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Abstract

Background: Understanding the interactions between tumor and the host immune system is critical to finding

prognostic biomarkers, reducing drug resistance, and developing new therapies. Novel computational methods are

needed to estimate tumor-infiltrating immune cells and understand tumor–immune interactions in cancers.

Results: We analyze tumor-infiltrating immune cells in over 10,000 RNA-seq samples across 23 cancer types from

The Cancer Genome Atlas (TCGA). Our computationally inferred immune infiltrates associate much more strongly

with patient clinical features, viral infection status, and cancer genetic alterations than other computational

approaches. Analysis of cancer/testis antigen expression and CD8 T-cell abundance suggests that MAGEA3 is a

potential immune target in melanoma, but not in non-small cell lung cancer, and implicates SPAG5 as an

alternative cancer vaccine target in multiple cancers. We find that melanomas expressing high levels of CTLA4

separate into two distinct groups with respect to CD8 T-cell infiltration, which might influence clinical responses to

anti-CTLA4 agents. We observe similar dichotomy of TIM3 expression with respect to CD8 T cells in kidney cancer

and validate it experimentally. The abundance of immune infiltration, together with our downstream analyses and

findings, are accessible through TIMER, a public resource at http://cistrome.org/TIMER.

Conclusions: We develop a computational approach to study tumor-infiltrating immune cells and their interactions

with cancer cells. Our resource of immune-infiltrate levels, clinical associations, as well as predicted therapeutic

markers may inform effective cancer vaccine and checkpoint blockade therapies.

Keywords: Cancer immunity, Tumor immune infiltration, Cancer immunotherapies, Cancer vaccine, Checkpoint

blockade

Background
Cancer immunotherapy has recently achieved remarkable

success in treating late stage tumors [1, 2], but a substan-

tial fraction of patients failed to respond [3, 4]. Efforts

have been made to elucidate the tumor–immune interac-

tions [5–8] and provide prognostic predictors [9–11].

Rooney et al. [6] studied cytolytic activity (CYT) using the

expression levels of two effector molecules and identified

possible mechanisms of immune evasion. Another recent

work [7] characterized the immunophenotypes in colorec-

tal cancer and provided novel therapeutic targets. While

these studies profoundly improved the understanding of

cancer immunoediting [12], less is known about how the

interactions between tumor and the immune system im-

pact patient outcome. Clinical investigations on tumor-

infiltrating immune cells have established the roles of

cytotoxic T cells (CTLs) and tumor-associated macro-

phages (TAMs) in some diseases [13, 14]. However, the

clinical impact of other immune cells in many cancers re-

mains poorly understood. Hence, there is a great need for

a more comprehensive and translational analysis of tumor

immunity to better understand the multi-component
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antitumor response and guide effective immunotherapies

in different cancers.

In this work, we integrated the molecular profiles of

over 10,000 tumor samples across 23 cancer types to in-

vestigate the impact of individual immune components

on a wide spectrum of clinical features. Our estimates of

tumor-infiltrating immune cells were validated using

multiple approaches, including in silico simulation, com-

parison with orthogonal inferences, and a pathological

approach. Correlating immune infiltration with patient

outcomes, we identified a number of associations, in-

cluding both novel associations and those supported by

prior studies [14]. Our analysis also suggested that the

inter-tumor heterogeneity of immune infiltration is po-

tentially caused by both cancer genetic variations as well

as the disease-specific expression pattern of the chemo-

kine/receptor network. As a translational approach, we

investigated immunotherapy targets for both therapeutic

cancer vaccine and checkpoint blockade. Finally, our in

silico inferences and associated findings have been pack-

aged into a web-accessible resource, TIMER (Tumor IM-

mune Estimation Resource), to enable further explorations

of the disease-specific clinical impact of different immune

infiltrates in the tumor microenvironment.

Results

Computational estimation of tumor immune infiltration

We developed a computational method to estimate the

abundance of six tumor-infiltrating immune cell types (B

cells, CD4 T cells, CD8 T cells, neutrophils, macrophages,

and dendritic cells) to study 23 cancer types in The Cancer

Genome Atlas (TCGA): adenocortical carcinoma (ACC),

bladder carcinoma (BLCA), breast carcinoma (BRCA), cer-

vical squamous carcinoma (CESC), colon adenocarcinoma

(COAD), diffusive large B-cell lymphoma (DLBC), glio-

blastoma multiforme (GBM), head and neck carcinoma

(HNSC), kidney chromophobe (KICH), kidney renal clear

cell carcinoma (KIRC), kidney renal papillary cell carcin-

oma (KIRP), lower grade glioma (LGG), liver hepatocellu-

lar carcinoma (LIHC), lung adenocarcinoma (LUAD), lung

squamous carcinoma (LUSC), ovarian serous cystadeno-

carcinoma (OV), prostate adenocarcinoma (PRAD), rec-

tum adenocarcinoma (READ), skin cutaneous melanoma

(SKCM), stomach adenocarcinoma (STAD), thyroid car-

cinoma (THCA), uterine corpus endometrial carcinoma

(UCEC), and uterine carsinosarcoma (UCS). These six

immune cell types include some of the currently most

promising cancer immunotherapy targets and also have

sufficient numbers of reference immune cell samples to

make accurate inferences (“Methods”). The prerequisite

data include tumor purity, tumor gene expression profiles

(as transcript per million reads (TPM)) from TCGA, and

an external reference dataset of purified immune cells.

Tumor purity is critical to selecting genes informative for

deconvolving immune cells in the tumor tissue and was

inferred from copy number alteration data using an R

package, CHAT, we have developed [15] (Fig. 1a). Our

purity estimation method has been validated using diluted

series with known tumor/normal mixture ratios and

agreed with previous methods and orthogonal estimations

[16]. The distributions of tumor purity showed large varia-

tions among different samples across most of the 23

TCGA cancer types (Additional file 1: Figure S1). For each

cancer dataset, batch effects between TCGA and the ex-

ternal reference data sets were removed using ComBat

[17] (Fig. 1b). Next we selected genes whose expression

levels are negatively correlated with tumor purity (Fig. 1c;

Additional file 1: Figure S2; Additional file 2: Table S1), an

indication that these genes are expressed by stromal cells

in the tumor microenvironment. Across all 23 cancers, in-

formative genes selected from the above steps are signifi-

cantly enriched for a predefined immune signature [18]

(Fig. 1d). This result indicates that large numbers of im-

mune cell-specific genes are highly expressed in the tumor

microenvironment. Finally, we used constrained least

squares fitting [19] on the informative immune signature

genes to infer the abundance of the six immune cell types

(Fig. 1e).

As a key component of TIMER, the outcome of the

above method was validated with multiple approaches.

The first one was pathology, where we estimated the

levels (low, median, and high) of neutrophils in bladder

cancer samples using hematoxylin and eosin stained

slides from TCGA (“Methods”). Our in silico predictions

of neutrophil abundance agreed well with the histo-

logical estimations (Additional file 1: Figure S3a, b). We

also validated our predictions using total infiltrating leu-

kocytes estimated from DNA methylation data [20] and

observed high concordance between our RNA and the

DNA-based predictions in all available cancers (Additional

file 1: Figure S3c). In addition, Monte Carlo simulations

with known immune cell fractions were applied to all can-

cer types. High correlations were observed between the

predicted and simulated immune cell abundance for all

comparisons except CD4, CD8 T cells, dendritic cells in

GBM, and B cells in DLBC (Additional file 1: Figure S3d;

“Methods”), which were excluded from downstream ana-

lysis. The inferred relative fractions of the six immune cell

types of all the samples across 23 cancers are available in

Additional file 3: Table S2.

Clinical relevance of tumor immune infiltration

To study the distribution of infiltrating immune cells in

the tumor and adjacent/normal tissues, we focused on

18 cancer types for which the mRNA expression profiles

of adjacent or normal tissues were available. Consistent

with Rooney et al. [6], CD8 T cells are enriched in tumor

tissues in kidney cancer (KIRC) and head and neck
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cancer. In contrast, CD8 T cells appear to be in lower

abundance in most other cancers, such as non-small cell

lung carcinomas (including adenocarcinoma and squa-

mous cell carcinoma) and colorectal cancer (including

colon and rectal adenocarcinoma) (Fig. 2a). Macrophages

are significantly enriched in GBM, which is supported

by previous observations showing that microglia and

macrophages are present in large numbers in the glioma

microenvironment [21]. Furthermore, the abundance of

tumor-infiltrating B cells is significantly higher than in

a

b

c

d

e

Fig. 1 Computational method for estimating the abundance of tumor-infiltrating immune cells. Tumor purity was estimated for each sample

using DNA single-nucleotide polymorphism (SNP) array data (a). B allele frequency (BAF) is the frequency of a randomly selected parental allele.

The logR ratio (LRR) is the log2(Y/2), Y being the marker intensity in the SNP array. TCGA gene expression profiles were combined with reference

immune cell expression data after batch effect removal (b). Informative genes with expression levels inversely correlated with tumor purity (Pearson’s

r≤−0.2 and P value≤ 0.05) are selected (c) and tested for immune signature enrichment (Fisher’s exact test) (d). In all 23 cancers informative genes

are significantly enriched for immune signature. Diffuse large B-cell lymphoma (DLBC) has the lowest enrichment (odds ratio = 1.6, q = 0.0005, Fisher’s

exact test). In this study, we estimate the abundance of six immune cell types (B cells, CD4 T cells, CD8 T cells, neutrophil, macrophage, and dendritic

cells) using selected immune signature genes through constrained least squares fitting (e). Asterisks in d indicate event significance at a 1 % false

discovery rate
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a

b

Fig. 2 Distribution of infiltrating immune cells and selective enrichment of B cells in the tumor microenvironment. a The abundance of

infiltrating CD8 T cells, macrophages, and B cells in 18 cancer types, with both primary tumor and adjacent (Adj)/normal (Norm) tissue available.

Normal tissue was from healthy donors where adjacent tissues were unavailable. Statistical significance was evaluated by Wilcoxon rank sum test.

Blue arrowheads point to three cancers with B cells significantly enriched in the primary tumor and associated with clinical outcomes. q values are

colored red, blue, or black for significant (false discovery rate≤ 0.15) enrichment in tumor, adjacent or normal tissue, or insignificance, respectively.

b B-cell infiltration level significantly predicted patient survival in selected cancer types. Tumors in the top 20th percentile of B-cell infiltration

were compared with those in the bottom 20th percentile. The median survival time for the top 20 % of patients with brain, lung, and bladder

cancers was 460, 1778, and 2000 days, respectively, and for the bottom 20 % 345, 976, and 575 days, respectively. Statistical significance and

hazard ratios (HR) with 95 % confidence intervals were calculated for all the samples, not just the top and bottom 20 %, using multivariate Cox

regression including all six immune cell types, patient age, and clinical stage
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the adjacent or normal tissues in eight cancer types.

Interestingly, B-cell infiltration predicts a significantly

better outcome in a subset of these cancers (Fig. 2b).

The most dramatic case is GBM, where patients with

the top 20 % of B-cell infiltration have a 4.7-month lon-

ger median survival time than those with the lowest

20 % (“Methods”). This result suggests that tumor-

infiltrating B cells play an important role in the antitu-

mor responses in GBM and lung and bladder cancers.

We next investigated how infiltrating immune cells in-

fluence clinical outcomes. Using multivariate Cox regres-

sion adjusted for age, stage, and viral infection status, we

identified many significant associations between immune

cell abundance and patient outcomes (Fig. 3). While CD8

a

b

c

Multivariate Cox Regression

Fig. 3 Immune cell infiltration predicts clinical outcome. a Association of tumor infiltrating immune cells with patient survival. For each cancer

type, multivariate Cox regression was performed, with covariates including the abundance of six immune cell types, patient age at diagnosis,

clinical stage, and viral infection status when available. Each entry on the first six rows of the heatmap represents the hazard ratio (HR) of a

corresponding immune cell type, with larger size indicating statistical significance at a false discovery rate (FDR) of 0.15 and color indicating the

value of the HR. The last row of the heatmap records the Cox model HRs and statistical significance using cytolytic activity (CYT) scores adjusted

for the same covariates. Multiple test correction was performed using q value across cancer types and six immune components. b Kaplan–Meier

curves of melanoma (SKCM) and head and neck cancer (HNSC) stratified by infiltration CD8 T-cell abundance. Median survival time for the top

20 % of patients in melanoma and head and neck cancers is 4507 and 1838 days, respectively, and for bottom 20 % 2005 and 862 days, respectively.

Statistical significance, hazard ratios, and 95 % confidence intervals were calculated using multivariate Cox regression and all the samples as described

above. c CD8 T-cell infiltration in primary tumors (metastatic samples for SKCM) significantly (FDR≤ 0.15) predicts tumor relapse in selected cancers.

Statistical significance was evaluated using logistic regression correcting for patient age and clinical stage
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T-cell infiltration associates with prolonged survival and

macrophage infiltration consistently predicts worse out-

come, other immune cell types have cancer-specific effects

on prognosis (Fig. 3a). These observations corroborate

previous reports that cytotoxic T-cell infiltration inde-

pendently predicts better outcome in liver [22] and rectal

[23] cancers. Consistent with established knowledge in

melanoma and head and neck cancer [24, 25], we also

found infiltrating CD8 T cells to be associated with sur-

vival in univariate analysis (Fig. 3b). However, it is not an

independent predictor of better outcome after adjusting

for other covariates, since CD8 T cells are correlated with

neutrophil infiltration in melanoma and human papilloma

virus (HPV) infection in head and neck cancer

(“Methods”). In fact, infiltrations of B cells and CD4 and

CD8 T cells are all significantly higher in HPV-positive

than in HPV-negative head and neck tumors (Additional

file 1: Figure S4), suggesting that viral antigens result in an

elevated lymphocyte response. Besides the effect on pa-

tient survival, CD8 T cells may also play an important role

in preventing tumor recurrence (Fig. 3c). In melanoma

and colorectal and cervical cancers, patients with higher

CD8 T-cell infiltration in the primary tumors have a sig-

nificantly lower risk of developing a second tumor during

the follow-up period. Overall, our observations on tumor-

infiltrating CD8 T cells are extensively supported by clinical

studies [14] (Additional file 4: Table S3), thus providing

additional validation to our deconvolution method.

Cytolytic activity (CYT) is a previously defined metric

of immune-mediated cell destruction [6]. Compared

with CYT, our analysis identified many more strong as-

sociations between tumor-infiltrating immune cells and

patient clinical outcomes (Fig. 3a), presumably because

our method takes into account expression data from

hundreds of genes instead of only two.

TAM numbers have been reported to be a predictor of

worse outcome in many cancers [13]. Consistently, we

found that TAM significantly associates with worse out-

come in bladder, breast, and ovarian cancers and in

lower-grade glioma (Fig. 3a), supporting TAMs as an in-

dependent prognostic factor for these cancers. Extending

this analysis to the less well-studied chromophobe renal

carcinoma (KICH), we detected a significant inverse as-

sociation between macrophage infiltration and patient

survival (Fig. 3a), suggesting that TAMs function in

KICH as in other solid tumors.

Potential causes for immune infiltration heterogeneity

We next examined the possible causes of inter-tumor

immune infiltration heterogeneity, such as somatic mu-

tations and chemokine expression. Non-synonymous

somatic mutations in the tumor genome can generate

immunogenic neoantigens that trigger antitumor re-

sponse through T-cell activation [26–29]. In addition,

total mutation load has been suggested as a surrogate

for neoantigen count [6]. To understand how the host

immune system responds to tumor somatic mutations,

we studied the association of infiltrating immune cells

and total mutation load. Tumor purity is a confounding

factor in this analysis, since purity affects the power to

detect somatic mutations [20] and drives the pattern of

gene expression [16]. After correcting for purity, we ob-

served positive correlations between the total mutation

count and infiltrating immune cells in a subset of can-

cers (Fig. 4a). In lung squamous cell carcinoma, lower

grade glioma, HPV-negative head and neck cancer, and

prostate cancer, CD8 T-cell infiltration increases signifi-

cantly with tumor mutation load, in support of a previ-

ous study [6]. In addition, we observed that dendritic

cell infiltration is correlated with the total mutation load

in breast cancer (Spearman’s ρ = 0.11, q = 0.037), as is B-

cell infiltration (ρ = 0.13, q = 0.018), suggesting cancer-

specific roles for these cell types in antitumor immunity.

Similar associations were observed when we used neoan-

tigen load estimated from a previous work [6] instead of

total mutation load (Additional file 1: Figure S5), cor-

roborating our conclusion that increased tumor neoepi-

tope load elevates the infiltration of multiple immune

cell types.

Besides point mutations, microsatellite instability (MSI)

is seen in colorectal, stomach, and endometrial cancers.

MSI typically generates small indels across the genome,

producing non-self antigens that may be recognized by

the host immune system. Consistent with a previous re-

port [7], we found CD8 T cells to be significantly more

abundant in MSI-high (MSI-H) tumors compared with

MSI-low (MSI-L) tumors in colon cancer (Fig. 4b).

Among the remaining three TCGA cancers with available

MSI information, we also found higher levels of MSI to be

associated with increased CD8 T cells in stomach cancer.

A recent study reported that MSI-high colon cancer pa-

tients showed significantly better responses to PD-1 block-

ade therapies [12] and our results suggest that this

conclusion may be extended to other gastro-intestinal

cancers with MSI.

To further investigate the regulation of immune infil-

trates in different cancers, we also systematically studied

the expression levels of chemokines and receptors. Most

of these molecules were expressed in the microenviron-

ment (Additional file 1: Figure S6a, b). CD8 T-cell level

is significantly associated with a subset of chemokine–

receptor pairs, including CCL3,4,5–CCR1,5 and XCL1,2–

XCR1 (Fig. 4c). On the other hand, different molecules are

associated with macrophage abundance in cancer-specific

patterns. Macrophage infiltration appears to be related to

CXCL12–CXCR4 in thyroid, head and neck, stomach, and

colon cancers and to CCL14,CCL23–CCR1 in lung can-

cers (Fig. 4d). Our results highlight potential bases for
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inter-tumor heterogeneity in immune cell infiltration and

suggest possible means for reducing macrophage recruit-

ment to the tumor microenvironment.

Implications for cancer immunotherapy targets

We next focused on how antitumor immunity impacts

cancer immunotherapies. First, we examined 109 known

a

c d

b

Fig. 4 Potential causes of inter-tumor immune infiltration heterogeneity. a In selected cancer types, counts of total somatic coding mutations

positively associated with the level of infiltrating immune cells. The y-axis is the residual of corresponding immune cell abundance after linear

regression against tumor purity. Statistical significance was evaluated using partial Spearman’s correlation adjusted for tumor purity. The asterisk

indicates only HPV-negative tumors were selected for head and neck cancer. Multiple test correction was performed across cancer types and six

immune components. Gray hues indicate previously known results (HNSC, LGG, and LUSC), while other findings are novel in this study. b CD8

T-cell infiltration is associated with microsatellite instability (MSI) status in cancers commonly with MSI. MSI-H high level of microsatellite instability,

MSI-L low level of microsatellite instability; MSS microsatellite stable. Statistical significance was evaluated using a Wilcoxon rank sum test. c, d

Chemokine/receptor networks for immune infiltration in diverse cancer types. Vertexes are ligands (green) and receptors (purple) and edges indicate

known molecular interactions. For each cancer, the partial correlations (corrected for purity) between the chemokine gene expression and infiltration

of CD8 T cells (c) or macrophages (d) were calculated. For a pair of interacting chemokine and receptor genes, if both are significantly correlated with

immune cell infiltration in one cancer, a colored dot represents the cancer type is placed on the edge connecting the chemokine and receptor.

Statistical significance was evaluated using partial Spearman’s correlation at a false discovery rate threshold of 0.01. Heatmap visualizations of the same

results are shown in Additional file 1: Figure S6c, d
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cancer/testis (CT) genes [6, 30] for their association with

immune components. MAGEA3 is an antigen that has

been tested in cancer vaccines, although it failed to dem-

onstrate improved progression-free survival in random-

ized non-small cell lung carcinoma clinical trials [31].

To explore the potential cause, we examined TCGA

gene expression data in lung cancer. MAGEA3 is not

expressed in adenocarcinoma but is expressed in squa-

mous cell carcinoma (Pearson’s correlation with purity

>0.1, q < 0.1), although MAGEA3 expression in the latter

is negatively associated with CD8 T-cell infiltration

(Fig. 5a, b). One possible interpretation of these results

is that the host immune system in lung cancer patients

fails to recognize MAGEA3 as a neoantigen, which

might explain the ineffectiveness of MAGEA3-based

vaccines in lung cancer. In contrast, clinical trials of

MAGEA3 have been more successful in melanoma [31],

consistent with our observed positive correlation be-

tween MAGEA3 expression and CD8 T-cell abundance

(Fig. 5c). Another positively correlated antigen in melan-

oma is the CT gene NY-ESO-1 (CTAG1B), which was re-

ported to be an effective vaccine antigen in a recent

study [32]. We also studied prostate cancer, for which

there is a US Food and Drug Administration-approved

cell-based cancer vaccine, sipuleucel-T. As expected,

many CT genes positively associate with CD8 T-cell

level, implying strong host immune reactions to cancer

antigens (Additional file 1: Figure S7). These observa-

tions suggest that association with infiltrating immune

cells could be a useful criterion for selecting putative

cancer vaccine targets, although the utility of this criter-

ion awaits future experimental validation. Based on this

hypothesis, we prioritized a list of CT genes in each can-

cer type through associations with infiltrating immune

cells (Additional file 5: Table S4). This analysis suggested

SPAG5 as a potential candidate for future vaccine devel-

opment in melanoma, glioma, prostate, bladder, breast,

and head and neck cancers (Fig. 5c; Additional file 1:

Figure S7). In TCGA, the median SPAG5 expression in

prostate, bladder, breast, and head and neck cancers

(where normal tissues are available) is at least threefold

over normal, suggesting that SPAG5 is a potentially valid

CT antigen in those cancer types. We have made these

results available in TIMER and users can check the rela-

tionships between a given CT antigen and the levels of

tumor infiltrating immune cells in different cancer types.

In addition to known CT genes, we applied the same

analysis procedures to a total of 2094 cancer-specific

genes (“Methods”) for their expression associations with

CD8 T-cell infiltration (Additional file 1: Figure S8;

Additional file 6: Table S5). Ranked by the number of

cancers for which this association is observed, the top

100 genes are most enriched in the gene ontology term

“cell cycle” (false discovery rate (FDR) = 4.74 × 10−24),

Fig. 5 Association of immune cell infiltration and cancer/testis (CT) antigen expression in non-small cell lung carcinomas (a-b) and melanoma (c).

Only genes with expression levels positively correlated with tumor purity (Pearson’s r > 0.1, q < 0.1) were selected to ensure cancer cell-specific expression.

The heatmap presents correlations of gene expression and tumor infiltrating immune cells, which were calculated using partial Spearman’s correlation

correcting for tumor purity. Asterisks indicate events significant at a 15 % FDR. Red arrowheads point to MAGEA3
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consistent with a previous report that expression of cell

cycle genes upregulates immune infiltration [33].

The recent clinical success of checkpoint blockade

drugs in treating metastatic melanoma [1] is an exciting

development but predictive biomarkers are needed. In

order to find promising targets in diverse cancer types,

we examined how tumor-infiltrating immune cells cor-

relate with inhibitory molecules, including the receptors

CTLA4, PD-1, LAG3, and TIM3, and the ligands PD-L1/

2, B7-H3/4. We noticed that the abundance of CD8 T

cells correlates with the expression levels of inhibitory

receptors in almost all cancers (Additional file 1: Figure

S9a), indicating that inhibitory receptors are expressed

in the infiltrating T cells of most tumor sites at the time

of clinical intervention. We next investigated the poten-

tial cell sources of the inhibitory ligands. PD-L1/2 and

B7-H3 expression positively correlates with macrophage

infiltration in almost all cancers, suggesting TAM as a

source of these ligands. The same is true for B7-H4 ex-

cept for gliomas (GBM and LGG), rectal cancer, and

melanoma (Additional file 1: Figure S9b). In LGG and

cervical cancer, further analysis reveals that B7-H4 is

expressed primarily in cancer cells (Additional file 1:

Figure S9c). These findings might help identify alterna-

tive therapeutic options in different cancers.

Although effective in a subset of patients, checkpoint

blockade drugs usually have moderate response rates

[31]. To explore possible explanations for the varied

clinical responses, we studied the levels of inhibitory re-

ceptors and CD8 T-cell infiltration within each cancer

type. Unexpectedly, we found that CTLA4 expression in

melanoma differentially correlates with CD8 T-cell levels

in different tumors (Fig. 6a). In a subset of high purity

tumors, CTLA4 is highly expressed despite low levels of

a

c d e

b

Fig. 6 Varied levels of CD8 T-cell infiltration in tumors highly expressing inhibitory receptors. a, b High CTLA4/TIM3-expressing tumors in melanoma/

KIRC show different CD8 T-cell infiltration levels. Dashed lines in both panels are the hypothetical high CTLA4 or TIM3 cutoff. Tumor purity is indicated

by color. Arrows in b point to selected TCGA samples for immunohistochemistry (IHC) analysis. c Sample with low TIM3 expression and CD8 T-cell

infiltration used as a negative control. TIM3- or CD8-expressing cells are brown in color. Selected samples with (1) high TIM3 expression and (2) low (d)

or high (e) CD8 T-cell infiltration showed the existence of two KIRC sample groups. TIM3 expression in d is twice as high as in e according to RNA-seq

data. d Image represents about 15 % TCGA KIRC samples while e represents 5 %. The upper and lower panels were synchronized. TIM3 was expressed

in cancer cells (d, e) as well as in lymphocytes (e). High magnification insets are presented in d and e to illustrate TIM3 expression in different cell types.

Yellow boxes indicate lymphocytes; red boxes indicate tumor cells
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CD8 T cells. The same phenomenon holds for renal

clear cell cancer, where tumors with high TIM3 expres-

sion have varying CD8 T-cell levels (Fig. 6b). Since anti-

bodies that allow immunohistochemical staining of

CTLA4 were unavailable, we sought to experimentally

validate the levels of TIM3 and CD8 T-cell infiltration.

A subset of the TCGA renal tumors was submitted lo-

cally and remaining tissue slides were available for these.

Staining of selected renal tumors (Fig. 6c–e) confirmed

that TIM3 is expressed on cancer cells as well as infil-

trating lymphocytes (Fig. 6e), an observation recently re-

ported [34]. More importantly, we found that tumors

with high TIM3 expression can be divided into two dis-

tinct groups with different levels of infiltrating CD8 T

cells (Fig. 6d, e; Additional file 1: Figure S10). Melanoma

and kidney cancer with high expression of inhibitory re-

ceptors and low levels of CD8 T-cell infiltration may

have different clinical responses to checkpoint blockade

drugs compared with tumors with high CD8 T-cell infil-

tration, a hypothesis that awaits further testing.

Discussion
With the clinical success of cancer immunotherapies,

there is a growing need for a comprehensive under-

standing of tumor–immune interactions. In this study,

we developed a novel method for tumor immune cell de-

convolution and have provided a comprehensive catalog

of the abundance of six immune infiltrates in 23 cancer

types. Our method was validated using Monte Carlo simu-

lations, orthogonal estimates from DNA methylation-

based inferences, as well as pathological assessment.

Further validations using immunohistochemistry (IHC)

or cell sorting are infeasible since TCGA does not pro-

vide original tumor samples. We have made our esti-

mated immune cell abundance together with associated

findings available as a public resource, TIMER, for bio-

medical researchers to address more interesting ques-

tions in cancer immunology. The information covered

in this work was accessible through a user-interactive

website (http://cistrome.org/TIMER).

Our work first provided a systematic prognostic land-

scape of different tumor-infiltrating immune cells in di-

verse cancer types. We compared our results with two

recent studies on the same topic [6, 11]. The method

used in Gentles et al., CIBERSORT [35], is currently only

applicable to microarray data, thus unable to analyze the

TCGA RNA-seq data. Therefore, our immune compo-

nent estimation is a unique addition to TCGA for future

integrative analyses of tumor–immune interactions. By

including more immune cell types into regression,

CIBERSORT inference also suffered from statistical co-

linearity that might have resulted in biased estimations

(Additional file 7: Table S6; Additional file 8). Due to

this limitation, although Gentles et al. studied more cell

types, they reported few significant prognostic immune

predictors, without correction for other clinical con-

founders. In contrast, we observed many more signifi-

cant clinical associations with the correction of

multiple cofactors. It should be noted that due to lim-

ited sample size, some of these associations only

reached a FDR of 0.15, yet 85 % of these significant

calls are expected to be true and still be informative.

These observations include both established results

from previous clinical studies as well as novel ones that

may provide new angles to study the clinical responses

of immunotherapies.

We then demonstrated the usefulness of TIMER by

studying putative immunotherapy targets and made sev-

eral interesting observations. First, CD8 T-cell and

macrophage infiltration is likely to be regulated by differ-

ent sets of chemokine and chemokine receptors in

different cancers. Second, the effectiveness of cancer

vaccine targets might be predicted via association with

immune infiltration levels; based on our data, it appears

that SPAG5 is a potential vaccine candidate for multiple

cancers. Third, the correlation of CTLA4 and PD-1 ex-

pression with CD8 T-cell abundance suggests that a sub-

set of patients from most cancer types may benefit from

combined use of anti-CTLA4 and anti-PD-1 agents. Fi-

nally, CTLA4 and TIM3 expression fall in distinct groups

relative to CD8 T-cell infiltration in melanoma and kid-

ney cancer, respectively, which might contribute to the

varied clinical response to checkpoint blockade therap-

ies. Although detailed characterization of the underlying

mechanisms requires further work, the findings from

this study have immediate implications for cancer

immunotherapies.

The current release of TIMER is based on estimations

using transcriptome profiles (RNA-seq or microarray)

from whole tissues at a single time point. Consequently,

TIMER might have limited relevance to distinguish stro-

mal or intra-tumor immune cell localization or capture

tumor cell heterogeneity. In the future, we anticipate

more experimental measures with improved spatial and

temporal resolutions, and the applicability of TIMER

should continue to grow as we make inferences on new

datasets and incorporate them into the existing

resources.

Conclusions
In this study we systematically documented the abun-

dance of six tumor-infiltrating immune compartments for

TCGA samples and integratively analyzed the immune in-

filtration with other cancer molecular profiles. We identi-

fied widespread clinical associations of different immune

cell types in multiple cancers. Systematic exploration of

tumor–immune interactions revealed cancer genetic alter-

ations and chemokine/receptor expression networks are
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potential regulators of immune cell infiltration heterogen-

eity. Our analyses on putative immunotherapy targets led

to the findings on cancer vaccine candidate SPAG5 and

dichotomized CD8 T-cell levels in tumors highly express-

ing inhibitory receptors. Our results add value to the

current knowledgebase of tumor immunity and provide a

public resource for further exploration of cancer–immune

interactions.

Methods
Data collection and preprocessing

Molecular data for 23 TCGA cancer types, including

level 2 DNA SNP array and clinical data, were down-

loaded from TCGA data portal (https://gdc.nci.nih.gov)

and level 3 mRNA expression data from the GDAC

Firehose website (http://gdac.broadinstitute.org). For

all cancers but GBM or OV, whole transcriptome

RNA-sequencing (RNA-seq) data were available and

we used the RSEM-processed transcript per million

(TPM) measure. For GBM and OV, where RNA-seq

data were available for only a subset (approximately

one-third for GBM and one-half for OV) of samples,

we used microarray data profiled using Affymetrix

HGU133a platforms for immune component estimation

(Additional file 8). In this study, we found that the

HGU133a array could not accurately profile the lowly

expressed genes (including important therapeutic tar-

gets such as PD-1). Therefore, we applied RNA-seq data

for GBM and OV to study the immunotherapy targets

(Fig. 5; Additional file 1: Figures S7 and S9). We used

the Human Primary Cell Atlas (HPCA) [36] as the ref-

erence dataset of gene expression profiles of sorted im-

mune cell types. HPCA is a collection of previous

analyses on human primary cells using the Affymetrix

HGU133plus2 platform and includes more than 100

studies, which are numbered in the dataset. We selected

six immune cell types for our downstream analysis and

the studies used for each cell type are: 25, 45, and 115

for B cells; 12, 42, 76, and 115 for CD4 T cells; 42, 115,

and 116 for CD8 T cells; 39, 62, and 77 for neutrophils;

104 for macrophages; and 7, 9, 14, 28, 86, 89, 91, and

103 for dendritic cells. A complete list of reference sam-

ples is available in Additional file 9: Table S7. It should

be noted that each immune cell type still represents a

mixed population with cells of potentially distinct func-

tions. For example, CD4 T cells may include helper T

cells, memory T cells, and regulatory T cells and B cells

may represent a mixture of mature CD19 B cells and B

plasma cells. In this study, we do not seek to further

distinguish these subpopulations, as their expression

profiles are highly similar. Signature genes (n = 2271,

denoted as Gi) overexpressed in the immune lineage

were obtained from the Immune Response In Silico

database [18].

Inclusion criteria for immune cell types

In order to minimize co-linearity in the regression ana-

lysis and maximize the robustness of our inference, our

study focused on six immune components based on two

criteria. First, the reference data contain at least ten in-

dependent samples of the immune cell type. Second, if

the expression profile of a given cell type is highly corre-

lated (sample-wise Pearson’s r ≥ 0.9) with other cell

type(s), we chose the cell type with more samples. The

selected cell types represent the finest resolution of im-

mune cell lineages that we can achieve based on the

above inclusion standards. Cell types excluded from the

inference may affect the highly correlated immune com-

ponents included. Improved reference immune datasets

will be needed to deconvolve individual cell types.

Computational method for immune cell composition

deconvolution

We first estimated sample purity for each tumor through

DNA SNP array data using our previously developed

tool CHAT [15]. Genomic estimations of tumor purity

have been validated using diluted series of cancer and

blood cell lines with known mixture ratios [16]. To clar-

ify, the quantity inferred from CHAT is the fraction of

aneuploid cells. In this work, we used this quantity as a

surrogate of tumor purity. Samples with percent on

point (PoP) <0.01 were excluded, where PoP is a quality

measure reported by CHAT. In each cancer, we selected

genes with expression values negatively correlated with

tumor purity (Pearson’s r ≤ −0.2, P ≤ 0.05), denoted as

Gp, and intersected with Gi. Our goal in this step is to

select informative genes with expression levels strongly

affected by tumor purity. It is not important whether the

gene is highly or lowly expressed. Pearson’s correlation

is suitable because it is a measure of the linear depend-

ence of two random variables, disregarding the magni-

tude of the observations. The resulting smaller gene set

intersection was denoted as G0, which is cancer-type

specific. Meanwhile, we merged the tumor gene expres-

sion with the reference immune cell data of all genes

using ComBat [17]. According to the principal compo-

nents analysis plot, ComBat effectively removed the

batch effect between different datasets generated using

different platforms (Fig. 1b). For each of the six cell

types, we then calculated the median expression value in

all the samples available for that cell type for each gene

in G0. The resulting dataset (referred to as R) contains

six vectors of gene expression values, each for one cell

type. We used R to filter G0 in the following way: for

each vector in R, genes with expression values in the top

1 % in G0 are removed. This is because genes expressed

at extremely high levels in the reference dataset will

dominate the inference results. Since highly expressed

genes have large variance, our inferences become very
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sensitive to these outliers. We therefore remove them to

acquire more robust estimations. The total removed

genes were the union of the top 1 % from of the six vec-

tors. The resulting gene set was denoted as G0f. For each

sample, a constrained least square fitting described in a

previous study [19] was applied to infer the relative

abundance for each of the six immune components

(Fig. 1e). The predictions of this method were validated

using mixtures of different blood cell types with known

ratios. For a given sample, let Yg denote the gene expres-

sion of gene g, where g ∈ G0f. Let X
g
r denote the gene ex-

pression of gene g in immune cell type r (r = 1,2,…,6) in

reference dataset R. Since we model that the given sam-

ple is a mixture of the six immune cell types, our task is

to find positive coefficients f to minimize the total

squared differences:

f ¼ argmin
∀r:f r>0

Σ

g∈ G0ff g
Y g

−

X

6

r¼1

f rX
g
r

 !2

which is a constrained linear regression problem. The

estimation accuracy of f should be affected by the genes

used in the fitting, although our model assumes that

such an f exists and should be the same for all genes.

To note, coefficients f estimated using this method are

the relative abundance of immune cells. The scale of

the estimation of an individual immune cell type is de-

termined by the variance of the corresponding refer-

ence data Xr. Therefore, f are not comparable between

cancer types or different immune cells. Source codes

for TIMER and downstream statistical analysis as well

as related data files are available at http://cistrome.org/

TIMER/download.html.

Correction for reference immune cell colinearity

Although the six immune cell types in this study are se-

lected in such ways that the colinearity between cell

types is minimized, we found that in THCA and UCS,

CD4 and CD8 T-cell signatures are still very similar.

Consequently, the inferred CD4 and CD8 T-cell levels

are negatively correlated (Pearson’s r ≤ −0.3), which is

an artifact of covariates’ colinearity in the constraint re-

gression. Additional analysis on these two cancers re-

vealed that the negative correlation is driven by a small

number of CD4 or CD8 T-cell signature genes that are

extremely overexpressed in the tumor samples. We re-

move the union of the top expressed gene in each

tumor sample and re-estimate f. This step is repeated

until the correlation between estimated CD4 and CD8

T-cell levels is larger than −0.3. This analysis provides

more robust estimations of immune cell abundance in

cancer types.

Pathological estimation of neutrophil infiltration in BLCA

For the TCGA data sets, the original samples are unavail-

able for further studies; however, hematoxylin and eosin

(H&E) digital slides have been publicly released. While it is

not possible to distinguish T cells and B cells by H&E, neu-

trophils are morphologically distinctive and their abun-

dance can be estimated. Occasional dendritic cells and

macrophages can be identified by H&E but their true

abundance is difficult to estimate in the absence of immu-

nohistochemical stains. Slides were reviewed via digital im-

ages viewed with the Cancer Digital Slide Archive (http://

cancer.digitalslidearchive.net). We chose BLCA because it

has a large sample size (n = 404), does not have excessive

necrosis, and has sufficient neutrophil counts and sample

variety to allow for validation by histological evaluation.

The pathologist reviewing the slides was blinded to the in

silico neutrophil predictions. Samples were stratified into

three groups (high, medium, low) with levels of neutro-

phils relative to the entire collection of samples.

DNA methylation-based total leukocyte estimation

The percentage of total DNA for each tumor was esti-

mated using DNA methylation data as previously de-

scribed and compared with purity estimates derived from

SNP data [20, 37]. In brief, the estimates were derived

from loci with tissue-specific methylation that distin-

guishes the corresponding tissue type from lymphocytes

using the TCGA Pancan12 [38] DNA methylation dataset.

The leukocyte methylation signature was derived as fol-

lows. Each probe was ranked by the difference in mean

beta value in buffy coat and corresponding normal sam-

ples. We retained the 100 probes with the largest positive

difference and the 100 with the largest negative difference

between mean DNA methylation in normal tissues and

peripheral blood leukocytes, designated NT and BC probes

(hypermethylated in normal tissue compared with buffy

coat, and vice versa, respectively). Let Tik denote the beta

value for probe k in tumor sample i. Let Bk denote the

average beta value of buffy coat samples for each probe.

Let Tk denote the minimum observed beta value across all

tumor samples for the BC probes and the maximum for

the NT probes, which theoretically reflects the ground

state of methylation level in the purest tumor. Denote

with fB the fraction of buffy coat (leukocyte) components

in the sample, then, assuming a linear relationship, we

have the following equation for each probe:

Tik ¼ BkfB þ Tk 1 − fBð Þ

Solving this equation for fB gives:

fB ¼ Tik− Tkð Þ= Bk− Tkð Þ

The values of fB for each of the 200 probes in the

signature were calculated and a kernel density estimate
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of fB was obtained. The leukocyte signature was then

calculated as the mode of this density estimate.

Monte Carlo sampling and in silico validation

We validated our predictions on infiltrating immune cell

abundance using in silico simulated data. As mentioned,

for each cancer we selected a gene set G0f (length n0) for

least squares fitting. In order to control for the mixing

ratios of the six components while maintaining the cor-

relation structure of the real data, we first calculate the

gene–gene covariance matrix Σ0f for all the genes in G0f

using tumor expression data. We then randomly sample

six numbers f1-6, from Uniform(0,1). We calculate μ0f
(length n0), which is the average of six immune compo-

nents weighted by f1-6. Next, we sample a vector of

length n0 from multivariate normal distribution with

mean μ0f and covariance Σ0f. For each cancer type, we

simulated the same number of samples as its sample size

in the TCGA data. After applying our method, we com-

pared the estimated immune abundance with true values

using Pearson’s correlation. Low quality estimations with

Pearson’s r ≤ 0.2 were excluded from the downstream

analysis.

Selection of cancer specific genes

For each cancer type, we compare tumor samples with

all normal samples collectively. Only genes overex-

pressed in tumor samples and absent or expressed at

lower levels in all normal tissues were selected. Differen-

tially expressed genes were selected based on a FDR

≤0.05 and at least a twofold difference in expression

levels. In the case of tumors with established clinical

subtypes, such as breast cancer, we selected the top 25

samples for each gene based on their rank of raw read

counts, then identified differentially expressed genes

within each subtype. The final tumor-specific gene set

was the union of all the cancer types (or subtypes).

Statistical analysis

Multivariate Cox regression, log-rank test and Kaplan–

Meier estimators were implemented using the R package

survival. The association between CD8 T-cell abundance

and tumor status was evaluated using logistic regression

corrected for age and clinical stage and was imple-

mented using the R package glm. The same analysis was

performed for neutrophil abundance and gender associa-

tions, corrected for age and smoking history. Partial cor-

relations of immune cell abundance and gene expression

of chemokines and receptors, somatic mutation counts,

CT gene expression, as well as immunosuppressive mol-

ecule expression were calculated using the R package

ppcor. Multiple test correction was performed using the

R package qvalue [39] and FDR thresholds are applied

based on the abundance of signals in the data. In this

study, we applied the Pearson correlation to purity and

gene expression because it is reasonable to expect that

the expression level is linearly associated with tumor

purity. For others, we used the Spearman correlation.

We applied partial correlation analysis to remove the in-

fluence of tumor purity on the involved variables. All

other analyses, including linear regression, Fisher’s exact

test, Wilcoxon rank sum test, Spearman’s correlation,

and hierarchical clustering, were performed using R [40].

Of note, in Figs. 2b and 3b, we used the 20 percentile as

a cutoff only to help visualize the association of immune

infiltration with outcomes and the statistical significance

was determined by multivariate Cox regression (Fig. 3a)

including all the samples. Our results on survival ana-

lysis, neoantigen association, tumor recurrence, and as-

sociation of checkpoint blockade inhibitory molecules

with immune cells are available in Additional file 10:

Table S8.

Additional analysis on HNSC and SKCM

One intriguing result we observed is that univariate and

multivariate survival analysis results for HNSC and

SKCM are not consistent (Fig. 3a, b). For HNSC, we dis-

covered that HPV infection, a recently identified prog-

nostic factor [41], correlates with CD8 T-cell infiltration

(Additional file 1: Figure S4). It is likely that the previ-

ously observed association of CD8 T cells with survival

is contributed to by virus infection. On the other hand,

for SKCM, we found that the infiltration level of CD8 T

cells is highly correlated with neutrophils (Pearson’s r =

0.79) and dendritic cells (r = 0.81), indicating that these

immune cells work in concert. As highly correlated fea-

tures confound each other in a multiple regression, we

performed principal component analysis on the abun-

dance of the six immune cells. We reanalyzed the Cox

model using six principal components (PCs), age and

stage as covariates, and found PC1 (hazard ratio (HR) =

2.6 × 10−4, p = 0.0062), PC4 (HR = 1.07 × 102, p = 0.033)

and PC6 (HR = 0.01, p = 0.008) to be significantly associ-

ated with survival. PC1 was comprised of CD8 T cells,

neutrophils, and dendritic cells (by Pearson’s correl-

ation), thus capturing the colinearity in the data. PC4

represented macrophages and predicted worse outcome.

There was no clear assignment of PC6 to any immune

component(s) and it may represent an unselected im-

mune cell type.

Additional analysis on OV and BRCA

In the survival analysis (Fig. 3a, b), we failed to identify

some known prognostic predictors, notably B cells in

OV and CD8 T cells in BRCA. A previous study reported

that CD20 cells positively associate with survival [42].

We investigated the expression levels of the B-cell

markers CD19 and CD20 in OV and discovered that
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tumor purity is not negatively correlated with gene ex-

pression levels for both genes, indicating that aneuploid

cells in ovarian cancer may also express B-cell markers.

Therefore, cell sorting based on CD19 or CD20, which is

not the B-cell component in our analysis, is likely to se-

lect cancer cells. CD8 T cells were previously reported to

associate with better outcome in BRCA [43], although

we did not observe this relationship. This is possibly due

to insufficient follow-up time or fewer deaths in the

TCGA BRCA data, which thus underpowered our sur-

vival analysis.

Patient samples for IHC

De-identified clear cell renal cell carcinoma (ccRCC)

formalin-fixed and paraffin-embedded tissue blocks from

cases included in the TCGA KIRC cohort were obtained

from the department of Pathology at the Brigham and

Women’s Hospital. Patients had provided an informed

consent for use of specimens and baseline and prospective

clinical data for research purposes. The study was ap-

proved by the Dana-Farber/Harvard Cancer Center

(DF/HCC) institutional review board. In total, five

TCGA samples were selected for IHC: TCGA-CZ-5453-

01A (negative control), TCGA-CZ-4866-01A, TCGA-CZ-

4863-01A, TCGA-CZ-5459-01A, and TCGA-CZ-4862-

01A.

IHC protocol

IHC for TIM3 and CD8 expression was performed as

described below. For TIM3 IHC, rehydrated tissue sec-

tions were boiled in EDTA buffer (pH 8) with a micro-

wave at 92 °C for 30 minutes. After cooling down at

room temperature (RT), tissue sections were successively

incubated with a peroxidase block (Dual Endogenous

Enzyme Block, Dako) and a protein block (Serum Free

Block, Dako) for 10 minutes each. Sections were next in-

cubated for 1 h at RT with the goat polyclonal anti-

TIM3 antibody (1/400, AF2365, R&D Systems) diluted

in Da Vinci Green Diluent (Biocare Medical). Tissue

sections were then incubated with a rabbit anti-goat

biotin-conjugated antibody (1/750, Dako) for 30 minutes

followed by an incubation of 30 minutes with EnVision

anti-rabbit horseradish peroxidase (HRP)-conjugated

antibody (Dako). The HRP visualization was performed

by applying 3,3-diaminobenzidine substrate (Dako) for

5 minutes. Nuclei were counterstained with hematoxylin.

For CD8 staining, rehydrated tissue sections were boiled

in EDTA buffer (pH 8) with a pressure cooker at 125 °C

for 30 s. Sections were blocked as described above and

then incubated for 1 h at RT with a mouse monoclonal

anti-CD8 antibody (1/100, clone C8/144B, Dako) diluted

in Antibody Diluent with Background Reducing Compo-

nents (Dako). Sections were then incubated with EnVision

anti-mouse HRP-conjugated antibody for 30 minutes

(Dako). The HRP visualization and the counterstaining

were performed as described above.
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