerned with inducing language models, we design

a new predictive modeling technique based on weaker biases. Fitting a probabilistic model to a data set of past

behavior makes it possible to predict how currently running process instances will behave in the future. To

clarify how this technique works and to facilitate its adoption, we also design a way to visualize the proba-

bilistic models. We assess the effectiveness of the technique in an experimental evaluation with synthetic and

real-world data.
1

Keywords: Process mining, process discovery, business process intelligence, grammatical inference, predictive

modeling

1
Bart Baesens, Ravi Bapna, James R. Marsden, Jan Vanthienen, and J. Leon Zhao served as the senior editors for this paper.

The appendices for this paper are located in the “Online Supplements” section of the MIS Quarterly’s website (http://www.misq.org).

MIS Quarterly Vol. 40 No. 4, pp. 1009-1034/December 2016 1009

Breuker et al./Comprehensible Predictive Models for Business Processes

Introduction

Predictive analytics has evolved into one of the major topics

in research, high on many organizations’ agendas and con-

sidered a game-changer for the economy (Lund et al. 2013).

Researchers in various disciplines, including information

systems (IS), explore the opportunity of exploiting data in

new, innovative ways (Shmueli and Koppius 2011), so predic-

tive analytics is also gaining momentum in business process

management (BPM), an established field in IS research. Pro-

cess mining, which has emerged as an application area of data

analysis in the BPM context (Chen and Storey 2012), refers

to the development of tools and methods to generate insights

based on event data collected during the execution of a

business process (van der Aalst 2011).

Since work on process mining began in the mid-1990s, the

goal has been primarily to support retrospective analysis by,

for instance, constructing visual representations of business

processes from data or verifying that processes are executed

as intended (van der Aalst 2011). With the increasing popu-

larity of predictive analytics, interest has arisen in using

process mining to analyze not just the past but also the present

and the future to gain comprehensive insight into a process

(Grigori et al. 2004). Monitoring instances of business pro-

cesses (Janiesch et al. 2012) and predicting their future

behavior (Maggi et al. 2014) can enable managers to act

proactively in anticipation of events.

The main contribution of this paper is a predictive modeling

technique for business processes. Trained with event data

collected during the execution of business processes, the tech-

nique can be applied to real-time event data to reason proba-

bilistically how currently running process instances will

behave in the future. In particular, it allows likely future

behavior to be predicted. The technique facilitates a large

number of analytical uses of big data—that is, data sets that

traditional information technologies and computing ap-

proaches cannot perceive, acquire, manage, and process “in

a tolerable time” (Chen et al. 2014, p. 173)—including early

warning systems and anomaly detection (Chen and Storey

2012).

� Early warning systems: Decision makers could monitor

the likelihood of future negative events such that an alert

is triggered when the likelihood of the event’s occurring

reaches a particular threshold. For instance, early

warning systems could point managers to process

instances that are in danger of violating service-level

agreements, giving managers the opportunity to intervene

before the organization suffers negative consequences.

� Anomaly detection: Decision makers could monitor the

likelihood of currently running process instances to

identify such instances as fraudulent behavior or those

that require expert attention.

While we provide only a prototypical open source implemen-

tation, our technique is easily replicated. Thus, the elevated

capabilities offered by big data computing platforms and

technologies like Apache Hadoop are applicable to calculate

the needed probabilistic models in a timely manner, which

promotes the technique’s practical applicability.

Research Goal and Methodology

The main goal of our research is to develop a predictive

process modeling technique based on process mining and

grammatical inference that accurately predicts future

behavior of business processes and provides comprehensible

results.

Predictive Modeling Based on Process
Mining and Grammatical Inference

Predictive modeling is a novel topic of research in the area of

process mining, and only a few approaches have yet been

designed. The mainstream design principle for such systems

is to enhance a business process model (constructed with a

process-mining technique) with additional information (van

der Aalst 2013). However, we depart from established theory

and pursue a different approach that is based on the relation-

ship between process-mining techniques and grammatical-

inference techniques. Process-mining techniques build formal

models that describe a process as a set of all valid process

instances (van der Aalst 2011), so these techniques are similar

to traditional approaches in the field of grammatical inference.

These grammatical-inference techniques build formal models

that describe languages as sets of valid sentences (de la

Higuera 2005). Language models are foundational to many

modern technologies that deal with language, such as search

engines and machine translation systems, but to get where it

is now, grammatical inference had to depart from using

formal, logical models and base its contemporary applications

on probabilistic approaches that model a language as proba-

bility distributions over sentences instead of as a set of valid

sentences (Chater and Manning 2006). Such models do a

better job of accounting for the noisy data and uncertainty that

arise from limited amounts of data and they facilitate the use

of weak language biases, which are restrictions on the expres-

siveness of the language representable by the model, in

1010 MIS Quarterly Vol. 40 No. 4/December 2016

Breuker et al./Comprehensible Predictive Models for Business Processes

practical applications (Norvig 2011, p. 5). Therefore, we

explore the opportunities that arise from applying proba-

bilistic grammatical-inference techniques to BPM.

Comprehensibility

Another issue related to predictive modeling is comprehen-

sibility. In practical applications, predictive-modeling tech-

niques often suffer from incomprehensibility (Provost and

Fawcett 2013), as modern predictive models often rely on

estimates of millions of parameters. As a result, explanations

for the results are elusive, and managers can be reluctant to

use systems based on these techniques for decision support

(Provost and Fawcett 2013). The decision support systems

literature long ago identified the need for comprehensible

explanations (Lilien et al. 2004), as such explanations facili-

tate acceptance of decision-support software (Arnold et al.

2006; Kayande et al. 2009). Martens and Provost (2014)

develop a theoretical framework that emphasizes the impor-

tance of comprehensibility for three types of user roles,

stressing that managers must understand a predictive model

to have the confidence in the system necessary to using it.

Clients may also want explanations for decisions based on

predictive models that affect them. Developers of a decision

support system also benefit from understanding the inner

workings of a predictive model, as such understanding helps

them improve the performance of the system.

With a strong focus on improving how well business pro-

cesses are understood by constructing business process

models from data, process-mining techniques often provide

results that are naturally comprehensible, so their level of

adoption in practice is high (Turner et al. 2012). However,

because moving to a grammatical-inference technique based

on complex probabilistic models may hamper acceptance, our

design goal is to choose the probabilistic model for our

technique in a way that maintains comprehensibility. In par-

ticular, we adapt a technique from process mining that allows

us to construct business process models as abstractions of

fitted probabilistic models. Therefore, users who have little

or no technical expertise can inspect abstractions of the

probabilistic models using a visual notation that is native to

the domain of BPM.

Research Goals

In summary, the two goals of our design are accurate predic-

tion of business processes and comprehensibility.

� Accurate prediction of business processes: Design a

probabilistic technique that, after being trained on

historic data, can predict the future behavior of currently

running process instances.

� Comprehensibility: Design a visualization technique for

probabilistic models such that users who have little or no

deep technical knowledge can interpret and understand

the models.

Research Methodology

This research follows the design science paradigm, and the

structure of this paper is based on the design science publi-

cation schema that Gregor and Hevner (2013) propose. Our

primary purpose is to design a method for modeling business

process event data probabilistically, a method to which we

refer as the RegPFA artifact. The artifact consists of two

components: the RegPFA Predictor and the RegPFA Ana-

lyzer. We developed an instantiation of the artifact, which is

publicly available under a BSD license.

In line with Gregor and Hevner, this section defines the pur-

pose and scope of the RegPFA artifact and emphasizes its

practical relevance. We first provide justification for the

effort by discussing process mining (van der Aalst 2011),

which introduces the learning problem and the general setting,

and grammatical inference (de la Higuera 2010), which intro-

duces the methodological apparatus we use and lays the

foundation for defining a suitable probabilistic model. Then

we describe the artifact’s design, presenting the RegPFA

Predictor first by describing and justifying modifications to

the probabilistic model identified from the literature and

describing the technique we designed to fit it to event data,

followed by the RegPFA Analyzer, which transforms fitted

probabilistic models into business process models. Next, we

assess the effectiveness of both components experimentally.

Finally, we discuss our results and present our conclusions.

Research Background

Business Process Mining

According to van der Aalst (2013, p. 1), BPM “is the disci-

pline that combines knowledge from information technology

and knowledge from management sciences and applies this to

operational business processes.” BPM has traditionally

revolved around the notion of business process models, which

are abstract, visual representations of business processes that

are usually designed manually in interviews with process

experts. The abundance of data available today, which is the

primary motivation for the research discipline of process

MIS Quarterly Vol. 40 No. 4/December 2016 1011

Breuker et al./Comprehensible Predictive Models for Business Processes

mining, has driven calls for data-driven approaches to BPM

(van der Aalst 2011).

Van der Aalst (2013, p. 22) defines process mining as a

“discipline providing comprehensive sets of tools to provide

fact-based insights and to support process improvements.”

Using the results of a survey, van der Aalst (2013) observes

that process mining’s share of the BPM literature increased

from 0 to 31.4 percent from 2000 to 2011, which makes it the

most important key concern in BPM today.

Process mining starts with collecting sequential records of

events. Events are of exactly one type, which refers to

activities that have been performed, decisions that have been

made, or another occurrence of interest. Each event belongs

to a process instance and a point in time, so event sequences

can be formed for each instance (van der Aalst 2011). The

example in Figure 1 illustrates a simple loan application

process. The example, modeled in Petri net notation (Murata

1989), starts with reviewing the application, after which it is

either accepted or rejected. If it is accepted, credit is granted

to the applicant; if not, the applicant is notified accordingly.

The event log shown in Figure 1 could be created based on

data from the organization’s IT systems to document the

sequence of events for each case.

There are three classical types of process mining (van der

Aalst 2011): process discovery, conformance checking, and

enhancement. Process discovery refers to learning a process

model inductively from data. In the example in Figure 1,

process-discovery techniques like the α-algorithm (van der

Aalst et al. 2004) are applied to construct a Petri net using

only the information contained in an event log. Conformance

checking refers to comparing process models with data. If the

Petri net in Figure 1 was interpreted as a description of what

the process should be, comparing the event log to the process

model could indicate whether the process has been executed

correctly. Finally, enhancement refers to extending or

improving process models based on data. For instance, the

Petri net in Figure 1 could be annotated with frequencies that

indicate how often applications have been accepted or

rejected (e.g., 2/5 and 3/5).

Van der Aalst, Pesic, and Song (2010, p. 38) observe that

“process mining [analyzing historic data] is mainly used in an

offline fashion and not for operational decision support,” but

interest in analyzing real-time data from currently running

process instances has increased (Janiesch et al. 2012; van der

Aalst, Adriansyah et al. 2011). Techniques that predict how

long before running instances complete (van der Aalst,

Schonenberg, and Song 2011) or that recommend actions to

improve performance (Kim et al. 2014) have been developed.

These approaches use existing process models, possibly

annotated with further information, in combination with real-

time event data (van der Aalst 2013), so process-discovery

techniques are important components since they construct

these process models from historic event data. A discovered

process model that is combined with sequences of events

observed during the execution of process instances allows the

process’s current state to be characterized. Predictions of

likely outcomes of decisions made about a process instance

can be conditioned on the current state (van der Aalst 2013).

Thus, the extent to which the future course of a process

instance is predictable based on the events observed so far

depends largely on how the current state of a process instance

is characterized.

Many approaches to process mining that are designed to

predict behavior or recommend actions characterize the state

of the process according to the definitions used in the two-

step process-discovery algorithm van der Aalst, Rubin et al.

(2010) present. At each point in time, this algorithm con-

siders the last n events and interprets them as either a

sequence, a multi-set, or a set. Thus, a unique state of the

process is known at any time, and a corresponding automaton

can be built. Based on this (or similar) characterization of

states, it is possible to predict, for instance, a process

instance’s time of completion as the mean amount of time

remaining for the process when it is in a particular state (van

der Aalst. Schoenberg, and Song 2011) and to apply more

complex models, such as decision trees (Folino et al. 2012).

Other process-discovery algorithms can also be the foundation

for real-time analysis, such as Lakshmanan et al.’s (2015)

approach to predicting the type of the next event in a running

process instance, the first step of which is to apply a process-

discovery algorithm. Therefore, process-discovery algorithms

have an important role in predictive, real-time approaches, as

they characterize the state of the process.

The literature contains a significant number of process-

discovery techniques (for surveys, see de Weerdt et al. 2012;

Tiwari et al. 2008). First approaches, developed in the late

1990s (van der Aalst, van Dongen et al. 2003), were not

designed for processes with concurrent behavior, so the α-

algorithm, which constructs Petri nets that can express con-

current behavior in a compact way, was developed (van der

Aalst et al. 2004). Various extensions have been developed

to mitigate the problem of the α-algorithm’s ability to con-

struct only models with simple routing constructs. For

instance, the α+-algorithm (Li et al. 2007) supports various

kinds of loops, and the α++-algorithm (Wen et al. 2007)

learns dependencies between events that are not directly

related in the event log.

1012 MIS Quarterly Vol. 40 No. 4/December 2016

Breuker et al./Comprehensible Predictive Models for Business Processes

A

review

application

B

accept

C

reject

D

grant credit

E

send rejection

letter

Process

instance

Event

sequence

ABD
ACE
ABD
ACE
ACE

C1
C2
C3
C4
C5

Event log

Figure 1. Business Process in Petri Net Notation, Along with an Exemplary Event Log

Apart from supporting these complicated routing constructs,

process-discovery techniques face challenges related to the

quality of event logs, which challenges can be categorized

broadly into noise and incompleteness (van der Aalst 2011).

Noise refers to behavior that is in the data but that should not

be represented in a discovered process, while incompleteness

refers to event logs’ being only a finite sample of possible

process behaviors—a sample that is not necessarily represen-

tative and that may be missing important behavior.

Many process-discovery techniques, for instance the Heuris-

tics Miner (Weijters et al. 2006) and the AGNEs miner

(Goedertier et al. 2009), address noise by analyzing the

frequency of patterns of behavior. A pattern is used to deduce

the process model only if the pattern is found sufficiently

often. Incompleteness is more difficult to address. One pos-

sibility is to design discovery techniques that deduce as much

missing behavior as possible from the available data (van der

Aalst 2011). However, in a practical application this solution

still requires faith in the completeness of the event log. More-

over, too much deduction can easily produce over-generalized

models, a problem as severe as under-generalization. One

solution is to enable the user of a process-discovery technique

to manipulate the degree of generalization until a result is

produced with which the user is comfortable (van der Aalst,

Rubin et al. 2010). Another solution involves switching to a

different process representation, as most process-discovery

algorithms use Petri nets (or similar notations), which for-

mally specify the set of all acceptable event sequences for a

process. However, other discovery techniques include the

Fuzzy Miner (Günther and van der Aalst 2007), which does

not produce Petri nets but a visual representation of the

importance of individual types of events and the correlations

between them, and trace alignment (Bose and van der Aalst

2012), which clusters event sequences and visualizes repre-

sentatives for each cluster.

Only a few techniques consider probabilistic models of busi-

ness processes. Of the 26 discovery algorithms de Weerdt et

al. (2012) review, only four are tagged as probabilistic; three

of the four are more than a decade old (Cook and Wolf 1998;

Herbst and Karagiannis 2004), and the most recent technique

(Ferreira and Gillblad 2009) is designed to discover Markov

chain models from event logs for which the process instance

to which an event belongs is unknown.

Few probabilistic models of business processes build on

concepts that are similar to those we use. For instance, Blum

et al. (2008) use hidden Markov models (HMM) to mine a

surgery workflow from a log containing 10 process instances.

Jeong et al. (2010) also use HMMs to analyze students’

learning behavior. Weber et al. (2013) introduce a method

with which to mine process models with probabilistic finite

automata (PFA) applied to the α-algorithm. Our approach is

also based on PFA, but to avoid overfitting we introduce a

modification to the PFA that is based on Bayesian

regularization.

Probabilistic techniques are popular in many fields because of

their ability to handle noisy, possibly incomplete data. In

particular, probabilities play an important role in machine

learning and data-mining techniques (see Aggarwal and Yu

2009; Murphy 2012). A possible disadvantage of probabil-

istic techniques for process discovery is that they do not

directly deliver a formal, executable model such as a Petri net,

which may explain the low popularity of probabilistic tech-

niques. However, since our primary interest lies in designing

a predictive modeling technique for business processes based

on event data, probabilistic techniques could be suitable. (We

review them in the next section.) Our approach differs from

the practice of first discovering a model structure and subse-

quently annotating probabilistic information, as is prevalent

in the process-mining literature (van der Aalst 2013), as we

design a probabilistic technique to model a probability

distribution directly over the set of all conceivable event

sequences.

MIS Quarterly Vol. 40 No. 4/December 2016 1013

Breuker et al./Comprehensible Predictive Models for Business Processes

Grammatical Inference

Grammatical inference is a field of research that is concerned

with learning grammars from data. As de la Higuera (2005,

p. 1332) explains,

In a broad sense a learner has access to some data

which is sequential or structured (strings, words,

trees, terms or limited forms of graphs) and is asked

to return a grammar that should in some way explain

these data.

Grammatical inference research provides methodological

support for this abstract learning problem.

Models of grammars have traditionally been formal models of

languages as they are used in computer science—that is,

models that describe a set of strings that are part of a language

(de la Higuera 2010). These models can be either grammars,

which describe languages by means of recursive application

of production rules, or automata, which describe languages by

means of abstract machines that generate words (Hopcroft et

al. 2009). Using automata to describe sets of strings that

define languages is similar to process-mining approaches,

which learn models that describe sets of event sequences that

define processes.

When applied to real-world problems, these formal grammar

models are often unsatisfying (de la Higuera 2005), as noise

can render a learned model all but useless. For instance, as

soon as an unlikely exception is part of the log, the exception

will also be part of the model, while a usually likely event that

might not be part of the log will not. As the data typically

consists only of positive examples, deciding whether enough

data has been used to justify trusting the learned models is a

major challenge. Therefore, contemporary applications often

apply probabilistic versions of the formal models discussed

above (de la Higuera 2005), which had “a revolutionary

impact,” for instance, in computational linguistics (Chater and

Manning 2006, p. 337).

Probabilistic models do not define languages as sets of strings

but as distributions over strings (de la Higuera 2010).

Accordingly, learning probabilistic languages requires

approximating distributions rather than identifying sets of

strings. Learning a language represented as a set of strings

requires a strong language bias, as using a finite amount of

data to select one of the infinite sets of strings that are

consistent with the data is possible only if strong assumptions

rule out most of the sets. However, considering an infinite set

of models is not problematic in learning a probabilistic

language, as the most likely explanation for the data can be

chosen regardless of the number of explanatory candidates.

Thus, a probabilistic setting also overcomes the problems

associated with assumptions in classical techniques (Nowak

et al. 2002).

Grammatical inference and process mining have substantial

similarities. In particular, an event log consists of several

sequences of process events, and each sequence can be inter-

preted as a word of a grammar that prescribes the kinds of

sequences we can build in principle. In the case of business

processes, that grammar is the process model: it prescribes

which sequences of events are possible. Hence, applying

grammatical inference to event logs requires learning the

language of the event logs, which means learning the process

model. Hence, grammatical inference techniques can be

applied to event logs to create a model that describes the cor-

responding business process, as the central learning problems

of both fields are similar. BPM scholars recognize the

challenges that motivate the use of probabilistic models in

grammatical inference, yet probabilistic models are rarely

used in BPM. This observation motivates an exploration of

grammatical inference as a theoretical basis for the analysis of

business process event data.

The most important probabilistic models in grammatical

inference are the hidden Markov model (HMM) and the

probabilistic finite automaton (PFA) (Verwer et al. 2014),

both of which are particular kinds of Bayesian networks.

These models are defined formally in Figure 2 and are illus-

trated in directed graphical models notation, which are visual

representations of probabilistic models (Koller and Friedman

2009). In graphical models, circles correspond to random

variables and are shaded gray if observational data is avail-

able. Directed arcs describe the dependencies among vari-

ables. Model parameters take the form of black dots, which

dashed lines connect to the variables whose distributions they

define. Boxes (so-called plates) surround the parts of a

probabilistic model that are repeated.

The left side of Figure 2 illustrates the HMM (Rabiner 1989),

whose initial state, Z0, depends on no other variables and

whose value is chosen randomly from a categorical distribu-

tion parameterized by the probability vector π. All other state

variables Z1, Z2, … depend on the preceding state variables,

and their values are chosen randomly from a categorical dis-

tribution parameterized by probability vectors a'k. The events

observed during process execution depend only on the

HMM’s current state and are chosen randomly from cate-

gorical distributions parameterized by probability vectors bk.

Similarities between business processes and the HMM’s

structure against the backdrop of the BPM domain are evi-

dent. In business process modeling notations like Petri nets,

processes are conceptualized as systems with an underlying

1014 MIS Quarterly Vol. 40 No. 4/December 2016

Breuker et al./Comprehensible Predictive Models for Business Processes

P(Z0) ~ Categorical (π0, …, πK)

P(Xt|Zt = k) ~ Categorical (bk0, …, bkE)

P(Zt|Zt-1 = k) ~ Categorical (a'k0, …, a'kK)

P(Z0) ~ Categorical (π0, …, πK)

P(Xt|Zt = k) ~ Categorical (bk0, …, bkE)

P(Zt|Zt-1 = k, Xt-1 = e) ~ Categorical (a'ke0, …, a'keK)

Figure 2. Comparison of Probabilistic Models: HMM (left) and PFA (right)

state that depends on a process instance’s past behavior (van

der Aalst 1998) and that is sufficient to describe which events

could be observed next. For instance, knowing which places

of a Petri net currently have tokens allows one to determine

which transitions are enabled. Analogously, the HMM’s

probabilities can describe the likelihood that a given event

will be observed, depending on the state.

However, contrasting the HMM and BPM also reveals

differences. In the HMM, the state transition probabilities

depend only on the previous state; the event observed at time

t – 1 has no impact on the distribution of Zt. In BPM, this

model structure is counterintuitive, as we expect that the next

state depends on the observed event. Consider again the

example of Petri nets: given a current state, the state after

firing one of the enabled transitions usually depends on the

transition that is fired. These considerations suggest using a

PFA (Vidal et al. 2005) instead of an HMM. The right side

of Figure 2 illustrates the structure of the PFA model, which

is similar to HMM but also considers events as influence

factors.

The PFA’s initial state, Z0, depends on no other variables as

its value is chosen randomly from a categorical distribution

parameterized by the probability vector π. All other state

variables Z1, Z2, … depend on the preceding state variables

and on the events observed during process execution X0, X1,

…. The values of the state variables are chosen randomly

from a categorical distribution parameterized by probability

vectors a'ke, considering both the preceding state and the

preceding observed event. The events observed during pro-

cess execution again depend only on the current state of the

PFA and are chosen randomly from categorical distributions

parameterized by probability vectors bk. As this model struc-

ture resonates well with the conceptualizations of business

processes, we use it as a starting point in defining our

probabilistic model.

In order to apply grammatical inference, we need a suitable

probabilistic model but also a technique with which to fit it to

data. The available techniques can be categorized broadly

into three classes (Verwer et al. 2014): state merging,

parameter estimation, and Bayesian inference.

� State merging: Algorithms in this class start with an

automaton that initially consists of a large number of

states. Then the algorithms iteratively merge states,

reducing the complexity of the automaton. The proce-

dure stops when no pair of states is worth merging any-

more. Various algorithms apply various merging criteria,

such as those that are based on Hoeffding bounds (Car-

rasco and Oncina 1994), posterior probability (Stolcke

1994), or distribution similarity (Ron et al. 1998).

� Parameter estimation: Unlike state-merging algorithms,

parameter estimation techniques do not learn a model’s

states and how they are connected but start with a stan-

dard structure and estimate parameters by applying the

maximum likelihood (ML) principle. The most popular

example of the standard structure, usually an automaton

with a given number of states and all possible transitions,

is the Baum-Welch algorithm, which is a special case of

the more general expectation maximization (EM) algo-

rithm (Dempster et al. 1977) used for HMM learning

(Baum et al. 1970).

� Bayesian inference: Unlike state merging and parameter

estimation, Bayesian inference techniques do not learn a

single model but average all possible models. A popular

technique of this kind is Gibbs sampling, which generates

MIS Quarterly Vol. 40 No. 4/December 2016 1015

Breuker et al./Comprehensible Predictive Models for Business Processes

a large number of samples from the posterior distribution,

each of which can be used for prediction. The final

prediction is computed as an average (Gao and Johnson

2008).

Since a design goal of our approach is that all probabilistic

models be visually interpretable and understandable without

the need for technical knowledge, Bayesian inference tech-

niques, which do not generate a single PFA estimate so their

results are not visualizable, are not suitable for our artifact.

Therefore, state merging and parameter estimation techniques

are left as possible candidates. Recently a grammatical infer-

ence challenge was offered in which state-of-the-art PFA and

HMM learning techniques were evaluated in a grammatical-

inference context based on a large number of data sets

(Verwer et al. 2014). We acknowledge that process-mining

specifics (especially concurrency) may limit the expressive-

ness of Verwer et al.’s study for our problem. However, the

authors indicate opportunities to identify promising tech-

niques and, leaving out Bayesian inference techniques,

Hulden’s (2012) solution, which implements an EM algorithm

for PFAs, performed best. That the state-merging techniques

performed worse than the EM approach suggests that they

should be discarded, so the results of the challenge suggest

using an EM parameter estimation algorithm for our purposes.

Artifact Design

Before introducing the design of the RegPFA artifact in detail,

we present an overview of the components and their interplay.

The RegPFA Predictor provides the predictive modeling

functionality, while the RegPFA Analyzer provides visualiza-

tion and analysis. The artifact is illustrated in Figure 3 using

a simplified Standardized Technical Architecture Modeling

Component Diagram (SAP 2007).

In the RegPFA Predictor the workflow starts with the applica-

tion of a learning algorithm to an event log. The learning

algorithm delivers a probabilistic model fitted to the event

data that (one hopes) reflects the dynamics of the underlying

business process. When this probabilistic model is applied to

the real-time event data of currently running process

instances, predictions about how these instances will behave

in the future can be evaluated probabilistically.

The other component, the RegPFA Analyzer, can be used

only after the learning algorithm has produced a probabilistic

model fitted to an event log. Using the probabilistic model as

input, a transformation component generates a visualization

that humans can understand. Using process modeling nota-

tions (Petri nets and automata) for the visualization ensures

that domain experts who do not have technical knowledge

about predictive modeling can understand the visualization,

inspect predictive models, and decide whether the model’s

structure reflects or contradicts the experts’ domain knowl-

edge.

Design of the RegPFA Predictor

Probabilistic Model

We identified the PFA as the starting point for the RegPFA

Predictor. This section introduces modifications with which

to tailor the RegPFA Predictor to BPM—that is, structural

constraints we impose in order to produce well-structured

process models when fitting PFAs to event logs. These con-

straints are inspired by the definition of workflow nets, which

have designated start and end points (the source and the sink)

(van der Aalst 1998). Analogously, we define a special

starting state by keeping π fixed at a value that allows the

process to start only in that state. In the same way, we also

define a special ending state at which only a designated

termination event (kill) can be emitted and where the process

is forced to stay in that state. Kill is an event that occurs only

in the ending state and that must be appended to each process

instance in an event log to indicate termination. All states

other than the ending state have zero probability of generating

kill. The left part of Figure 4 illustrates these structural as-

sumptions, which can be implemented by keeping the corre-

sponding parameters fixed at suitable values during parameter

optimization.

Our discussion of grammatical inference also determined that

parameter estimation is the family of techniques that is most

suitable for our design endeavor. In particular, we identified

an EM-based technique, an ML estimator, but a problem with

ML is that it can easily produce overfitted estimations if data

sets are too small (Hastie et al. 2009). Overfitting can be a

severe problem for process data, so process miners consider

incomplete data one of the major challenges in their discipline

(van der Aalst, Adriansyah et al. 2011). We address this

problem by introducing a modification to the PFA that is

based on Bayesian regularization (Steck and Jaakkola 2002).

This technique is best illustrated with the example of flipping

a coin (see Figure 4, right). The goal is to estimate p, the

probability of the coin’s coming up heads. In the first scen-

ario illustrated in Figure 4, heads is observed only once, and

in the second scenario heads is observed 100 times with no

tails observations. Maximum likelihood estimation delivers

p in both scenarios, which appears to be good for the second

scenario, while the first estimate appears to overfit a single

observation. The first estimate contradicts the subjective

belief that extreme probabilities close to one are unlikely.

1016 MIS Quarterly Vol. 40 No. 4/December 2016

Breuker et al./Comprehensible Predictive Models for Business Processes

start

end

1.0

1.0

kill
1.0

...

1

0
H T

1

0
H T

1

0
H T

1

0
H T

1x Heads 100x Heads

M
L

e
s
t
im

a
t
e

M
A

P

e
s
ti

m
a

te

Figure 3. Overview of the RegPFA Artifact

Figure 4. Illustrations of the Modified Structure (left) and Parameter Estimation (right)

One remedy to this problem is to move to a Bayesian

framework, which can account for the belief that extreme

probabilities are unlikely. In a Bayesian framework, p is not

treated as a parameter but as an uncertain quantity in the same

way that the numbers of heads and tails are uncertain; that is,

p is treated as a random variable with a distribution called a

prior, and its parameters are the hyperparameters of a

probabilistic model. If a beta distribution (the conjugate prior

to the binomial distribution (Barber 2011)) is used in the coin-

flipping example, its two parameters will express the belief

that p will have a particular value (e.g., 0.5) and they will

express the strength of this belief in terms of pseudo-

observations. For instance, if p is expected to be 0.5 and the

strength of this expectation is set to two observations, one

empirical observation of heads will be stacked upon this prior

belief in scenario 1, which will deliver . Ap = =+
+

1 1
2 1

2
3

hundred empirical observations will deliver ,p = =+
+

1 100
2 100

101
102

which is close to the ML estimate. In summary, Bayesian

priors can be used to create estimators that deliver smooth

estimates on small data sets and converge against ML with

increasing amounts of data (Steck and Jaakkola 2002). This

regularized approach to parameter estimation, called

maximum a posterior (MAP) estimation, can be done in

simple examples like coin-flipping, as well as in more

complicated probabilistic models with many random and

hidden variables.

To apply Bayesian regularization to the PFA, we redesign the

model such that all parameters A, B, and θ are treated as

random variables. We use Dirichlet distributions—defined by

a parameter vector ρ, state-dependent parameter vectors sk,

and state- and event-dependent parameter vectors rke—since

they are conjugate to categorical distributions (Barber 2011).

Figure 5 exhibits the final model, which we call the RegPFA.

Hyperparameters of Dirichlet distributions can be interpreted

as pseudo-observations (Steck and Jaakkola 2002). For in-

MIS Quarterly Vol. 40 No. 4/December 2016 1017

Breuker et al./Comprehensible Predictive Models for Business Processes

()()pc s r K E Kk ke kejj

K

e

E

k

K
= − + +

=== ρ 1 1
111

P(Z0) ~

P(Xt|Zt = k) ~

P(Zt|Zt-1 = k, Xt-1 = e) ~

p(π1, …, πK) ~

p(bk1, …, bkE) ~

p(ake1, …, akeK) ~

Categorical(π0, …, πK)

Categorical(bk0, …, bkE), œk 0 {1, …, K}

Categorical(ake0, …, akeK), œk 0 {1, …, K}, e 0 {1, …, E}

Dirichlet(ρ1, …, ρK)

Dirichlet(sk1, …, skE), œk 0 {1, …, K}

Dirichlet(rke1, …, rkeK), œk 0 {1, …, K}, e 0 {1, …, E}

Figure 5. Graphical Models and Formal Description of the RegPFA Model

stance, when one estimates the probability bk0 of seeing event

type 0 in state k, the Dirichlet prior adds sk0 – 1 pseudo-

observations to the observations in the event log, making the

strength of this prior equivalent to . Combinings Ekee

E
−

= 0

all the priors yields a total pseudo-count of

To express the belief that everything is equally likely in the

absence of data, we can use symmetric priors, setting all

parameters of the Dirichlet priors to the same value: ρk = ske

= rkej = hp and yielding a total pseudo-count of pc = K(1 +

E(1 + K))(hp – 1). If we want to express a belief with

strength equal to n observations, we must set pc = n, which

yields the value to which we set all Dirichlet parameters:

. This value is just a default setting from
()()

hp n

K E K
= +

+ +
1

1 1

which users may want to deviate if, for instance, a user

believes there is a state in which only one particular type of

event can be observed, in which case the user could build this

belief into the model by biasing one of the priors accordingly.

Parameter Estimation

The EM algorithm (Dempster et al. 1977) is the standard

parameter estimation technique for probabilistic models with

unobserved variables. Therefore, we derived an instantiation

of the EM algorithm for the RegPFA model defined in Figure

5 in order to do a MAP estimation of its parameters, as illus-

trated in Figure 6. After initial parameters are defined, the

algorithm iterates between the E-step and the M-step until it

converges, which will happen because the log likelihood will

improve in each iteration and cannot become infinitely large.

Since the result is a local optimum that depends on the initial

parameters, EM should be run multiple times with differing

initial values (Moon 1996).

The remainder of this section explains the four components of

the algorithm and how we implemented them. We discuss the

M-step first, followed by the E-step. For a more in-depth

treatment of EM in general, we refer to textbooks such as

Bishop’s (2006).

Initial parameter selection: As the EM algorithm is an itera-

tive optimization procedure that converges toward a local

optimum, its result depends on the initial parameter values.

In the absence of other information, the default is to choose

initial values randomly. Researchers have studied how to find

good initial values for the EM algorithm and have developed

techniques that are superior to random initialization (e.g.,

Karlis and Xekalaki 2003), but since these results cannot be

transferred directly to new models, we implemented random

generation and defer a discussion of other techniques to future

work.

M-step: To implement the M-step’s goal of improving

parameter values, we must find updating equations for all

parameters by starting with

() ()[]θ θ θ
θ θ

new

Z X old P X Z P= +arg max ln , | ln
| ,

E

the EM approach for MAP parameter estimation (Dempster et

al. 1977), and applying Lagrangian multipliers to the optimi-

zation problem. Solving the optimization problem delivers

the equations in Figure 7 (bottom), which are defined using

the terms also exhibited in Figure 7 (top). Of these terms, the

three prior terms are easily computable, as they depend only

on the parameters of the Dirichlet distributions, which must

be fixed prior to executing EM. However, the data terms

require the computation of marginal distributions over the

state variables given the data and the current parameters,

which is what the E-step delivers.

E-step: The goal of the E-step is to compute all marginal

distributions required in the three data terms while treating all

parameters θ as fixed at a certain value θold. The standard

technique for this computation is belief propagation (Murphy

2012). For our model, the procedure is almost identical to the

forward–backward algorithm used in the Baum–Welch algo-

1018 MIS Quarterly Vol. 40 No. 4/December 2016

Breuker et al./Comprehensible Predictive Models for Business Processes

doEM(log, hp, K, E)

 params = initialize_params(K, E)

 do

 marginals = E-step(log, params)

 params = M-step(marginals, hp)

 until convergence(params)

 return params

Figure 6. EM Algorithm as Pseudo-Code

First, we define data and prior terms representing the contributions from the event log and the assumptions of the user.

datak = priork = ρk – 1()P Z k Xc c old

c

C

0

1

() ()| ,=
=

 θ

datake = priorke = ske – 1()P Z k Xt

c c old

t Tc

C

e
c

() ()| ,
()

=
∈=

 θ
1

datakej = priorkej = rkej – 1()
t T t

t

c

t

c c old

c

C

e
c

P Z k Z j X
∈ ≠

−

=

 = =
() ,

() () (), | ,
0

1

1

θ

In the equations above, denotes the set of points in time at which an event type e is observed in instance x(c). T(c)Te

c()

denotes all points in time regardless of the event types. For instance, if x(4) = (2, 2, 1, 3, 2, 4), then = {0, 1, 4}, whileT2

4()

T(4) = {0, 1, 2, 3, 4, 5}.

Using the terms above, the parameter updating equations are defined as follows:

; ;
()

π k

data prior

data prior

k k

k kj

K=

+

+
=1

()
bke

data prior

data prior

ke ke

ke kee

E=

+

+
=1

()
akej

data prior

data prior

kej kej

kej kejj

K=

+

+
=1

Figure 7. Updating Equations for the Probabilistic Model Derived from the EM Approach

rithm for HMMs (Baum et al. 1970), which iterates all

instances x(c) in the event log and passes messages forward

and backward through the chain of hidden states Z to compute

the marginal distributions. In terms of computational com-

plexity, the E-step is the bottleneck in our version of EM.

With belief propagation, its complexity is O(|X| × |K|²) and

thus linear in the total number of events in the event log, so it

scales to large data sets. Details about belief propagation can

be found in textbooks such as Murphy’s (2012) and Bishop’s

(2006). Murphy also discusses ways to speed up the E-step

for cases in which the |K|² term becomes prohibitive. An

evaluation of their applicability is deferred to future research.

Convergence criterion: Each iteration of EM improves

P(X|θ)P(θ), the quantity the algorithm optimizes, so conver-

gence can be detected by monitoring the rate of improvement

and stopping once that rate falls below a threshold δ, that is,

|ln P(X|θnew)P(θnew) – P(X|θold)P(θold)| < δ. Thresholds between

10–2 and 10–8 are common (Abbi et al. 2008).

Model Selection

The EM algorithm requires the user to specify a number of

inputs (see Figure 6). log is the data used for learning, which

will always be known, as will E, the number of event types,

since all events are recorded in the event log. However, the

inputs K and hp require special treatment. K is unknown and

not amenable to optimization, as it determines the size of the

model’s state space, while hp determines the strength of the

MIS Quarterly Vol. 40 No. 4/December 2016 1019

Breuker et al./Comprehensible Predictive Models for Business Processes

Cross entropy: () ()H P x c

x c

log,
|log|

log |()

log()

θ θ= −
∈

1
2

Akaike information criterion: () ()AIC P Xθ θ θ= − +2 2ln | | |

Heuristic information criterion: () ()HIC P Xt tθ θ θ= − +2 2ln | | |

Figure 8. Model Selection Criteria

regularization, but the appropriate value will be unclear. In

the absence of additional information, we resort to a grid

search over a range of values such that, for each combination

of K and hp, a model is learned with EM on training data, and

a separate set of validation data (not used for learning) allows

one to decide which of the models fits best. We use cross

entropy as a measure of model fit, as cross entropy is often

used in grammatical inference to assess the quality of a

language model (Rosenfeld 2000). The cross entropy of an

EM result θ with respect to an event log log can be expressed

as shown in Figure 8 and interpreted as an estimate of the

cross entropy of θ with respect to the true but unknown distri-

bution of the data. The lower the cross entropy, the better the

parameters θ are in assigning appropriate probabilities.

In addition to cross entropy, we can use penalized likelihood

criteria, such as the Akaike information criterion (AIC)

(Akaike 1998), to select optimal inputs. AIC, defined in

Figure 8, has been used extensively in the HMM learning

literature (Celelux and Durant 2008). It penalizes the like-

lihood proportionate to the number of parameters, denoted by

|θ|, such that the lower the AIC score, the better the model.

We also define a modified criterion based on our own intui-

tion: For business processes, we expect large parts of the

model parameters to be zero because, in most states, there will

be only a few types of events possible to observe next, and

after an event is observed, there will be only a few states to

which the process can possibly move. To account for the

expected sparsity, the modified criterion penalizes the number

of parameters above a threshold, denoted as |θ|t, not the

number of parameters |θ|. We call this threshold the heuristic

information criterion (HIC) and define it analogously to AIC

in Figure 8. All three methods of grid-search optimization

discussed in this section are evaluated experimentally later in

this paper.

The grid search procedure illustrated in Figure 9 is called with

arguments grid_hp and grid_K, which represent the sets of

possible values for hp and K. The argument modelScorer is

a function that implements any of the criteria of the equations

discussed in this section.

Design of the RegPFA Analyzer

A design goal of the RegPFA approach developed in the

previous section is to ensure that the model structure is

interpretable and understandable by domain experts, so we

used probabilistic models of automata as a starting point.

With RegPFA models that reflect the structure of automata,

we can design the RegPFA Analyzer on top of the RegPFA

Predictor.

The purpose of the RegPFA Analyzer is to provide visuali-

zations of RegPFA models that domain experts who do not

have expertise in probabilistic modeling can inspect and

understand. A direct way to construct a visualization of a

RegPFA is to build an automaton with K states and K²E

transitions. Each transition corresponds to a product of

RegPFA parameters bkeakej, the estimated probability of

moving from state k to state j when an event of type e is

observed in state k. This process delivers a fully connected

automaton with transitions among all states and for all event

types, but it also delivers unreadable and uninformative

results unless it is applied to small toy examples.

Transition probabilities can be exploited to simplify the

visualization. Clearly, all transitions with zero probability

should be excluded, which removes all transitions that lead

out of the final state, as there can be no exit from the final

state. However, apart from those that are fixed because of the

PFA modifications inspired by workflow nets, transition

probabilities will usually not be zero because of the Bayesian

regularization that is introduced to combat overfitting. If

pseudo-observations are distributed symmetrically, as hap-

pens by default, probabilities may be small but will be

positive unless technical subtleties like limited precision of

floating point numbers produce zero values.

This discussion demonstrates that providing users with all of

the information contained in a RegPFA model is not practical;

some loss of information is necessary to ensure comprehen-

sibility, which requirement motivates a threshold-based

abstraction of a RegPFA model. We define a threshold, ε,

1020 MIS Quarterly Vol. 40 No. 4/December 2016

Breuker et al./Comprehensible Predictive Models for Business Processes

doGridSearch(log, grid_hp, grid_K, E, modelScorer)

 bestModel = null

 for hp in grid_hp

 for K in grid_K

 model = doEM(log, hp, K, E)

 if modelScorer(model) < modelScorer(bestmodel)

 bestModel = model

 return bestModel

Figure 9. Model Selection Procedure as Pseudo-Code

Figure 10. RegPFA Model Visualized with Abstraction Levels of ε = 0.1 (left) and ε = 0.2 (right)

adjustable by the user, and cut out all transitions with proba-

bilities lower than the threshold. Then a user can change ε
interactively until the user finds a visualization with the

desired degree of detail.

Figure 10 shows an exemplary visualization of a RegPFA

model fitted to a real-world event log of a problem-

management process that will be used later in the evaluation.

The visualization of the RegPFA corresponding to ε = 0.1

(left) has a unique starting state of s1 indicated by a dangling,

unlabeled transition entering it, and a unique ending state of

s12 indicated by the thick line surrounding it. Transitions are

labeled with their event type and probability. Figure 10

(right) shows the effect of raising the threshold to ε = 0.2.

The right part is cut out as it is entered through a transition

with probability 0.16, which is too low to be included in the

more abstract visualization.

To guide the choice of ε, we derive a reasonable default value.

Assume a state k in the predictive model that provides no

information as to which event type will be observed or to

which state the process will move. This situation can be

expressed by setting all probabilities bke of seeing an event

type e in state k to the same value, bke = 1/E. Similarly, all

probabilities akej of moving to any state j after seeing s are set

to akej = 1/K. As a result, all transitions have probability bkeakej

= 1/(KE). As no transition is more likely than any other, we

cannot select a subset to discard. In real applications, the

probabilities will never be equal but may all be close. If some

of the probabilities increase, the probabilities of others must

MIS Quarterly Vol. 40 No. 4/December 2016 1021

Breuker et al./Comprehensible Predictive Models for Business Processes

drop so the probability distribution sums to 1, creating

motivation for formulating the threshold relative to , which1
KE

we call the pruning ratio pr. This ratio translates to a thres-

hold according to the formula ε = 1/pr @ 1/(KE), such that

transitions that are pr times as unlikely as would be expected

if the state contained no information are discarded.

While the automaton constructed by means of this pruning

approach may already be interpretable by humans, we add a

second step to improve comprehensibility. Automata with

high degrees of concurrent behavior may be extremely large,

although representing them as equivalent Petri nets can lead

to more compact models (Murata 1989) and facilitate

understanding. Being able to handle concurrency is one of

the main goals in process mining, so many discovery algo-

rithms are based on Petri net representations (van der Aalst,

Adriansyah et al. 2011). One discovery algorithm, the region

miner (van der Aalst, Rubin et al. 2010), applies a two-step

procedure to discover a Petri net from an event log: After

creating an automaton in the first step, the second step uses a

Petri net synthesis algorithm (Cortadella et al. 1997) to con-

struct a Petri net that is equivalent to the automaton. By

integrating the second step into our approach, we can con-

struct a Petri net representation of a predictive model (pruned

according to ε).

Evaluation

To determine whether the RegPFA Predictor and the RegPFA

Analyzer meet their goals, we conducted experiments with

synthetic data and real-world data. We generated synthetic

data by randomly executing models of business processes and

recording the events observed during the course of execution,

so we could use numerous process models and generate large

quantities of data. We used real-world data collected from

organizations to achieve external validity. Our experiments

pursue five goals.

� G1: Evaluation of the model-selection criteria: When

designing the RegPFA Predictor, we defined criteria that

would facilitate our ability to choose the best one from a

set of candidate probabilistic models. We identified two

criteria from the literature and defined another based on

our own insight. The evaluation goal is to determine

how well the model selection criteria work and to assess

each criterion’s performance relative to that of the

others.

� G2: Evaluation of regularization effectiveness: When

designing the RegPFA Predictor, we modified the PFA

by adding Bayesian regularization in order to mitigate

problems related to small, unrepresentative samples. The

evaluation goal is to quantify to what extent overfitting to

small samples can be avoided by means of Bayesian

regularization.

� G3: Evaluation of performance in the presence of

challenging constructs: The literature of process mining

discusses a number of control-flow constructs with which

some process-discovery algorithms have problems

dealing when the language bias of the algorithm is too

limited to accommodate the problematic behavior (van

der Aalst 2011). As the RegPFA Predictor is based on an

automata-like model, it can generally account for chal-

lenging constructs, but the EM algorithm could fail. The

evaluation goal is to determine whether challenging

constructs affect the predictive performance of the

RegPFA Predictor.

� G4: Evaluation of performance in predictive modeling

problems: The RegPFA Predictor should perform well

when it is applied to predictive modeling problems in the

context of business processes. The evaluation goal is to

compare the predictive performance of the RegPFA

Predictor to suitable benchmarks.

� G5: Evaluation of process discovery with the RegPFA

Analyzer: Visualizing predictive models with the

RegPFA Analyzer facilitates process discovery. The

evaluation goal is to compare the performance of the

RegPFA Analyzer with state-of-the-art process-discovery

techniques.

We conducted three experiments to address these five goals:

The first experiment addresses goals G1, G2, and G3; the

second experiment addresses goals G1, G2, and G4; and the

third experiment addresses goal G5. We explain these experi-

ments after presenting the data used in the experiments.

Data

We used 39 Petri nets used in previous studies to evaluate

process-discovery algorithms for the experiments with syn-

thetic data (de Medeiros 2006; de Weerdt et al. 2012).

Appendix A lists these models and their properties. We

embedded the models into simulation software to generate

event logs of varying sizes, expressed in terms of the number

of process instances. The simulation procedure began by

giving all models a dedicated starting state, after which we

executed the Petri net until we ran into a deadlock, indicating

process completion. At each step in the execution, the transi-

tion to fire was chosen at random from all enabled transitions.

Upon firing, we recorded the transition’s label and added it to

the event log. After termination, we ran a new simulation

1022 MIS Quarterly Vol. 40 No. 4/December 2016

Breuker et al./Comprehensible Predictive Models for Business Processes

until we generated a sufficient number of process instances.

De Weerdt et al. (2012) use an additional Petri net called

driverslicensel, a variation of the driverslicense model found

in de Medeiros (2006). When evaluating G5, we also report

results for logs generated from this model in order to ensure

comparability to de Weerdt et al.’s results.

Furthermore, we used real-world event logs from the 2012

and 2013 BPI challenges (van Dongen 2012, 2013). From the

2012 challenge, we gathered anonymized data from a Dutch

financial institute’s loan or overdraft application process—

262,000 events in 13,087 instances that stem from three

subprocesses: one that tracks the states of the application,

another that tracks the states of the offer, and a third that

tracks the states of work items associated with the application.

Events from the third subprocess are classified further into

type schedule (work items scheduled for execution), type start

(work items on which work has started), or type complete

(work items on which work has been completed). We filtered

the event log to retain only events of type complete.

From the 2013 challenges we gathered two logs from Volvo

IT Belgium that describe incident- and problem-management

processes. The incident-management log contains 3,777

instances with 36,730 events of 11 types, and the problem-

management log contains 744 instances with 4,045 events of

5 types.

Evaluation Results

Experiment 1

Our first experiment, designed to address goals G1, G2, and

G3, was based on synthetic event logs generated from the 39

Petri nets. A large sample (1,000 instances) and a small

sample (50 instances) were generated for each, and all were

split into a training set logtrain (70%) and a validation set logval

(30%). The EM algorithm was applied to the training set,

while the validation set was used to calculate H(logval, θ), the

score of a model defined by θ on the validation set. Finally,

a third event log, logtest, with 10,000 instances was generated

to evaluate H(logtest, θ), the performance of an EM result θ on

yet unseen data.

We used several parameters for the grid search: For the

number of states, we used the grid Kgrid = [2, 4, 6, 8, 10, 12,

14, 16, 18, 20, 25, 30, 40, 50, 75] as a set of candidate values.

The strength of regularization, expressed as a relative fraction

of the total number of events in the logs, was optimized over

the grid [0.00, 0.05, 0.10, 0.15, 0.20, …, 0.75] and ranged

from no regularization to severe regularization. We set the

convergence threshold for EM to δ = 10–4. For each com-

bination of K and hp, we performed EM five times and

retained only the best result to avoid bad local optima. We

configured the HIC criterion to include only parameters larger

than 0.05.

After applying EM to the 2 @ 39 event logs in both the large

sample and the small sample, we applied our three grid search

optimization methods to select an optimal model. This pro-

cess delivered 2 @ 39 @ 3 optimal models, chosen with respect

to the three methods. For each triple, we calculated H(logtest,

θ) for all three models and recorded the lowest cross entropy,

determining that one method was better than the others if it

chose the models with the lowest cross entropy. We counted

how often each method made the best choice and report the

results in Table 1. (The counts did not sum to 39 per row, as

two or more methods can agree.) Detailed results on the

overall performance and the performance of the model

selection criteria are reported in Appendix A.

As Table 1 shows, the HIC criterion performed best, regard-

less of the sample size, so it is better than the AIC criterion,

as expected. It is also better than evaluating cross entropy on

held-out validation data, probably because the estimates are

not good at these sample sizes.

We tried various degrees of regularization in the grid search

and chose the best by means of model selection criteria. To

determine how well the grid search avoids overfitting, we

defined overfitting as choosing from all models under con-

sideration one that assigns zero probability to any one of the

10,000 process instances of our large event log, logtest. In

these cases, H(logtest, θ) is infinite. We counted how often

this happened for each of the selection methods (see Table 2)

and how often the model that performed best on logtest

overfitted.

We found that counts for the optimal choice are zero, regard-

less of the sample size, so there was always a sufficiently

regularized model that did not overfit. However, none of the

model selection criteria consistently avoided selecting an

overfitted model. In line with the results of Table 1, HIC per-

formed best on both samples, as it chose the fewest overfitting

models; the AIC criterion was slightly worse but comparable

to HIC; and using the validation set delivered comparable

results only when it was applied to the large sample. These

results are in line with our expectations, as evaluating cross

entropies of very small validation sets (15 process instances

for the small sample) is likely to produce bad estimates. The

results, shown in Tables 1 and 2, together indicate that the

HIC criterion is effective in choosing models that fit the data

well and that generalize to yet unseen process instances. The

increase in the AIC’s number of overfitted models could be

due to a disadvantage when AIC is applied to probabilistic

models, as we expect that most transitions have very low

likelihood.

MIS Quarterly Vol. 40 No. 4/December 2016 1023

Breuker et al./Comprehensible Predictive Models for Business Processes

Table 1. Number of Times a Model Selection Method Chose the Best Model

Validation set AIC HIC0.05

Large sample 16 11 24

Small sample 14 11 20

Table 2. Number of Times a Model Selection Method Chose a Model That Assigned Zero Probability to

Possible Behavior

Validation set AIC HIC0.05 Optimal

Large sample 7 7 4 0

Small sample 14 5 5 0

Next, we addressed G3 by investigating the effects of com-

plex control flow constructs. To avoid confusing EM perfor-

mance with model-selection performance, we considered only

the models that scored highest with respect to H(logtest, θ)
—that is, the model θ with the best generalization perfor-

mance. De Medeiros (2006) designs the 39 Petri nets to

contain models that exhibit various kinds of properties, but

not all process-discovery algorithms can deal with these

properties because of limitations in the underlying representa-

tional bias. One type of these constructs is loops (particularly

of small length), that is, a process that can move to a state in

which it has been before. Another is nonlocal choice, where

a process has states in which the type of the next event

depends on events seen long before, not on directly related

events. Concurrency is present if more than one type of event

is executed in parallel, that is, without any constraints on their

order. Finally, duplicates are conceptually different kinds of

events that cannot be distinguished in the event log, as they

appear to be of the same event type. We flagged the models

accordingly (see Appendix A) based on de Medeiros’

characterization.

While the underlying probabilistic representation we use in

our approach can handle all of the challenging constructs,

learning the constructs with the EM optimization method may

still create issues, so we identified differences in performance.

For each challenging construct, we grouped the models with

respect to the presence or absence of the construct and used

Python’s SciPy package to apply the Kruskal–Wallis test,

which determines whether two or more samples are indepen-

dent (Kruskal and Wallis 1952). In our case, the test reveals

whether the challenging constructs influence performance; if

so, corresponding p-values should comply with a significance

level. Since none of the p-values (see Table 3) is significant

even at the 0.1 level, we cannot conclude that these constructs

affect the performance of the EM approach.

Experiment 2

Experiment 2 primarily addresses the performance of the

RegPFA Predictor on prediction problems, so the experiment

is based on the five real-world event logs. As the actual busi-

ness processes for these event logs are not known, perfor-

mance cannot be measured in absolute terms, so we need

suitable benchmark prediction techniques to serve as baseline

predictors in a comparative analysis. Analogous to the

grammatical-inference competition discussed earlier, we

implemented a simple table look-up approach and a prediction

approach based on n-grams (Verwer et al. 2014). The table

look-up approach, which we call History, uses as input the

entire sequence of events seen so far, selects from the training

set all process instances that begin with this sequence, and

estimates the probability that the next event will be of a given

event type by counting how many of the selected sequences

continue with an event of the given type and dividing this

count by the number of process instances that begin with the

selected sequences; that is, the prediction is based on the rela-

tive frequency with which the given event type occurs after a

particular sequence. The event type with the highest proba-

bility is predicted to be the next one. n-gram predictors work

in a similar way, but they take into account only a sliding

window of size n instead of the entire sequence. To estimate

the probability of the next event’s being a given event type, n-

grams use as input the last n – 1 events seen so far and return

the relative frequency with which event sequences in the

training set continue with the given event type. A detailed

description of these benchmark prediction techniques is

shown in Appendix B. Our experiments evaluated n-gram

predictors for n 0 {2, 3, 4, 5, 6}. As in experiment 1, we split

the event logs into training (50%), validation (25%), and test

sets (25%). Settings for the EM algorithm are also the same

as in experiment 1.

1024 MIS Quarterly Vol. 40 No. 4/December 2016

Breuker et al./Comprehensible Predictive Models for Business Processes

Table 3. p-values of the Kruskal Wallis Test

Loop Nonlocal choice Concurrency Duplicates

Large sample 0.40 0.46 0.11 0.14

Small sample 0.19 0.27 0.93 0.27

We evaluated the predictors based on four performance

metrics, all of which we computed with the test set. One

metric is the cross entropy of the predictor with respect to the

test set. We defined cross entropy in Figure 8 for the RegPFA

model described in Figure 5. This definition applies to any

other model that defines a probability distribution over

sequences, and our benchmark predictors clearly define such

a distribution. The other three metrics are based on two

prediction problems: the problem of predicting what the next

event type will be, and the problem of predicting whether the

next event will be of a given type. Iterating the events in the

test set and counting how often a predictor predicts the correct

event type gives rise to the metric of prediction accuracy,

which is the fraction of correct predictions. As for the prob-

lem of predicting whether the next event will be of a given

type, we measure sensitivity (the rate of true positives) and

specificity (the rate of true negatives). Since there is one such

classifier for each type of event, the final performance metrics

are averages over all event types, weighted by the frequencies

of the event types.

Table 4 shows the results of the experiment, including the

PFA-based predictors, the history-based predictor, and the n-

gram-based predictors for each event log. We considered that

a predictor was working best when it produced the highest

values for accuracy, sensitivity, and specificity and the lowest

value for cross entropy.

Experiment 1 revealed that the HIC criterion works best, but

experiment 2 refuted this result, as with respect to the cross

entropy metric, model selection with the validation set out-

performed HIC. With respect to the metrics derived from

exemplary prediction problems, HIC delivered the best result

in only one of the five cases, for event log BPI2012_A, while

using AIC and cross entropy evaluation delivered the best

result in two of the five cases. History performs worst in

almost all cases, competitive only on event log BPI2012_A.

This result confirms expectations since the entire event

sequence seen so far can easily produce overfitted probability

distributions. History’s good performance on BPI2012_A can

be explained by the simple process structure of BPI2012_A,

as most of the 13,087 process instances in this event log are

identical; there are only 16 unique process instances.

The RegPFA-based predictors effectively avoid overfitting, as

shown in the finite cross entropy values in all five cases. By

contrast, the history-based predictor almost always overfits

(except for BPI2012_A). n-grams also produce infinite cross

entropies if n is large enough (except for BPI2012_A), so

overfitting can be avoided by keeping n low. The perfor-

mance metrics suggest that neither the RegPFA-based

predictors nor n-grams consistently outperform the other, as

both methods perform similarly on the event logs BPI2012_A

and BPI2012_O, n-grams work best on BPI2012_W and

BPI2013_Problems, and the PFA-based predictor scores best

on BPI2013_Incidents. This result suggests that the tech-

niques that work best depend on the event log and the

underlying business process.

To determine why some techniques work better than others on

specific event logs, we performed a qualitative in-depth

evaluation based on two of the five event logs. First, we used

the RegPFA Analyzer—that is, our visualization approach

applied to the RegPFA-based predictive model—to analyze

BPI2013_Incidents, for which the RegPFA-based approach

outperforms n-grams. After applying a pruning ratio of pr =

0.1, we generated the model shown in Figure 11, for which

we used Petri net synthesis for the visualization. The low

pruning ratio removed all state transitions with probabilities

smaller than about 10 percent and generated an abstract view

of this complex process.

This process handles incidents at an IT service desk, and the

Petri net suggests that the process usually starts with a

sequence of two events of type Accepted In progress, which

moves the token from place p1 to place p3, indicating produc-

tive work on the customer’s problem. The incident may then

be completed directly in a call (Completed In call) or marked

as resolved (Completed Resolved, token to p4). In the latter

case, the process waits for the customer’s approval before the

incident is closed (Completed Closed). If a support team

working on the incident is unable to resolve it—which can

happen at the beginning of the process (token in p1) or after

working on the incident (token in p3)—an event of type

Queued Awaiting assignment follows, which indicates that a

support team wants to transfer the incident to another team,

and moves the token to p5. The new support team then works

MIS Quarterly Vol. 40 No. 4/December 2016 1025

Breuker et al./Comprehensible Predictive Models for Business Processes

Table 4. Performance Statistics of the Five Prediction Approaches

Event log Predictor Accuracy ØSensitivity ØSpecitivity H

B
P

I2
0
1
2
_
W

EM_HIC 0.685 0.558 0.950 12.810

EM_AIC 0.719 0.578 0.955 11.183

EM_Val 0.718 0.582 0.955 10.385

History 0.615 0.458 0.938 Infinity

2-gram 0.721 0.589 0.956 9.438

3-gram 0.726 0.553 0.956 9.328

4-gram 0.727 0.587 0.957 Infinity

5-gram 0.728 0.588 0.957 Infinity

6-gram 0.726 0.584 0.957 Infinity

B
P

I2
0
1
2
_
A

EM_HIC 0.801 0.723 0.980 3.093

EM_AIC 0.769 0.658 0.977 3.393

EM_Val 0.796 0.720 0.980 3.014

History 0.801 0.723 0.980 2.839

2-gram 0.751 0.629 0.975 3.472

3-gram 0.778 0.681 0.978 3.146

4-gram 0.801 0.723 0.980 2.839

5-gram 0.801 0.723 0.980 2.839

6-gram 0.801 0.723 0.980 2.839

B
P

I1
2
0
1
2
_
O

EM_HIC 0.809 0.646 0.973 4.588

EM_AIC 0.811 0.647 0.973 4.513

EM_Val 0.811 0.647 0.973 4.513

History 0.687 0.514 0.957 Infinity

2-gram 0.750 0.591 0.964 5.356

3-gram 0.811 0.647 0.973 4.180

4-gram 0.811 0.647 0.973 4.146

5-gram 0.811 0.647 0.973 4.129

6-gram 0.811 0.649 0.974 Infinity

B
P

I2
0
1
3
_
In

c
id

e
n
ts

EM_HIC 0.586 0.268 0.958 15.910

EM_AIC 0.709 0.377 0.973 12.501

EM_Val 0.714 0.383 0.974 12.041

History 0.569 0.308 0.961 Infinity

2-gram 0.621 0.346 0.965 Infinity

3-gram 0.633 0.368 0.966 Infinity

4-gram 0.635 0.377 0.967 Infinity

5-gram 0.631 0.378 0.966 Infinity

6-gram 0.624 0.375 0.966 Infinity

B
P

I2
0
1
3
_
P

ro
b
le

m
s

EM_HIC 0.627 0.497 0.934 9.399

EM_AIC 0.690 0.521 0.945 7.231

EM_Val 0.686 0.519 0.944 7.265

History 0.585 0.467 0.927 Infinity

2-gram 0.690 0.521 0.945 7.133

3-gram 0.699 0.564 0.948 Infinity

4-gram 0.686 0.553 0.946 Infinity

5-gram 0.680 0.543 0.944 Infinity

6-gram 0.665 0.530 0.942 Infinity

1026 MIS Quarterly Vol. 40 No. 4/December 2016

Breuker et al./Comprehensible Predictive Models for Business Processes

Accepted

In Progress

Accepted

In Progress

Completed

In call

Completed

Resolved
Completed

Closed

Queued

Awaiting

assignment

Queued

Awaiting

assignment

Accepted

In Progress

Accepted

Assigned

Queued

Awaiting

assignment

Completed

Resolved

Accepted

Assigned

Accepted

In Progress

Queued

Awaiting

assignment

Accepted

Wait - user

Accepted

Wait - user

Accepted

Wait - user

Completed

Resolved

p1

p2

p3
p4

p5

p6

p7 p8

Figure 11. Petri Net Visualization of a Predictive Model for “BPI2013_Incidents”

on the incident (Accepted In progress, token to p6) and

resolves it (Completed Resolved, token to p4), transfers it to

yet another team (Queued Awaiting assignment, token back to

p5), puts it on hold (Accepted Assigned, token back to p5 or

to p7), or waits for user input (Accepted Wait - user, token to

p8). With the token either in place p7 or place p8, complex

iterations of work on the incident, interrupted by waits for one

or more user inputs, can follow. Either this process resolves

the incident (Completed Resolved, token from p8 to p4) or a

new support team is put in charge (Queued Awaiting

assignment, token from p8 to p5).

To understand why PFA-based predictive models can out-

perform n-grams on this process, consider a process in the

state in which there is a token in p5. As Figure 11 shows, the

only significant type of event observable in this state is

Accepted In progress. It is the predictive model’s goal to esti-

mate the probability, so a 3-gram model, for instance, esti-

mates the probability depending on the types of the last two

events seen before the process entered the state. In this Petri

net, four such pairs of events might be observed: Accepted In

progress and Queued Awaiting assignment; no event and

Queued Awaiting assignment; Accepted In progress and

Accepted Assigned; and Accepted Wait - user and Queued

Awaiting assignment. Thus, the 3-gram divides the available

data into four parts and estimates four probabilities, one for

each way of entering the state, and so fails to identify the

state. Since each of the estimates considers only part of the

data, the prediction is likely worse than had a single state

been identified.

The RegPFA Predictor imposes no predefined structure on the

states. If it converges to a good local optimum, the E-step of

the EM algorithm identifies all process instances that move

through a state, regardless of how they entered it. Thus, the

PFA-based predictor can use all evidence in the data to esti-

mate a single probability, which will result in a more reliable

estimate than that of the 3-gram model, as the estimate is

based on a larger part of the data.

To compare the insights from this discussion with results from

BPI2012_A, a process that describes a loan application, we

use the RegPFA Analyzer to generate the Petri net shown in

Figure 12. Since we use the standard pruning ratio of 1.5,

resulting in the threshold of 0.3 percent, this Petri net is not as

abstract as that in Figure 11, yet it is sufficiently simple to be

easily readable because of the high degree of structure and the

low level of noise. On this event log, RegPFA did not out-

perform the n-grams.

MIS Quarterly Vol. 40 No. 4/December 2016 1027

Breuker et al./Comprehensible Predictive Models for Business Processes

Submitted Partly

Submitted

Preaccepted Accepted Finalized

Approved

Registered

ActivatedCancelled Cancelled Cancelled

Declined Declined Declined

Declined

Cancelled

p2 p3 p4

p8

p5

p6

p7
p1

Figure 12. Petri Net Visualization of a Predictive Model for Event Log “BPI2012_A”

The process usually begins with submission of an application

(Submitted), after which the process goes through a number

of checks, each updating the application’s status, represented

by the events Partly Submitted, Preaccepted, Accepted, and

Finalized. The process is linear and may terminate at any time

once the application is partly submitted, either with cancel-

lation by the applicant (Cancelled) or rejection by the bank

(Declined). Only after finalizing the application (Finalized,

tokens into p6, p7, and p8) may the three events Approved,

Registered, and Activated be observed in any order.

The structure of this process helps to clarify why the RegPFA

Predictor cannot beat n-grams: the type of event observed last

identifies almost all states of the Petri net. For instance,

knowing that an event of type Preaccepted was observed last

is sufficient to know that there is a token in p4, so an n-gram

can use all available data to estimate probabilities in this state.

The only situation in which the type of the last event is insuf-

ficient is when the process ends with Approved, Registered,

and Activated in any order. For instance, to identify process

termination, the three last events must be known in order to

know whether one is missing, so the performance metrics of

the n-grams increase with n, but only until n = 4. Analogous

to the previous example, the 4-gram has to estimate the

probability of termination six times since there are six pos-

sible orders of the three final events. Therefore, although the

PFA-based approach could have an advantage, in this

example the performances of two approaches are equal.

Two observations arise from this qualitative analysis.

� The RegPFA Predictor can estimate probabilities more

exactly than n-grams can if the process has states that can

be entered in more than one way—that is, if different

event sequences can lead to the same state—as the

RegPFA Predictor can make more efficient use of limited

data.

� However, the RegPFA Predictor does not necessarily

outperform n-grams when the process enters a state in

more than one way, as sufficient data may be available to

compensate for the representational shortcoming of the

n-grams, or the EM algorithm may converge to a bad

local optimum and fail to identify these states.

Experiment 3

We conducted experiment 3 to address G5’s goal of evalua-

ting the RegPFA Analyzer. We used the results from de

Weerdt et al. (2012), which provides a comprehensive

evaluation of state-of-the-art process-discovery algorithms, as

a reference by which to compare our approach. De Weerdt et

al. apply process-discovery algorithms to event logs with 300

process instances generated from 19 of the 39 models we have

used so far and use an event log with 350 process instances

generated from the driverslicensel model. They apply to 20

event logs metrics developed in process mining to measure

the quality of each algorithm’s result. The measures can be

categorized into the dimensions recall and precision, where

recall reflects “how much behavior present in the log is

captured by the model,” and precision measures “whether a

mined process model does not underfit the behavior present

in the log” (de Weerdt et al. 2012, p. 660).

Fitness, one of the recall measures de Weerdt et al. use, is

based on replaying an event log with a discovered Petri net

(Rozinat and van der Aalst 2008), which means firing transi-

tions so the event log is generated. If doing so is possible, the

Petri net has fitness 1, and if there are excess tokens or tokens

are missing, fitness is reduced as low as 0. One of the preci-

sion measures de Weerdt et al. use is advanced behavioral

appropriateness (Rozinat and van der Aalst 2008), which

searches for variability in both the event log and the Petri net,

defined as pairs of event types that sometimes follow or

precede each other. Advanced behavioral appropriateness,

1028 MIS Quarterly Vol. 40 No. 4/December 2016

Breuker et al./Comprehensible Predictive Models for Business Processes

which measures to what degree the variability found in the

discovered Petri net is also found in the event log, like fitness,

ranges from 0 to 1. Since both measures are implemented in

ProM (Rozinat and van der Aalst 2008), we used them for our

evaluation.

For each Petri net, we generated 10 event logs of the same

size as those de Weerdt et al. use in order to ensure that our

results did not differ from those of de Weerdt et al., despite

our use of a different random sample. Then we applied the

RegPFA Analyzer to discover a Petri net and measured fitness

and advanced behavioral appropriateness using ProM’s con-

formance checker plugin. We always measured the same

scores for the 10 runs, except for the fitness score of

hFig6p19, for which values ranged between 0.965 and 0.970.

These observations indicate that the results are stable and can

be compared to the values de Weerdt et al. report.

The results indicate that the RegPFA Analyzer can likely

compete with state-of-the-art process-discovery techniques.

Its fitness score of 0.998 equals to that of the genetic miner

and is bested only by the ILP miner’s 1.0 (which was

expected, as the ILP miner generates Petri nets with perfect

fitness by design (van der Werf et al. 2009)). The RegPFA

Analyzer scores better (0.908) than all the techniques

evaluated by de Weerdt et al. in advanced behavioral appro-

priateness, where α++ performed best (0.879). The compari-

son and detailed results on each model’s performance are

reported in Appendix A.

Discussion

Contributions

We proposed five goals for the evaluation and three experi-

ments, each of which addressed one or more of the five goals.

Table 5 provides a summary of the findings. Experiment 2

compared the RegPFA Predictor to n-grams, which were used

because of their popularity as baseline models in grammatical

inference and their relationship to prediction techniques in

process mining. While several other predictive approaches in

business process mining define the current state of a process

based on the last n events (e.g., the time-prediction technique

in van der Aalst, Schoenberg, and Song 2011) and allow

abstractions like interpreting the last n events not as a

sequence but as a multi-set or set, they are similar to n-grams.

Therefore, the RegPFA Predictor constitutes a contribution to

the process-mining literature by demonstrating that an EM-

based approach to estimating automata can be a useful altern-

ative to the existing n-gram-based techniques. Experiment 2’s

qualitative analysis sheds light on the conditions under which

the one or the other approach is advantageous.

In the same way, the RegPFA Analyzer contributes to the

body of knowledge about process mining by providing a

novel technique for process discovery. Pruning a fitted

RegPFA based on a user-defined threshold allows one to

make seamless adjustments to the desired level of abstraction

like zooming in and out of a geographical map, a rare but

desirable functionality in process mining (van der Aalst

2009). Consequently, the RegPFA is applicable to even

highly unstructured processes whose event logs are far from

complete. An example of this capability is the Petri net in

Figure 11, which illustrates an easily comprehensible model

on a high level of abstraction. Most importantly, the language

bias of the RegPFA Predictor is comparatively weak, as it

assumes that the process is representable by any kind of auto-

maton. Since the probabilistic learning algorithm aims to

identify the most probable of an infinite number of possible

process models, there is no need for a strong language bias

that narrows the explanations of the data to a single process

model. Experiment 3 showed that the RegPFA Analyzer

performs similar to state-of-the-art process-discovery algo-

rithms on standard benchmark processes, even though its

language bias is weaker.

A third contribution to process mining is that the RegPFA

Predictor’s generalization performance can be evaluated

easily on a part of the event log that is held out, as demon-

strated in this paper. In process mining, such evaluations are

rare (Goedertier et al. 2009) since they cannot be applied

directly in a non-probabilistic setting. While only positive

examples are given, which favors overly generalized models

if fitness on the held-out data is optimized (van der Aalst

2011), this problem vanishes with a probabilistic technique

since cross entropy optimization does not suffer from this

deficiency.

Our experiments used entropy-based measures to evaluate and

compare models, an approach that is in line with the gram-

matical inference literature (de la Higuera 2010; Rosenfeld

2000). Entropy-based measures are popular since they can be

used with a wide range of probabilistic models and since they

are a natural performance metric. While improving these

measures is typically accompanied by better performance in

predictive modeling applications, the literature holds many

counterexamples (Rosenfeld 2000), and experiment 2 adds

some counterexamples to the list. The lowest cross entropy

does not always imply best performance on the exemplary

prediction problems, so we contribute to the grammatical

inference literature by confirming the importance of using

application-specific performance metrics.

MIS Quarterly Vol. 40 No. 4/December 2016 1029

Breuker et al./Comprehensible Predictive Models for Business Processes

Table 5. Summary of the Findings from the Experiments

Goal EXP Findings

G1 E1, E2 The results are contradictory, as HIC performed best on synthetic data, AIC performed worst, and using

a validation set performed in the middle. The experiments with real-world data do not confirm these

results but suggest that using the validation set is best. This result reinforces the results of de Weerdt et

al. (2012), who also identified differences between real and synthetic event logs.

G2 E1, E2 The results indicate that overfitting is effectively avoided, as infinite cross entropies are rare on synthetic

data if the HIC or the AIC criterion is applied and the sample size is large enough; the same is true for

using a validation set. No overfitting was observed on real-world data.

G3 E1 The results confirm the expectation that control flow constructs that are challenging do not affect

performance.

G4 E2 The results show that the RegPFA Predictor can outperform the approaches against which it was

benchmarked, but it does not always do so. Therefore, a general recommendation cannot be given, and

the best approach must be chosen based on the concrete event log.

G5 E3 The results show that the RegPFA Analyzer can compete with state-of-the-art process-discovery

techniques. In a comparative benchmark on synthetic data, the RegPFA Analyzer scored second best in

terms of fitness and best in terms of advanced behavioral appropriateness.

Limitations

Our evaluation of grammatical inference techniques is limited

to an EM-based estimation of automata, so future work

should focus on evaluating other techniques and comparing

the results to those presented in this paper. We considered

only basic n-gram models in our evaluation, although there

are many variations of this technique. For instance, a

context-dependent variation of n-gram length (Kepler et al.

2012) might improve the results, as could the application of

regularization approaches (Zhai and Lafferty 2004).

Similarly, the literature offers some extensions to the EM

algorithm that may prove useful for use on BPM data if

sophisticated strategies for choosing initial parameter values

could be developed—for example, Karlis and Xekalaki

(2003) compare strategies for Gaussian and Poisson mixture

models—so future research could investigate how existing

process-discovery algorithms can be used to construct initial

values. There are also sophisticated strategies for avoiding

local optima, such as Ueda and Nakano (1998), who use a

technique they call “deterministic annealing” instead of ran-

domly restarting EM multiple times, so how to transfer this

technique to the RegPFA Predictor could be the subject of

future research. Some prediction techniques can also out-

perform EM-based approaches under certain conditions, such

as using collapsed Gibbs sampling (Shibata and Yoshinaka

2012), a technique from the Bayesian inference class. We did

not use these techniques, as they do not support visualization,

but they may be useful for prediction.

We did not investigate how the RegPFA technique could be

combined with other state-of-the-art data analysis techniques

in order to increase their overall predictive performance. For

instance, classification techniques can investigate business

data that resides in the context of a business process instance’s

execution. Thus, a stage like an applicant’s class of credit

worthiness could be predicted from case-related business data

like a participant’s age and then inform a process-related

prediction next to the process history.

So far the question concerning to what extent we can build

process models that comply with the workflow patterns van

der Aalst, ter Hofstede et al. (2003) introduce is unresolved.

In general, the RegPFA model can represent any behavior

expressible with state machines having designated start and

end states, as we specified the model with the notion of work-

flow nets in mind. Consequently, we expect most workflow

patterns to be expressible. However, some workflow patterns

(e.g., the cancellation pattern) describe behavior that corre-

sponds to rather complex state spaces that will quickly out-

grow the capabilities of the EM estimation technique even if

implemented on big data platforms. A thorough evaluation of

workflow pattern mining feasibility with EM-based RegPFA

estimation is deferred to future research.

Implications for Research on
Big Data Analytics

The presented technique provides an illustrative example of

new data-driven approaches to BPM that will be facilitated

through big data. The total runtime of our experiments was

about two months on a conventional computer and without

parallelization, because they required almost 100,000 runs of

the EM algorithm. However, the advances in distributed and

1030 MIS Quarterly Vol. 40 No. 4/December 2016

Breuker et al./Comprehensible Predictive Models for Business Processes

parallel computing technologies that go by the name “big

data” will make it possible to calculate the probabilistic

models suggested by our approach more quickly because the

computational tasks the technique requires can be executed

in parallel. Despite the time required for the current research,

at least with the stop threshold we chose for the EM algo-

rithm, RefPFA performs satisfactory. As its runtime is linear

in the size of the event log, it scales to even larger process

logs. In practical applications, mining can be executed peri-

odically, not every day, so runtimes of minutes or even hours

could be acceptable. The prediction itself—the question of

“what event will be next”—can be computed in milliseconds,

a satisfactory time even for real-time applications.

The results offered in this article have further implications for

research related to the generalities of big data analytics.

� Improving comprehensibility: The extant literature

emphasizes the importance of comprehensibility of pre-

dictive models so managers will have confidence in and

use them (e.g., Martens and Provost 2014). This

research included comprehensibility as a design goal,

and a large portion of the research activities has sought

probabilistic models that users without deep technical

knowledge can interpret and understand. Therefore, our

work may serve researchers in the field of big data as an

example of how to approach the goal of compre-

hensibility.

� Increasing the comprehensiveness of prediction ap-

proaches: Our technique could be one component of an

overarching, comprehensive approach to predictive

business process analytics, so future research related to

big data might seek to improve and integrate it with

other data analysis techniques. Dissemination of our

solution is encouraged, as the RegPFA artifact’s imple-

mentation is publicly available.

� Providing an example of how to adopt the methodo-

logical apparatus from machine learning: The machine

learning field provides mature instruments that can

facilitate the construction of innovative techniques that

are beneficial in various application contexts. The pre-

sent research demonstrates the relevance and power of IS

as an intersection discipline by fitting existing instru-

ments into a new context (BPM) and shows that big data

requires joint efforts of basic and applied research across

disciplines.

� Novel applications and use cases: Our technique will

facilitate applications that support novel BPM use cases

in which human process workers and responsible or

computational agents receive information on the likely

future behavior of single process instances at an early

stage of process execution. These cases are starting

points for future big data research. Researchers could

explore new ways to exploit prediction in certain business

contexts and focus on the challenges related to privacy,

protection of individual rights, and other ethical issues

that are associated with the use of the suggested technique

in organizations.

Conclusion

In this paper we designed a predictive modeling approach for

business process event data that is based on established

research from the field of grammatical inference. The appli-

cation of these techniques is novel in the field of business

process mining. Using experiments with synthetic and real-

world data, we showed that the RegPFA Predictor can be

effective, and we investigated the circumstances under which

it outperforms suitable benchmarks. We also showed that

probabilistic models can be adopted without scarifying

process-discovery capabilities and that the RegPFA Analyzer,

despite being based on a weak language bias, can compete

with state-of-the-art techniques from process mining. We

hope that, by making a case for probabilistic modeling in

process mining, we achieved a solution that is relevant and

long-lasting and that addresses what Chen and Storey (2012)

describe as “the challenge that our discipline continues to

face” (p. 1186). We trust that future research will explore its

advantages further.

Acknowledgments

RegPFA was partly developed in the course of the research
project “Business Process Compliance Management in the
Financial Sector,” which was funded by the German Research
Association from September 2012 to August 2014 (reference
number: DE1983/1-1).

References

Abbi, R., El-Darzi, E., Vasilakis, C., and Millard, P. 2008.

“Analysis of Stopping Criteria for the EM Algorithm in the

Context of Patient Grouping According to Length of Stay,” in

Proceedings of the 4th International IEEE Conference on Intelli-

gent Systems, Varna, Bulgaria, pp. 9-14.

Aggarwal, C. C., and Yu, P. S. 2009. “A Survey of Uncertain Data

Algorithms and Applications,” IEEE Transactions on Knowledge

and Data Engineering (21:5), pp. 609-623.

Akaike, H. 1998. “Information Theory and an Extension of the

Maximum Likelihood Principle,” in Selected Papers of Hirotugu

Akaike, E. Parzen, K. Tanabe, and G. Kitagawa (eds.), New York:

Springer, pp. 199-213.

MIS Quarterly Vol. 40 No. 4/December 2016 1031

Breuker et al./Comprehensible Predictive Models for Business Processes

Arnold, V., Clark, N., Collier, P. A., Leech, S. A., and Sutton, S. G.

2006. “The Differential Use and Effect of Knowledge-Based

System Explanations in Novice and Expert Judgement

Decisions,” MIS Quarterly (30:1), pp. 79-97.

Barber, D. 2011. Bayesian Reasoning and Machine Learning,

Cambridge, UK: Cambridge University Press.

Baum, L. E., Petrie, T., Soules, G., and Weiss, N. 1970. “A Maxi-

mization Technique Occurring in the Statistical Analysis of

Probabilistic Functions of Markov Chains,” The Annals of

Mathematical Statistics (41:1), pp. 164-171.

Bishop, C. M. 2006. Pattern Recognition and Machine Learning,

New York: Springer.

Bose, R. P. J. C., and van der Aalst, W. M. P. 2012. “Process

Diagnostics Using Trace Alignment: Opportunities, Issues, and

Challenges,” Information Systems (37:2), pp. 117-141.

Blum, T., Padoy, N., Feußner, H., and Navab, N. 2008. “Workflow

Mining for Visualization and Analysis of Surgeries,” Inter-

national Journal of Computer Assisted Radiology and Surgery

(3:5), pp. 379-386.

Carrasco, R. C., and Oncina, J. 1994. “Learning Stochastic

Regular Grammars by Means of a State Merging Method,” in

Proceedings of the 2nd International ICGI Colloquium on

Grammatical Interference and Applications, R. C. Carrasco and

J. Oncina (eds.), Berlin: Springer, pp. 139-152.

Celelux, G., and Durant, J. 2008. “Selecting Hidden Markov

Model State Number with Cross-Validated Likelihood,” Compu-

tational Statistics (23:4), pp. 541-564.

Chater, N., and Manning, C. D. 2006. “Probabilistic Models of

Language Processing and Acquisition,” Trends in Cognitive

Sciences (10:7), pp. 335-344.

Chen, H., and Storey, V. C. 2012. “Business Intelligence and

Analytics: From Big Data to Big Impact,” MIS Quarterly (36:4),

pp. 1165-1188.

Chen, M., Shiwen, M., and Liu, Y. 2014. “Big Data: A Survey,”

Mobile Networks and Applications (19:2), pp. 171-209.

Cook, J. E., and Wolf, A. L. 1998. “Discovering Models of Soft-

ware Processes from Event-based Data,” ACM Transactions on

Software Engineering and Methodology (7:3), pp. 215-249.

Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., and

Yakovlev, A. 1997. “Petrify: A Tool for Manipulating Con-

current Specifications and Synthesis of Asynchronous Con-

trollers,” IEICE Transactions on Information and Systems (E80-

D:3), pp. 315-325.

de la Higuera, C. 2005. “A Bibliographical Study of Grammatical

Inference,” Pattern Recognition (38:9), pp. 1332-1348.

de la Higuera, C. 2010. Grammatical Inference. Learning Auto-

mata and Grammar, Cambridge, UK: Cambridge University

Press.

de Medeiros, A. K. 2006. Genetic Process Mining, unpublished

Ph.D. thesis, Technische Universiteit Eindhoven, Eindhoven,

The Netherlands.

de Weerdt, J., de Backer, M., Vanthienen, J., and Baesens, B. 2012.

“A Multi-Dimensional Quality Assessment of State-of-the-Art

Process Discovery Algorithms Using Real-Life Event Logs,”

Information Systems (37:7), pp. 654-676.

Dempster, A., Laird, N., and Rubin, D. 1977. “Maximum Likeli-

hood from Incomplete Data via the EM Algorithm,” Journal of

the Royal Statistical Society. Series B (Methodological) (39:1),

pp. 1-22.

Ferreira, D. R., and Gillblad, D. 2009. “Discovering Process Models

from Unlabelled Event Logs,” in Proceedings of the 7th

International Conference on Business Process Management, U.

Dayal, J. Eder, J. Koehler, and H. A. Reijers (eds.), Berlin:

Springer, pp. 143-158.

Folino, F., Guarascio, M., and Pontieri, L. 2012. “Discovering

Context-Aware Models for Predicting Business Process Perfor-

mances,” in On the Move to Meaningful Internet Systems: OTM

2012, R. Meersman, H. Panetto, T. Dillon, S. Rinderle-Ma,

P. Dadam, X. Zhou, S. Pearson, A. Ferscha, S. Bergamaschi, and

I. F. Cruz (eds.), Berlin: Springer, pp. 287-304.

Gao, J., and Johnson, M. 2008. “A Comparison of Bayesian

Estimators for Unsupervised Hidden Markov Model POS

Taggers,” in Proceedings of the Conference on Empirical

Methods in Natural Language Processing, Stroudsburg, PA:

Association for Computational Linguistics, pp. 344-352.

Goedertier, S., Martens, D., Vanthienen, J., and Baesens, B. 2009.

“Robust Process Discovery with Artificial Negative Events,”

Journal of Machine Learning Research (10), pp. 1305-1340.

Gregor, S., and Hevner, A. R. 2013. “Positioning and Presenting

Design Science Research for Maximum Impact,” MIS Quarterly

(37:2), pp. 337-355.

Grigori, D., Casati, F., Castellanos, M., and Dayal, U. 2004.

“Business Process Intelligence,” Computers in Industry (53:3), pp.

321-343.

Günther, C. W., and van der Aalst, W. M. P. 2007. “Fuzzy Mining:

Adaptive Process Simplification Based on Multi-Perspective

Metrics,” in Proceedings of the 5th International Conference on

Business Process Management, G. Alonso, P. Dadam, and M.

Rosemann (eds.), Berlin: Springer, pp. 328-343.

Hastie, T., Tibshirani, R., and Friedman, J. 2009. The Elements of

Statistical Learning—Data Mining, Inference, and Prediction, (2nd

ed.), New York: Springer.

Herbst, J., and Karagiannis, D. 2004. “Workflow Mining with

InWoLvE,” Computers in Industry (53:3), pp. 245-264.

Hopcroft, J. E., Motwani, R., and Ullman, J. D. 2009. Introduction

to Automata Theory, Languages, and Computation (3rd ed.),

Cambridge, UK: Pearson.

Hulden, M. 2012. “Treba: Efficient Numerically Stable EM for

PFA,” in Proceedings of the 11th International Conference on

Grammatical Inference, September 5-8, 2012, University of

Maryland, College Park, pp. 249-253.

Janiesch, C., Matzner, M., and Müller, O. 2012. “Beyond Process

Monitoring: A Proof-of-Concept of Event-Driven Business

Activity Management,” Business Process Management Journal

(18:4), pp. 625-643.

Jeong, H., Biswas, G., Johnson, J., and Howard, L. 2010. “Analysis

of Productive Learning Behaviors in a Structured Inquiry Cycle

Using Hidden Markov Models,” in Proceedings of the 3rd Inter-

national Conference on Educational Data Mining, R. S. J. D.

Baker, A. Merceron, and P. I. Pavlik Jr. (eds.), Pittsburgh, PA, pp.

81-90.

Karlis, D., and Xekalaki, E. 2003. “Choosing Initial Values for the

EM Algorithm for Finite Mixtures,” Computational Statistics &

Data Analysis (41:2), pp. 577-590.

1032 MIS Quarterly Vol. 40 No. 4/December 2016

Breuker et al./Comprehensible Predictive Models for Business Processes

Kayande, U., de Bruyn, A., Lilien, G. L., Rangaswamy, A., and van

Bruggen, G. H. 2009. “How Incorporating Feedback Mech-

anisms in a DSS Affects DSS Evaluations,” Information Systems

Research (20:4), pp. 527-546.

Kepler, F. N., Mergen, S. L. S., and Billa, C. Z. 2012. “Simple

Variable Length N-grams for Probabilistic Automata Learning,”

in Proceedings of the 11th International Conference on Gram-

matical Inference, September 5-8, 2012, University of Maryland,

College Park, pp. 254-258.

Kim, A., Obregon, J., and Jung, J. 2014. “Constructing Decision

Trees from Process Logs for Performer Recommendation,” in

Business Process Management Workshops, N. Lohmann, M.

Song, and P. Wohed (eds.), Berlin: Springer, pp. 224-236.

Koller, D., and Friedman, N. 2009. Probabilistic Graphical

Models: Principles and Techniques, Foundations, Adaptive Com-

putation and Machine Learning, Cambridge, MA: MIT Press.

Kruskal, W. H., Wallis, W. A. 1952. “Use of Ranks in One-

Criterion Variance Analysis,” Journal of the American Statistical

Association (47:260), pp. 583-621.

Lakshmanan, G. T., Shamsi, D., Doganata, Y. N., Unuvar, M., and

Khalaf, R. 2015. “A Markov Prediction Model for Data-Driven

Semi-Structured Business Processes,” Knowledge and Informa-

tion Systems (42:1), pp. 97-126.

Li, J., Liu, D., and Yang, B. 2007. “Process Mining: Extending α-

Algorithm to Mine Duplicate Tasks in Process Logs,” in

Advances in Web and Network Technologies, and Information

Management, K. C. C.-C. Chang, W. Wang, L. Chen, C. A. Ellis,

C.-H. Hsu, A, C, Tsoi, and H. Wang (eds.), Berlin: Springer,

pp. 396-407.

Lilien, G. L., Rangaswamy, A., van Bruggen, G. H., and Starke, K.

2004. “DSS Effectiveness in Marketing Resource Allocation

Decisions: Reality vs. Perception,” Information Systems

Research (15:3), pp. 216-235.

Lund, S., Manyika, J., Nyquist, S., Mendonca, L., and Ramaswamy,

S. 2013. “Game Changers: Five Opportunities for US Growth

and Renewal,” McKinsey Global Institute Report (available at

http://www.mckinsey.com/global-themes/americas/us-game-

changers).

Maggi, F. M., di Francescomarino, C., Dumas, M., and Ghidini, C.

2014. “Predictive Monitoring of Business Processes,” in Ad-

vanced Information Systems Engineering, M. Jarke, J. Mylo-

poulos, C. Quix, C. Rolland, Y. Manolopoulos, H. Mouratidis,

and J. Horkoff (eds.), Berlin: Springer, pp. 457-472.

Martens, D., and Provost, F. 2014. “Explaining Data-Driven

Document Classifications,” MIS Quarterly (38:1), pp. 73-100.

Moon, T. K. 1996. “The Expectation-Maximization Algorithm,”

IEEE Signal Processing Magazine (13:6), pp. 47-60

Murata, T. 1989. “Petri Nets: Properties, Analysis and Appli-

cations,” Proceedings of the IEEE (77:4), pp. 541-580.

Murphy, K. 2012. Machine Learning: A Probabilistic Perspec-

tive, Cambridge, MA: MIT Press.

Norvig, P. 2011. “On Chomsky and the Two Cultures of Statistical

Learning” (available at http://norvig.com/chomsky.html).

Nowak, M., Komarova, N. L., and Niyogi, P. 2002. “Computa-

tional and Evolutionary Aspects of Language,” Nature (417), pp.

611-617.

Provost, F., and Fawcett, T. 2013. Data Science for Business:

What You Need to Know about Data Mining and Data-Analytic

Thinking, Sebastopol, CA: O’Reilly and Associates.

Rabiner, L. R. 1989. “A Tutorial on Hidden Markov Models and

Selected Applications in Speech Recognition,” Proceedings of the

IEEE (77:2), pp. 257-286.

Ron, D., Singer, Y., and Tishby, N. 1998. “On the Learnability and

Usage of Acyclic Probabilistic Finite Automata,” Journal of

Computer and System Sciences (56:2), pp. 133-152.

Rosenfeld, R. 2000. “Two Decades of Statistical Language

Modeling: Where Do We Go From Here?,” Proceedings of the

IEEE (88:8), pp. 1270-1278.

Rozinat, A., and van der Aalst, W. M. P. 2008. “Conformance

Checking of Processes Based on Monitoring Real Behavior,”

Information Systems (33:1), pp. 64-95.

SAP. 2007. “Standardized Technical Architecture Modeling

Conceptual and Design Level” (available at http://www.fmc-

modeling.org/download/fmc-and-tam/SAP-TAM_Standard.pdf).

Shibata, C., and Yoshinaka, R. 2012. “Marginalizing Out Transition

Probabilities for Several Subclasses of PFAs,” in Proceedings of

the 11th International Conference on Grammatical Inference, J.

Heinz, C. de la Higuera, and T. Oates (eds.), September 5-8, 2012,

University of Maryland, College Park, pp. 259-263.

Shmueli, G., and Koppius, O. R. 2011. “Predictive Analytics in

Information Systems Research,” MIS Quarterly (35:3), pp.

553-572.

Steck, H., and Jaakkola, T. 2002. “On the Dirichlet Prior and

Bayesian Regularization,” Advances in Neural Information

Processing Systems (15), pp. 1441-1448.

Stolcke, A. 1994. Bayesian Learning of Probabilistic Language

Models, unpublished Ph.D. thesis, University of California,

Berkeley.

Tiwari, A., Turner, C. J., and Majeed, B. 2008. “A Review of

Business Process Mining: State-of-the-Art and Future Trends,”

Business Process Management Journal (14:1), pp. 5-22.

Turner, C. J., Tiwari, A., Olaiya, R., and Xu, Y. 2012. “Business

Process Mining: From Theory to Practice,” Business Process

Management Journal (18:3), pp. 493-512.

Ueda, N., and Nakano, R. 1998. “Deterministic Annealing EM

Algorithm,” Neural Networks (11:2), pp. 271-282.

van der Aalst, W. M. P. 1998. “The Application of Petri Nets to

Workflow Management,” Journal of Circuits, Systems and

Computers (8:1), pp. 21-66.

van der Aalst, W. M. P. 2009. “TomTom for Business Process

Management (TomTom4BPM),” in Advanced Information

Systems Engineering, P. van Eck, J. Gordijn, and R. Wieringa

(eds.), Berlin: Springer, pp. 2-5.

van der Aalst, W. M. P. 2011. Process Mining: Discovery, Confor-

mance and Enhancement of Business Processes, Berlin: Springer.

van der Aalst, W. M. P. 2013. “Business Process Management: A

Comprehensive Survey,” ISRN Software Engineering

(http://dx.doi.org/10.1155/2013/507984), pp. 1-37.

van der Aalst, W. M. P., Adriansyah, A., Alves de Medeiros, A. K.,

Arcieri, F., Baier, T., Blickle, T., Bose, J. C., van den Brand, P.,

Brandtjen, R., Buijs, J., et al. 2011. “Process Mining Manifesto,”

in Business Process Management Workshops, F. Daniel, K.

Barkaoui, and S. Dustdar (eds.), Berlin: Springer, pp. 169-194.

van der Aalst, W. M. P., Pesic, M., and Song, M. 2010. “Beyond

Process Mining: From the Past to Present and Future,” in

Advanced Information Systems Engineering, B. Pernici (ed.),

Berlin: Springer, pp. 38-52.

van der Aalst, W. M. P., Rubin, V., Verbeek, H. M. W., van Dongen,

MIS Quarterly Vol. 40 No. 4/December 2016 1033

Breuker et al./Comprehensible Predictive Models for Business Processes

B. F., Kindler, E., and Günther, C. W. 2010. “Process Mining:

A Two-Step Approach to Balance Between Underfitting and

Overfitting,” Software and Systems Modeling (9:1), pp. 87-111.

van der Aalst, W. M. P., Schonenberg, M. H., and Song, M. 2011.

“Time Prediction Based on Process Mining,” Information

Systems Journal (36:2), pp. 450-475.

van der Aalst, W. M. P., ter Hofstede, A. H. M., Kiepuszewski, B.,

and Barros, A. P. 2003. “Workflow Patterns,” Distributed and

Parallel Databases (14:3), pp. 5-51.

van der Aalst, W. M. P., van Dongen, B., Herbst, J., Maruster, L.,

Schimm, G., and Weijters, A. 2003. “Workflow Mining: A

Survey of Issues and Approaches,” Data & Knowledge Engi-

neering (47:2), pp. 237-267.

van der Aalst, W. M. P., Weijters, T., and Maruster, L. 2004.

“Workflow Mining: Discovering Process Models from Event

Logs,” IEEE Transactions on Knowledge and Data Engineering

(16:9), pp. 1128-1142.

van der Werf, J. M. E. M., van Dongen, B., and Hurkens, C. 2009.

“Process Discovery Using Integer Linear Programming,”

Fundamenta Informaticae (94:3-4), pp. 387-412.

van Dongen, B. F. 2012. “BPI Challenge 2012—Event Log of a

Loan Application Process,” Eindhoven University of

Technology.

van Dongen, B. F. 2013. “BPI Challenge 2013— Logs of Volvo

IT Incident and Problem Management,” Eindhoven University

of Technology.

Verwer, S., Eyraud, R., and de la Higuera, C. 2014. “PAutomaC:

A Probabilistic Automata and Hidden Markov Models Learning

Competition,” Machine Learning (96:1-2), pp. 129-154.

Vidal, E., Thollard, F., de la Higuera, C., Casacuberta, F., and

Carrasco, R. C. 2005. “Probabilistic Finite-State Machines—

Part I,” IEEE Transactions on Pattern Analysis and Machine

Intelligence (27:7), pp. 1013-1025.

Weber, P., Bordbar, B., and Tino, P. 2013. “A Principled Ap-

proach to Mining from Noisy Logs Using Heuristics Miner,” in

Proceedings of the 2013 IEEE Symposium on Computational

Intelligence and Data Mining, April 16-19, Singapore, pp.

119-126.

Weijters, A., van der Aalst, W. M. P., and de Medeiros, A. K.

2006. “Process Mining with the Heuristics Miner Algorithm,”

No. 166, BETA Working Paper Series, Eindhoven, The

Netherlands, pp. 1-34. (available at http://wwwis.win.tue.nl/

~wvdaalst/publications/p314.pdf).

Wen, L., van der Aalst, W. M. P., Wang, J., and Sun, J. 2007.

“Mining Process Models with Non-Free-Choice Constructs,”

Data Mining and Knowledge Discovery (15:2), pp. 145-180.

Zhai, C., and Lafferty, J. 2004. “A Study of Smoothing Methods

for Language Models Applied to Information Retrieval,” ACM

Transactions on Information Systems (TOIS) (22:2), pp. 179-214.

About the Authors

Dominic Breuker is a tech developer at Hitfox group, Berlin,

Germany. He studied Information Systems at the University of

Münster, and he holds a Master of Science and a Ph.D. in Infor-

mation Systems. Before he changed to industry, Dominic was a

Ph.D. student at the University of Münster, Germany, and visiting

researcher at the Ulsan National Institute of Science and Technology,

South Korea, and Queensland University of Technology, Australia.

His research interests include business process management, business

intelligence, process mining, and machine learning. He has pub-

lished his work in peer-reviewed academic journals and presented at

major international conferences.

Martin Matzner is an assistant professor at the Department of Infor-

mation Systems at the University of Münster, Germany. In 2012, he

received a Ph.D. degree in Information Systems from the University

of Münster for his work on the management of networked service

business processes. His main research interests include business pro-

cess management, business process analytics, and service manage-

ment. In these areas, he concluded and currently manages a number

of research projects funded by the European Union, the German

Federal Government and industry. His work has been published in

peer-reviewed academic journals and presented at major international

conferences.

Patrick Delfmann is an associate professor at the Department of

Information Systems at the University of Münster, Germany. Cur-

rently, he is on leave and works as an acting professor at the

Department for IS Research at the University of Koblenz-Landau,

Germany. He was the coordinator of several research projects,

funded by national and international funding organizations. Patrick

teaches at the Universities of Koblenz-Landau and Münster and he

was a visiting professor in Moscow, Vienna, Biel, and Osnabrück.

His work comprises more than 90 scientific papers, many of which

appeared in international journals (e.g., Information Systems, Infor-

mation Systems Frontiers, Business & Information Systems Engi-

neering, and Communications of the AIS) and conference proceedings

(e.g., International Conference on Information Systems, European

Conference on Information Systems, and International Conference on

Conceptual Modeling). His research interests include conceptual

modeling, model analysis, semantic process modeling, business

process compliance management, business process improvement, and

process mining.

Jörg Becker is professor at and director of the Department of Infor-

mation Systems at the University of Münster, Germany, and the

academic director of the European Research Center for Information

Systems (ERCIS). Jörg is editor-in-chief for Information Systems and

e-Business Management and serves on various editorial boards. He

has published in academic journals including Information Systems

Journal and European Journal of Information Systems and his work

has been presented at major international conferences. Jörg’s areas

of research include information management, information modeling,

and retail information systems. He holds Ph.D. degrees from the

University of Saarbrücken, Voronezh State University (Ph.D. hc),

and the University of Turku (Ph.D. hc). Jörg is an honorary professor

of NRU-HSE Moscow. Furthermore, he is involved in strategic IT

consulting projects with industrial, service, and retail trade

companies.

1034 MIS Quarterly Vol. 40 No. 4/December 2016

BIG DATA & ANALYTICS IN NETWORKED BUSINESS

COMPREHENSIBLE PREDICTIVE MODELS FOR

 BUSINESS PROCESSES

Dominic Breuker

Hitfox Group GmbH, Rosa-Luxemburg-Str 2, 10178 Berlin, GERMANY {dominic.breuker@hitfoxgroup.com}

Martin Matzner

European Research Center for Information Systems (ERCIS), University of Muenster, Leonardo-Campus 3,

48149 Münster, GERMANY {martin.matzner@ercis.uni-muenster.de}

Patrick Delfmann

Institute for IS Research, University of Koblenz-Landau, Universitätsstraße 1,

56070 Koblenz, GERMANY {delfmann@uni-koblenz.de}

Jörg Becker

European Research Center for Information Systems (ERCIS), University of Muenster, Leonardo-Campus 3,

48149 Münster, GERMANY {joerg.becker@ercis.uni-muenster.de}

Appendix A

Synthetic Models and Their Characteristics

Table A1 summarizes the various characteristics of the synthetic models used in the experiments, including the number of event types, the size

of the state space, whether a challenging construct is contained (loops, duplicates, nonlocal choice, and concurrency), and the entropy of the

process defined by the model (estimated based on a sample of size 10,000). The original models may contain either duplicate tasks (two

conceptually different transitions with the same label) or invisible tasks (transitions that have no label, as their firing is not recorded in the event

log). We transformed all invisible transitions to duplicates such that, when there was an invisible task i in the original model, we added

duplicates for all transitions t that, when fired, enable the invisible transition. These duplicates emulate the combined firing of t and i. Since

we do not distinguish between duplicates and invisible tasks, we combined this category.

MIS Quarterly Vol. 40 No. 4–Appendices/December 2016 A1

Breuker et al./Comprehensible Predictive Models for Business Processes

Table A1. Petri Net Models and Their Characteristics

Model E
v
e
n

ts

S
ta

te
s

L
o

o
p

s

N
o

n
lo

c
a
l

C
h

o
ic

e

C
o

n
c
u

rr
e
n

c
y

D
u

p
li
c
a
te

s

E
s
ti

m
a
te

d
E

n
tr

o
p

y

1 4 3 1 0 0 0 4.74

1Skip 4 6 1 0 1 1 5.97

2 4 4 1 0 0 0 1.97

2Optional 4 4 1 0 0 0 1.99

2Skip 4 5 1 0 0 1 2.02

a1 7 7 1 0 1 0 6.02

a10Skip 10 11 0 0 1 1 2.58

a12 12 13 0 0 1 0 2.25

a2 11 14 1 0 1 0 8.07

a5 5 6 1 0 1 0 2.35

a6nfc 5 7 0 1 1 0 1.50

a7 7 10 0 0 1 0 3.56

a8 8 8 0 0 1 0 1.92

betaSimplified 11 18 0 1 0 1 2.00

bn1 41 40 0 0 0 0 2.00

bn2 41 40 1 0 0 1 4.00

bn3 41 40 1 0 0 1 9.02

Choice 10 7 0 0 0 0 4.00

driversLicense 7 8 0 1 0 0 1.00

flightCar 6 8 0 0 1 1 1.92

herbstFig3p4 10 11 1 0 1 0 4.45

herbstFig5p19 3 6 0 0 1 1 2.51

herbstFig5p1AND 3 4 0 0 0 1 1.00

herbstFig5p1OR 6 8 0 0 1 1 1.00

herbstFig6p10 9 13 1 0 1 1 3.63

herbstFig6p18 5 5 1 0 0 1 6.77

herbstFig6p25 19 19 1 0 0 1 6.20

herbstFig6p31 7 7 0 0 0 1 2.00

herbstFig6p33 8 8 0 0 0 1 1.92

herbstFig6p34 10 15 1 0 1 1 6.44

herbstFig6p36 10 16 0 1 0 0 1.00

herbstFig6p37 14 51 0 0 1 0 9.25

herbstFig6p38 5 11 0 0 1 1 2.16

herbstFig6p39 5 11 0 0 1 1 3.42

herbstFig6p41 14 18 0 0 1 0 3.50

herbstFig6p42 12 20 0 0 1 1 3.95

herbstFig6p45 6 14 0 0 1 0 3.45

herbstFig6p9 5 7 0 0 0 1 2.00

parallel5 7 34 0 0 1 0 6.91

A2 MIS Quarterly Vol. 40 No. 4—Appendices/December 2016

Breuker et al./Comprehensible Predictive Models for Business Processes

Detailed Results of the Experiments with Synthetic Data

Tables A2 and A3 document in detail the results of the experiments with synthetic data. As discussed in the section on experiment 2, we fitted

a RegPFA to the training set (70%) of each of the event logs and measured the result’s quality by computing the cross entropy with respect

to the large test event log (10,000 process instances). The tables show the increase in cross entropy relative to the entropy of the actual entropy

listed for each event log in Table A1. Therefore, the entries in Tables A2 and A3 represent the increase in entropy when the fitted model is

used instead of the true model that generated the data. We report the performance with respect to each model’s selection criterion and the

“optimal” performance, that is, the performance that could have been achieved had the model selection delivered the best of all candidate

models.

Table A2 lists results for the large event logs (700 process instances in the training set and 300 process instances in the validation set).

Table A2. Experiments on Synthetic Data with Large Event Logs

Model Validation Set AIC HIC0.05 Optimal

1 0.01 0.01 0.67 0.01

1Skip 1.02 1.88 2.71 1.00

2 0.00 0.00 0.00 0.00

2Optional 0.00 0.00 0.00 0.00

2Skip 0.00 0.10 0.00 0.00

a1 27.13 inf 27.01 20.76

a10skip inf 34.45 28.23 27.04

a12 27.50 404.19 inf 19.70

a2 691.59 47.60 47.60 43.29

a5 0.01 0.00 0.00 0.00

a6nfc 12.51 42.62 5.87 3.76

a7 27.10 19.35 25.20 17.38

a8 inf inf 18.30 9.27

betaSimplified 45.40 inf 43.11 36.63

bn1 0.00 26.27 0.00 0.00

bn2 inf 84.52 74.12 72.45

bn3 inf 145.69 111.74 107.00

Choice 24.83 inf 23.00 15.51

driversLicense 0.00 0.00 0.00 0.00

flightCar 138.49 26.68 26.68 21.91

hFig3p4 41.86 82.51 inf 38.48

hFig5p1AND 1.02 1.17 1.17 1.02

hFig5p1OR 0.00 0.00 0.00 0.00

hFig5p19 0.00 0.00 0.00 0.00

hFig6p10 40.68 inf 38.33 31.17

hFig6p18 inf inf 15.11 14.39

hFig6p25 22.36 36.56 27.70 20.06

hFig6p31 421.27 421.27 16.50 11.12

hFig6p33 inf inf inf 13.76

hFig6p34 55.33 94.33 46.34 38.65

hFig6p36 1.00 1.00 1.00 1.00

hFig6p37 56.11 39.69 52.52 35.34

hFig6p38 98.71 362.66 inf 7.10

hFig6p39 22.67 25.92 20.51 17.58

MIS Quarterly Vol. 40 No. 4–Appendices/December 2016 A3

Breuker et al./Comprehensible Predictive Models for Business Processes

hFig6p41 10.01 34.44 18.08 8.38

hFig6p42 34.54 33.59 33.27 25.41

hFig6p45 inf 16.21 15.40 12.06

hFig6p9 4.10 4.07 3.99 3.87

parallel5 0.10 3.21 0.25 0.10

best choice 16 11 24

inf 7 7 4 0

Table A3 lists results for the small event logs (35 process instances in the training set and 15 process instances in the validation set).

Table A3. Experiments on Synthetic Data with Small Event Logs

Model Validation Set AIC HIC0.05 Optimal

1 inf inf 10.84 3.57

1Skip 0.91 1.86 2.46 0.91

2 0.13 0.01 0.01 0.01

2Optional 0.32 6.07 0.01 0.01

2Skip 0.00 0.76 0.20 0.00

a1 25.16 29.00 24.08 13.59

a10skip inf 27.55 25.42 22.50

a12 inf 19.33 7.14 5.18

a2 inf 51.33 36.88 31.09

a5 0.06 0.06 0.06 0.06

a6nfc 0.21 1.59 0.31 0.21

a7 25.80 9.09 1.74 1.14

a8 0.11 3.31 0.11 0.11

betaSimplified inf 38.29 inf 28.02

bn1 inf 132.57 69.24 66.80

bn2 inf 198.52 73.48 69.74

bn3 inf 216.81 132.54 129.03

Choice inf 15.77 inf 13.35

driversLicense 0.00 1.00 0.00 0.00

flightCar 0.07 7.89 0.07 0.07

hFig3p4 inf 36.64 inf 28.81

hFig5p1AND 17.66 12.30 16.37 11.89

hFig5p1OR 0.01 0.01 0.01 0.01

hFig5p19 0.00 5.12 0.00 0.00

hFig6p10 39.29 inf 34.31 31.51

hFig6p18 inf 107.95 14.93 11.98

hFig6p25 65.92 67.37 inf 59.24

hFig6p31 0.04 7.04 0.04 0.04

hFig6p33 inf inf 22.87 18.66

hFig6p34 inf 52.81 inf 40.79

hFig6p36 1.03 7.03 1.04 1.03

hFig6p37 57.12 52.10 52.75 41.00

hFig6p38 18.96 80.53 22.53 6.20

hFig6p39 18.90 9.16 16.66 9.16

hFig6p41 0.23 11.75 0.24 0.23

A4 MIS Quarterly Vol. 40 No. 4—Appendices/December 2016

Breuker et al./Comprehensible Predictive Models for Business Processes

hFig6p42 15.87 23.21 14.17 10.62

hFig6p45 5.94 inf 5.26 4.84

hFig6p9 inf inf 15.65 11.56

parallel5 8.61 12.74 11.42 6.66

best choice 14 10 20

inf 14 5 5 0

Table A4 shows the fitness and advanced behavioral appropriateness scores for all event logs used to evaluate the RegPFA Analyzer.

Table A4. Experiments on Process Discovery

Model Fitness

Advanced

Behavioral

Appropriateness

|2| 1.00 0.69

|2|Optional 1.00 1.00

|2|Skip 1.00 0.59

a10skip 1.00 1.00

a12 1.00 1.00

a5 1.00 1.00

a6nfc 1.00 1.00

a7 1.00 1.00

a8 1.00 1.00

betaSimplified 1.00 0.65

Choice 1.00 1.00

driversLicense 1.00 1.00

driversLicensel 1.00 0.88

hFig3p4 1.00 0.74

hFig5p19 0.97 1.00

hFig6p18 1.00 0.81

hFig6p31 1.00 1.00

hFig6p36 1.00 0.80

hFig6p38 1.00 1.00

hFig6p41 1.00 1.00

Ø 0.998 0.908

MIS Quarterly Vol. 40 No. 4–Appendices/December 2016 A5

Breuker et al./Comprehensible Predictive Models for Business Processes

Table A5 compares the experiment’s results to the other algorithms’ scores that de Weerdt et al. (2012) report.

Table A5. Comparison with Fitness and Advanced Behavioral Appropriateness Scores Reported in de
Weerdt et al. (2012)

Algorithm Fitness

Advanced Behavioral

Appropriateness

ProbabilisticMiner 0.998 0.908

AGNES-Miner 0.995 0.813

α+ 0.969 0.873

α++ 0.984 0.879

DT Genetic Miner 0.996 0.778

Genetic Miner 0.998 0.737

HeuristicsMiner 0.973 0.809

ILP Miner 1.000 0.786

Appendix B

Description of the Baseline Predictors Used in Experiment 2

We applied n-gram models to business process event data in experiment 2. N-gram models, popular techniques for language modeling,

distribute the event sequences of business processes by means of several conditional probability tables. For each sequence of up to n-1 events,

a probability table is maintained that specifies the distribution over the next event. The distribution is modeled formally as follows:

() () ()P X X P X X X P X X Xc

T

c

i

c

i

c c

i

c

i

c

i n

c

i

T

i

T

c

cc

0 1 0 1 1

00

() () () () () () () (), , , , , , = ≈= − − +

==

∏∏

The conditional probability tables can be estimated by processing the event log to search for substrings that match()P X X Xi

c

i

c

i n

c() () (), ,− − +1 1

the values of the variables and counting how often each event type follows the sequence. The counts allow probabilities toX Xi

c

i n

c

− − +1 1

() (), ,
be estimated as relative frequencies.

As an example, Figure B1 shows the same business process and event log that Figure 1 shows, but it also contains conditional probability tables

for a three-gram estimated from the five process instances in the event log. For instance, these tables predict that, after an event sequence AB,

an event of type D will follow with probability 1.0, and after an event sequence BD, an event of type kill will follow with probability 1.0. Event

kill is the artificial event that indicates process termination.

We show only a subset of all possible conditional probability tables. For instance, there is no table for event sequence AD because the tables

are constructed from the relative frequencies with which certain types of events follow on the event sequence in the event log, and there is no

occurrence of AD in the event log.

We maintain tables not only for event sequences of length n – 1, but also for shorter event sequences. In the example in Figure B1, we maintain

a table for the empty sequence (--) and for the sequence that contains only an event of type A (-A). The empty sequence is needed in order to

model the probabilities of seeing a given type of event at the beginning of the process, while the sequence of only an event of type A (-A) is

needed since A was observed in the event log with no event before it. In two out of five processes’ instances, an event of type B follows after

seeing only A. Three out of five instances proceed with a C, so the corresponding probabilities in the table are 0.4 and 0.6.

A6 MIS Quarterly Vol. 40 No. 4—Appendices/December 2016

Breuker et al./Comprehensible Predictive Models for Business Processes

A

review

application

B

accept

C

reject

D

grant credit

E

send rejection

letter

Process

instance

Event

sequence

ABD
ACE
ABD
ACE
ACE

C1
C2
C3
C4
C5

Event log

Probability

A
B
C
D
E

kill

Sequence = (--)

Event type

1.0
0.0
0.0
0.0
0.0
0.0

Probability

A
B
C
D
E

kill

Sequence = (-A)

Event type

0.0
0.4
0.6
0.0
0.0
0.0

Probability

A
B
C
D
E

kill

Sequence = (AB)

Event type

0.0
0.0
0.0
1.0
0.0
0.0

Probability

A
B
C
D
E

kill

Sequence = (AC)

Event type

0.0
0.0
0.0
0.0
1.0
0.0

Probability

A
B
C
D
E

kill

Sequence = (BD)

Event type

0.0
0.0
0.0
0.0
0.0
1.0

Probability

A
B
C
D
E

kill

Sequence = (CE)

Event type

0.0
0.0
0.0
0.0
0.0
1.0

The History predictor, which we used in experiment 2 in addition to the n-gram, can be interpreted as a special type of n-gram. Since the

History predictor is not limited in terms of the length of the event sequence it considers, it is an n-gram of unbounded length. Given a particular

event log in which the longest process instance is of length , the History predictor is a Tmax-gram.T T
c

cmax max=

Figure B1. Estimating a Three-Gram for an Exemplary Event Log

References

de Weerdt, J., de Backer, M., Vanthienen, J., and Baesens, B. 2012. “A Multi-Dimensional Quality Assessment of State-of-the-Art Process

Discovery Algorithms Using Real-Life Event Logs,” Information Systems (37:7), pp. 654-676.

MIS Quarterly Vol. 40 No. 4–Appendices/December 2016 A7

