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adenocarcinoma and diffuse large B-cell lymphoma1–5. The HLA 

locus, located on chromosome 6, is among the most polymorphic 

regions of the human genome, with thousands of documented 

alleles for each gene6. These class I alleles are critical mediators of 

the cytotoxic T-cell response, presenting cellular peptides on the cell 

surface in a form that can be recognized by the T-cell receptor7,8. The 

finding of enhanced somatic mutation rate in HLA genes has strongly 

implicated HLA dysfunction as a possible mechanism of immune 

evasion in the development and progression of certain cancers1–5.

Each individual expresses six major histocompatibility 

complex (MHC) class I alleles, encoded by three genes (HLA-A,  

HLA-B and HLA-C) located on the two homologous copies of 

chromosome 6. Conventional determination of HLA type is 

performed using serology- and/or PCR-based methods that are labor-

intensive and time-consuming9–11. Several protocols have recently 

been proposed for HLA-targeted multiplexed PCR coupled with 

next-generation sequencing, but by design, they provide information 

restricted to HLA alleles, and not the rest of the genome12–16. 

Theoretically, HLA typing information should be directly extractable 

from WES data, an increasingly available and cost-effective approach 

for the comprehensive analysis of genome-wide somatic alterations. 

The human reference genome, however, has a single sequence for 

each HLA gene and would likely misrepresent the true alleles in 

the individual, thereby causing suboptimal alignments. In addition, 

the HLA genes are GC-rich and therefore typically suffer from 

lower sequencing coverage due to lower efficiency in capture and 

amplification, and increased sequencing errors that further reduce 

the alignment rates. Consequently, to accurately detect somatic 

mutations in the HLA genes, one needs to first accurately align all 

reads originating from this region in both the tumor and matched 

normal samples and only then to apply somatic mutation detection 

tools. We also surmised that conventional alignment and mutation 

detection methods, which do not focus dedicated attention on this 

highly polymorphic region, would be prone to errors.

To this end, we developed the algorithm Polysolver (polymorphic 

loci resolver), which enables high-precision HLA typing even while 

using relatively low-coverage WES data, and a subsequent mutation 

detection pipeline that uses the inferred alleles as a basis for high-

fidelity detection of mutations in HLA genes. By analyzing WES 

data from 7,930 cancer patients, we demonstrate high sensitivity 

and specificity of our method in detecting HLA somatic mutations. 

Further characterization suggests a functional impact of these 

mutations on this biologically important and complex locus.

Detection of somatic mutations in human leukocyte 

antigen (HLA) genes using whole-exome sequencing 

(WES) is hampered by the high polymorphism of the 

HLA loci, which prevents alignment of sequencing 

reads to the human reference genome. We describe a 

computational pipeline that enables accurate inference 

of germline alleles of class I HLA-A, B and C genes 

and subsequent detection of mutations in these genes 

using the inferred alleles as a reference. Analysis of 

WES data from 7,930 pairs of tumor and healthy tissue 

from the same patient revealed 298 nonsilent HLA 

mutations in tumors from 266 patients. These 298 

mutations are enriched for likely functional mutations, 

including putative loss-of-function events. Recurrence 

of mutations suggested that these ‘hotspot’ sites were 

positively selected. Cancers with recurrent somatic 

HLA mutations were associated with upregulation of 

signatures of cytolytic activity characteristic of tumor 

infiltration by effector lymphocytes, supporting immune 

evasion by altered HLA function as a contributory 

mechanism in cancer.

Recent large-scale WES studies have revealed the existence and 

relatively high frequency of somatic changes in HLA class I genes 

in head and neck cancer, squamous cell lung cancer, stomach 
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For validation, we applied Polysolver to 

WES data from an independent set of 253 

HapMap samples with known HLA genotypes 

(Supplementary Tables 3 and 4). We 

observed that Polysolver achieved an overall 

mean sensitivity of 97% (83% of samples 

had all allele species correctly identified), 

overall mean precision of 98.8% (93.6% 

samples had no incorrectly identified allele 

species), mean overall accuracy of 97% (83% 

samples had all alleles correctly called) and 

a 100% homozygosity success rate (83 of 83 

homozygous cases correctly identified) in HLA 

typing at the protein coding level. Compared 

to other recently reported algorithms for 

inference of HLA type directly from WES 

data, Polysolver outperformed four of five 

other tools and performed comparably to the 

recently described OptiType tool20 (Fig. 1b, 

Supplementary Table 4 and Supplementary 

Note 3). To accommodate future use of 

Polysolver for samples from individuals 

of unknown ethnic origin, we developed a 

principal components (PC)-based method 

for exome-based ethnicity inference (Online 

Methods and Supplementary Fig. 3), which 

can be used before analysis by Polysolver to 

ensure maximal typing accuracy.

Detection of somatic mutations within 

the HLA region

A standard approach for detection of somatic 

mutations is to first align both tumor and 

normal reads to the reference genome and then scan the genome 

and identify mutational events observed in the tumor but not in the 

matched normal (e.g., as implemented in MuTect21). We reasoned that 

the accurate detection of individual native HLA type using germline 

data by Polysolver could substantially improve alignment of reads (in 

both tumor and normal samples) and hence improve the sensitivity and 

specificity of somatic mutation calling within the HLA region (Fig. 2a). 

In this setting, the inferred allele species for each HLA gene would serve 

as patient-specific reference ‘chromosomes’ against which preselected 

HLA reads from the tumor and germline samples are aligned separately, 

followed by standard mutation calling. We therefore built an analysis 

pipeline to call somatic mutations in the HLA genes that includes 

the following steps: (i) ethnicity detection using the normal sample;  

(ii) inference of HLA type by applying Polysolver on the normal sample 

(although other highly accurate HLA typing tools could also be used); 

(iii) re-alignment of the HLA reads in both tumor and normal samples to 

the inferred HLA alleles while filtering out likely erroneous alignments 

(Online Methods); (iv) application of standard tools to detect somatic 

mutations (MuTect21 and Strelka22) by comparing the re-aligned tumor 

and normal HLA reads.

To test this approach, we initially assembled a data set of 2,545 cases 

of matched tumor and germline DNA spanning 12 tumor types—10 

from The Cancer Genome Atlas project (TCGA), and 2 separate 

genomic studies focusing on CLL and melanoma. Fifty-nine HLA gene 

somatic mutations were previously detected using standard methods 

(Supplementary Note 4) and reported as part of a pan-cancer analysis 

effort23 (Online Methods)17,24. On reanalysis of these cases with our 

Polysolver-based mutation detection pipeline, we detected 36 of 59 

RESULTS

Inference of class I HLA alleles using Polysolver

To develop Polysolver, we put together a training set of data from 

eight chronic lymphocytic leukemia (CLL) patients for which 

WES data as well as conventional PCR-based HLA typing were 

available17 (Supplementary Table 1). We first confirmed the 

expected poor coverage and inverse correlation between GC content 

and coverage in HLA genes in this set (Supplementary Fig. 1). 

We reasoned that coverage at these highly polymorphic regions 

can be substantially improved by ensuring retrieval of true HLA 

reads that failed to align to the canonical reference, followed by 

alignment to a library of all known HLA alleles. These alignments 

could then be used for subsequent computational inference of the 

individual’s HLA type. Thus, Polysolver consists of the following 

steps: (i) improved retrieval and alignment of HLA reads;  

(ii) inference of the HLA alleles using a two-step Bayesian classification 

approach (Fig. 1a, Supplementary Notes 1 and 2, and Supplementary 

Software). In brief, we increased the precision of the alignment by 

first selecting reads from the WES data that potentially originated 

from the HLA region (Supplementary Fig. 2) and aligning them to 

a full-length genomic library of all known HLA alleles based on the 

IMGT (ImMunoGeneTics)/HLA database18 (Online Methods) using 

a precise alignment method (Novoalign), and keeping all best-scoring 

alignments for each read to use in subsequent steps. Inference of the 

two alleles for each HLA gene was based on a Bayesian calculation 

that takes into account the base qualities of aligned reads, observed 

insert sizes, as well as the ethnicity-dependent prior probabilities of 

each allele12,19 (Supplementary Table 2).

Figure 1  Development and validation of Polysolver for inference of MHC class I type. (a) Schematic 

of the Polysolver algorithm. (b) Comparative performance of Polysolver and other previously reported 

algorithms20,41–44 by library size (error bars correspond to s.d.) using the following performance criteria: 

(i) sensitivity, the proportion of all true allele species that are correctly identified by the algorithm; 

(ii) precision, the probability that an inferred allele species is correct; (iii) accuracy, the fraction of 

total number of alleles that are correctly called; and (iv) homozygosity success rate, the fraction of all 

homozygous cases that are correctly inferred.
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(61%) previously reported HLA mutations, as well as 37 novel somatic 

HLA mutations; in total, we detected 73 mutations in 64 of 2,545 cases 

(Fig. 2b,c and Supplementary Tables 5–7). Manual review of all 

HLA mutation events using IGV25 suggested that 9 of 23 mutations 

identified exclusively by TCGA were true events, of which 6 were just 

below the detection limit of our pipeline and were identified once we 

slightly relaxed the read-filtering criteria used before mutation calling 

(Supplementary Table 8 and Supplementary Note 5).

When available, we examined matched RNA-sequencing data and 

sought orthogonal evidence of expression of the somatically mutated 

HLA allele that was detected by WES (indel calls were excluded from 

this analysis owing to low reliability of indel alignment and detection 

by RNA-seq26). A mutation was considered validated if there were at 

least two alternate allele-bearing reads in the RNA-seq data for well-

powered sites (Online Methods). In total, we could evaluate RNA-seq 

data for 49 of 96 mutations, including 10 that were exclusively reported 

by TCGA, 17 detected only by our pipeline and 22 that were detected by 

both. We observed a high rate of RNA-seq-based validation of missense, 

nonsense and splice-site mutations in the set of 22 mutations found in 

common (8 of 8, 8 of 11, and 2 of 3 events, respectively; Fig. 2d and 

Supplementary Table 9). We likewise observed high rates of validation 

for events identified exclusively by the 

Polysolver-based mutation detection pipeline 

(7 of 9, 5 of 6, and 2 of 2 events, respectively). 

By contrast, only 2 of 10 mutations uniquely 

identified by TCGA were validated using RNA-

seq.

We further performed experimental 

validation of inferred mutation calls through 

direct targeted sequencing of HLA-A and 

HLA-B alleles of 18 TCGA samples identified 

as bearing HLA mutations for which DNA 

material was available (Online Methods)27. 

Six of these 18 samples did not have adequate 

coverage at the site of mutation and were 

removed from the analysis owing to lack 

of sufficient power for mutation detection 

(Online Methods). Of the remaining 12 

mutations, this analysis confirmed all 11 

of 11 HLA mutations that were inferred by 

the Polysolver-based mutation detection 

pipeline (5 identified by TCGA also; 6 

identified exclusively by Polysolver), whereas 

the sole mutation identified exclusively 

by TCGA was not validated (Fig. 2d and 

Supplementary Table 10). Altogether, these 

results demonstrate that the Polysolver-based 

approach is both a sensitive and specific 

somatic mutation–detection strategy within 

the highly polymorphic HLA loci.

Patterns of somatic HLA mutation across 

tumor types

We extended our analysis of Polysolver-based 

mutation detection to a total of 7,930 TCGA 

tumor-normal pairs (including the original 

collection of 2,545 and 5,385 additional 

cases). In total, we detected 298 somatic HLA 

mutations in 266 of 7,930 (3.3%) individuals 

(Supplementary Tables 11 and 12). The 

median allele fraction across somatic changes 

was 33% (interquartile range: 16–58%), suggesting that most of these 

mutations are heterozygous (Supplementary Fig. 4a).

Among the cancer types, we observed differences in frequency, 

localization and types of somatic HLA mutations (Fig. 3). In addition to 

finding HLA mutations occurring significantly in head and neck (HLA-A,  

HLA-B), lung squamous (HLA-A) and stomach (HLA-B) cancer as 

previously reported, we further identified HLA-A (FDR, q = 2.3 × 10-8) 

and HLA-B (FDR, q = 3.9 × 10-7) to be significantly mutated in colon 

adenocarcinoma. By contrast, CLL (n = 128) and liver cancer (n = 

202) entirely lacked HLA mutations, and only single mutations were 

detected in glioblastoma (n = 390) and thyroid cancer (n = 486). 214 of 

298 HLA mutations (71.8%) fell in 64 recurrent positions (i.e., amino 

acids that were mutated in at least two instances). The recurrent sites 

were distributed across the HLA gene (median of 2 mutated cases/

recurrent site (range 2–24), (Fig. 3, bottom, Supplementary Table 13 

and Supplementary Fig. 4b,c).

Somatic class I HLA mutations are likely positively selected

Alterations highly likely to have a functional effect, including loss-

of-function events (nonsense, frameshift indels, splice site), were 

significantly enriched in HLA mutations compared to non-HLA 

Figure 2  Polysolver for the detection of somatic mutations in MHC class I alleles across cancers.  

(a) Schema for detection of somatic changes in HLA genes using Polysolver. Mutation detection 

algorithms MuTect21 and Strelka22 were incorporated for calling point mutations and indels, respectively, 

following MHC class I typing of the germline by Polysolver. (b) Comparison of somatic HLA mutations 

identified by TCGA (yellow) across cancers using standard approaches to those identified by Polysolver 

(black) (n = 2,545). Green: mutations found in common between the two data sets. (c) Number of HLA 

mutations and the percentage of samples bearing HLA mutations per cancer type identified by TCGA 

and Polysolver. (d) Validation of mutations using RNA-seq and long-read sequencing. RNA-seq–based 

validation was restricted to 49 samples with HLA point mutations (missense, nonsense, non-stop, splice 

site) identified by exome analysis and with available RNA-seq data. Long-read sequencing was performed 

on HLA alleles from 18 samples with available DNA material (Online Methods)27.
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mutations (Fig. 4a, chi-squared test P < 2.2 ×  

10-16). We also observed that whereas 

loss-of-function mutations occurred in all 

functional domains of the HLA molecule, 

they demonstrated a strong preference for 

the N-terminal end in the leader peptide 

sequence (P = 0.0038), which would likely 

result in a completely nonfunctional protein 

(Supplementary Fig. 4d). The highest 

frequency of mutations localized to exon 4 

(118 mutations, 39.6%), which encodes the 

a3 domain of the HLA protein that binds to 

the CD8 co-receptor of T cells28 (Fig. 4b). 

Abrogation of this function could lead to a 

loss of T-cell recognition and thereby a loss 

of immune reactivity. The second-highest 

frequency of mutations occurred in exon 3 

(56 mutations, 18.8%) followed by exon 2 

(49 mutations, 16.4%), which encode the a1 

and a2 peptide binding domains of the HLA 

molecule, respectively, which conventionally 

bind 9- and 10-mer peptides for antigen 

presentation29.

Analysis of the position of the mutated 

residues within exons 2 and 3 in relationship 

to their predicted interaction with binding 

peptide29 further strongly suggests alteration 

of immune function by these somatic HLA 

mutations (Supplementary Table 14). The 

two major anchor grooves in the HLA molecule 

bind to positions 2 and 9, respectively, of the 

peptide, and a mutation in either groove 

would be expected to profoundly affect the 

biochemical stability of the MHC-peptide 

complex29. A secondary anchor groove that 

interacts primarily with the sixth amino acid 

of the peptide lies between the two primary 

anchor grooves30. Overall, 28.6% of mutations 

(30 of 105) in the peptide binding domains 

were in residues that come in contact with 

the peptide and 80% (24 of 30) of these were 

in positions that comprised one of the two 

primary anchor grooves (Fig. 4c).

We hypothesized that loss-of-function 

HLA mutations would more likely arise in the 

presence of selective pressure imposed by the 

host immune response against the tumor. A 

growing body of studies has shown that higher 

mutational burdens in cancers give rise to a 

higher load of mutation-derived immunogenic 

epitopes and that immune responses against 

these are associated with clinical benefit31. 

These immune responses are presumably 

driven by the presentation of tumor-derived 

epitopes by antigen-presenting cells to stimulate 

effector lymphocyte responses. Consistent 

with the idea that a tumor would evolve in a 

manner to escape recognition and destruction 

by tumor-directed T or natural killer (NK) 

cells, we detected an association between the 

presence of HLA somatic mutations and tumor 

Figure 3  Distribution of HLA mutations across cancers and across functional domains and tumor types. 

Top, distribution of potential loss-of-function events, including out-of-frame and nonsense mutations. 

The histogram summarizes the number of events identified at each position. Central panel, pattern of 

mutations detected in each tumor type. Bottom, recurrent events; recurrent positions (with disease, 

allele group) with frequency ≥5 cases/recurrent site are shown. Bladder (BLCA), breast (BRCA), cervical  

squamous (CESC), colon adenocarcinoma (COAD), head and neck squamous (HNSC), lower-grade 

glioma (LGG), lung adenocarcinoma (LUAD), lung squamous (LUSC), prostate adenocarcinoma (PRAD), 

rectum adenocarcinoma (READ), melanoma (SKCM), stomach adenocarcinoma  (STAD), thyroid 

(THCA), endometrial (UCEC).
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expression signatures of effector lymphocyte infiltration, as recently 

defined32 (Supplementary Table 15 and Fig. 4d). Although putative 

loss-of-function somatic mutations in tumor HLA genes could lead to 

a decrease in the presentation of immunogenic epitopes by the tumor 

cell and evasion of immunologic targeting, these same mutations would 

not affect the ability of nontumor, host antigen-presenting cells to ingest 

and present tumor antigens to T cells, thereby stimulating immune 

infiltration. To further examine this idea, we analyzed the expression 

of 18,000 genes in matched RNA-seq data from 4,512 samples across 

11 tumor types and found the strongest associations in 6 of 11 cancer 

types (stomach, endometrial, cervical, head and neck, colorectal and 

glioma), suggesting that reduced MHC class I activity may be particularly 

important for driving immune escape in these tumor types. From this 

unbiased analysis, the most significantly enriched genes were interferon 

gamma (IFNG), T-cell attractive chemokines (CXCL9, CXCL10, 

CXCL11), lytic molecules (GZMA, GZMH, PRF1, GNLY), as well as 

the “Cytolytic Activity” metagene (analyzed previously as a measure of 

anti-tumor T/NK cell activity32). These results suggest that acquisition 

of HLA mutations without abrogation of expression may provide a 

complementary immunosurveillance escape mechanism in which 

potential destruction of the tumor by T cells and NK cells is precluded.

DISCUSSION

Immune evasion is a critical process in tumor biology and is enabled 

by several mechanisms including immune-editing33, downregulation 

of HLA expression34, secretion of immunosuppressive mediators35 

and expression of proteins that modulate immune checkpoints36. 

Most recently, somatic mutation of HLA genes was revealed to be 

a significantly frequent process in some tumor types4. Improved 

sensitivity and accuracy of somatic HLA mutation detection could better 

characterize this already strongly implicated mechanism of immune 

evasion across cancers. We therefore created Polysolver, a model-based 

algorithm for accurate inference of HLA typing information from 

germline exome-capture data, which enables more sensitive and specific 

detection of somatic HLA mutations compared to standard techniques 

reliant on alignment to the canonical reference genome.

We have demonstrated that Polysolver infers HLA-type information 

with 97% sensitivity and 98% precision from exome-capture sequencing 

data and is among the best-performing tools for the analysis of HLA loci 

from WES data. Indeed, different typing tools, or a combination thereof, 

may be used for optimizing different aspects of HLA mutation detection 

performance, for example, a consensus approach that only uses allele 

species commonly identified by multiple tools as a basis for mutation 

detection would favor increased specificity at the cost of sensitivity. 

The better performance of HLA mutation detection was assessed to be 

primarily due to use of inferred alleles as reference and employment of 

stringent criteria for filtering aligned reads before mutation calling. We 

estimate an increase in sensitivity from 58.8% to 94.1% and specificity 

from 20% to 53.3% over standard methods, based on validation of 

point mutations in RNA-seq data. An expected limitation of Polysolver 

Figure 4  Distribution of MHC class I mutations 

and evidence of positive functional selection.  

(a) Comparison of spectrum of mutations in non-

HLA genes and HLA genes. The ratio of number 

of mutations of a particular type to the number of 

silent mutations is compared between the non-

HLA and HLA genes for all mutation types (chi-

square test, P < 2.2 × 10-16). Ins., insertion;  

del., deletion. (b) Distribution of HLA mutations 

across exons. (c) Mutations in HLA positions that 

are in actual physical contact with the peptide 

(contact residues). Left panel, the relative 

orientation of a 9-mer peptide with respect 

to the HLA and T-cell molecules. Positions 2 

and 9 constitute the primary anchors, whereas 

position 6 forms the secondary anchor with HLA. 

The remaining position interacts with the T-cell 

molecule. Right panel, the nine amino acids of 

the peptide and their corresponding HLA contact 

residues are indicated along the rows (green, 

HLA-interacting anchor positions; blue, T-cell-

interacting positions). The histogram depicts 

the frequency of observed HLA mutations in 

contact residues corresponding to each peptide 

position29. (d) Killer lymphocyte effector genes 

are more highly expressed in tumors exhibiting 

MHC class I mutation. Unbiased statistical 

analysis was employed to find genes more highly 

expressed in tumors harboring a mutation in an 

MHC class I allele. Heatmap displays color-coded 

expression ratio of medians (HLA-mutant vs. 

nonmutant samples) for genes (columns) in each 

cancer type (rows), excluding cancer types with 

fewer than three instances of HLA mutation in 

the cohort. *P < 0.05; **P < 0.0005 indicates 

the significance of the association for the given 

gene in the given cancer type according to one-sided Wilcoxon rank-sum test (null hypothesis: expression is not greater in the mutants). Cytolytic activity 

(geometric mean of GZMA and PRF1 expression) is included as though a gene. The depicted genes are those for which expression in MHC class I–mutated 

tumors was most significantly elevated across cancers (unadjusted P < 10-10 combined by Fisher’s method, Supplementary Table 15). 
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METHODS

Methods and any associated references are available in the online version 

of the paper.

Accession codes. dbGaP: phs000178. 

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ethnic groups. Polysolver and other available HLA typing tools that can 

be used with WES are also not yet suitable for clinical use where much 

higher accuracy (>99.9%) is required. However, the Polysolver-based 

mutation detection pipeline can still be used effectively for detecting 

somatic changes in HLA genes once experimentally determined HLA 

typing information is available.

In this study, we performed a comprehensive characterization of HLA 

mutations in 7,930 samples across 20 different tumor types. We have 

shown that, in comparison to previous studies, the HLA mutational 

spectrum elucidated by our analysis has significantly reduced false 

positives and detects additional somatic mutations. Several biologic 

insights emerged from our analysis. First, we identified colon 

adenocarcinoma to be significantly affected by somatic mutation in class 

I HLA genes in addition to head and neck, lung squamous and stomach 

cancer, thus further supporting HLA mutation as a common oncogenic 

mechanism. In contrast, other cancers such as glioblastoma, ovarian 

cancer and CLL largely lacked mutations in HLA genes. Second, several 

characteristics of the identified nonsynonymous mutations suggest that 

they functionally affect antigen presentation. We identified 29 sites 

across the HLA genes that were recurrently mutated in at least three 

cases, and 35 sites by two cases suggesting positive selection at these 

positions. We further noted a significant enrichment in loss- of-function 

events in the HLA genes, such as frameshifting indels, nonsense and 

splice-site mutations. These events would be expected to abrogate HLA 

class I surface expression on tumors37–39, thereby affecting antigen 

presentation to immune cells. We determined that the majority of the 

detected mutations map to regions critical for antigen presentation. 

More than a third of the mutations (39.6%) were in exon 4 that encodes 

the MHC class I allele a3 domain, which binds to the CD8 co-receptor 

on T cells28. Mutations in this domain have been previously shown to 

abrogate binding to CD8 (ref. 40). Exons 2 and 3 harbored 35.2% of 

the mutations—these exons encode the surfaces that present peptides 

to immune cells. We found evidence that exon 2 and 3 HLA mutations 

preferentially localized to residues critical for anchoring peptide to the 

MHC binding grooves, and would be expected to interfere with the 

fundamental process of antigen presentation29,30.

Finally, we observed a strong association between effector lymphocyte 

gene expression signatures and HLA mutations, which is consistent with 

the hypothesis that somatic changes in these genes are a plausible immune 

escape mechanism, which arise in response to increased cytolytic activity 

in several tumor types. However, additional experiments are required to 

better understand this mechanism.

Improvements in massively parallel sequencing technologies are 

now enabling increased coverage and longer read lengths, which 

should further help Polysolver in resolving somatic changes in 

HLA regions. Further efforts will be focused on extending the 

methodology to other data modalities including RNA-seq and whole 

genome sequencing. In addition to enabling better detection of HLA 

mutations, accurate HLA typing by Polysolver can also be used to study 

germline associations of HLA alleles in diseases, such as autoimmune 

diseases and cancer. It could be used prospectively for preliminary 

screening for matches for allogeneic organ transplantation. Finally, 

as described here, Polysolver can be potentially extended to extract 

sequence and mutation information from other polymorphic regions 
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and TAP2 genes, and MIC-A and MIC-B ligands, and hence is a 

generally applicable analysis framework to address these otherwise 
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ONLINE METHODS
Polysolver is freely available for noncommercial use at http://www.

broadinstitute.org/cancer/cga/polysolver and in Supplementary Software.

WES data. All samples were obtained under Institutional Review Board 

approval and with documented informed consent. A complete list of TCGA 

samples is given in Supplementary Table 11. Mutational spectra of CLL17,45 

and melanoma24 have previously been reported, whereas mutation lists for 

lung squamous carcinoma (LUSC), lung adenocarcinoma (LUAD), blad-

der (BLCA), head and neck (HNSC), colon (COAD) and rectum (READ), 

glioblastoma (GBM), ovarian (OV), uterine corpus endometrial carcinoma 

(UCEC) and breast (BRCA) were obtained from the Sage Bionetworks’ Synapse 

resource (http://www.synapse.org/#!SYNAPSE:syn1729383). For a subset of 

CLL patients (N = 8), HLA typing was performed by molecular typing (Tissue 

Typing Laboratory, Brigham and Women’s Hospital, Boston), and these cases 

were used as a training set for the Polysolver algorithm (Supplementary 

Table 1). The validation set comprised 253 samples from 183 distinct indi-

viduals (47 Caucasian, 50 Blacks, 41 Chinese and 45 Japanese individuals) that 

had both exome data and experimentally determined HLA type information12 

(http://www.1000genomes.org/).

Polysolver allele database creation. To maximally retrieve true HLA reads, 

we constructed a full-length genomic reference library of known HLA alleles 

(6,597 unique entries) based on the Multiple Sequence Alignment (MSA) files 

provided in the IMGT database (v3.10; http://www.ebi.ac.uk/ipd/imgt/hla/), 

similar to the approach described in Erlich et al.12. We first used the cDNA file 

to impute exons in an incompletely sequenced allele by using a reference allele 

that had protein-level identity with the allele in question, as was evident by 

concordance of 4-digit nomenclature. If no such reference allele was available, 

we set as reference an allele that derived from the same allele group, as was 

evident by concordance of 2-digit nomenclature. In cases where there were 

multiple such possibilities for choosing the reference allele, we chose the first 

listed allele in the MSA. A similar approach was used to impute the missing 

components of the sequences listed in genomic (gDNA) MSA file. Finally the 

full-length genomic sequence of each allele was imputed by assembling exons 

from the cDNA imputation step and introns from the gDNA imputation.

Ethnicity inference and prior probability estimation. 4-digit allele frequen-

cies for different ethnicities were calculated by taking a sample-size weighted 

average of all relevant population studies in the Allele Frequency Net Database 

(http://www.allelefrequencies.net/).

A rapid principal components analysis (PCA)-based method was 

developed to infer ethnicity for samples of unknown racial origin (Kiezun 

et al., unpublished data). Exome data for samples of known (self-described) 

ethnicity from the 1000 Genomes and HapMap projects (n = 1,398, with 

911 Caucasians, 375 Blacks, 54 Asians and 58 South Asians) was genotyped 

at a predefined set of 5,845 loci chosen based on considerations related to 

known linkage disequilibrium between different loci, representation on 

population genotyping platforms and consistency between genome releases46. 

A PCA revealed distinct segregation of Caucasian, Black, Asian and South 

Asian samples in the 2-dimensional space defined by the first two principal 

components. Any new sample of unknown ethnicity can now be projected 

in this space and its Euclidean distance from the clusters centroids can be 

computed. Ethnicity is inferred based on the cluster of minimal distance from 

the sample projection.

Allele inference. The posterior probability calculations for alleles correspond-

ing to each HLA gene (A, B or C) are performed separately as described below:

Let

NA ≡ # alleles corresponding to the HLA gene

N ≡ # reads aligning to at least one allele

Nm ≡ # reads aligning to allele am

NT ≡ # reads in the sequencing run

fm ≡ population-based prior probability of allele m

rk1 ≡ first read of read pair rk

rk2 ≡ second read of read pair rk

dk ≡ insert length of read pair rk

lk1 ≡ length of first read of read pair rk

lk2 ≡ length of second read of read pair rk

qi ≡ Phred-like quality of sequenced base i

ei ≡ probability that the sequenced base i is an error

The quality scores of the alignment were used to build a model for the 

sequencing process. Let us say that a given read pair rk does in fact derive from an 

allele am and their sequence relationship allowing for miscalls in the sequencing 

process is accurately captured in the alignment. Let YAi, YCi, YGi and YTi denote 

random variables corresponding to observing bases A, C, G and T respectively 

at position i in read pair rk in its alignment to allele am. Then

YAi, YCi, YGi, YTi  ~ Multinomial(n = 1; aAi , aCi, aGi, aTi)

where

aBi = 1 – ei    if reference base at position i in am is B 

= ei/3  otherwise

Let D denote a random variable for the observed insert length of a paired read 

in the sequencing run based on alignment to the complete genome. For a given 

read pair rk, the empirical insert size distribution can be used to estimate the 

probability of observing the insert length dk as

I (d
l 
=d

k
)Σ

P (D = d
k
) =

N
T

N
T

l=1

Assuming positional independence of quality scores, and independence of 

generated reads and their insert sizes, the probability of observing rk given allele 

am is then

lk1

∏ •  P (D = d
k
)P(rk|am) = if r

k
 aligns to a

m
 

otherwises
k

iα jα
lk2

∏
i=1 j=1

where sk corresponds to the lowest theoretical probability achievable for read 

pair r’k with perfect base qualities and segment lengths equal to those of rk. Since 

93 is the maximum achievable base quality under Illumina 1.8+ format, sk is 

computed as
10–9.3

3
s

k 
= (l

k1
 + l

k2
)  •  log ≈ –23 • (l

k1
 + l

k2
)

The posterior probability of allele am using all reads that align to it is given by
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Log transformation of the above equation yields

Note that the terms N
•s

k and ∑ log P(r
k
)N

k=1  are constants for all alleles and 

can be ignored. The first allele is inferred as the one that maximizes the posterior 

probability.
a
w
 = argmax L

m

a
m

To infer the second allele we had to handle the fact that different alleles are very 

similar to each other, including the winning allele. Therefore, we weight reads 

aligning to multiple alleles by applying a heuristic strategy. For a given allele am, the 

likelihood lm
k of a read rk that also mapped to the winning allele aw with likelihood 

lw
k was weighted by a factor equal to lm

k/(lm
k + lw

k). Consequently, reads mapping 

exclusively to am with respect to aw were assigned a weight of 1. The read insert size 

and allele prior probability components were preserved from the first allele inference 

step. The second winner at each locus was identified as the allele with the maximal  

reevaluated score.
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Pre- and post-processing steps for HLA mutation detection. Prior to detec-

tion of somatic changes using MuTect and Strelka by comparison of tumor 

and normal HLA reads aligned to Polysolver-inferred HLA alleles, the fol-

lowing changes and filters were implemented: (i) NotPrimaryAlignment bit 

flag was turned off from all alignments as several reads mapped to multiple 

alleles; (ii) mapping quality was changed to a nonzero value (=70) for all reads; 

(iii) alignments where both mates did not align to the same reference allele 

were discarded; and (iv) alignments where at least one mate had more than 

one mutation, insertion or deletion event compared to the reference allele 

were discarded. Soft-clipping of the reads was not allowed during the align-

ment. Alleles with multiple detected somatic changes were removed from the 

analysis. In cases where both inferred alleles were identical in the region of 

detected somatic mutation, the mutation was assigned to the more common 

allele in the population. All somatic events were visualized using IGV (MuTect: 

‘KEEP’ entries in call_stats file, Strelka: All entries in all.somatic.indels.vcf file) 

and the ones that passed manual review were further annotated for the gene 

compartment (intron, exon, splice site) and protein change. Splice sites were 

defined as the set of splice consensus sequence positions that had a bit score 

of at least 1 in either the human major/U2 or human minor/U12 introns at the 

exon/intron boundaries (9 positions at the 5ʹ splice donor end of the intron 

including the ultimate base in the upstream exon, and 2 positions at the 3ʹ 
splice acceptor end of the intron)47.

Validation of somatic HLA mutations by RNA-seq evaluation. The 

MutationValidator tool (data not shown) was used for orthogonal confirmation 

of mutations in RNA-seq data. A mutation was considered validated in RNA-seq 

if there were at least two reads supporting the mutation. In brief, to determine the 

power, we first model the distribution of allelic fraction of the mutation based on 

the exome data as a Beta(a+1, r+1) distribution, where a is the number of reads 

bearing the alternate allele and r is the number of reads bearing the reference 

allele at the site of mutation. Then, given the total number of reads aligning at 

the position in the RNA-seq data (N), power was calculated as the probability 

that we would detect at least two reads bearing the alternate allele in the RNA-seq 

data (assuming the mutation has the same underlying allele fraction as the DNA) 

using the Beta-binomial distribution Beta-Binom(N,a+1,r+1), that is,

∑Power = where( )
B(k + a + 1, n – k + r + 1)

B(a + 1, r + 1)

B(x, y) = (x – 1)! (y – 1)! 

(x + y – 1)! 

k=2

N
N

k

A threshold of 80% power was used to consider a site to be powered to detect the 

mutation in the RNA-seq data. Sites that had less than 80% power were removed 

from the analysis.

Standard HLA typing. Standard HLA typing was performed at the Brigham and 

Women’s Hospital Tissue Typing Laboratory using a combination of sequence-

specific oligonucleotide probe (SSO) and sequence specific primer (SSP) tech-

niques. Genomic DNA samples were initially typed using locus-specific LabType 

SSO kits (One Lambda Inc.) and analyzed using a Luminex 200. Loci for which 

there were more than one common well-documented (CWD) allele were subse-

quently resolved by PCR-SSP kits (One Lambda Inc. and Life Technologies) and 

analyzed using gel electrophoresis.

Validation of inferred somatic HLA mutations by targeted long sequencing 

of HLA-A and –B. HLA-A and HLA-B amplification of TCGA samples. HLA 

locus-specific amplification for HLA-A and HLA-B sequences were performed 

separately using HGSgo-AmpX kits from GenDX (Utrecht, Netherlands). Briefly, 

for each sample, 100 ng of genomic DNA was mixed with 1 µl of AmpX primer 

(GenDX), 1.25 µl dNTP mix (Qiagen), 2.5 µl LongRange PCR Buffer (Qiagen), 

0.4 Symbol l LongRange PCR Enzyme (Qiagen) and nuclease-free water was 

added to a final volume of 25 µl per reaction. Samples were then placed in a 

thermal cycler and PCR was performed using the following conditions: initial 

denaturation at 95 °C for 3 min, followed by 35 cycles of 95 °C for 15 s, 65 °C for 

30 s and 68 °C for 6 min, followed by a final incubation at 68 °C for 10 min. All 

PCR reactions were then purified using Agencourt AMPureXP beads,  according 

to the manufacturer’s protocol (Beckman Coulter). Following AMPureXP puri-

fication, the concentrations of the amplification products (~3.1–3.4 kb) were 

confirmed by Quant-iT (Life Technologies), and the sizes were confirmed using 

an Agilent Bioanalyzer DNA 7500 kit.

Library construction and long sequencing. SMRTbell DNA template libraries 

were prepared from the HLA-A and HLA-B amplicons, according to the 

manufacturer’s suggested protocol (5 kb Template Preparation and Sequencing, 

Pacific Biosciences). Briefly, equimolar pools of HLA-A and HLA-B amplicons 

were prepared for each sample. Pooled amplicons were then end repaired and 

ligated to barcoded SMRTbell adapters. Following the addition of barcoded 

SMRTbell adapters, all samples were pooled and exonuclease treated according 

to the manufacturer’s suggested protocol. Pooled, barcoded libraries were then 

purified using AMPure PB beads (Pacific Biosciences) and quantified using 

an Agilent Bioanalyzer DNA 7500 kit. Pooled samples were sequenced in 

SMRTCells with a Pacific Biosciences RSII instrument using the P6 DNA/

Polymerase Binding Kit in conjunction with the DNA Sequencing Reagent 

4.0. Barcoded subreads were analyzed using the SMRT Analysis (version 2.3.0) 

Long Amplicon Analysis (LAA) protocol.

Analysis. We confirmed the accuracy of the Pacific Biosciences-based long 

sequencing approach through testing six samples from normal volunteers with 

known HLA typing (performed at BWH Tissue Typing laboratory based on a 

combination of sequence-specific SSO and SSP techniques, see above), wherein 

we observed 100% concordance between the two approaches. The LAA phased 

consensus fastq sequences and HLA typing for each sample were derived using a 

set of publicly available analysis tools (https://github.com/bnbowman/HlaTools). 

In total, data were generated from 28 samples corresponding to 18 different 

mutations (10 tumor/normal pairs and 8 tumor-only cases). The median number 

of subreads generated per sample was 20,120 (range: 7,464–40,990). For validation 

of Polysolver-predicted mutations, the subreads from the corresponding samples 

were split into contiguous 76-mers, aligned to alleles comprising the inferred 

HLA type for the individual using Novoalign (http://www.novocraft.com/) and 

visualized using IGV. Only reads that had no more than one somatic event of 

the same type (mismatch, insertion, deletion) as the mutation being assessed 

were retained. After filtering, the median number of 76-mer reads mapping to 

the allele predicted to have the mutation was 1,046 (range: 9–3,860). Power was 

calculated using the MutationValidator tool as described above, and a threshold 

of 80% power was used in evaluating the mutations.

Identifying changes in gene expression associated with nonsilent MHC 

class I mutation. Gene expression data were obtained and processed as 

described32. In short, “Level_3” gene-level data were obtained from GDAC 

Firehose (http://gdac.broadinstitute.org/). Read counts were tallied per gene 

symbol and divided by the gene symbol’s maximum transcript length (as 

defined by UCSC Genome Browser’s table “knownIsoforms” (hg19 version)). 

For each sample, these values were rescaled to sum to a total of one million, 

such that expression estimates may be interpreted as Transcripts Per Million 

transcripts (TPM).

For each gene (of ~18,000 quantified pan-cancer), a one-sided Wilcoxon 

rank-sum test was applied to determine whether the mutants (those samples 

nonsilently mutated in any of the six HLA alleles) demonstrated significantly 

higher expression than the nonmutants. In performing this rank-based test, 

random tie breaks were applied when two samples exhibited identical gene 

expression. Note that in addition to the 18,000 genes tested, “cytolytic activity” 

(defined previously as the geometric mean of GZMA and PRF1 expression32) 

was also included. This process was executed separately per tumor type and 

excluded tumor types for which the count of mutated samples with available 

expression data was fewer than three (which excluded glioblastoma, CLL, 

kidney clear cell cancer, liver cancer, ovarian cancer, prostate cancer, melanoma 

and thyroid cancer). This resulted in a matrix of P-values (11 tumor types by 

18,000 genes). Fisher’s method was applied to each gene to assess its overall 

significance across the 11 tumor types. Per-cancer and pan-cancer P-values 

are presented (Supplementary Table 15). Effect sizes (estimated by taking 

the ratio of median expression in the mutants to median expression in the 

nonmutants) for top genes (defined as those with unadjusted P < 10-10) are 

depicted in the form of a heatmap (Fig. 4d). For this heatmap, row and column 

orderings reflect hierarchical clustering (on the basis of the effect size variable), 

though dendrograms are not shown.
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This entire process was repeated, but we reversed the directionality of the 

one-sided Wilcoxon rank-sum tests in order to identify genes with lower 

expression in HLA mutants. Per-cancer and pan-cancer P-values for this 

analysis are presented in Supplementary Table 16, and the effect size heatmap 

appears as Supplementary Figure 5.
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Erratum: Comprehensive analysis of cancer-associated somatic mutations in 
class I HLA genes
Sachet A Shukla, Michael S Rooney, Mohini Rajasagi, Grace Tiao, Philip M Dixon, Michael S Lawrence, Jonathan Stevens, William J Lane, 

Jamie L Dellagatta, Scott Steelman, Carrie Sougnez, Kristian Cibulskis, Adam Kiezun, Nir Hacohen, Vladimir Brusic, Catherine J Wu & 

Gad Getz

Nat. Biotechnol. doi:10.1038/nbt.3344; corrected online 1 October 2015

In the version of this article initially published online, there were errors in three equations in the first page of Online Methods, in the section “Allele 

inference”: “= ei/3 otherwise” should have been on a separate line; the equation beginning with “P (D = dk)” was missing an equal sign immediately 

after this expression; and in the equation starting with Lm, the fifth summation sign was missing “k = 1”. On p. 3, under the first subheading on the 

right-hand side, “ovarian cancer (n = 432)” should have read “thyroid cancer (n = 486).” In addition, the citation for Supplementary Software was 

missing. The errors and omission have been corrected for the print, PDF and HTML versions of this article.
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