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Abstract

Background: Diabetic nephropathy (DN) is the major complication of diabetes mellitus, and leading cause of end-

stage renal disease. The underlying molecular mechanism of DN is not yet completely clear. The aim of this study

was to analyze a DN microarray dataset using weighted gene co-expression network analysis (WGCNA) algorithm

for better understanding of DN pathogenesis and exploring key genes in the disease progression.

Methods: The identified differentially expressed genes (DEGs) in DN dataset GSE47183 were introduced to WGCNA

algorithm to construct co-expression modules. STRING database was used for construction of Protein-protein

interaction (PPI) networks of the genes in all modules and the hub genes were identified considering both the

degree centrality in the PPI networks and the ranked lists of weighted networks. Gene ontology and Reactome

pathway enrichment analyses were performed on each module to understand their involvement in the biological

processes and pathways. Following validation of the hub genes in another DN dataset (GSE96804), their up-stream

regulators, including microRNAs and transcription factors were predicted and a regulatory network comprising of all

these molecules was constructed.

Results: After normalization and analysis of the dataset, 2475 significant DEGs were identified and clustered into six

different co-expression modules by WGCNA algorithm. Then, DEGs of each module were subjected to functional

enrichment analyses and PPI network constructions. Metabolic processes, cell cycle control, and apoptosis were

among the top enriched terms. In the next step, 23 hub genes were identified among the modules in genes and

five of them, including FN1, SLC2A2, FABP1, EHHADH and PIPOX were validated in another DN dataset. In the

regulatory network, FN1 was the most affected hub gene and mir-27a and REAL were recognized as two main

upstream-regulators of the hub genes.

Conclusions: The identified hub genes from the hearts of co-expression modules could widen our understanding

of the DN development and might be of targets of future investigations, exploring their therapeutic potentials for

treatment of this complicated disease.
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target
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Background

Diabetic nephropathy (DN) is the main microvascular

complication of diabetes mellitus and the major cause of

end-stage renal disease [1]. Inflammatory processes, oxi-

dative stress, overactive renin-angiotensin-aldosterone

system (RAAS) and renal fibrosis are among the well-

known pathogenesis features of DN [2]. Also, podocyte

autophagy, mitochondria dysfunction, as well as some

genetic and epigenetic modulations are among recently

identified features of DN pathogenesis [3]. Despite such

findings, current knowledge about the DN pathogenesis

is not sufficient and treatment of this enigmatic disease

is principally based on controlling the blood pressure,

lowering the blood glucose, blocking the renin-

angiotensin system and application of sodium/glucose

cotransporter 2 inhibitors [4, 5]. Therefore, additional

insights into the pathogenicity and genetic etiology of

DN may offer new treatment options. Moreover, to have

a precise and efficient treatment, there is a real need for

discovery of novel therapeutic targets. In this context,

exploring the biological variations at the genomic level

would be a valuable strategy. During the pathogenesis of

DN, numerous genes may subject to expressional alter-

ations in a coordinated manner. Consequently, to de-

scribe and understand changes in gene expression

profiles, genomic based approaches are needed [6]. Up

to now, a majority of studies have been focused on the

differential expression of genes associated with DN, but

ignored their high degree of interconnectivity. In systems

biology studies, weighted gene co-expression network

analysis (WGCNA) has been effectively used to explore

the intrinsic organization of transcripts [7]. The main

aim of WGCNA is to simplify the interpretation of a

huge number of genes with placing them in separate

modules according to resemblances in their expression

profiles. Sample clustering, construction of gene co-

expression modules, and finally identifying hub genes

based on their correlations with a trait are valuable fea-

tures of this algorithm [8, 9].

The aim of this experiment was to perform WGCNA

on DN samples not only to understand the disease re-

lated pathogenic pathways, but also to identify potential

drug targets in this disorder. Accordingly, a DN related

microarray dataset was downloaded from gene expres-

sion omnibus (GEO) database and its significant differ-

entially expressed genes (DEGs) were identified.

Subsequently, the DEGs were introduced to WGCNA in

order to build the co-expression modules. Functional en-

richment analyses showed the biological associations of

co-expression modules with DN pathogenesis and after

construction of protein-protein interaction (PPI) net-

works using genes in all the co-expression modules, hub

genes were identified and validated in another DN data-

set. To identify other regulatory molecules affecting the

expression of hub genes, a multi-layer regulatory net-

work comprising of hub gene’s interrelationships, the

predicted miRNAs and transcription factors (TFs) was

constructed and analyzed.

Methods

Data preprocessing and analysis

The microarray data from human glomeruli tissue sam-

ples of DN patients was downloaded as a part of

GSE47183 dataset from GEO database (https://www.

ncbi.nlm.nih.gov/gds). Analysis of the data was per-

formed by networkanalyst online tool (http://www.

networkanalyst.ca). Prior to data analysis, different filter-

ing and normalization steps, including principal compo-

nent analysis (PCA), variance stabilizing normalization

and quantile normalization were performed to remove

possible outliers and to make sure about the accuracy of

the analysis. In addition, probes related to multiple genes

were removed and for genes matching with multiple

probes, the mean values of probes were considered as

the gene’s expression values. The analysis procedure was

done using Linear Model for Microarray Analysis

(Limma) and significant DEGs were identified based on

false discovery rate (FDR) cutoff <0.049. Volcano plot

was built using R software (Version 1.2.5033).

Construction of gene co-expression networks

Construction of co-expression network was performed

using WGCNA algorithm. As a famous R software pack-

age, WGCNA is utilized for sample clustering, computa-

tion of topological features, co-expression network

construction, selection of disease correlated genes and

modules and differential analysis of networks [10]. Be-

fore WGCNA, outlier samples were recognized and re-

moved using PCA method. Then, a matrix consisting of

DEG’s related intensities for each sample was introduced

to the WGCNA algorithm. After sample clustering,

mean connectivity, as well as scale-free fit index for

numbers 1–30 (as soft-threshold power (β)) were calcu-

lated separately, and the best value, which determines

the adjacency matrix’s co-expression similarity, was rec-

ognized. Next, the calculated correlation matrix (based

on Pearson’s correlation) was converted to adjacency

matrix and the topological overlap matrix (TOM) was

created, in which indirect relationships between genes

are considered. Finally, using hierarchical clustering and

TOM dissimilarity measures, all genes were classified

into different modules (co-expression modules) accord-

ing to their similarity in expression. In this step, after de-

termining module eigengenes (based on Pearson’s

correlation), the ones with highly correlated eigengenes

(Pearson’s correlation higher than 0.85) were merged

into one module. Identification of co-expression mod-

ules was performed using following parameters: “soft-
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threshold power = 12, minModuleSize = 30, merge-

CutHeight = 0.15. In order to verify the modules division

consistency, a heatmap was drawn for all genes to de-

scribe the adjacencies among them. In addition, the

module interactions were shown by carrying out a clus-

ter analysis and plotting the adjacency heatmap of

eigengenes.

Gene Ontology and pathway analysis

Gene ontology (GO) and pathway enrichment analyses

were performed for the extracted genes from each co-

expression modules. In this part, Cytoscape software

(version 3.8.2) [11] and CluGO module (version 2.5.7)

[12] were applied for biological process (BP), as well as

Reactome pathway enrichment analyses. Revigo online

tool (http://revigo.irb.hr/) was utilized to summarize and

find the parent GO terms. The significant enrichment

threshold was set as p < 0.05.

Interactive network construction, hub gene analysis and

identification

Search Tool for the Retrieval of Interacting Genes (STRI

NG; version 11.0, combined score of >0.4)) [13] was uti-

lized to determine interactions among the genes in each

module. Cytoscape was applied for construction and

visualization of PPI networks. Hub genes were selected

based on both the degree centrality scores in the con-

structed PPI networks, as well as the weight scores in

the weighted co-expression networks of the modules. In

this part, at first top 5% of genes based on degree cen-

trality scores in the PPI networks were identified using

CytoHubba plugin [14] in Cytoscape. Likewise, the

weighted co-expression networks were extracted from

WGCNA algorithm and top 5% of genes based on their

weight scores were achieved. The common genes in both

lists were determined as hub genes.

Hub gene validation and construction of a gene

regulatory network

In order to verify the expression profiles of the identified

hub genes and their levels of expression between normal

and DN tissues, a different array dataset (GSE96804)

was analyzed and checked. GSE96804 contained expres-

sion data from glomeruli samples of 41 DN patient and

20 healthy individuals [15]. In the next step, a multi-

layer regulatory network was constructed to find other

regulatory elements, including TFs and miRNAs affect-

ing the expression of validated hub genes. In this part,

the validated hub genes were uploaded into miRTarBase

(Release 7) [16] and their associated miRNAs were ex-

tracted. The hub-gene associated TFs were also recog-

nized in TRRUST (Version 2) database [17]. Finally,

Cytoscape software was used for construction of a

network comprising of hub genes, the predicted TFs,

and miRNA molecules.

Results

Preprocessing, analysis, and identification of DEGs: 2475

DEGs were identified and subjected to further analysis

DN and control samples from the dataset GSE47183-

GPL14663 included 7 DN and 14 control samples. PCA

is known as a technique to explore similarities and dif-

ferences of samples by reducing data dimensionality.

PCA also could be a tool for showing dataset quality

[18], and in a so-called good quality dataset, case and

control samples are bunched together, separately. After

performing PCA for the dataset, several samples, includ-

ing one DN and six control samples were identified as

outliers and removed from further analysis (Fig. 1a). Be-

sides, prior to data analysis, two normalization proce-

dures were performed to guarantee the similarity of the

expression distributions of each sample across the entire

dataset (Fig. 1b, c). Considering the FDR cutoff, 2475

significant DEGs, including 1183 down-regulated and

1323 up-regulated genes were selected for further ana-

lysis. Volcano plot representing the significant DEGs, as

well as top 10 up- and down-regulated DEGs are shown

in Fig. 1d.

Construction of gene co-expression networks: genes were

clustered into 6 co-expression modules

Sample clustering showed no outlier among samples

(Fig. 2a) and soft-threshold power of 12 was selected

based on the scale-free fit index and mean connectivity

values (Fig. 2b, c). WGCNA algorithm clustered genes

into six co-expression modules, including black, blue,

turquoise, grey, dark-green, and light cyan modules

(Fig. 3a, b). The number of genes in each module is

shown in Table 1. The plotted heatmap revealed the

module division accuracy and the topological overlap ad-

jacency among genes in the modules. In the heatmap,

most of the genes in the same module have a higher

correlation (Fig. 3c). According to the eigengene’s

clustering dendrogram and adjacency heatmap, six co-

expression modules were divided into two clusters

(Fig. 3d).

Functional analysis of genes in co-expressed modules:

metabolic processes, cell cycle processes and apoptosis

were top enriched terms

GO terms of biological process and Reactome pathways

were recognized for the genes in each co-expression

module. The light cyan module was not considered for

further analysis due to the small number of genes and

no significant enrichment results. Top five enriched GO

terms and Reactome pathways (p-value <0.05) are shown

in Table 2. Genes in the black module were mostly
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enriched in regulation of ATP metabolic process, glyco-

lytic process, purine nucleotide metabolic process, skel-

etal muscle tissue development, and blood vessel

endothelial cell migration. In terms of pathway enrich-

ment, genes in this module were enriched in collagen

biosynthesis, ERK/MAPK targets and Interleukin-17 sig-

naling. The top BP terms of the blue module with 781

genes were the regulation of the multicellular organismal

process, regulation of growth, and transcription initi-

ation. In addition, in terms of pathway enrichment ana-

lysis, genes in the blue module were mainly enriched in

programmed cell death and apoptosis, transcriptional

regulation by RUNX2, UCH proteinases, and regulation

of ornithine decarboxylase (ODC).

Genes in the dark-green module were mostly enriched

in the cell cycle process, protein metabolic process, as

well as pathways like translation, cell cycle and

nonsense-mediated decay (NMD) independent of the

exon junction complex (EJC). GO terms of genes in the

grey module included actin filament severing, IRE1-

mediated unfolded protein response, regulation of cell

cycle G2/M phase transition, chylomicron assembly,

antigen processing and presentation of exogenous pep-

tide antigen. In terms of pathway enrichment, the grey

module genes were enriched in G2/M checkpoints,

ubiquitin-mediated degradation of phosphorylated

Cdc25A, p53-independent DNA damage response,

hedgehog ligand biogenesis and chylomicron assembly.

In the turquoise module, genes were mostly enriched

in metabolic processes like organic acid metabolic

process, small molecule catabolic process, monocarbox-

ylic acid metabolic process, lipid metabolic process, and

fatty acid oxidation. In terms of pathway enrichment,

genes of this module were involved in the metabolism of

amino acids and derivatives, fatty acid metabolism, bio-

logical oxidations and peroxisomal lipid metabolism.

Hub gene identification, and validation: 23 hub genes

were identified and 5 of them were validated in another

DN dataset

Genes in all co-expression modules were extracted and

their PPI networks were constructed using the STRING

database (Fig. 4a–e). Instead of genes in the light cyan

module, the extracted genes from the other five co-

Fig. 1 Filtering and normalization of the data before the analysis by Limma; All boxes showing the results of filtered and normalized dataset. (a)

PCA plot representing the similarities and differences between the DN and control samples. (b) Plot of density against log2 of read counts

showing relative distribution of different counts in each group. (c) Box plot showing the distribution of normalized samples. (d) Volcano plot of

the analyzed dataset and top 10 up- and down-regulated genes
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expression modules showed a close interaction in the

constructed PPI networks. The hub genes were identi-

fied from the top 5% of the PPI-related hub genes (based

on degree centrality) and the top 5% of the weighted

networks for each module. The identified hub genes in 5

modules were including: ACAA1, ACADM, AURKA,

AURKB, CDC20, EHHADH, ESR1, FABP1, FN1, GAPD

H, HADH, MAD2L1, NEDD8, PECAM1, PIPOX,

PSMA5, PSMC4, PTEN, RAD51, RPL3, RPS9, SLC2A2,

and UBA52. Notably, all the identified hub genes were

connected together in an interactive network and a close

correlation was observed between RPL3, PSMA5,

MAD2L1, PSMC4, PTEN, NEDD8, AURKA, UBA52,

AURKB, CDC20, GAPDH, and RPS9 (Fig. 4f). In order

to verify the differentially expressed profile of the hub

genes in another DN-related dataset, GSE96804 was

downloaded and analyzed. Five of the 23 identified hub

genes, including: FN1, SLC2A2, PIPOX, FABP1, and

EHHADH showed similar up/down-regulation patterns

with close log2 fold change in the validation dataset.

The expression profiles of these five hub genes are

shown in Fig. 5. Instead of FN1, all other hub genes were

found to be downregulated in DN samples.

Construction of multi-layer regulatory network: hsa-miR-

27a-3p and RELA were predicted as top upstream

regulators of the validated hub genes

In the next step, in order to identify other regulatory ele-

ments affecting the expression of validated hub genes, a

multi-layer regulatory network comprising of hub gene’s

interrelationships, predicted miRNAs, and TFs was con-

structed and analyzed (Fig. 6). The constructed regula-

tory network comprised of 148 nodes, including five hub

genes, 130 miRNA, and 13 TFs. According to the degree

of connectivity, hsa-miR-27a-3p and RELA were recog-

nized as top potential up-stream regulators, affecting the

Fig. 2 Sample clustering dendrogram, trait heatmap and soft-thresholding values. (a) Sample cluster dendrogram of 8 control and 6 DN samples.

(b) Analysis of different soft-thresholding values from 1 to 30. (c) Evaluation of mean connectivity for each β value. β = 12 was selected for the

sequential analyses for which both the mean connectivity and scale-free topology fitting index R2 may reach a plateau
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Fig. 3 Construction and validation of co-expression modules using WGCNA algorithm. (a) Hierarchical cluster analysis of the genes in different

modules. The horizontal red line represents the threshold (0.15) used for merging the modules. (b) Cluster dendrogram of all genes classified in

different modules according to the dissimilarity measure. The colored bars below the dendrogram represent the original division of modules

based on hierarchical clustering (upper bar), and the merged modules based on eigengenes Pearson’s correlation (lower bar). (c) Adjacency

heatmap of all genes, indicating the accuracy of the module division. Each row and column of the heatmap belong to a single gene. Red color

indicates low adjacencies and progressive yellow color indicate higher adjacencies among genes in the modules. (d) Clustering dendrogram and

adjacency heatmap of eigengenes. Red indicated positive correlation and blue indicated negative correlation between co-expression modules

Table 1 The number of genes and the identified hub genes in each co-expression module

Module Genes Hub genes/validated hub genes

Blue 781 PTEN, ESR1, PSMA5, RPS9, PSMC4, NEDD8, RPL3

Black 165 PECAM1

Dark-green 590 FN1★, CDC20, AURKB, MAD2L1, RAD51, UBA52, AURKA,

Grey 196 GAPDH

Light cyan 60 –

Turquoise 683 EHHADH★, PIPOX★, SLC2A2★, FABP1★, HADH, ACADM, ACAA1

★Validated hub genes in another DN dataset (GSE96804)
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Table 2 The results of functional analyses for genes in each module. Top 5 GO terms and Reactome pathways were listed

Module Enrichment Term Count % Associated
Genes

p-value

Black GO GO:1903579- negative regulation of ATP metabolic process 4 15.38461 6.87E − 05

GO:0045820- negative regulation of glycolytic process 3 21.42857 2.14E − 04

GO:0043534- blood vessel endothelial cell migration 6 4.918033 6.64E − 04

GO:1900543- negative regulation of purine nucleotide metabolic process 3 14.28571 7.47E − 04

GO:0048643- positive regulation of skeletal muscle tissue development 3 14.28571 7.47E − 04

Reactome R-HSA:1650814- Collagen biosynthesis and modifying enzymes 5 7.462687 6.61E − 04

R-HSA:198753- ERK/MAPK targets 3 13.63636 0.001484

R-HSA:448424- Interleukin-17 signaling 3 4.166667 0.039484

Blue GO GO:0051239- regulation of multicellular organismal process 194 5.687482 2.76E − 10

GO:2000026- regulation of multicellular organismal development 139 6.264083 5.13E − 10

GO:0006367- transcription initiation from RNA polymerase II promoter 28 13.46154 4.33E − 09

GO:0040008- regulation of growth 58 8.011049 5.86E − 08

GO:0006352- DNA-templated transcription, initiation 30 10.9489 1.46E − 07

Reactome R-HSA:109581- Apoptosis 24 13.33333 5.58E − 07

R-HSA:5357801- Programmed Cell Death 25 12.7551 7.57E − 07

R-HSA:8878166- Transcriptional regulation by RUNX2 18 14.87603 3.04E − 06

R-HSA:5689603- UCH proteinases 16 15.68627 5.34E − 06

R-HSA:350562- Regulation of ornithine decarboxylase (ODC) 11 21.56863 7.06E − 06

Dark-
green

GO GO:0022402- cell cycle process 96 6.521739 6.93E − 15

GO:1903047- mitotic cell cycle process 71 7.768053 7.68E − 15

GO:0042981- regulation of apoptotic process 96 6.185567 1.62E − 13

GO:0010564- regulation of cell cycle process 63 7.758621 3.17E − 13

GO:0051246- regulation of protein metabolic process 130 4.708439 1.56E − 09

Reactome R-HSA:156842- Eukaryotic Translation Elongation 17 18.27957 1.14E − 08

R-HSA:72764- Eukaryotic Translation Termination 17 18.27957 1.14E − 08

R-HSA:975956- Nonsense Mediated Decay (NMD) independent of the Exon Junction
Complex (EJC)

17 17.89474 1.59E − 08

R-HSA:69278- Cell Cycle, Mitotic 46 8.199643 2.13E − 08

R-HSA:156902- Peptide chain elongation 16 17.97753 3.95E − 08

Grey GO GO:0051014- actin filament severing 4 21.05263 3.80E − 05

GO:0036498- IRE1-mediated unfolded protein response 6 8.450705 9.25E − 05

GO:1902749- regulation of cell cycle G2/M phase transition 10 4.329004 1.50E − 04

GO:0002479- antigen processing and presentation of exogenous peptide antigen via
MHC class I, TAP-dependent

6 7.5 1.80E − 04

GO:0034378- chylomicron assembly 3 23.07692 2.88E − 04

Reactome R-HSA:69601- Ubiquitin Mediated Degradation of Phosphorylated Cdc25A 6 11.53846 6.09E − 05

R-HSA:69610- p53-Independent DNA Damage Response 6 11.53846 6.09E − 05

R-HSA:5358346- Hedgehog ligand biogenesis 6 9.230769 2.14E − 04

R-HSA:8963888- Chylomicron assembly 3 30 2.57E − 04

R-HSA:69481- G2/M Checkpoints 9 5.357143 3.95E − 04

Turquoise GO GO:0006082- organic acid metabolic process 138 11.89655 2.38E − 54

GO:0044282- small molecule catabolic process 84 17.46362 4.44E − 45

GO:0032787- monocarboxylic acid metabolic process 82 11.61473 1.27E − 30
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expression of the validated hub genes. In addition, FN1

was recognized as the most affected gene by both the TF

and miRNA molecules.

Discussion

The aim of this study was to identify underlying molecu-

lar pathways and key genes in the pathogenesis of DN

using the WGCNA algorithm. Compared to conven-

tional microarray-based profile analysis, WGCNA has

some distinct advantages, like considering gene clusters

(modules), rather than analyzing whole genes and their

interactions. As a general hypothesis, genes within a co-

expressed module are more likely under the control of

similar regulatory pathways. These cluster of genes could

Table 2 The results of functional analyses for genes in each module. Top 5 GO terms and Reactome pathways were listed

(Continued)

Module Enrichment Term Count % Associated
Genes

p-value

GO:0006629- lipid metabolic process 96 6.241873 9.88E − 16

GO:0019395- fatty acid oxidation 24 20.33898 4.86E − 15

Reactome R-HSA:1430728- Metabolism 166 7.844991 4.14E − 29

R-HSA:71291- Metabolism of amino acids and derivatives 49 13.1016 2.81E − 16

R-HSA:8978868- Fatty acid metabolism 30 16.94915 2.79E − 13

R-HSA:211859- Biological oxidations 31 13.96396 2.16E − 11

R-HSA:390918- Peroxisomal lipid metabolism 12 41.37931 6.80E − 11

Fig. 4 The constructed PPI network by genes of the co-expressed modules (a–e). The nodes in yellow represents identified hub genes. The hub

genes are the ones that listed as top genes in the co-expression networks and have the highest degree centrality in the PPI networks. (f). PPI

network of all the hub genes based on STRING database. All the hub genes from different co-expression modules are closely connected together

in the constructed PPI network
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also most likely be functionally related. Therefore, iden-

tification of the genes with co-expressed profiles is bene-

ficial in determining the most disease-associated genes

and their functions [7].

According to the results of enrichment analysis, the

turquoise module was more likely associated with the

DN pathogenesis. Some of the DN explicit physiological

pathways, including fatty acid and peroxisomal lipid me-

tabolism, amino acid metabolism, and biological oxida-

tions were among the top enriched ones for the genes in

this module. Based on recent findings, alteration in me-

tabolite levels in some pathways, including the TCA

cycle, lipids metabolism, amino acids metabolism, and

the urea cycle, is strongly associated with DN progres-

sion [19–22]. Aberrant levels of metabolites are also

linked with oxidative stress and changes in renal

hemodynamics. Moreover, oxidative stress has been

shown to play a significant role in podocyte damage,

proteinuria, and tubulointerstitial fibrosis [23, 24].

Other enriched terms and pathways for genes in the

black, blue, dark-green, and grey modules also were

connected with the pathogenesis of DN. For instance,

collagen biosynthesis, ERK/MAPK and interleukin-17

signaling pathways that were top enriched pathways for

black module genes, have shown to play important roles

in renal pathogenesis and fibrosis [25–27]. Likewise,

apoptosis as the top enriched term for the blue module

genes, has been previously found in tubular, epithelial,

endothelial, and interstitial cells of DN patients [23]. Cell

cycle regulation was another main enriched term for the

genes in dark-green and gray modules. Although, the

cell cycle machinery and elements are the same in all

cells, in some tissues like kidney, this machinery might

be under the control of some distinct growth factors

able to cause different growth responses based on the

cell types. For instance, transforming growth factor-β

(TGF-β), which is a well-known molecule in DN pro-

gression, stimulates the propagation of tubulointerstitial

Fig. 5 Expression levels of FN1, SLC2A2, PIPOX, FABP1, and EHHADH in normal and DN samples in the main (GSE47183) and validation

(GSE96804) datasets
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fibroblasts, but also invoke hypertrophy in some other

cells like mesangial and tubular cells [28, 29]. As another

example, angiotensin II stimulates the propagation of fi-

broblasts, mesangium cells, and distal tubular cells, but

also intermediating hypertrophy in proximal tubules [30,

31]. Such behaviors might be due to the differential ex-

pression of growth factor receptors during the DN de-

velopment [28]. Generally, cell turnover in the normal

kidney is low, and most of the cells are in the G0 phase

of the cell cycle. Following injury, both the cell division

and hypertrophy as compensatory mechanisms will be

initiated to stop organ dysfunction [32]. Therefore, dur-

ing the DN development, it is thought that the regula-

tory elements participating in the cell cycle control are

in their high activity levels. Discovery of the key media-

tors and understanding their detailed roles in the cell

cycle pathway could be valuable in the development of

novel therapeutic strategies aimed for clogging the DN

progression.

Among the validated hub genes, fibronectin 1 (FN1),

was the only one that showed an up-regulated pattern

in DN samples. This non-collagenous glycoprotein is

one of the principal components of the extra-cellular

matrix (ECM), playing an important role in both cell-

cell and cell-matrix interactions. So far, a great number

of experiments have pointed to the key mediatory role

of FN1 in glomerular sclerosis and fibrosis in different

chronic kidney diseases (CKDs) [33–36]. The process

of FN matrix assembly is a step-by-step process started

by α5β1 integrin receptors. Generally, these receptors

result in FN-FN interactions and the formation of the

nascent fibrils [37]. Then, the fibrils grow into a mature

and insoluble matrix acting as a basement for the de-

position of other ECM components like collagens. Con-

sequently, FN1 dysregulation could have disturbing

effects on the organization, quantity, and structure of

ECM fibrils launching a fibrotic response [38]. More-

over, due to the slow turnover of ECM, the situation

could cause harmful effects on the glomerulus filtration

[39]. Therefore, controlling FN assembly might be an

accurate strategy in targeting ECM accumulation dur-

ing kidney fibrosis. FN could also be considered as a

biomarker in different CKDs. During fibrosis, both the

circulatory FN and local FN have shown to be up-

regulated in Bowman’s capsule, tubule-interstitium and

glomerular mesangium [40]. Thus, since the degree of

fibrosis is a great indicator of renal function in kidney

diseases, FN could be considered as an explicit bio-

marker of fibrosis and a potential progression indicator

in CKDs like DN.

Fig. 6 The multilayer gene regulatory network comprising of 5 validated hub genes, and their related miRNAs and transcription factors. Among

the hub genes, FN1 was the most affected gene by both regulatory layers. MiR-27a and RELA were two regulatory elements affecting most of the

hub genes
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Four other hub genes, including SLC2A2, PIPOX,

FABP1 and EHHADH were among the co-expressed

genes in the turquoise module, also down-regulated

genes in DN samples. Notably, these DEGs are involved

in some DN explicit physiological features, such as lipids

and glucose metabolism (EHHADH, FABP1, SLC2A2)

also oxidation-reduction process (PIPOX) [41, 42].

Flavoenzyme pipecolate oxidase or PIPOX is respon-

sible for the oxidation of L-pipecolic acid to Δ1-

piperideine-6-carboxylate (P6C) [43]. Pipecolate is a

nonproteinogenic amino acid of lysine metabolism and

its metabolism consequently results in a protection

against H2O2 stress [44] . Since PIPOX is required in

this process, down-regulation of this enzyme in DN

could reduce the protective effects of L-pipecolic acid

against oxidative stress pathways and accelerate the dis-

ease progression [45].

Glucose transporter 2 (GLUT2) (encoded by SLC2A2

gene) is a high-capacity facilitative glucose transporter

expressed in different organs, including liver, kidney, in-

testine, and pancreatic β-cells [1]. In the kidney, GLUT2

maintains glucose homeostasis by regulating the transe-

pithelial uptake of glucose in the epithelial cells of the

basolateral membrane, as well as glucose reabsorption in

the kidney proximal tubule [46]. As a glucose trans-

porter, GLUT2 might play a role in insulin signaling and

glucose uptake in podocytes. But, in diabetic condition,

podocytes use different types of transporters for glucose

uptake. Based on an investigation, high glucose concen-

trations and mechanical stress could reduce the expres-

sion of GLUT2 and GLUT4, while enhancing glucose

uptake in rat podocytes [47]. The present study also re-

vealed the downregulation of GLUT2 in DN samples

and introduced this transporter as a hub gene. However,

upregulation of this transporter and the altered glucose

uptake in hyperglycemia condition and DN models have

been shown in different studies [48]. It seems that more

investigations are required to clarify the expressional

pattern, as well as the concealed roles of this transporter

in DN pathogenicity.

Fatty acid-binding protein 1, FABP1, was another

identified hub gene with a reduced expression in DN

samples. FABP1, which is mainly expressed in the liver,

is responsible for the metabolism of long-chain fatty

acids and other hydrophobic molecules [49]. FABP1 is

also expressed in kidneys, mostly in the cytoplasm of

kidney proximal tubule cells [50]. According to previous

investigations, some conditions like hyperglycemia,

hypertension, proteinuria, and toxin-induced damage to

kidney proximal tubule cells could increase the urinary

excretion of FABP1 [51, 52] and consequently, reduce

renal levels of this protein. Moreover, FABP1 has been

shown to play a central role in kidney damage and repair

processes; Therefore, its urinary concentration might be

a potential indicator for prediction of DN occurrence

and severity [53]. Based on other findings, overexpres-

sion of FABP1 in proximal tubule cells can decrease

angiotensin II-induced oxidative stress and tubulointer-

stitial damage [54].

Another identified hub gene was enoyl-CoA hydratase

and 3-hydroxyacyl CoA dehydrogenase (EHHADH),

which is a part of the classical peroxisomal fatty acid β-

oxidation pathway. Generally, decreased levels of this

protein might lead to the accumulation of lipids in tubu-

lar epithelial cells, which is strongly linked with de-

creased renal function [41, 55]. In a normal state,

tubular epithelial cells depend on fatty acids as the main

source of energy, whereas faulty utilization of fatty acids

leads to energy depletion. Since, the baseline energy con-

sumption of tubular epithelial cells is high, the resulted

energy depletion would finally cause excessive oxidative

stress, cell damage, and cell death [56, 57].

TFs and miRNAs as two main types of regulatory

elements are controlling the expression of genes. By con-

struction of a regulatory network, miR-27a-3p and RELA

were recognized as potential top molecules affecting the

expression of the five identified hub genes. The members

of miR-27 family usually contributes to the regulation of

cell cycle progression, cell proliferation and cell hyper-

trophy [58, 59]. Upregulation of miR-27a was shown in

cultured glomerular mesangial cells and in kidney glom-

eruli of streptozotocin-induced diabetic rats. Moreover,

inhibition of this miRNA was shown to reduce mesangial

cell proliferation and ECM accumulation, along with trig-

gering some necessary pathways for recovery from kidney

injury [60]. Likewise, inhibition of this miRNA in the kid-

ney of db/db mice was shown to reverse mitochondrial

dysfunction by affecting mitochondrial membrane poten-

tial and production level of reactive oxygen species [61].

Among the 5 validated hub-genes, PIPOX, FABP1, and

SLC2A2 were identified as the downregulated DEGs in

DN cases and targets of mir-27a. FN1 is also recognized

as another target of miR-27a, but with an upregulated pro-

file in DN cases. It can be assumed that the expression of

FN1 is under the control of other regulatory elements not

just the miR27a.

RELA, also known as p65, was identified as the top TF

having connections with other TFs and affecting the ex-

pression of FN1, FABP1 and EHHADH in the con-

structed regulatory network. This TF is a REL-associated

protein involved in the formation of nuclear factor NF-

kappa-B (NF-κB) heterodimer, which is an essential

complex in various cellular processes, such as cellular

metabolism and chemotaxis [62]. Activation of NF-κB

and subsequent production of certain pro-inflammatory

chemokines in tubular epithelial cells are indicators of

progressive DN [63]. This might point to the potential

role of RELA in DN pathogenesis.
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Conclusions

The main strength of this study was to consider both

the degree centrality values in PPI networks, as well

as the weighted networks for the identification of key

players in the DN pathogenesis. One limitation of this

study was the lack of an experimental section check-

ing the expression of the identified hub genes in DN

samples. This issue was partially covered by perform-

ing validation in another DN dataset. Due to the lack

of diabetic (without nephropathy), as well as non-

diabetic nephropathy samples as control samples, we

only consider the comparison of DN versus healthy

controls. This could be another limitation of this

work. All in all, these data may lead to future experi-

mental studies examining the role of the spotted

genes in the pathophysiology of DN. Additionally, the

identified genes and their involved pathways could

widen our understanding of the DN development and

might be targets of future investigations, exploring

their therapeutic potentials for treatment of this com-

plicated disease.
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