

SYRACUSE UNIVERSITY

DEPARTMENT OF MECHANICAL AND **AEROSPACE ENGINEERING**

SYRACUSE, NEW YORK 13244-1240

(EASE-CE-182237) CONTELEESIVE ABALISIS CE FELICCEREBU WILF EFFFINGLESS FUTURE STORUS Report (Syracuse Univ.) 110 + CBCL C9E Juclas

0123668 G3/61

888-18366

LANGLEY GAMAT

128068

110P

10-61-CR

LANGLEY GRANT IN-61 -CR

-

COMPREHENSIVE ANALYSIS OF HELICOPTERS WITH BEARINGLESS ROTORS

ΒY

V. R. MURTHY PRINCIPAL INVESTIGATOR

STATUS REPORT

submitted to

NASA, Langley Research Center

under

NASA Research Grant NAG-1-759

MARCH 1988

ABSTRACT

A modified Galerkin's method is developed to analyze the dynamic problems of multiple-load-path bearingless rotor blades. The development and selection of functions are quite parallel to CAMRAD procedures. This greatly facilitates the implementation of the method into the CAMRAD program. A software is developed implementing the modified Galerkin's method to determine free vibration characteristics of multiple-loadpath rotor blades undergoing coupled flapwise bending, chordwise bending, twisting, and extensional motions. Results are in the process of being obtained by debugging the software.

TABLE OF CONTENTS

	Page	
ABSTRACT	ii	
LIST OF FIGURES	iv	
NOMENCLATURE	v	
1. INTRODUCTION	1	
2. BASIC EQUATIONS	4	
3. BEARINGLESS ROTOR BLADES	6 6 10	
4. MODIFIED GALERKIN'S METHOD	14	
5. SELECTION OF FUNCTIONS	24 24 27	
6. TENSION CALCULATIONS	32	
7. SOFTWARE DEVELOPMENT 7.1 Equations of Motion 7.2 Assumed Functions 7.3 Galerkin's Equations 7.4 Eigenvalue Problem	40 40 42 45 51	
REFERENCES		
APPENDIX - Computer Program	Al	

LIST OF FIGURES

Fig.	1	Components of a Bearingless Main Rotor	7
FIg.	2	Model for a Triple-Load-Path Blade	8
Fig.	3	Bearingless Rotor Concept with Torque Tube Enclosing the Flexbeam	9
Fig.	4	Free-Body Diagram of the Clevis	11
Fig.	5	Plane of the Clevis	13
Fig.	6	Division of the Regions	26
Fig.	7	Tension Distribution	34

Page

NOMENCLATURE

A	Area of cross-section
e	Mass centroid offset from elastic axis
E	Young's modulus
G	Shear modulus
I _R	Reference moment of inertia
¹ 1, ¹ 2	Bending moments of inertia about major and minor neutral axes
k m	Mass polar radius of gyration of blade cross section about elastic axis
k _{m1} , k _{m2}	Mass radii of gyration about major neutral axis and about an axis perpendicular to chord
l.	Length of the load paths
m	Mass per unit length
^m _L	Reference mass
M _x	Twisting moment about x-axis
M _y ,M _z	Bending moments about y and z axes, respectively
n	Number of load path
N	Number of selected functions
R	Radius of the rotor
Т	Tension
u,v,w	Elastic displacements in the x,y,z directions, respectively
v _x	Axial force
V _y ,V _z	Shear forces along y and z directions, respectively
x,y,z	Mutually perpendicular axis system with x - along the blade elastic axis y - towards the leading edge

β Pretwist angle

 ϕ Elastic twist about the elastic axis

ω Frequencies of vibration

Ω Blade rotational speed

1. INTRODUCTION

The bearingless rotorcraft offers reduced weight, less complexity, and superior flying qualities. Bearingless rotor technology was successfully applied by Sikorsky in the tail rotors of the Blackhawk and S-76 helicopters (Ref. 1). Boeing Vertol built the first successful bearingless main rotor (BMR) and flew it in 1978 (Refs. 2 and 3). During a recent study for concept definition of an Integrated Technology Rotor/Flight Research Rotor (ITR/FRR), thirty-three hub concepts were proposed and twenty-one of these were bearingless designs (Ref. 4). This suggests that the next generation of rotorcraft will most likely be equipped with bearingless rotors. Boeing Vertol is currently designing and advanced bearingless rotor hub for MBB-105 blade (ABRS Project).

All practical designs of bearingless rotors include multiple load paths and one that was flight tested by Boeing Vertol has three load paths. The existence of multiple load paths change the dynamic behavior of the helicopter significantly, and also provides a variety of options to the designer. Therefore, it is important to develop a capability to analyze the helicopters with multiple-load-path bearingless hubs. CAMRAD (Ref. 5) is a comprehensive rotorcraft analysis program developed at NASA-Ames. This program utilizes recently developed technology to analyze the following problems:

1. Trim solution

2. Performance, loads and noise

3. Stability derivatives and handling qualities

- 4. Aeroelastic stability
- 5. Vibration and gust response

CAMRAD does not model multiple load paths and many users need this capaability in CAMRAD.

The modification of CAMRAD program to include the multiple load path is undertaken under the present program. This modification is a major effort requiring several years of concentrated study. The modification is undertaken basically in two major phases:

- Phase 1: Extension and validation of CAMRAD procedures to include multiple load paths.
- Phase 2: Incorporation of procedures developed under phase 1 into the CAMRAD code under consultation with Dr. Wayne Johnson.

The first two years will be spent for Phase 1 studies. As a part of this phase, a systematic study is undertaken to extend the CAMRAD technologies. CAMRAD uses Galerkin's method (Ref. 5) following reference 6. The limitations of this method as exists in CAMRAD are:

- 1. Single-load-path modelling can only be done
- 2. Axial degree-of-freedom is not included in the analysis, and this degree-of-freedom is important for multiple-load-path modelling
- There is no coupling between bending and torsion in the blade modes

Therefore, a modified Galerkin's method as employed in CAMRAD following reference 6 is extended for bearingless multiple-load-path blade. A computer program is developed to validate the formulation. The details of the formulation and the listing of the computer program are included in this status report. The results are in the process of being obtained.

2. BASIC EQUATIONS

The linear, homogeneous, undamped equations of motion for simple harmonic free vibrations with frequency ω can be written as (Ref. 7)

$$-(\mathbf{E}\mathbf{A}\mathbf{u}')' - \Omega^2 \mathbf{m}\mathbf{u} - \omega^2 \mathbf{m}\mathbf{u} = 0$$
 (1)

$$-(Tv')' + \{(EI_1 \sin^2\beta + EI_2 \cos^2\beta)v'' + (EI_2 - EI_1) \cos\beta \sin\beta w''\}'' - \Omega^2 mv - \omega^2 mv + \Omega^2 mesin\beta\phi + (\Omega^2 messin\beta\phi)' = 0$$
(2)

$$-(\mathbf{T}\mathbf{w}')' + \{(\mathbf{EI}_{1}\cos^{2}\beta + \mathbf{EI}_{2}\sin^{2}\beta)\mathbf{w}'' + (\mathbf{EI}_{2}-\mathbf{EI}_{1})\cos\beta\sin\beta\mathbf{v}''\}'' - \omega^{2}\mathbf{m}\mathbf{w} - \omega^{2}\mathbf{m}\mathbf{e}\cos\beta\phi - (\Omega^{2}\mathbf{m}\mathbf{e}\cos\beta\phi)' = 0$$
(3)

$$-(GJ\phi')' - \omega^2 m k_m^2 + \Omega^2 m (k_m^2 - k_m^2) \cos_2 \beta \phi$$

- $\Omega^2 mex(-\sin\beta v' + \cos\beta w')$
+ $\Omega^2 mesin\beta v + \omega^2 mesin\beta v - \omega^2 mecos\beta w = 0$ (4)

$$T = \int_{x}^{R} \alpha^{2} m x dx$$
 (5)

4

For algebraic simplicity, the coefficients B_1 , B_2 , e_A , k_A^2 are assumed to be zero in Eqs. (2) to (4). Also, Eq. (1) governing the stretching motion is added to introduce the axial coupling associated with the multiple-load-path blades.

3. BEARINGLESS ROTOR BLADES

The bearingless main rotor that was flight tested by Boeing Vertol has three load paths, viz., two fiberglass flexbeams and a filament wound torque tube (Ref. 8). The components of this bearingless main rotor are shown in Fig. 1. The outboard-ends of the flexbeams and torque tube are connected to the blade through a rigid clevis. The inboardends of the flexbeams are rigidly connected to the hub. The inboardend of the torque tube is restrained in torsion by the control system stiffness and is pinned to the hub by a rod-end bearing (translational deflections and bending moments are equal to zero). The idealization of such a blade is shown in Fig. 2. Locations 1, 2, 3 in this figure correspond to the root of the load paths, clevis and tip of the blade respectively. The bearingless main rotor that is currently being designed by Boeing-Vertol has two load paths similar to the one shown in Fig. 3. The formulation presented here is quite general and the computer program is developed for two load paths and can be modified easily for increased number of load paths. For the analysis of multipleload-path blades, it is important to establish the equilibrium and the compatibility relations across the clevis.

3.1 Equilibrium Across the Clevis

Consider the free-body diagram for the clevis as shown in Fig. 4 and let h_{y_i} and h_{z_i} be the y and z coordinates of the ith load path with reference to a coordinate system located at the blade (Point '0').

.

ITEM	DESCRIPTION
1	FLEXURE, INBOARD ATTACHMENT
2	FLEXURE
3	FLEXURE, OUTBOARD ATTACHMENT
4	STEEL HUB
5	FLEXURE/HUB ATTACHMENT BOLTS
6	TORQUE TUBE, CUTBOARD FITTING
7	TORQUE TUBE, OUTBOARD ATTACHMENT
8	TORQUE TUBE
9	PITCH ARM ASSEMBLY
10	PITCH LINK ASSEMBLY
11	CLEVIS
12	TORQUE TUBE/CLEVIS ATTACHMENT BOLTS
13	BLADE/CLEVIS ATTACHMENT BOLTS
14	ROTOR BLADE ASSEMBLY

Fig. 1. Components of a Bearingless Main Rotor

ORIGINAL PAGE IS OF POOR QUALITY

Bearingless Rotor Concept with Torque Tube Enclosing the Flexibeam F1g. 3.

9

Force and moment equilibrium require the following relations to be satisfied

 $V_{\mathbf{x}} = \sum_{i=1}^{n} V_{\mathbf{x}_{i}}$ (6)

$$V_{y} = \sum_{i=1}^{n} V_{y_{i}}$$
(7)

$$V_{z} = \sum_{i=1}^{n} V_{z_{i}}$$
(8)

$$M_{x} = \sum_{i=1}^{n} (M_{x_{i}} + h_{y_{i}}v_{z_{i}} - h_{z_{i}}v_{y_{i}})$$

$$i=1$$
(9)

$$M_{y} = \sum_{i=1}^{n} (M_{y_{i}} + h_{z_{i}} V_{x_{i}})$$
(10)

$$M_{z} = \sum_{i=1}^{n} M_{z_{i}} - h_{x_{i}} V_{x_{i}}$$
(11)

where n = number of load paths.

3.2 Compatibility Across the Clevis

Consider the plane of the clevis as shown in Fig. 5. The axial displacement of the ith load path can be written as:

Fig. 4. Free-Body Diagram of the Clevis

i

$$u_{i} = u - h_{z_{i}} w' - h_{y_{i}} v'$$

Rearrangement of the above equation yields:

$$u = u_{i} + h_{z_{i}} w' + h_{y_{i}} v'$$
(12)

The other compatibility conditions consistent with the rigid clevis are

$$w = w_{i} - h_{y_{i}} \phi_{i}$$
(13)

$$v = v_i + h_{z_i} \phi_i$$
(14)

$$w' = w'_{i} \tag{15}$$

$$\mathbf{v}' = \mathbf{v}'_{\mathbf{i}} \tag{16}$$

$$\phi = \phi_{i} \tag{17}$$

The basic equations of motion given by Eqs. (1) to (4) can be written as:

,

$$\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}\mathbf{x}} = \frac{\mathbf{V}_{\mathbf{x}}}{\mathbf{E}\mathbf{A}} \tag{18}$$

$$\frac{\mathrm{d}\phi}{\mathrm{d}x} = \frac{M_x}{GJ} \tag{19}$$

$$\frac{d^2 v}{dx^2} = \frac{-C_{12}}{EI_1 EI_2} M_y + \frac{C_{11}}{EI_1 EI_2} M_z$$
(20)

$$\frac{d^2 w}{dx^2} = \frac{C_{22}}{EI_1 EI_2} M_y - \frac{C_{12}}{EI_1 EI_2} M_z$$
(21)

$$-\frac{dV_{x}}{dx} \quad \Omega^{2}mu = \omega^{2}mu$$
(22)

$$- \frac{dM_x}{dx} + \Omega^2 m(k_{m_2}^2 - k_{m_1}^2) \cos 2\beta\phi$$
$$- \Omega^2 mex(-\sin\beta v' + \cos\beta w') + \Omega^2 mesin\beta v$$

$$= \omega^2 m k_m^2 \phi - \omega^2 mesin\beta v + \omega^2 mecos\beta w$$
(23)

$$\frac{d^2 M_y}{dx^2} - (T \frac{dw}{dx})' - (\Omega^2 m cx cos \beta \phi)'$$
$$= \omega^2 m w + \Omega^2 m c cos \beta \phi$$
(24)

$$\frac{d^{2}M_{z}}{dx^{2}} - (T \frac{dv}{dx})' + (\Omega^{2} \text{mexsin}\beta\phi)' + \Omega^{2} \text{messin}\beta\phi - \Omega^{2} \text{mv} = \omega^{2} \text{mv} - \omega^{2} \text{messin}\beta\phi$$
(25)

where

$$C_{11} = EI_1 \cos^2 \beta + EI_2 \sin^2 \beta$$
$$C_{12} = (EI_2 - EI_1) \cos\beta \sin\beta$$
$$C_{22} = EI_1 \sin^2 \beta + EI_2 \cos^2 \beta$$

A convenient set of functions for Galerkin's method are selected with the following properties

- 1. Satisfy the root boundary conditions of the load paths
- 2. Satisfy the clevis compatibility conditions
- 3. Satisfy the blade tip conditions

The deflections and forces are expanded as finite series in terms of the selected functions as shown below. The choice of functions and their modifications are discussed in Chapter 5.

$$u = \sum_{i=1}^{N} a_{1n}u_{n}$$
$$u_{i} = \sum_{i=1}^{N} a_{1n}u_{n}$$
$$u_{i} = \sum_{n=1}^{N} a_{n}u_{n}$$
$$v = \sum_{n=1}^{N} a_{n}v_{n}$$
$$u_{n} = 1$$

$$V_{x} = \sum_{n=1}^{N} b_{1n} V_{xn}$$

$$V_{x_{i}} = \sum_{n=1}^{N} b_{1n} v_{xn_{i}}$$

$$M_{z} = \sum_{n=1}^{N} b_{2n}M_{zn}$$

(26)

The satisfaction of the following equations is the modified Galerkin's method for multiple-load-path blades which is equivalent to the quotient method described in Ref. 6. (N = Number of functions selected; n = number of load paths)

$$\sum_{j=1}^{N} \left\{ \sum_{i=1}^{n} \int_{0}^{\ell} [b_{3j}M''_{yj_{i}} - a_{3j}(T_{i}w'_{j_{i}})' + a_{4j}(\Omega^{2}m_{i}e_{i}x\cos\beta_{i}\phi_{j_{i}})'] w_{k_{i}}dx \right\}$$

(27)

$$+ \sum_{j=1}^{N} \left\{ \int_{\ell}^{R} \left[b_{3j} M_{y_{j}}^{"} - a_{3j} (Tw_{j}^{'})' + a_{4j} (\Omega^{2} mexcos\beta\phi_{j})' \right] w_{k} dx \right\}$$

$$+ \left[\sum_{j=1}^{N} \left\{ \sum_{i=1}^{n} \left(-b_{3j} M_{yj_{i}}^{'} + a_{3j} T_{i} w_{j_{i}}^{'} + a_{4j} \Omega^{2} m_{i} e_{i} x \cos\beta_{i} \phi_{j_{i}} \right) - \left(-b_{3j} M_{y_{j}}^{'} + a_{3j} Tw_{j} + a_{4j} \Omega^{2} mexcos\beta\phi_{j} \right) \right\} w_{k} \right]_{x=\ell}$$

$$+ \left[\sum_{j=1}^{N} \left\{ \sum_{i=1}^{n} (b_{3j} M_{yj_{i}} - b_{z_{i}} b_{1j} V_{xj_{i}}) - b_{3j} M_{yj} \right\} w_{k}^{'} \right]_{x=\ell}$$

$$= \omega^{2} \left[\sum_{j=1}^{N} \left\{ \sum_{i=1}^{n} \int_{0}^{\ell} m_{i} (a_{3j} w_{j_{i}} + a_{4j} e_{i} \cos\beta_{i} \phi_{j_{i}}) w_{k_{i}} dx \right\} \right]$$

$$+ \omega^{2} \left[\sum_{j=1}^{N} \int_{\ell}^{R} m(a_{3j} w_{j} + a_{4j} e_{i} \cos\beta\phi_{j}) w_{k} dx \right]$$
(28)

where

5

 $k = 1, 2, 3, \ldots N$

18

$$\begin{split} &\sum_{j=1}^{N} \langle \sum_{i=1}^{n} \left\{ \int_{0}^{\ell} \left[b_{2j} M_{2ji}^{"} - a_{2j} (T_{i} v_{ji}^{'})^{'} + a_{4j} (\Omega^{2} m_{i} e_{i} x \sin \beta_{i} \phi_{ji})^{'} + a_{4j} \Omega^{2} m_{i} e_{i} \sin \beta_{i} \phi_{ji} - a_{2j} \Omega^{2} m_{i} v_{ji} \right] v_{ki} dx \right\} > \\ &+ \sum_{j=1}^{N} \left\{ \int_{\ell}^{R} \left[b_{2j} M_{2j}^{"} - a_{2j} (T v_{j}^{'})^{'} + a_{4j} (\Omega^{2} m e x \sin \beta \phi_{j})^{'} + a_{4j} \Omega^{2} m e \sin \beta \phi_{j} - a_{2j} \Omega^{2} m v_{j} \right] v_{k} dx \right\} \\ &+ \left[\sum_{j=1}^{N} \left\{ \int_{i=1}^{n} \left(-b_{2j} M_{2ji}^{'} + a_{2j} T_{j} v_{ji}^{'} - a_{4j} \Omega^{2} m_{i} e_{i} x \sin \beta_{i} \phi_{ji} \right) - \left(-b_{2j} M_{2j}^{'} + a_{2j} T v_{j}^{'} - a_{4j} \Omega^{2} m e x \sin \beta_{i} \phi_{ji} \right) \right\} \\ &+ \left[\sum_{j=1}^{N} \left\{ \int_{i=1}^{n} \left(-b_{2j} M_{2ji}^{'} - h_{xi} b_{1j} v_{xji} \right) - b_{2j} M_{2j} \right\} v_{k} \right]_{x=\ell} \\ &+ \left[\sum_{j=1}^{N} \left\{ \int_{i=1}^{n} \left(b_{2j} M_{2ji} - h_{xi} b_{1j} v_{xji} \right) - b_{2j} M_{2j} \right\} v_{k}^{'} \right]_{x=\ell} \\ &= \omega^{2} \left[\sum_{j=1}^{N} \left\{ \int_{i=1}^{n} \int_{0}^{\ell} m_{i} (a_{2j} v_{ji} - a_{4j} e_{i} \sin \beta_{i} \phi_{ji}) v_{ki} dx \right\} \right]$$

$$(29)$$

where k = 1, 2, 3, ... N

$$\begin{split} &\sum_{j=1}^{N} \left[\sum_{i=1}^{n} \int_{0}^{t} \left\{ -b_{4j}M'_{xj_{1}} + \Omega^{2}m_{1}e_{1}x(-a_{2j}\cos\beta_{1}v'_{j_{1}} + a_{3j}\sin\beta_{1}v'_{j_{1}}) + a_{2j}\Omega^{2}m_{1}e_{1}\sin\beta_{1}v_{j_{1}} + a_{4j}\Omega^{2}m_{1}(k_{m_{2}}^{2} - k_{m_{1}}^{2})\cos2\beta_{1}\phi_{j_{1}}\right] \phi_{k_{1}}dx \right] \\ &+ \sum_{j=1}^{N} \left[\int_{t}^{R} \left\{ -b_{4j}M'_{xj} + \Omega^{2}mex(-a_{2j}\cos\beta v'_{j} + a_{3j}\sin\beta w'_{j}) + a_{2j}\Omega^{2}mesin\beta v_{j} + a_{4j}\Omega^{2}m(k_{m_{2}}^{2} - k_{m_{1}}^{2})\cos2\beta\phi_{j} \right\} \phi_{k}dx \right] \\ &+ \sum_{j=1}^{N} \left[\int_{i=1}^{R} \left[b_{4j}M_{xj_{1}} + h_{y_{1}}(-b_{3j}M'_{yj_{1}} + a_{3j}T_{1}w'_{j_{1}} + a_{4j}\Omega^{2}m_{1}e_{1}x\cos\beta_{1}\phi_{j_{1}}) - h_{z_{1}}(-b_{2j}M'_{zj_{1}} + a_{2j}T_{1}v'_{j_{1}} + a_{4j}\Omega^{2}m_{1}e_{1}x\cos\beta_{1}\phi_{j_{1}}) - h_{z_{1}}(-b_{2j}M'_{zj_{1}} + a_{2j}T_{1}v'_{j_{1}} + a_{4j}\Omega^{2}m_{1}e_{1}x\sin\beta_{1}\phi_{j_{1}}) - h_{2j}M'_{xj_{1}} + a_{3j}e_{1}\cos\beta_{1}w_{j_{1}} + a_{2j}e_{1}\Omega^{2}m_{1}e_{1}x\sin\beta_{1}\phi_{j_{1}}) - h_{2j}M'_{xj_{1}} + a_{3j}e_{1}\cos\beta_{1}w_{j_{1}} + a_{2j}e_{1}e_{1}x\sin\beta_{1}\phi_{j_{1}}) - h_{2j}e_{1}e_{2j}M'_{zj_{1}} + a_{2j}T_{1}v'_{j_{1}} - a_{4j}\Omega^{2}m_{1}e_{1}x\sin\beta_{1}\phi_{j_{1}}) - h_{2j}M'_{xj_{1}} + a_{3j}e_{1}\cos\beta_{1}w_{j_{1}} - a_{2j}e_{1}\sin\beta_{1}v_{j_{1}}) \phi_{k_{1}}dx \right\} \right] \\ &+ \omega^{2} \left\{ \sum_{j=1}^{N} \int_{t}^{R} m(a_{4j}k_{m}^{2}\phi_{j} + a_{3j}e\cos\beta v_{j} - a_{2j}esin\beta v_{j}) \phi_{k}dx \right\}$$
 (30)

į

.

20

where
$$k = 1, 2, 3, ... N$$

$$\sum_{j=1}^{N} \left\{ \sum_{i=1}^{n} \int_{0}^{\ell} (-b_{1j}V_{xj_{i}} - a_{1j}\Omega^{2}m_{i}u_{j_{i}}) u_{k_{i}}dx \right\}$$

$$+ \sum_{j=1}^{N} \left\{ \int_{\mathfrak{L}}^{R} (-\mathbf{b}_{1j} \mathbf{v}'_{\mathbf{x}j} - \mathbf{a}_{1j} \mathbf{\Omega}^{2} \mathbf{m}_{j}) \mathbf{u}_{k} d\mathbf{x} \right\}$$

+
$$\left[\sum_{j=1}^{N} \left\{\sum_{i=1}^{n} (b_{1j}V_{xj_i}) - b_{1j}V_{xj}\right\}u_k\right]_{x=\ell}$$

$$= \omega^{2} \left[\sum_{j=1}^{N} \left\{ \int_{0}^{\ell} m_{i} a_{1j} u_{j} u_{k} dx \right\} \right]$$

$$+ \omega^{2} \left[\int_{\ell}^{R} ma_{1j}u_{j}u_{k}dx \right]$$
(31)

where k = 1, 2, 3, ... N

.

•

$$\sum_{j=1}^{N} \left\{ \sum_{i=1}^{n} \int_{0}^{\ell} (a_{1j}u_{ji} - \frac{b_{1j}v_{xj}}{AE_{i}}) v_{xk}dx \right\}$$
$$+ \sum_{j=1}^{N} \left\{ \int_{\ell}^{R} (a_{1j}u_{j} - \frac{b_{1j}v_{xj}}{EA}) v_{xk}dx \right\} = 0$$
(32)

$$\sum_{j=1}^{N} \left\{ \sum_{i=1}^{n} \int_{o}^{\ell} \left(a_{4j} \phi_{j} - \frac{b_{4j} M_{xj}}{GJ_{i}} \right) M_{xk_{i}} dx \right\}$$

ſ

$$+ \sum_{j=1}^{N} \left\{ \int_{\varrho}^{R} (a_{4j}\phi_{j} - \frac{b_{4j}M_{xj}}{GJ}) M_{xk} dx \right\} = 0$$
(33)

$$\sum_{j=1}^{N} \left\{ \sum_{i=1}^{n} \int_{0}^{\ell} (a_{2j}v''_{j_{i}} + \frac{C_{12}}{EI_{1}EI_{2}} b_{3j}M_{yj_{i}} \right\}$$

$$-\frac{C_{11}}{EI_{1}EI_{2}}b_{2j}M_{zj}M_{zk_{i}}dx +$$

$$\sum_{j=1}^{N} \left\{ \int_{\ell}^{R} (a_{2j}v_{j}'' + \frac{C_{12}}{EI_{1}EI_{2}} b_{3j}M_{yj}) \right\}$$

$$\left. \frac{\mathsf{C}_{11}}{\mathsf{EI}_{1}\mathsf{EI}_{2}} \mathsf{b}_{2j}\mathsf{M}_{zj} \mathsf{M}_{zk} \right\} = 0$$

(34)

$$\sum_{j=1}^{N} \left\{ \sum_{i=1}^{n} \int_{0}^{\ell} (a_{3j}w''_{j_{i}} - \frac{c_{22}}{EI_{1}EI_{2}} b_{3j}M_{yj_{i}} + \frac{c_{12}}{EI_{1}EI_{2}} b_{2j}M_{zj_{i}}) M_{yk_{i}}dx \right\} + \frac{\sum_{j=1}^{N} \left\{ \int_{\ell}^{R} (a_{3j}w''_{j} - \frac{c_{22}}{EI_{1}EI_{2}} b_{3j}M_{yj} + \frac{c_{12}}{EI_{1}EI_{2}} b_{2j}M_{zj}) M_{yk}dx \right\} + \frac{c_{12}}{EI_{1}EI_{2}} b_{2j}M_{zj} M_{yk}dx \right\}$$

(35)

.

_

5. SELECTION OF FUNCTIONS

5.1 Basic Functions

The selection of functions for multiple-load-path blades with fixedconditions for load path members (inboard-ends) is presented in this section. The other inboard-end conditions can be incorporated easily in a straightforward manner. The CAMRAD program uses nonrotating uniform modes for the Galerkin's method; therefore, the same modes are employed for the multiple-load-path blades for uniformity. The nonrotating modes for uniform cantilever beams are given by:

- 1. Bending (Both Flapwise and Chordwise)
 - a) Mode shapes

$$\alpha_{r}(x) = e_{r}(\sin \alpha_{r} \frac{x}{R} - \sinh \alpha_{r} \frac{x}{R}) + g_{r}(\cos \alpha_{r} \frac{x}{R} - \cosh \alpha_{r} \frac{x}{R})$$
(36)

where

$$e_{r} = -(\sin \alpha_{r} - \sinh \alpha_{r})/2\sin \alpha_{r} \sinh \alpha_{r}$$

$$g_{r} = (\cos \alpha_{r} + \cosh \alpha_{r})/2\sin \alpha_{r} \sinh \alpha_{r}$$

$$r = rth mode shape$$

$$\alpha_{1} = 1.875, \alpha_{2} = 4.694, \alpha_{3} = 7.855, \alpha_{4} = 10.996$$

$$\alpha_{5} = 14.137, \alpha_{6} = 17.279, \alpha_{7} = 20.420, \alpha_{8} = 23.562$$

$$\alpha_{9} = 26.704, \alpha_{10} = 29.845$$

b) Frequencies

$$\omega_{\rm r} = \alpha_{\rm r}^2 \sqrt{{\rm EI}/{\rm mR}^4}$$

2) Stretching and Twisting

a) Mode shapes

$$\alpha_{r}(x) = \sin(\delta_{r} \frac{x}{R})$$
where $\delta_{r} = (2r-1) \frac{\pi}{2}$
(37)

b) Frequencies

$$\omega_r = \delta_r \sqrt{EA/mR^2}$$
, Stretching
 $\omega_r = \delta_r \sqrt{GJ/mR^2}$, Twisting

The idealization for a two-load-path blade is shown in Fig. 6. The blade is divided into three regions

> Region I: $0 \le x \le \ell_1$, all load path members Region II: $\ell \le x \le R$, blade Region III: $\ell_1 \le x \le \ell$, load path members

For regions I and II, the basic mode functions given by Eqs. (36) and (37) are used. It is therefore necessary to develop the clevis admissible comparison functions. At this stage the following two options are available.

ł

- Satisfy gometric compatibility only and account for the force conditions in the Galerkins' procedure.
- 2. Satisfy both geometric and force conditions.

Option 1 is selected here because the clevis compatibility functions do not depend on the eigenvalues while the clevis admissible comparison functions depend on the eigenvalues.

5.2 Clevis Compatibility Functions

1. Flapwise Bending

Assume the functions to be of the following form:

$$w_{r_{i}} = a_{0r_{i}}^{1} + a_{1r_{i}}^{1}x + a_{2r_{u}}^{1}x^{2} + a_{3r_{i}}^{1}x^{3}$$
(38)

The coefficients in the equation are determined by satisfying the displacement and slope continuity at $x = \ell_1$ (see Fig. 6) and geometric compatibility at the clevis [Eqs. (13) and (14)]. The resulting equations are given by:

$$a_{0r_{i}}^{1} + a_{1r_{i}}^{1} \ell_{1}^{2} + a_{2r_{i}}^{1} \ell_{1}^{2}^{2} + a_{3r_{i}}^{1} \ell_{1}^{3}^{2} = w_{r_{i}}(\ell_{1})$$

$$a_{1r_{i}}^{1} + 2a_{2r_{i}}^{1} \ell_{1}^{2} + 3a_{3r_{i}}^{1} \ell_{1}^{2} = w_{r_{i}}'(\ell_{1})$$

$$a_{0r_{i}}^{1} + a_{1r_{i}}^{1} \ell_{1}^{2} + a_{2r_{i}}^{1} \ell_{1}^{2} + a_{3r_{i}}^{1} \ell_{1}^{3} = w_{r}(\ell_{1}) + h_{y_{i}}\phi_{r}(\ell_{1})$$

$$a_{1r_{i}}^{1} + 2a_{2r_{i}}^{1} \ell_{1}^{2} + 3a_{3r_{i}}^{1} \ell_{2}^{2} = w_{r}'(\ell_{1})$$

Arranging the above equations into a matrix form yields:

Arranging the above equations into a matrix form yields:

$$\begin{cases} a_{0}^{1} \mathbf{r}_{i} \\ a_{1}^{1} \mathbf{r}_{i} \\ a_{2}^{1} \mathbf{r}_{i} \\ a_{3}^{1} \mathbf{r}_{i} \end{cases} = \begin{bmatrix} 1 & \ell_{1} & \ell_{1}^{2} & \ell_{1}^{3} \\ 0 & 1 & 2\ell_{1} & 3\ell_{1}^{2} \\ 1 & \ell_{1} & \ell_{2}^{2} & \ell_{3}^{2} \\ 0 & 1 & 2\ell_{2} & \ell_{3}^{2} \end{bmatrix} = \begin{bmatrix} w_{\mathbf{r}_{i}}(\ell_{1}) \\ w_{\mathbf{r}_{i}}'(\ell_{1}) \\ w_{\mathbf{r}_{i}}(\ell_{1}) \\ w_{\mathbf{r}_{i}}(\ell_{1}) \\ w_{\mathbf{r}_{i}}(\ell_{1}) \\ w_{\mathbf{r}_{i}}(\ell_{1}) \\ w_{\mathbf{r}_{i}}(\ell_{1}) \\ w_{\mathbf{r}_{i}}'(\ell_{1}) \\ w_{\mathbf{r}$$

where

subscript r = mode index
subscript i = load path number index
superscript 1 = flapwise bending

2. Chordwise Bending

Assume the functions to be of the following form:

$$\mathbf{v}_{\mathbf{r}_{i}} = \mathbf{a}_{0\mathbf{r}_{i}}^{2} + \mathbf{a}_{1\mathbf{r}_{i}}^{2}\mathbf{x} + \mathbf{a}_{2\mathbf{r}_{i}}^{2}\mathbf{x}^{2} + \mathbf{a}_{3\mathbf{r}_{i}}^{2}\mathbf{x}^{3}$$
(40)

By employing a similar procedure used for the flapwise bending the following equation can be obtained for the chordwise bending clevis compatibility function.

$$\begin{pmatrix} a_{0r_{i}}^{2} \\ a_{1r_{i}}^{2} \\ a_{2r_{i}}^{2} \\ a_{3r_{i}}^{2} \end{pmatrix} = \begin{bmatrix} 1 & \ell_{1} & \ell_{1}^{2} & \ell_{1}^{3} \\ 0 & 1 & 2\ell_{1} & 3\ell_{1}^{2} \\ 1 & \ell_{1} & \ell_{2}^{2} & \ell_{1}^{3} \\ 0 & 1 & 2\ell_{2}^{2} & \ell_{2}^{3} \\ 0 & 1 & 2\ell_{2}^{2} & 3\ell_{2}^{2} \end{bmatrix}^{-1} \begin{cases} v_{r_{i}}(\ell_{1}) \\ v_{r_{i}}(\ell_{1}) \\ v_{r}(\ell_{1}) \\ v_{r}(\ell_{2}) - h_{z_{i}}\phi_{r}(\ell_{2}) \\ v_{r'_{i}}(\ell_{2}) \end{cases}$$
(41)

where superscript 2 indicates the chordwise bending.

3. Twisting

Assume the function to be of the following form:

$$\phi_{r_{i}} = b_{0r_{i}}^{1} + b_{1r_{i}}^{1} x$$
(42)

By satisfying the continuity at $x = \ell_1$ and compatibility at the clevis the following relation can be obtained for the coefficients in Eq. (42).
$$\begin{cases} \mathbf{b}_{0\mathbf{r}_{i}}^{1} \\ \mathbf{b}_{1\mathbf{r}_{i}}^{1} \end{cases} = \begin{bmatrix} 1 & \mathbf{\ell}_{1} \\ \mathbf{\ell}_{1\mathbf{r}_{i}}^{1} \end{bmatrix} = \begin{bmatrix} 1 & \mathbf{\ell}_{1} \\ \mathbf{\ell}_{1} \end{bmatrix} \begin{bmatrix} \mathbf{\ell}_{1} & \mathbf{\ell}_{1} \\ \mathbf{\ell}_{1} \end{bmatrix}$$
(43)

The superscript 1 indicates twisting.

4. Stretching

Assume the functions to be of the following form:

$$u_{r_{i}} = b_{0r_{i}}^{2} + b_{1r_{i}}^{2} x$$
(44)

The coefficients in the above equations are computed by

$$\begin{cases} b_{0r_{i}}^{2} \\ b_{r_{i}}^{2} \\ b_{r_{i}}^{2} \end{cases} = \begin{bmatrix} 1 & \ell_{1} \\ 1 & \ell_{1} \\ 1 & \ell_{1} \end{bmatrix}^{-1} \begin{cases} u_{r_{i}}(\ell_{1}) \\ u_{r_{i}}(\ell_{1}) \\ u_{r_{i}}(\ell_{1}) \\ u_{r_{i}}(\ell_{1}) \\ u_{r_{i}}(\ell_{1}) \\ u_{r_{i}}(\ell_{1}) \end{cases}$$

$$(45)$$

The superscript 2 in the above equation indicates stretching.

The treatment for the selection of function is completed so far for the deflections, and it is necessary to establish the criteria for the forces. For simplicity the functions used for the forces are as follows.

$$M_{x} = \phi'$$

$$M_{y} = w''$$

$$M_{z} = v''$$

$$V_{x} = u'$$

For all regions (I, II and III), the basic functions defined in Eqs. (36) and (37) are employed while calculating the force functions given by Eq. (46). If the following equations are satisfied for the force function, then the modified Galerkin's procedure used in CAMRAD would reduce to the standard Galerkin form.

$$M_{x} = GJ\phi'$$

$$M_{y} = (EI_{1}cos^{2}\beta + EI_{2}sin^{2}\beta)w'' + (EI_{2}-EI_{1})cos\betasin\betav''$$

$$M_{z} = (EI_{1}sin^{2}\beta + EI_{2}cos^{2}\beta)v'' + (EI_{2}-EI_{1})cos\betasin\betaw''$$

$$V_{x} = EAu'$$

$$(47)$$

In this situation, it is desirable to use fifth degree polynomials for bending degrees-of-freedom and quadratic functions for the twisting and stretching degrees-of-freedom for generating the clevis compatibility functions. However, the standard Galerkin form is not employed for parallel development with the CAMRAD approaches.

31

(46)

6. TENSION CALCULATIONS

The rotating blade mode shapes calculations are based on the linear formulation, and therefore the tension coefficient T appearing in Eqs. (2) and (3) should be known in advance; otherwise these equations will be nonlinear. Equation (5) can be employed for calculation of tension in the blade. The tensions in the load paths are calculated by assuming that the load paths are coincident with the blade at the clevis, i...e, $h_{y_i} = h_{z_i} = 0$. The tensions corresponding to this case are given by (Ref. 9):

$$T_{i}(x) = \int_{x}^{\ell} \alpha^{2} m_{i} x dx + T_{i}(\ell)$$
(48)

where

$$T_{i}(\ell) = \frac{\sum_{j=1}^{n} a_{j}}{\sum_{j=1}^{n} (\prod_{j=1}^{n,k} a_{j})}$$

$$k=1$$

$$(49)$$

n,i

$$\Pi_{j=1} = a_1 a_2 \dots a_n / a_i$$
(50)

$$a_{i} = \int_{0}^{l} \frac{dx}{EA_{i}}$$
(51)

It is to be noted that the tensions given by Eq. (48) correspond to the coincident load path case $\begin{pmatrix} h & = h & = 0 \end{pmatrix}$, and for the noncoincident case $\begin{pmatrix} h & and/or h & \neq 0 \end{pmatrix}$ the modified Galerkin's method is applied starting with the coincident load path case.

Modified Galerkin's Method for Tensions

The free-body diagram for tension calculations in the load path with blade detached is shown in Fig. 7. The equilibrium conditions forces at the clevis are given by:

$$\sum_{i=1}^{N} V_{x_{i}} = T(\ell) = \int_{\ell}^{R} \Omega^{2} m x dx$$

$$i=1$$

$$\sum_{i=1}^{n} V_{y_{i}} = 0$$

$$\sum_{i=1}^{n} (M_{x_{i}} + h_{y_{i}}V_{z_{i}} - h_{z_{i}}V_{y_{i}}) = 0$$

$$\sum_{i=1}^{n} (M_{y_{i}} + h_{z_{i}}V_{x_{i}}) = 0$$

$$\sum_{i=1}^{n} (M_{z_{i}} - h_{y_{i}}V_{x_{i}}) = 0$$

$$i=1$$

Fig. 7. Tension Distribution

A convenient set of functions are selected for the load path members with the following properties.

 Satisfy the root boundary conditions of the load paths.

2. Satisfy the clevis compatibility conditions.

The deflections and forces in the load path members are expanded as finite series in terms of the selected functions as shown below

 $u_i = \sum_{i=1}^{N} a_{1n}u_{n_i}$ n=1 $v_i = \sum_{i=1}^{N} a_{2n} v_{n_i}$ n=1 w_i = ^a3n^Wn_i n=1 $\phi_i = \sum_{i=1}^{N}$ ^a4n[¢]n_i n=1 $V_{x_i} = \sum_{i=1}^{N}$ ^bln^Vxn_i n=1 $M_{z_i} = \sum_{i=1}^{N}$ ^b2n^Mzn_i n=1

(52)

The adaptation of Galerkin's method yields the following equations:

$$\sum_{j=1}^{N} \left\{ \sum_{i=1}^{n} \int_{0}^{\ell} [b_{3j}M''_{yj_{i}} - a_{3j}(T_{i}w_{j_{i}})'] + a_{4j}(\Omega^{2}m_{i}e_{i}x\cos\beta_{i}\phi_{j_{i}})']w_{k_{i}}dx \right\}$$

$$+ \left[\sum_{j=1}^{N} \left\{ \sum_{i=1}^{n} (-b_{3j}M'_{yj_{i}} + a_{3j}T_{i}w'_{j_{i}} + a_{4j}\Omega^{2}m_{i}e_{i}x\cos\beta_{i}\phi_{j_{i}})w_{k} \right\} \right]_{x=\ell}$$

$$+ \left[\sum_{j=1}^{N} \left\{ \sum_{i=1}^{n} (b_{3j}M_{yj_{i}} - b_{z_{i}}b_{1j}V_{xj_{i}})w'_{k} \right\} \right]_{x=\ell} = 0$$
(53)

.

$$\sum_{n=1}^{N} \left\{ \sum_{i=1}^{n} \int_{0}^{\ell} [b_{2j}M_{2j_{i}}^{"} - a_{2j}(T_{i}v_{j}^{'})^{'} + a_{4j}(\Omega^{2}m_{i}e_{i}xsin\beta_{i}\phi_{j})^{'} + a_{4j}\Omega^{2}m_{i}e_{i}sin\beta_{i}\phi_{j_{i}} - a_{2j}\Omega^{2}m_{i}v_{j_{i}}]v_{k_{i}}dx \right\}$$

$$+ \left[\sum_{j=1}^{N} \left\{ \sum_{i=1}^{n} (-b_{2j}M_{2j}^{'} + a_{2j}T_{i}v_{j_{i}}^{'} - a_{4j}\Omega^{2}m_{i}e_{i}xsin\beta_{i}\phi_{j_{i}})v_{k} \right\} \right]_{x=\ell}$$

$$+ \left[\sum_{j=1}^{N} \left\{ \sum_{i=1}^{n} (b_{2j},M_{2j_{i}}^{'} - h_{y_{i}}b_{1j}v_{xj_{i}})v_{k}^{'} \right\} \right]_{x=\ell} = 0$$

$$\sum_{j=1}^{N} \left[\sum_{i=1}^{n} \int_{0}^{\ell} \left\{ -b_{4j}M_{xj_{i}}^{'} + \Omega^{2}m_{i}e_{i}x(-a_{2j}\cos\beta_{i}v_{j_{i}}^{'}) \right\} \right]_{x=\ell}$$
(54)

+
$$a_{3j} \sin \beta_i w'_{j_i}$$
) + $a_{2j} \alpha^2 m_i e_i \sin \beta_i v_{j_i}$
+ $a_{4j} \alpha^2 m_i (k_{m_2}^2 - k_{m_1}^2) \cos 2\beta_i \phi_{j_i}$ $\phi_{k_i} dx$

$$+ < \sum_{j=1}^{N} \left\{ \sum_{i=1}^{n} [b_{4j}M_{xj_{i}} + h_{y_{i}}(-b_{3j}M'_{yj_{i}} + a_{3j}T_{i}w'_{j_{i}} + a_{4j}\Omega^{2}m_{i}e_{i}x\cos\beta_{i}\phi_{j_{i}}) - h_{z_{i}}(-b_{2j}M'_{zj_{i}} + a_{2j}T_{i}v'_{j_{i}} - a_{4j}\Omega^{2}m_{i}e_{i}x\sin\beta_{i}\phi_{j_{i}})] \phi_{k} \right\} > = 0$$

$$(55)$$

$$\sum_{j=1}^{N} \left\{ \sum_{i=1}^{n} \int_{0}^{\ell} (-b_{1j}V'_{xj_{i}} - a_{1j}\Omega^{2}m_{i}u_{j_{i}})u_{k_{i}}dx \right\}$$
$$+ \left[\sum_{j=1}^{N} \left\{ \sum_{i=1}^{n} b_{1j}V_{xj_{i}}u_{k} \right\} \right]_{x=\ell} = T(\ell)u_{k}(\ell)$$
(56)

$$\sum_{n=1}^{N} \left\{ \sum_{i=1}^{n} \int_{0}^{\ell} (a_{1j}u_{j_{i}} - \frac{b_{1j}V_{xj_{i}}}{EA_{i}})V_{xk_{i}}dx \right\} = 0$$
(57)

$$\sum_{j=1}^{N} \left\{ \sum_{i=1}^{n} \int_{0}^{\ell} \left(a_{4j} \phi_{j_{i}} - \frac{b_{4j} M_{xj_{i}}}{GJ_{i}} \right) M_{xk_{i}} dx \right\} = 0$$
(58)

$$\sum_{j=1}^{N} \left\{ \sum_{i=1}^{n} \int_{0}^{\ell} (a_{2j}v''_{j_{i}} + \frac{c_{12}}{EI_{1}EI_{2}} b_{3j}M_{yj_{i}} - \frac{c_{11}}{EI_{1}EI_{2}} b_{2j}M_{zj_{i}})M_{zk_{i}}dx \right\} = 0$$
(59)

$$\sum_{j=1}^{N} \left\{ \sum_{i=1}^{n} \int_{0}^{\ell} (a_{3j}w''_{j_{i}} - \frac{c_{22}}{EI_{1}EI_{2}} b_{3j}M_{yj_{i}} + \frac{c_{12}}{EI_{1}EI_{2}} b_{2j}M_{zj_{i}})M_{yk_{i}}dx \right\} = 0$$
(60)

where c_{11} , c_{12} , c_{22} are defined in Eq. (35). The solution of Eqs. (53) to (60) yields $T_i(\ell)$ [which is $V_{x_i}(\ell)$], and from Eq. (48) the tension coefficients in the load path members can be computed. At the most, two or three iterations may be needed starting with the coincident load path tensions to solve the nonlinear problem. The functions developed in Chapter 5 are used to solve the present problem also.

7. SOFTWARE DEVELOPMENT

7.1 Equations of Motion

The basic equations of motion given by Eqs. (18) to (25) are nondimensionalized as shown below.

$$\frac{d\tilde{u}}{d\tilde{x}} = \frac{\tilde{V}_{x}}{EA}$$
(61)

where $\bar{u} = u/R$; $\bar{x} = x/R$; $\bar{EA} = EAR^2/EI_R$

$$\bar{v}_{x} = v_{x}R^{2}/EI_{R}$$

$$\frac{d\bar{\phi}}{d\bar{x}} = \frac{\bar{M}_{x}}{\bar{G}J}$$
(62)

.

where
$$\overline{GJ} = GJ/EI_R; \quad \overline{M}_x = M_x R/EI_R$$

$$\frac{d^2 \overline{v}}{d\overline{x}^2} = \frac{-\overline{C}_{12}}{EI_1 EI_2} \quad \overline{M}_y + \frac{\overline{C}_{11}}{EI_1 EI_2} \quad \overline{M}_z$$
(63)

where

$$\overline{C}_{12} = (\overline{EI}_2 - \overline{EI}_1) \cos \overline{\beta} \sin \overline{\beta}$$

$$\overline{C}_{11} = \overline{EI}_1 \cos^2 \overline{\beta} + \overline{EI}_2 \sin^2 \overline{\beta}$$

$$\overline{EI}_1 = EI_1 / EI_R; \ \overline{EI}_2 = EI_2 / EI_R; \ \overline{v} = v/R$$

$$\overline{\beta} = \beta; \ \overline{M}_y = M_y R / EI_R; \ \overline{M}_z = M_z R / EI_R$$

$$\frac{d^2 \bar{w}}{d\bar{x}^2} = \frac{\bar{c}_{22}}{\bar{EI}_1 \bar{EI}_2} \bar{M}_y - \frac{\bar{c}_{12}}{\bar{EI}_1 \bar{EI}_2} \bar{M}_z$$
(64)

where

 $\bar{c}_{22} = \overline{EI}_1 \sin^2 \bar{\beta} + \overline{EI}_2 \cos^2 \bar{\beta}$

$$\overline{\mathbf{w}} = \mathbf{w}/\mathbf{R}$$

$$\frac{-d\overline{\mathbf{v}}_{\mathbf{x}}}{d\overline{\mathbf{x}}} - \overline{\Omega}^2 \overline{\mathbf{m}} \overline{\mathbf{u}} = \omega^2 \overline{\mathbf{m}} \overline{\mathbf{u}}$$
(65)

where $\bar{\Omega}^2 = \Omega^2 m_R R^4 / EI_R; \quad \bar{m} = m / m_R$ $\bar{\omega}^2 = \omega^2 m_R R^4 / EI_R$ $-\frac{dM_{x}}{d\bar{x}} + \bar{\Omega}^{2}m(\bar{k}_{m_{2}}^{2} - \bar{k}_{m_{1}}^{2})\cos 2\bar{\beta}\bar{\phi}$ $- \bar{\Omega}^2 \bar{\mathrm{mex}} (-\sin\beta \bar{v}' \cos\beta \bar{w}') + \bar{\Omega}^2 \bar{\mathrm{mesin}} \beta \bar{v}$ $= \bar{\omega}^2 \bar{m} \bar{k}_m^2 \bar{\phi} - \bar{\omega}^2 \bar{m} \bar{e} \sin \bar{\beta} \bar{v} + \bar{\omega}^2 \bar{m} \bar{e} \cos \bar{\beta} \bar{w}$ (66)

where

 $\bar{k}_{m_1}^2 = k_{m_1}^2 / R^2; \quad \bar{k}_{m_2}^2 = k_{m_2}^2 / R^2;$ $\bar{k}_{m}^{2} = k_{m}^{2}/R^{2}; \quad \bar{e} = e/R; \quad ()' = \frac{d}{dx}$ $\frac{d^2 \bar{M}_y}{d\bar{v}^2} - (\bar{T} \frac{d\bar{w}}{d\bar{v}})' - (\bar{\Omega}^2 \bar{m} \bar{e} \bar{x} \cos \bar{\beta} \bar{\phi})'$ $= \omega^2 - \omega + \omega^2 - \omega = \cos \beta \phi$ (67)

where $\overline{T} = \overline{\Omega}^2 \int_{\overline{u}}^{1} \overline{mx} d\overline{x}$

$$\frac{d^{2}\bar{M}_{z}}{d\bar{x}^{2}} - (\bar{T} \ \frac{d\bar{v}}{d\bar{x}})' + (\bar{\Omega}^{2}\bar{m}\bar{e}x\sin\bar{\beta}\bar{\phi})' + \bar{\Omega}^{2}\bar{m}\bar{e}\sin\bar{\beta}\bar{\phi} - \bar{\Omega}^{2}\bar{m}\bar{v}$$

$$+ \bar{\Omega}^{2}\bar{m}\bar{e}\sin\bar{\beta}\bar{\phi} - \bar{\Omega}^{2}\bar{m}\bar{v}$$

$$= \bar{\omega}^{2}\bar{m}\bar{v} - \bar{\omega}^{2}\bar{m}\bar{e}\sin\bar{\beta}\bar{\phi} \qquad (68)$$

Nonuniform properties are allowed in the computer program and maximum number of stations allowed for inputting the properties are 11 for each load path member and 51 for the blade. The linear variation of properties is assumed for the intermediate locations.

7.2 Assumed Functions

The selected basic functions are given by Eqs. (36) and (37). These functions are nondimensionalized and differentiated with respect to \bar{x} as shown below.

1. Bending (Both Flapwise and Chordwise)

a) Deflections and Derivatives:

$$a_{r}(\bar{x}) = \bar{e}_{r}(\sin \bar{a}_{r}\bar{x} - \sinh \bar{a}_{r}\bar{x}) + \bar{g}_{r}(\cos \bar{a}_{r}\bar{x} - \cosh \bar{a}_{r}\bar{x})$$
(69)

$$\alpha'_{r}(\bar{x}) = \bar{\alpha}_{r} \bar{e}_{r}(\cos \bar{\alpha}_{r} \bar{x} - \cosh \bar{\alpha}_{r} \bar{x}) + \\ \bar{\alpha}_{r} \bar{g}_{r}(-\sin \bar{\alpha}_{r} \bar{x} - \sinh \bar{\alpha}_{r} \bar{x})$$
(70)

b) Moments and Derivatives:

$$\bar{M}_{r}(\bar{x}) = \bar{\alpha}_{r}^{2}\bar{e}_{r}(-\sin\bar{\alpha}_{r}\bar{x} - \sinh\bar{\alpha}_{r}\bar{x}) + \\ \bar{\alpha}_{r}^{2}\bar{g}_{r}(-\cos\bar{\alpha}_{r}\bar{x} - \cosh\bar{\alpha}_{r}\bar{x})$$
(71)

$$\bar{M}_{r}(\bar{x}) = \bar{\alpha}_{r}^{3}\bar{e}_{r}(-\cos\bar{\alpha}_{r}\bar{x} - \cosh\bar{\alpha}_{r}\bar{x}) + \bar{\alpha}_{r}^{3}\bar{g}_{r}(\sin\bar{\alpha}_{r}\bar{x} - \sinh\bar{\alpha}_{r}\bar{x})$$
(72)

where

$$\tilde{\alpha}_r = \alpha_r, \quad \tilde{g}_r = g_r, \quad \tilde{e}_r = e_r$$

and are defined in Eq. (36)..

2. Twisting/Stretching

a) Deflections

$$\bar{\alpha}_{r}(\mathbf{x}) = \sin(\bar{\delta}_{r}\bar{\mathbf{x}}) \tag{73}$$

b) Moment/Force

$$\tilde{M}_{r}(\bar{x}) = \tilde{\delta}_{r} \cos(\tilde{\delta}_{r} \bar{x})$$
(74)

where

$$\delta_{\mathbf{r}} = (2\mathbf{r}-1) \frac{\pi}{2}$$

The clevis compatibility functions are completed assuming $\ell_1 = 0.9$ and the coefficients for the bending deflection functions are stored in the triple subscripted variable A(I,J,K) with subroutine titled GFCTS. The notation for the arguments is as follows: I = Number of selected functions

 $J = 1 \rightarrow a_0$ $J = 2 \rightarrow a_1$ $J = 3 \rightarrow a_2$ $J = 4 \rightarrow a_3$

where

 a_0, a_1, a_2, a_3 are coefficients of the cubic polynomial

 $K = 1 \rightarrow Flapwise bending, Load path 1$ $K = 2 \rightarrow Chordwise bending, Load path 1$ $K = 3 \rightarrow Flapwise bending, Load path 2$ $K = 4 \rightarrow Chordwise bending, Load path 2$

The coefficients for the twisting/stretching deflection functions are stored in the triple subscripted variable B(I,J,K) in the subroutine GFCTS. The notation for the arguments is as follows:

> I = Number of selected function $J = 1 \rightarrow b_0$ $J = 2 \rightarrow b_1$

where

 b_0 , b_1 are coefficients of the linear function

 $K = 1 \rightarrow Twisting, Load path 1$

 $K = 2 \rightarrow$ Stretching, Load path 1

 $K = 3 \rightarrow Twisting, Load path 2$

 $K = 4 \rightarrow$ Stretching, Load path 2

7.3 Galerkin's Equations

The Galerkin's equations to solve the eigenvalues problem are given by Eqs. (28) to (31). To avoid the numerical differentiation of several products of the nonuniform blade properties, the above equations are rewritten as shown below.

$$- \sum_{j=1}^{N} \left\{ \sum_{i=1}^{n} \int_{0}^{\ell} (b_{3j}M'_{yj_{i}} - a_{3j}D113_{i}w'_{j_{i}} + a_{4j}D12_{i}\phi'_{j_{i}})w'_{k_{i}}dk \right\}$$

$$- \sum_{j=1}^{N} \int_{\ell}^{R} (b_{3j}M'_{yj} - a_{3j}D213w'_{j} + a_{4j}D22\phi'_{j})w'_{k}dx$$

$$+ \left\{ \sum_{j=1}^{N} \left[\left\{ \sum_{i=1}^{n} (b_{3j}M_{yj_{i}} - b_{z_{i}}b_{ij}V_{xj_{i}}) \right\} - b_{3j}M_{yj}w'_{k} \right\} \right]$$

$$= \omega^{2} \sum_{j=1}^{N} \left\{ \sum_{i=1}^{n} \int_{0}^{\ell} (D11_{i}a_{3j}w_{j_{i}} + a_{4j}D13_{i}\phi_{j_{i}})w_{k_{i}}dx \right\}$$

$$+ \omega^{2} \left\{ \sum_{j=1}^{N} \int_{\ell}^{R} (D21a_{3j}w_{j} + a_{4j}D23\phi_{j})w_{k}dx \right\}$$

$$(75)$$

$$- \sum_{j=1}^{N} \left\{ \sum_{i=1}^{n} \int_{0}^{\ell} (b_{2j}M'_{zj_{i}} - a_{2j}D113_{i}v'_{j_{i}} + a_{4j}D114_{i}\phi_{j_{i}})v'_{k_{i}}dx \right\}$$
$$+ \sum_{j=1}^{N} \left\{ \sum_{i=1}^{n} \int_{0}^{\ell} (a_{4j}\bar{\alpha}^{2}D15_{i}\phi_{j_{i}} - a_{2j}\bar{\alpha}^{2}D11_{i}v_{j_{i}})v_{k_{i}}dx \right\}$$

$$- \sum_{j=1}^{N} \left\{ \int_{\varrho}^{R} (b_{2j}M'_{zj} - a_{2j}D213v'_{j} + a_{4j}D214\phi_{j})v'_{k}dx \right\}$$

$$+ \sum_{j=1}^{N} \left\{ \int_{\varrho}^{R} (a_{4j}\tilde{a}^{2}D25\phi_{j} - a_{2j}\tilde{a}^{2}D21_{i}v_{j})v_{k}dx \right\}$$

$$+ < \sum_{j=1}^{N} \left[\left\{ \sum_{i=1}^{n} (b_{2j}M_{zj} - b_{2j}M_{zj}) \right\} - b_{2j}M_{zj}v'_{k} > x=\varrho \right]$$

$$= \omega^{2} \sum_{j=1}^{N} \left\{ \sum_{i=1}^{n} \int_{0}^{\varrho} (D11_{i}a_{2j}v_{ji} - a_{4j}D15_{i}\phi_{ji})v_{ki}dx \right\}$$

$$+ \omega^{2} \sum_{j=1}^{N} \left\{ \int_{\varrho}^{R} (D21a_{2j}v_{j} - a_{4j}D25\phi_{j})v_{k}dx \right\}$$

$$(76)$$

$$\sum_{j=1}^{N} \left\{ \sum_{i=1}^{n} \int_{0}^{\ell} (-b_{4j}M'_{xj_{i}} - Dl_{i}a_{2j}v'_{j_{i}} + Dl_{i}a_{3j}w'_{j_{i}} + a_{2j}\bar{\alpha}^{2}Dl_{i}v_{j_{i}} + a_{4j}Dl_{i}\phi_{j_{i}})\phi_{k_{i}}dx \right\}$$
$$+ \sum_{j=1}^{N} \left\{ \int_{\ell}^{R} (-b_{4j}M'_{xj} - D2l_{2}a_{2j}v'_{j} + D24a_{3j}w'_{j} + a_{2j}\bar{\alpha}^{2}D25_{i}v_{j} + a_{4j}D26\phi_{j})\phi_{k}dx \right\}$$

$$+ < \sum_{j=1}^{N} \left\{ \sum_{i=1}^{n} [b_{4j}M_{xj_{i}} + h_{y_{i}}(-b_{3j}M'_{yj_{i}} + a_{3j}D113_{i}w'_{j_{i}} + a_{4j}D12_{i}\phi_{j_{i}}) - h_{z_{i}}(-b_{2j}M'_{zj_{i}} + a_{2j}D113_{i}v'_{j_{i}} - a_{4j}D14_{i}\phi_{j_{i}})] - b_{4j}M_{xj} \right\} \phi_{k} > \sum_{x=\ell}^{N}$$

$$= \omega^{2} \sum_{j=1}^{N} \left\{ \sum_{i=1}^{n} \int_{0}^{\ell} (D17_{i}a_{4j}\phi_{j_{i}} + D13_{i}a_{3j}w_{j_{i}}) \right\}$$
$$- D15_{i}a_{2j}v_{j_{i}}\phi_{k_{i}}dx = 0$$

$$+ \omega^{2} \sum_{j=1}^{N} \left\{ \int_{\varrho}^{R} (D27a4_{j}\phi_{j} + D23a_{3j}w_{j}) - D25a_{2j}v_{j}\phi_{k}dx \right\}$$

$$(77)$$

$$\sum_{j=1}^{N} \left\{ \sum_{i=1}^{n} \int_{0}^{\ell} (-b_{1j} V'_{xj_{i}} - a_{1j} \bar{\Omega}^{2} D \Pi_{i} u_{j_{i}}) u_{k_{i}} dx \right\}$$
$$+ \sum_{j=1}^{N} \left\{ \int_{\ell}^{R} (-b_{1j} V'_{xj} - a_{1j} \bar{\Omega}^{2} D \Pi_{i} u_{j}) u_{k} dx \right\}$$

$$+ \left[\sum_{j=1}^{N} \left\{ \sum_{i=1}^{n} (b_{1j}v_{xj}) - b_{1j}v_{xj} \right\}^{u_{k}} \right]_{x=\ell}$$

$$= \omega^{2} \sum_{j=1}^{N} \left\{ \int_{0}^{\ell} Dll_{i}a_{1j}u_{j}u_{k}dx \right\}$$

$$+ \omega^{2} \sum_{j=1}^{N} \left\{ \int_{\ell}^{R} D2la_{1j}u_{j}u_{k}dx \right\}$$
(78)

$$\sum_{j=1}^{N} \left\{ \sum_{i=1}^{n} \int_{0}^{\ell} (a_{1j}u_{ji} - Dl8_{i}b_{1j}V_{xji})V_{xki}dx \right\}$$

$$+ \sum_{j=1}^{N} \left\{ \int_{\ell}^{R} (a_{1j}u_{j} - D28b_{1j}V_{xj})V_{xk}dx \right\} = 0$$
(79)

$$\sum_{j=1}^{N} \left\{ \sum_{i=1}^{n} \int_{0}^{\ell} (a_{4j}\phi_{j} - DI9_{i}b_{4j}M_{xj})M_{xk_{i}}dx \right\}$$
$$+ \sum_{j=1}^{N} \left\{ \int_{\ell}^{R} (a_{4j}\phi_{j} - D29b_{4j}M_{xj})M_{xk}dx \right\} = 0$$
(80)

$$\sum_{j=1}^{N} \left\{ \sum_{i=1}^{n} \int_{0}^{\ell} (a_{2j}v_{j_{i}}^{"} + D111_{i}b_{3j}M_{yj_{i}} - D110_{i}b_{2j}M_{zj_{i}})M_{zk_{j}}dx \right\} + \sum_{j=1}^{N} \left\{ \int_{\ell}^{R} (a_{2j}v_{j}^{"} + D211b_{3j}M_{yj} - D210b_{2j}M_{zj})M_{zk} \right\} = 0$$
(81)

$$\sum_{j=1}^{N} \left\{ \sum_{i=1}^{n} \int_{\varrho}^{R} (a_{3j}w_{ji}'' - D112_{i}b_{3j}M_{yji} + D111_{i}b_{2j}M_{zji})M_{yki}dx \right\}$$

+
$$\sum_{j=1}^{N} \left\{ \int_{\varrho}^{R} (a_{3j}w_{j} - D212b_{3j}M_{yj} + D211b_{2j}M_{zj})M_{yk}dx \right\} = 0 \qquad (82)$$

where

Di1 = m
Di2 =
$$\bar{\Omega}^2 \bar{m} \bar{e} \bar{x} \cos \bar{\beta}$$

Di3 = $\bar{m} \bar{e} \cos \bar{\beta}$
Di4 = $-2 \bar{m} \bar{e} \bar{x} \sin \bar{\beta}$
Di5 = $\bar{m} \bar{e} \sin \bar{\beta}$

Di6 =
$$\bar{\Omega}^2 \bar{m} (\bar{k}_{m_2}^2 - \bar{k}_{m_1}^2) \cos 2\bar{\beta}$$

Di7 = $\bar{m} \bar{k}_m^2$
Di8 = $1/\overline{EA}$
Di9 = $1/\overline{GJ}$
Di10 = $\overline{C}_{11}/\overline{EI}_1\overline{EI}_2$
Di11 = $\overline{C}_{12}/\overline{EI}_1\overline{EI}_2$
Di12 = $\overline{C}_2/\overline{EI}_1\overline{EI}_2$
Di13 = \bar{T}
i = 1 \Rightarrow Load Path Prope

 $i = 1 \rightarrow Load$ Path Properties

 $i = 2 \rightarrow Blade Properties$

7.4 Eigenvalue Problem

Eqs. (75) to (82) can be written into a set of matrix equations of the following form for k = 1 to N.

$$\begin{bmatrix} A_{1} \end{bmatrix} \begin{bmatrix} a_{3} \\ a_{4} \\ b_{1} \\ b_{3} \end{bmatrix} = \omega^{2} \begin{bmatrix} B_{1} \end{bmatrix} \begin{bmatrix} a_{3} \\ a_{4} \\ a_{4} \end{bmatrix}$$
(83)
$$\begin{bmatrix} A_{1} \end{bmatrix} \begin{bmatrix} b_{1} \\ a_{3} \\ a_{4} \end{bmatrix}$$
(83)

 $\begin{bmatrix} A_{2} \\ a_{4} \\ b_{1} \\ b_{2} \\ 4NX1 \end{bmatrix} = \omega^{2} \begin{bmatrix} B_{2} \\ B_{2} \end{bmatrix} \begin{cases} a_{2} \\ a_{4} \\ 2NX1 \end{bmatrix}$ (84)

$$\begin{bmatrix} A_{4} \end{bmatrix} \\ NX2N \qquad \begin{cases} a_{1} \\ b_{1} \end{cases} = \omega^{2} \begin{bmatrix} B_{4} \end{bmatrix} \quad \begin{cases} a_{1} \\ a_{1} \end{cases}$$

$$(86)$$

$$\begin{bmatrix} A_{5} \end{bmatrix} \qquad \begin{cases} a_{1} \\ b_{1} \end{bmatrix} = \begin{cases} 0 \end{cases}$$
(87)

$$\begin{bmatrix} A_6 \end{bmatrix} \qquad \left\{ \begin{array}{c} a_4 \\ b_4 \end{array} \right\} = \left\{ \begin{array}{c} 0 \end{array} \right\} \tag{88}$$

$$\begin{bmatrix} A_7 \end{bmatrix} \begin{cases} a_2 \\ b_2 \\ b_3 \end{bmatrix} = \begin{cases} 0 \end{cases}$$
(89)

$$\begin{bmatrix} A_8 \end{bmatrix} \\ NX3N \\ b_2 \\ b_3 \end{bmatrix} = \begin{cases} 0 \end{cases}$$
(90)

The above set of equations correspond to Eqs. (75) to (82) respectively. Eq. (83) can be partitioned into the following form:

$$\left| \begin{bmatrix} \mathbf{A}_{11} \end{bmatrix} \left| \begin{bmatrix} \mathbf{A}_{12} \end{bmatrix} \right| \left\{ \frac{\mathbf{a}_3}{\mathbf{a}_4} \right\} + \left| \begin{bmatrix} \mathbf{A}_{13} \end{bmatrix} \left| \begin{bmatrix} \mathbf{A}_{14} \end{bmatrix} \right| \left\{ \frac{\mathbf{b}_1}{\mathbf{b}_3} \right\}$$

$$= \omega^2 \left| \begin{bmatrix} \mathbf{B}_{11} \end{bmatrix} \left| \begin{bmatrix} \mathbf{B}_{12} \end{bmatrix} \right| \left\{ \frac{\mathbf{a}_3}{\mathbf{a}_4} \right\}$$

$$(91)$$

By employing a similar partition scheme for Eqs. (84) to (86), the four equations (83 to 86) can be combined into the following form

$$\begin{bmatrix} E_{1} \end{bmatrix} \begin{bmatrix} a_{1} & a_{2} & a_{3} & a_{4} \end{bmatrix}^{T} + \begin{bmatrix} E_{2} \end{bmatrix} \begin{bmatrix} b_{1} & b_{2} & b_{3} & b_{4} \end{bmatrix}^{T}$$
$$= \omega^{2} \begin{bmatrix} E_{3} \end{bmatrix} \begin{bmatrix} a_{1} & a_{2} & a_{3} & a_{4} \end{bmatrix}^{T}$$
(92)

where

$$\begin{bmatrix} \mathbf{E}_{1} \end{bmatrix} = \begin{bmatrix} 0 & 0 & A_{11} & A_{12} \\ 0 & A_{21} & 0 & A_{22} \\ 0 & A_{31} & A_{32} & A_{33} \\ A_{41} & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{E}_{2} \\ \mathbf{4}\mathbf{N}\mathbf{X}\mathbf{4}\mathbf{N} \end{bmatrix} \begin{bmatrix} \mathbf{A}_{13} & \mathbf{0} & \mathbf{A}_{14} & \mathbf{0} \\ \mathbf{A}_{23} & \mathbf{A}_{24} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_{34} & \mathbf{A}_{35} & \mathbf{A}_{36} \\ \mathbf{A}_{42} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}$$

 $\begin{bmatrix} E_1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & B_{11} & B_{12} \\ 0 & B_{21} & 0 & B_{22} \\ 0 & B_{31} & B_{32} & B_{33} \\ B_{41} & 0 & 0 & 0 \end{bmatrix}$

Eqs. (87) to (90) can be combined into a matrix equation of the following form using a similar partition scheme employed in Eq. (91).

$$\begin{bmatrix} b_1 & b_2 & b_3 & b_4 \end{bmatrix}^T = \begin{bmatrix} E_4 \end{bmatrix} \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \end{bmatrix}^T$$
(93)

where

$$\mathbf{E}_{4} = \begin{bmatrix} \mathbf{d}_{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{c}_{11} & \mathbf{c}_{12} & \mathbf{0} \\ \mathbf{0} & \mathbf{c}_{12} & \mathbf{c}_{22} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{d}_{2} \end{bmatrix}$$

$$\begin{bmatrix} d_1 \end{bmatrix} = -\begin{bmatrix} A_{52} \end{bmatrix}^{-1} \begin{bmatrix} A_{51} \end{bmatrix}$$

 $\begin{bmatrix} d_2 \end{bmatrix} = -\begin{bmatrix} A_{62} \end{bmatrix}^{-1} \begin{bmatrix} A_{61} \end{bmatrix}$

 $\begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} = \begin{bmatrix} A_{72} & A_{73} \\ A_{82} & A_{83} \end{bmatrix}^{-1} \begin{bmatrix} A_{71} & 0 \\ 0 & A_{81} \end{bmatrix}$

Substituting Eq. (3) into Eq. (92) yields

$$([D] - \omega^{2}[I]) \begin{bmatrix} a_{1} & a_{2} & a_{3} & a_{4} \end{bmatrix}^{T} = \left\{ 0 \right\}$$
(94)

where

$$[D] = [E_3]^{-1} ([E_1] + [E_2] [E_4])$$

REFERENCES

- 1. Fenaughty, R. R. and Noehren, W. L., "Composite Bearingless Tail Rotor for UTTAS," Journal of the American Helicopter Society, vol. 22, (3), July 1977.
- Staley, J. A., Gabel, R. and MacDonald, H. I., "Full Scale Ground and Air Resonance Testing of the Army-Boeing Vertol Bearingless Main Rotor," Paper No. 79-23, American Helicopter Society 35th Annual National Forum, Washington, D.C., May 1979.
- 3. Dixon, P. G. C. and Bishop, H. E., "The Bearingless Main Rotor," Journal of the American Helicopter Society, vol. 25 (3), July 1980.
- Bousman, W. G., Ormiston, R. A. and Mirick, P. H., "Design Considerations for Bearingless Main Rotor Hubs," American Helicopter Society 39th Annual National Forum, St. Louis, MO, May 1983.
- 5. Johnson, Wayne, "A Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics," NASA TM 81182, June 1980.
- Lang, K. W. and Nemat Nasser, S., "An Approach for Estimating Vibration Characteristics of Nonuniform Rotor Blades," AIAA Journal, vol. 17, No. 9, Sep. 1979.
- Houbolt, J. C. and Brooks, G. W., "Differential Equations of Motion for Combined Flapwise Bending, Chordwise Bending, and Torsion of Twisted Nonuniform Rotor Blades," NACA Report 1346, 1958.
- Dixon, P. G. C., "Design, Development and Flight Demonstration of the Loads and Stability Characteristics of Bearingless Main Rotor," USA AVRADCOM-TR-80-D3, 1980.
- Murthy, V. R., and Joshi, A. M., "Free Vibration Characteristics of Multiple-Load-Path Blades by the Transfer Matrix Method," Journal of the American Helicopter Society, vol. 31, (4), pp. 43-50, Oct. 1986.

PROGRAM MOGALK

С

С

C

DYNAMIC ANALYSIS OF MULTIPLE-LOAD-PATH BEARINGLESS ROTOR BLADES MODIFIED GALERKIN'S METHOD COUPLED FLAPWISE BENDING, CHORDWISE BENDING, TWISTING, AND STRECHING MOTION OF PRETWISTED NONUNIFORM ROTATING BLADES.

REAL MASS, MASS1(2,11), MASS2(51), KM1S1(2,11), KM1S2(51), KM2S2(51), IKM2S1(2,11)

DIMENSION STA1(11), STA2(51), sta(51), EIY1(2,11), EIY2(51), EIZ1(2, 111), EIZ2(51), EA1(2,11), EA2(51), BETA1(2,11), BETA2(51), GJ1(2,11), 2GJ2(51),E1(2,11),E2(51),FD(2,2),D21(51),D22(51),D23(51),D24(51), 3D25(51),D26(51),D27(51),D28(51),D29(51),D210(51),D211(51), 4D212(51), D213(51), D11(2,11), D12(2,11), D13(2,11), D14(2,11), 5D15(2,11),D16(2,11),D17(2,11),D18(2,11),D19(2,11),D110(2,11), 6D111(2,11),D112(2,11),D113(2,11),BB(3),AT(2),DS(20,20), 7A(5,4,4),B(5,2,4),D214(51),FRE(51) COMPLEX DSC(20,20), LAMDA(20), VECT(20,20), HL(20,20), H1(20,20), 1CNT(20), COLM(20)INTEGER INTH(20,2) COMMON/XM1/NPATH COMMON/XM2/SPAN1, SPAN2, SPAN3, FD, OMEGAN COMMON/XM3/D11,D12,D13,D14,D15,D16,D17,D18,D19,D110,D111,D112, 1D113,D21,D22,D23,D24,D25,D26,D27,D28,D29,D210,D211,D212,D213 COMMON/XM4/STA, NS COMMON/XM5/HS1,HS2

COMMON/XGFCT1/A, B

COMMON/XGPR1/DS

Page 2

	THIS SECTION READS THE DATA OF THE SYSTEM
	READ(20,100) NPATH, NS1, NS2, MODES, ITT, NV
	READ(20,105) SPAN1, SPAN2, OMEGA
	READ(20,105) (STA1(I), I=1, NS1)
	READ(20,105) (STA2(I), I=1, NS2)
	DO 400 I=1,NPATH
	READ(20,105) (MASS1(I,J),J=1,NS1)
	READ(20,105) (EIY1(I,J),J=1,NS1)
	READ(20,105) (EIZ1(I,J),J=1,NS1)
	READ(20,105) (GJ1(I,J),J=1,NS1)
	READ(20,105) (E1(I,J),J=1,NS1)
	READ(20,105) (BETA1(I,J),J=1,NS1)
	READ(20,105) (KM1S1(I,J),J=1,NS1)
	READ(20,105) (KM2S1(I,J),J=1,NS1)
	READ(20,105) (EA1(I,J),J=1,NS1)
400	CONTINUE
	READ(20,105) (MASS2(I), I=1, NS2)
	READ(20,105) (EIY2(I), I=1, NS2)
	READ(20,105) (EIZ2(I),I=1,NS2)
	READ(20,105) (GJ2(I), I=1, NS2)
	READ(20,105) (E2(I),I=1,NS2)
	READ(20,105) (BETA2(I), I=1, NS2)
	READ(20,105) (KM1S2(I),I=1,NS2)
	READ(20,105) (KM2S2(I), I=1, NS2)
	READ(20,105) (EA2(I),I=1,NS2)

-

С С

C

С

•

#	DO 401 I=1,NPATH
	DO 401 J=1,2
401	FD(I,J)=0.0
-	IF (NPATH.GT.1) READ(20,105) ((FD(I,J),J=1,2),I=1,NPATH)
С	
C C	THIS SECTION PRINTS THE DATA OF THE SYSTEM
с	
C	
	SPAN=SPAN1*SPAN2
	WRITE (22,200)
-	WRITE (22,205)
	WRITE(22,347) MODES
-	WRITE(22,371) NV
	WRITE(22,225) SPAN
8	WRITE(22,230) SPAN1
	WRITE(22,235) SPAN2
1	WRITE(22,240) OMEGA
-	WRITE(22,245) NS1
	WRITE(22,250) NS2
-	WRITE(22,315) NPATH
	WRITE(22,316) ITT
5	IF (OMEGA.LE.0) ITT=1
	DO 405 I=1,NPATH
1	IF (I.EQ.1) WRITE(22,255)
_	IF (I.EQ.2) WRITE(22,260)
	WRITE (22,270)
	WRITE(22,275) (STA1(J),J=1,NS1)
	WRITE(22,280)

Page 3

Page 4

WRITE (22,275) (MASS1(I,J), J=1, NS1) WRITE (22,285) WRITE(22,275) (EIY1(I,J),J=1,NS1) WRITE (22,350) WRITE(22,275) (EIZ1(I,J),J=1,NS1) WRITE (22,352) WRITE(22,275) (GJ1(I,J),J=1,NS1) WRITE (22,354) WRITE (22,275) (E1(I,J), J=1, NS1) WRITE (22, 356) WRITE (22,275) (BETA1 (I, J), J=1, NS1) WRITE (22,358) WRITE (22,275) (KM1S1(I,J), J=1, NS1) WRITE (22,360) WRITE (22,275) (KM2S1(I,J), J=1, NS1) WRITE (22,286) WRITE (22,275) (EA1 (I, J), J=1, NS1) IF (NPATH.GT.1) WRITE(22,321) I,FD(I,1),FD(I,2) 405 CONTINUE WRITE (22,290) WRITE (22, 270) WRITE(22,275) (STA2(I), I=1, NS2) WRITE (22,280) WRITE(22,275) (MASS2(I), I=1, NS2) WRITE (22, 285) WRITE(22,275) (EIY2(I), I=1, NS2) WRITE (22, 350) WRITE(22,275) (EIZ2(I), I=1, NS2)

```
Page 5
```

```
WRITE (22,352)
    WRITE(22,275) (GJ2(I), I=1, NS2)
    WRITE (22, 354)
    WRITE(22,275) (E2(I),I=1,NS2)
    WRITE (22,356)
    WRITE (22,275) (BETA2(I), I=1, NS2)
    WRITE(22,358)
    WRITE(22,275) (KM1S2(I), I=1, NS2)
    WRITE (22,360)
    WRITE (22,275) (KM2S2(I), I=1, NS2)
    WRITE (22,286)
    WRITE(22,275) (EA2(I), I=1, NS2)
    NS=NS1
    DO 406 J=1,NS
    STA(J) = STA1(J)
406 CONTINUE
    HH=SPAN1/10.0
    DO 418 I=1,NPATH
       DO 410 J=1,NS1
          D21(J) = MASS1(I, J)
         D22(J) = EIY1(I, J)
         D23(J) = EIZ1(I, J)
          D24(J) = GJ1(I, J)
          D25(J) = E1(I, J)
          D26(J) = BETA1(I, J)
          D27(J) = KM1S1(I, J)
          D28(J) = KM2S1(I, J)
          D29(J) = EA1(I, J)
```

```
CALL INTPOL(11, D21, HH)
    CALL INTPOL(11, D22, HH)
    CALL INTPOL(11, D23, HH)
    CALL INTPOL(11, D24, HH)
    CALL INTPOL(11, D25, HH)
    CALL INTPOL(11, D26, HH)
   CALL INTPOL(11, D27, HH)
    CALL INTPOL (11, D28, HH)
    CALL INTPOL(11, D29, HH)
    DO 415 J=1,11
      MASS1(I, J) = D21(J)
      EIY1(I, J) = D22(J)
      EIZ1(I, J) = D23(J)
      GJ1(I, J) = D24(J)
      E1(I, J) = D25(J)
      BETAl(I,J) = D26(J)
      KM1S1(I, J) = D27(J)
      KM2S1(I, J) = D28(J)
      EA1(I, J) = D29(J)
415 CONTINUE
    IF (I.EQ.1) WRITE (22,255)
    IF (I.EQ.2) WRITE(22,260)
    WRITE (22,280)
    WRITE (22, 295)
    WRITE(22,275) (D21(J), J=1,11)
    WRITE (22, 285)
```

WRITE(22,275) (D22(J),J=1,11)

WRITE (22,350)
WRITE (22,275) (D23(J),J=1,11)
WRITE (22,352)
WRITE (22,275) (D24(J),J=1,11)
WRITE (22,354)
WRITE (22,275) (D25(J),J=1,11)
WRITE (22,356)
WRITE (22,275) (D26(J),J=1,11)
WRITE (22,358)
WRITE (22,275) (D27(J),J=1,11)
WRITE (22,275) (D28(J),J=1,11)
WRITE (22,286)
WRITE (22,275) (D29(J),J=1,11)

418 CONTINUE

NS=NS2

DO 419 J=1,NS

STA(J) = STA2(J)

```
419 continue
```

HH=SPAN2/100.0

CALL INTPOL (51, MASS2, HH)

CALL INTPOL (51, EIY2, HH)

CALL INTPOL (51, EIZ2, HH)

CALL INTPOL(51,GJ2,HH)

CALL INTPOL (51, E2, HH)

CALL INTPOL (51, BETA2, HH)

CALL INTPOL (51, KM1S2, HH)

CALL INTPOL (51, KM2S2, HH)

Page 8

i.

CALL INTPOL (51, EA2, HH) CALL INTPOL (51, CH, HH) CALL INTPOL (51, QE, HH) WRITE (22, 300) WRITE (22,280) WRITE(22,275) (MASS2(J), J=1,51) WRITE (22,285) WRITE(22,275) (EIY2(J),J=1,51) WRITE(22,350) WRITE(22,275) (EIZ2(J),J=1,51) WRITE (22, 352) WRITE(22,275) (GJ2(J),J=1,51) WRITE(22,354) WRITE(22,275) (E2(J),J=1,51) WRITE (22,356) WRITE(22,275) (BETA2(J),J=1,51) WRITE (22,358) WRITE(22,275) (KM1S2(J),J=1,51) WRITE(22,360) WRITE(22,275) (KM2S2(J), J=1,51) WRITE (22,286) WRITE(22,275) (EA2(J), J=1,51) WRITE (22,205) THIS SECTION NONDIMENSIONALIZED THE DATA С С

PI=4.0*ATAN(1.0)

С

С

OMEGA=OMEGA*PI/30.0

OMEGAS=OMEGA*OMEGA

SPANS=SPAN*SPAN

EIY=EIY2(1)

MASS=MASS2(1)

FACT=SQRT(SPANS*SPANS*MASS/EIY)

OMEGAN=OMEGAS*FACT*FACT

FA=SPANS/EIY

SPAN1=SPAN1/SPAN

SPAN2=SPAN2/SPAN

HS1=SPAN1/10.0

HS2=SPAN2/50.0

SPAN3=0.7*SPAN1

DO 420 I=1,NPATH

DO 420 J=1,11

BETA1 (I, J) = BETA1 (I, J) * PI/180.0

KM1S1(I,J) = KM1S1(I,J) / (MASS1(I,J) * SPANS)

KM2S1(I, J) = (KM2S1(I, J) / MASS1(I, J) + E1(I, J) + E1(I, J)) / SPANS

El(I,J) = El(I,J) / SPAN

MASS1(I, J) = MASS1(I, J) / SPAN

EIY1(I, J) = EIY1(I, J) / EIY

EIZ1(I,J) = EIZ1(I,J) / EIY

GJ1(I, J) = GJ1(I, J) / EIY

EA1(I,J) = EA1(I,J) * FA

```
420 CONTINUE
```

DO 4201 J=1,51

BETA2 (J) = (BETA2 (J)) * PI/180.0

KM1S2(J) = KM1S2(J) / (MASS2(J) * SPANS)

Page 9
KM2S2(J) = (KM2S2(J) / MASS2(J) + E2(J) * E2(J)) / SPANS

E2(J) = E2(J) / SPAN

EIY2(J) = EIY2(J) / EIY

EIZ2(J)=EIZ2(J)/EIY

GJ2(J) = GJ2(J) / EIY

 $EA2(J) = FA \times EA2(J)$

4201 CONTINUE

С

С

С

THIS SECTION CALCULATES THE COEFFICIENTS IN THE GALERKIN'S EQUATIONS

X=0.0

DO 430 I=1,NPATH

DO 430 J=1,11

TC1=OMEGA*MASS1(I,J)

C=COS(BETA1(I,J))

S=SIN(BETA1(I,J))

D11(I,J) = MASS1(I,J)

D12(I,J)=TC1*E1(I,J)*X

D14(I,J) = D12(I,J) * S

D12(I, J) = D12(I, J) * C

D13(I, J) = MASS1(I, J) * E1(I, J)

D15(I,J) = D13(I,J) * S

D13(I,J) = D13(I,J) * C

D16(I, J) = TC1*(KM2S1(I, J) - KM1S1(I, J))*(C*C-S*S)

D17(I,J)=MASS1(I,J)*(KM2S1(I,J)+KM1S1(I,J))

D18(I,J) = 1.0/EA1(I,J)

D19(I,J) = 1.0/GJ1(I,J)

Page 11

```
TC2=EIY1(I,J) \times EIZ1(I,J)
```

D110(I,J)=(EIY1(I,J)*C*C+EIZ1(I,J)*S*S)/TC2

D111(I, J) = (EIZ1(I, J) - EIY1(I, J)) * C*S/TC2

D112(I,J) = (EIY1(I,J) *S*S+EIZ1(I,J) *C*C)/TC2

X=X+HS1

430 CONTINUE

X=SPAN1

DO 440 J=1,51

TC1=OMEGAN*MASS2(J)

C=COS(BETA2(J))

S=SIN(BETA2(J))

D21(J) = MASS2(J)

 $D22(J) = TC1 \times E2(J) \times X$

D24(J) = D22(J) * S

D22(J) = D22(J) * C

D23(J) = MASS2(J) * E2(J)

D25(J) = D23(J) * S

D23(J) = D23(J) *C

D26(J) = TC1*(KM2S2(J) - KM1S2(J))*(C*C-S*S)

D27(J) = MASS2(J) * (KM2S2(J) + KM1S2(J))

D28(J) = 1.0/EA2(J)

D29(J) = 1.0/GJ2(J)

 $TC2=EIY2(J) \times EIZ2(J)$

D210(J) = (EIY2(J) * C * C + EIZ2(J) * S * S) / TC2

D211(J) = (EIZ2(J) - EIY2(J)) * C*S/TC2

D212(J) = (EIY2(J) * S * S + EIZ2(J) * C * C) / TC2

X=X+HS2

440 CONTINUE

X=SPAN1

H = HS2/24.0

DO 450 I=1,51

D214(I) = MASS2(I) * H * X

X=X+HS2

450 CONTINUE

D213(51) = 0.0

 $D213(50) = (9.0 \times D214(51) + 19.0 \times D214(50) - 5.0 \times D214(49) + D214(48))$

1*OMEGAN

DO 455 I=2,49

J=51-I

```
D213(J) = D213(J+1) + (-D214(J+2)+13.0*(D214(J+1)+D214(J)) -
```

1D214(J-1) * OMEGAN

455 CONTINUE

 $D213(1) = D213(2) + (D214(4) - 5.0 \times D214(3) + 19.0 \times D214(2) + 9.0 \times D214(1))$

1*OMEGAN

GO TO (460,465), NPATH

460 BB(1) = D213(1)

GO TO 480

```
465 H=SPAN1/24.0
```

DO 475 J=1, NPATH

AT(J) = (9.0*D18(J,1)+19.0*D18(J,2)-5.0*D18(J,3)+D18(J,4))*H

DO 470 K=1,9

 $AT(J) = AT(J) + H^{*}(-D18(J,K) + 13.0 \times D18(J,K+1) + 13.0 \times D18(J,K+2)$

1-D18(J,K+3))

470 CONTINUE

 $AT(J) = AT(J) + H^{(D18(J,8)-5.0)} + D18(J,9) + 19.0 + D18(J,10) + 9.0 + D18(J,11))$

475 CONTINUE

```
Page 13
```

```
BB(1) = AT(1) * D213(1) / (AT(1) + AT(2))
```

```
BB(2) = AT(2) * D213(1) / (AT(1) + AT(2))
```

480 DO 495 JJ=1,NPATH

X=0.0

DO 485 I=1,11

D214(I)=MASS1(JJ,I)*H*X

X=X+HS1

485 CONTINUE

```
D113(JJ, 11) = 0.0
```

```
D113(JJ, 10) = (9.0 \times D214(11) + 19.0 \times D214(10) - 5.0 \times D214(9) + D214(8))
```

1*OMEGAN

DO 490 I=2,9

J=11-I

```
D113 (JJ, J) =D113 (JJ, J+1) +C-D214 (J+2) +13.0* (D214 (J+1) +D214 (J)
```

1-D214 (J-1)) *OMEGAN

490 CONTINUE

```
D113(JJ, 1) = D113(JJ, 2) + (D214(4) - 5.0 \times D214(3) + 19.0 \times D214(2))
```

1+9.0*D214(1))*OMEGAN

```
495 CONTINUE
```

С

C

С

DO 500 I=1,NPATH

DO 500 J=1,11

500 D113(I,J)=D113(I,J)+BB(I)

IF (NPATH.GT.1.AND.ITT.GT.1) CALL TITER(ITT)

THIS SECTION CALCULATES GALERKIN'S FUNCTIONS AND WRITES THE

COEFFICIENTS OF THE CLEVIS COMPATIBILITY POLYNOMIALS

```
CALL GFCTS (MODES)
```

N1=2*NPATH

WRITE (22, 361)

```
DO 505 K=1, MODES
```

WRITE(22,366)

DO 505 I=1,N1,2

IF (I.EQ.1) WRITE (22,362)

IF (I.EQ.2) WRITE(22,363)

WRITE (22, 364)

WRITE(22,275) (A(K,J,I),J=1,4)

WRITE (22,365)

WRITE (22,275) (A(K,J,I+1),J=1,4)

WRITE(22,367)

WRITE(22,275) (B(K,J,I),J=1;2)

WRITE(22,368)

WRITE(22,275) (B(K,J,I+1),J=1,2)

505 CONTINUE

С

С

THIS SECTION CALCULATES THE EIGENVALUES AND EIGENVECTORS

N4=4*NPATH

DO 510 I=1,N4

DO 510 J=1,N4

```
510 DSC(I, J) = CMPLX(DS(I, J), 0.0)
```

INTH(1, 1) = N4

INTH(2,1) = NV

CALL EECM (DSC, LAMDA, VECT, HL, H1, CNT, COLM, INTH)

	1		WRITE (22, 200)
			WRITE(22,205)
			WRITE(22,369)
-	ļ		WRITE(22,205)
			WRITE(22,275) (LAMDA(J), J=1, N4)
	r •		DO 515 J=1,N4
		515	FRE $(J) = SQRT (REAL (LAMDA (J)))$
	1		WRITE(22,370)
			WRITE(22,275) (FRE(J), J=1, N4)
Î			IF (NV.EQ.0) GO TO 600
			WRITE(22,371)
			DO 520 I=1,N4
		520	WRITE(22,275) (VECT(I,J),J=1,NV)
			WRITE(22,372)
			DO 530 J=1,NV
			AMAX=REAL(VECT(I,J))
	1		DO 525 I=2,N4
		525	IF (ABS (AMAX).LT.ABS (REAL (VECT (I, J)))) AMAX=REAL (VECT (I, J))
Ì			DO 530 I=1,N4
		530	VECT(I,J)=VECT(I,J)/AMAX
			DO 535 I=N4
		535	WRITE(22,275) (VECT(I,J),J=1,NV)
			WRITE (22,205)
	C		
	c		FORMATS
	c		
1000	-		

с

100 FORMAT(515)

105 FORMAT(5E14.7)

200 FORMAT(1H1)

225 FORMAT(//5X,'RADIUS OF THE ROTOR (INCHES) =',E14.7)
230 FORMAT(//5X,'LENGTH OFF INBOARD SEGMENTS (IN)=',E14.7)
235 FORMAT(//5X,'LENGTH OF THE BLADE (INCHES) =',E14.7)
240 FORMAT(//5X,'ROTATIONAL SPEED (RPM) =',E14.7)
245 FORMAT(//5X,'NUMBER OF DATA POINTS FOR INBOARD SEGMENTS=',I5)
250 FORMAT(//5X,'NUMBER OF DATA POINTS FOR BLADE =',I5)

255 FORMAT(//5X,'PROPERTIES OF THE FIRST LOAD PATH')

260 FORMAT(//5X, 'PROPERTIES OF THE SECOND LOAD PATH')

270 FORMAT(//5X,'DATA POINT LOCATIONS IN INCHES')

275 FORMAT(4(6X, E14.7))

280 FORMAT(//5X,'MASS PER UNIT LENGTH (LB-SEC.**2/IN**2)')

285 FORMAT(//5X,'FLAPWISE BENDING STIFFNESS (LB-IN**2)')

286 FORMAT(//5X, 'AXIAL STIFFNESS(LB) ')

290 FORMAT(//5X,'PROPERTIES OF THE BLADE')

295 FORMAT(//5X,'INTERPOLATED VALUES FOR INBOARD SEGMENTS, 11',

\$'EQUIDISTANT VALUES')

300 FORMAT(//5X,'INTERPOLATED VALUES FOR THE BLADE, 51',

\$'EQUIDISTANT VALUES')

315 FORMAT (//5X, 'MUNBER OF LOAD PATHS')

316 FORMAT(//5X,'NUMBER OF FLNSION ITERATIONS =', I5)

321 FORMAT(//5X,'Y,Z DISTANCES BETWEEN LOADPATH NO:', I2,

\$/5X,' AND THE BLADE(IN) ARE=', F6.2, 5X, F6.2) 347 FORMAT(//5X,'NUMBER OF MODES TO BE USED =', I5)

```
350 FORMAT(//5X,'CHORDWISE BENDING STIFFNESS(LB-IN**2)')
  352 FORMAT(//5X,'TORSIONAL STIFFNESS(LB-IN**2)')
  354 FORMAT(//5X,'DISTANCE BETWEEN MASS AND ELASTIC AXIS(IN)=')
  356 FORMAT(//5X,'TWIST OF THE BLADE',/5X,'(DEGREES) =')
  358 FORMAT(//5X,'MASS MOMENT OF INERTIA ABOUT THE CHORD(LB-SEC**2)')
  360 FORMAT(//5X,'MASS MOMENT OF INERTIA ABOUT AN AXIS',
     $/5X,'PERPINDICULAR TO THE CHORD THROUGH THE CENTER OF',
     $/5X,'GRAVITY(LB-SEC**2)')
  361 FORMAT(//5x,'THE COEFFICIENTS OF THE CLEVIS COMPATIBILITY
    $FUNCTIONS ARE')
  362 FORMAT(//5X,'COEFFICENTS OF THE FIRST LOAD PATH')
  363 FORMAT(//5x,'COEFFICENTS OF THE SECOND LOAD PATH')
  364 FORMAT(//5x,'FLAPWISE BENDING')
  365 FORMAT(//5X,'CHORDWISE BENDING')
  366 FORMAT (//5X, 'MODE NUMBER')
  367 FORMAT(//5x,'TWISTING')
  368 FORMAT(//5X,'STRETCHING')
 369 FORMAT (//5X, 'EIGENVALUES ARE AS FOLLOWS')
  370 FORMAT(//5X,'NATURAL FREQUENCIES ARE AS FOLLOWS')
 371 FORMAT(//5X,'EIGENVECTORS ARE AS FOLLOWS')
 372 FORMAT (//5x, 'NORMALIZED EIGENVECTORS')
  600 STOP
     END
С
        SUBROUTINE EECM (A, LAMDA, VECT, HL, H, CNT, COLM, INTH)
     С
```

Page 17

```
COMPUTES EIGENVALUES AND EIGENVECTORS OF A COMPLEX MATRIX
     COMPLEX A(20,20), LAMDA(20), SHIFT(3), TEMP, TEMP1, TEMP2, SINN, COSS,
  $HL(60,60),CNT(20),VECT(20,20),COLM(20),H(60,60)
  LOGICAL TWICE, CON
  INTEGER INTH(20,2), R, RP1, RP2
  N=INTH(1,1)
  M=N
  NV=INTH(2,1)
  DO 1 I=1,M
  DO 1 J=1,M
1 HL(J,I) = A(J,I)
  NCAL=N
  SHIFT (1) = (0.0, 0.0)
  ICOUNT=0
  IF (N-2) 2,37,3
2 LAMDA(1) = A(1, 1)
  VECT(1,1) = (1.0,1.0)
  GO TO 63
REDUCE MATRIX TO HESSENBURG GORM
 3 NM2=N-2
  DO 14 R=1,NM2
  RP1=R+1
  RP2=R+2
```

С

С

C

С

С

C

```
ABIG=0.0
  INTH(R, 1) = RP1
  DO 4 I=RP1,N
  ABSSQ=REAL(HL(I,R))**2+AIMAG(HL(I,R))**2
  IF (ABSSQ.LE.ABIG) GO TO 4
  INTH(R, 1) = I
  ABIG=ABSSQ
4 CONTINUE
  INTER=INTH(R,1)
  IF (INTER.EQ.0.0) GO TO 14
  IF (INTER.EQ.RP1) GO TO 7
  DO 5 I=R, N
  TEMP=HL(RP1,I)
  HL(RP1,I)=HL(INTER,I)
5 HL(INTER, I) = TEMP
  DO 6 I=1,N
  TEMP=HL(I,RP1)
  HL(I, RP1) = HL(I, INTER)
6 HL(I, INTER) = TEMP
7 DO 8 I=RP2,N
   COLM(I) = HL(I, R) / HL(RP1, R)
8 HL(I, R) = COLM(I)
  DO 10 I=1,RP1
  TEMP = (0.0, 0.0)
  DO 9 J=RP2,N
 9 TEMP=TEMP+HL(I,J)*COLM(J)
10 HL(I, RP1) = HL(I, RP1) + TEMP
```

DO 12 I=RP2,N

TEMP = (0.0, 0.0)

DO 11 J=RP2,N

11 TEMP=TEMP+HL(I,J)*COLM(J)

```
12 HL(I, RP1) = HL(I, RP1) + TEMP-COLM(I) * HL(RP1, RP1)
```

DO 13 I=RP2,N

- DO 13 J=RP2,N
- 13 HL(I,J) = HL(I,J) COLM(I) * HL(RP1,J)

14 CONTINUE

С

С

CALCULATE EPSILON

EPS=0.0

DO 15 I=1,N

```
15 EPS=EPS+CABS(HL(1,I))
```

DO 17 I=2, N

SUM=0.0

IM1=I-1

```
DO 16 J=IM1,N
```

```
16 SUM=SUM+CABS(HL(I,J))
```

IF (SUM.GT.EPS) EPS=SUM

17 CONTINUE

FN=N

EPS=SQRT (FN) *EPS*1.0E-12

IF (EPS.LT.1.0E-12) EPS=1.0E-12

DO 18 I=1,N

DO 18 J=1,N

18 H(J,I) = HL(J,I)

19 IF (N-2)20,37,21

```
Page 21
```

```
20 LAMDA (M) = HL(1, 1) + SHIFT(1)
```

- GO TO 39

```
21 MN1=M-N+1
```

CON=.FALSE.

IF (REAL(HL(N,N)).NE.0.0.OR.AIMAG(HL(N,N)).NE.0.0) CON=.TRUE.

IF (.NOT.CON) GO TO 22

HL(N,N) = HL(N,N)

IF (ABS(REAL(HL(N, N-1)/HL(N, N))) + ABS(AIMAG(HL(N, N-1)/HL))

\$(N,N)))-1.0E-12) 23,23,22

22 IF (ABS (REAL (HL (N, N-1))) + ABS (AIMAG (HL (N, N-1))).GE.EPS) GO TO 24

23 LAMDA (MN1) = HL(N, N) + SHIFT(1)

ICOUNT=0

N=N-1

GO TO 19

DETERMINE SHIFT

```
C
```

С

С

24 TEMP=HL(N,N)*HL(N-1,N-1)-HL(N,N-1)*HL(N-1,N)

TEMP1=HL(N-1, N-1)+HL(N, N)

SHIFT (2) = (TEMP1 + CSQRT ((TEMP1) * *2 - 4.0*(TEMP)))/2.0

IF (SHIFT(2).NE.(0.0,0.0)) GO TO 25

SHIFT(3)=TEMP1

GO TO 26

25 SHIFT (3) = TEMP/SHIFT (2)

26 IF (CABS(SHIFT(2)-HL(N,N)).LT.CABS(SHIFT(3)-HL(N,N))) GO TO 27

INDEX=3

GO TO 28

27 INDEX=2

```
Page 22
```

```
28 IF (CABS(HL(N-1, N-2)).GE.EPS) GO TO 29
      LAMDA(MN1) = SHIFT(2) + SHIFT(1)
      LAMDA (MN1+1) = SHIFT(3) + SHIFT(1)
      ICOUNT=0
      N=N-2
      GO TO 19
   29 SHIFT(1)=SHIFT(1)+SHIFT(INDEX)
С
    PERFORM GIVEN ROTATIONS, QR ITERATIONS
С
      DO 30 I=1,N
   30 HL(I,I)=HL(I,I)-SHIFT(INDEX)
      IF (ICOUNT.LE.40) GO TO 31
      NCAL=M-N
      GO TO 39
   31 NM1=N-1
      TEMP1=HL(1,1)
      TEMP2=HL(2,1)
      DO 36 R=1,NM1
      RP1=R+1
      SUM=SQRT (REAL (TEMP1) **2+AIMAG (TEMP1) **2+REAL (TEMP2) **2+AIMAG
     $(TEMP2)**2)
      IF (SUM.NE.0.0) GO TO 32
      TEMP1=HL(RP1, RP1)
      TEMP2=HL(R+2, RP1)
      GO TO 36
   32 COSS=TEMP1/SUM
```

SINN=TEMP2/SUM

С

```
INDEX=MAX0(R-1,1)
```

DO 33 I=INDEX,N

TEMP=CONJG(COSS) *HL(R,I) +CONJG(SINN) *HL(RP1,I)

HL(RP1, I) = -SINN + HL(R, I) + COSS + HL(RP1, I)

33 HL(R, I) = TEMP

TEMP1=HL(RP1, RP1)

TEMP2=HL(R+2,RP1)

DO 34 I=1,R

TEMP=COSS*HL(I,R)+SINN*HL(I,RP1)

HL(I,RP1) =-CONJG(SINN) *HL(I,R) +CONJG(COSS) *HL(I,RP1)

34 HL(I,R) = TEMP

INDEX=MINO(R+2,N)

DO 35 I=RP1, INDEX

HL(I,R) = SINN + HL(I,RP1)

- 35 HL(I, RP1) = CONJG(COSS) * HL(I, RP1)
- 36 CONTINUE

ICOUNT=ICOUNT+1

GO TO 21

37 TEMP1=HL(N-1, N-1)+HL(N, N)

TEMP2=HL(N,N) *HL(N-1,N-1) -HL(N,N-1) *HL(N-1,N)

TEMP = (TEMP1 + CSQRT((TEMP1) * *2 - 4.0*(TEMP2)))/2.0

IF (REAL (TEMP).NE.0.0) GO TO 38

LAMDA (M) = SHIFT (1)

```
LAMDA(M-1) = TEMP1 + SHIFT(1)
```

GO TO 39

```
38 LAMDA (M) = TEMP+SHIFT (1)
```

LAMDA (M-1) = TEMP2 / TEMP + SHIFT (1)

VALUSE IN DECENDING ORDER OF ABSOLUTE MAGITUDE

```
39 CONTINUE
```

С

С

IF(M.NE.2) GO TO 40

EPS=AMAX1 (CABS (LAMDA (1)), CABS (LAMDA (2)))*1.0E-12

```
IF (EPS.LT.1.0E-12) EPS=1.0E-12
```

H(1,1) = HL(1,1)

H(1,2) = HL(1,2)

```
H(2,1) = HL(2,1)
```

```
H(2,2) = HL(2,2)
```

```
40 CONTINUE
```

IF (NCAL.LE.1) GO TO 143

K=NCAL+1

DO 41 I=1,NCAL

K=K-1

CNT(I) = LAMDA(K)

```
41 CONTINUE
```

L=NCAL-1

```
DO 43 I=1,L
```

K=I+1

```
DO 42 J=K, NCAL
```

```
IF (CABS(CNT(I)).GE.CABS(CNT(J))) GO TO 42
```

TEMP=CNT(J)

```
CNT(J) = CNT(I)
```

CNT(I) = TEMP

```
42 CONTINUE
```

43 LAMDA(I) = CNT(I)

LAMDA (NCAL) = CNT (NCAL)

```
С
    CALCULATES VECTORS
С
  143 CONTINUE
      NC=MINO(NV, NCAL)
      IF (NC.EQ.0) GO TO 63
      NM1=M-1
      DO 62 L=1,NC
      DO 45 I=1,M
      DO 44 J=1,M
   44 HL(J, I) = H(J, I)
   45 HL(I,I) = HL(I,I) - LAMDA(L)
      DO 49 I=1,NM1
      COLM(I) = (0.0, 0.0)
      INTH(I,2)=0
      IP1=I+1
      IF (CABS(HL(I+1,I)).LE.CABS(HL(I,I))) GO TO 47
      INTH(I,2)=I
      DO 46 J=1,M
      TEMP=HL(IP1, J)
      HL(IP1, J) = HL(I, J)
   46 HL(I, J) = TEMP
   47 IF(HL(I,I).EQ.(0.0,0.0)) GO TO 49
      COLM(I) = -HL(IP1, I)/HL(I, I)
      DO 48 J=IP1,M
   48 HL(IP1, J) = HL(IP1, J) + COLM(I) * HL(I, J)
   49 CONTINUE
      DO 50 I=1,M
```

```
50 CNT(I) = (1.0, 0.0)
```

TWICE=.FALSE.

51 IF (HL(M, M).EQ.(0.0,0.0)) HL(M, M)=EPS CNT(M)=CNT(M)/HL(M, M)

DO 53 I=1,NM1

K=M-1

DO 52 J=K, NM1

52 CNT (K) = CNT (K) - HL (K, J+1) * CNT (J+1)

IF (HL(K,K).EQ.(0.0,0.0)) HL(K,K) = EPS

53 CNT(K) = CNT(K) / HL(K, K)

ABIG=0.0

DO 54 I=1,N

SUM=ABS (REAL (CNT (I))) +ABS (AIMAG (CNT (I)))

IF (SUM.GT.ABIG) ABIG=SUM

54 CONTINUE

DO 55 I=1,M

55 CNT(I) = CNT(I) / ABIG

IF (TWICE) GO TO 57

DO 56 I=1,NM1

IF (INTH (I, 2).EQ.0) GO TO 56

TEMP=CNT(I)

```
CNT(I) = CNT(I+1)
```

CNT(I+1) = TEMP

```
56 CNT(I+1) = CNT(I+1) + COLM(I) * CNT(I)
```

TWICE=.TRUE.

GO TO 51

57 IF (M.EQ.2) GO TO 60

NM2 = M - 2

DO 59 I=1,NM2

N1I=M-1-I

NI1=M-I+1

DO 58 J=NI1,M

```
58 CNT(J) = H(J, N1I) * CNT(N1I+1) + CNT(J)
```

INDEX=INTH(N11,1)

TEMP=CNT (N1I+1)

CNT(N1I+1) = CNT(INDEX)

59 CNT (INDEX) = TEMP

NORMALIZE VECTORS TO UNIT LENGTH

60 CONTINUE

С

С

TEMP = (0.0, 0.0)

DO 61 I=1,M

61 TEMP=TEMP+CNT(I) *CNT(I)

TEMP=CSQRT (TEMP)

IF (TEMP.EQ. (0.0, 0.0)) TEMP=(1.0, 0.0)

DO 62 I=1,M

VECT(I, L) = CNT(I) / TEMP

62 CONTINUE

63 CONTINUE

INTH(1,1) = NCAL

RETURN

END

С

SUBROUTINE GFCTS (M)

REAL	MYL(5,2,11), MYLP(5,2,11), MZL(5,2,11), MZLP(5,2,11), MXL(5,2,1
L,MXLI	?(5,2,11),MY(5,51),MYP(5,51),MZ(5,51),MZP(5,51),MX(5,51),
MXP (5,51)
DIME	NSION AL(5),WL(5,2,11),WLP(5,2,11),VL(5,2,11),VLP(5,2,11),
LTL (5,	,2,11),VXL(5,2,11),VXLP(5,2,11),W(5,51),WP(5,51),V(5,51),
2VP (5,	,51),T(5,51),U(5,51),VX(5,51),VXP(5,51),C(4,4),CT(4,4),
3B(5,2	2,4),CT1(4,4),A(5,4,4),FD(2,2),ul(5,2,11)
DATA	AL/1.875,4.694,7.855,10.996,14.137/
COMM	ON/XM1/NPATH
COMM	ON/XM2/SPAN1, SPAN2, SPAN3, FD, OMEGAN
COMM	DN/XGFCT1/A,B
COMM	ON/XGFCT2/MYL,MYLP,MZL,MZLP,MXL,MXLP,MY,MYP,MZ,MZP,MX,MXP,WI
LWLP,	VL,VLP,TL,UL,VXL,VXLP,W,WP,V,VP,T,U,VX,VXP
DO 22	20 I=1,M
X=0.0)
SN=S	IN(AL(I))
SH=SI	INH(AL(I)) '
CN=C(DS(AL(I))
CH=C	OSH(AL(I))
E=(-:	SN+SH)/2.0*SN*SH
G= (C)	N+CH)/2.0*SN*SH
D=(2	.0*FLOAT(I)-1.0)*PI/2.0
DO 2	10 J=1,11

с С

с С

X=X*AL(I)

SN=SIN(X)

SH=SINH(X)

CN=COS(X)

CH=COSH(X)

CN1=COS(X1)

SN1=SIN(X1)

DO 200 K=1,NPATH

WL(I, K, J) = E * (SN-SH) + G * (CN-CH)

WLP(I, K, J) = AL(I) * E * (CN-CH) + AL(I) * G * (-SN-SH)

MYL(I, K, J) = AL(I) * 2 * E * (-SN-SH) + AL(I) * 2 * G * (-CN-CH)

MYLP(I,K,J) = AL(I) **3*E*(-CN-CH) + AL(I) **3*G*(SN-SH)

VL(I,K,J) = WL(I,K,J)

VLP(I,K,J) = WLP(I,K,J)

MZL(I, K, J) = MYL(I, K, J)

MZLP(I,K,J) = MYLP(I,K,J)

TL(I,K,J) = SN1

MXL(I,K,J) = D*CN1

MXLP(I,K,J) = -D*D*SN1

UL(I,K,J) = TL(I,K,J)

VXL(I,K,J) = MXL(I,K,J)

VXLP(I,K,J) = MXLP(I,K,J)

200 CONTINUE

X=X+HS1

210 CONTINUE

X=SPAN1

DO 220 J=1,51

X1=X*D

```
CN=COS(X)
    CH=COSH(X)
    CN1=COS(X1)
    SN1=SIN(X1)
    W(I, J) = E \star (SN-SH) + G \star (CN-CH)
    WP(I, J) = AL(I) * E * (CN-CH) + AL(I) * G * (-SN-SH)
    MY(I,J)=AL(I)**2*E*(-SN-SH)+AL(I)**2*G*(-CN-CH)
    MYP(I, J) = AL(I) * * 3 * E * (-CN-CH) + AL(I) * * 3 * G * (SN-SH)
    V(I,J) = W(I,J)
    VP(I,J) = WP(I,J)
    MZ(I, J) = MYP(I, J)
    T(I, J) = SN1
    MX(I, J) = D \star CN1
    MXP(I,J) = -D*D*SN1
    U(I,J) = T(I,J)
    VX(I,J) = MX(I,J)
    VXP(I,J) = MXP(I,J)
    X=X+HS2
220 CONTINUE
    C(1,1) = 1.0
    C(1,2) = SPAN3
    C(1,3) = SPAN3 \times SPAN3
    C(1, 4) = C(1, 3) * SPAN3
```

```
C(2,1) = 0.0
```

X = AL(I)

SN=SIN(X)

SH=SINH(X)

```
C(2,2) = 1.0
```

```
Page 31
```

```
C(2,3) = 2.0 \times SPAN3
C(2, 4) = 3.0 \times SPAN3 \times SPAN3
C(3,1)=1.0
C(3,2) = SPAN1
C(3,3) = SPAN1 * SPAN1
C(3, 4) = C(3, 3) \times SPAN1
C(4,1) = 0.0
C(4, 2) = 1.0
C(4,3) = 2.0 \times SPAN1
C(4, 4) = 3.0 \times SPAN1 \times SPAN1
CALL SOLUTN(C, 4, -1, 4)
N=NPATH+1
n2=2*npath
DO 240 I=1,M
DO 230 K=1,N2,2
K1=K
IF(K.GT.1) K1=K-1
CT(1, K) = WL(I, K1, 10)
CT(2, K) = WLP(I, K1, 10)
CT(3, K) = W(I, 1) + FD(K1, 1) * T(I, 1)
CT(4, K) = WP(I, 1)
CT(1, K+1) = VL(I, K1, 10)
CT(2, K+1) = VLP(I, K1, 10)
CT(3, K+1) = V(I, 1) - FD(K1, 2) * T(I, 1)
CT(4, K+1) = VP(I, 1)
B(I, 1, K) = (SPAN1 * TL(I, K1, 10) - SPAN3 * T(I, 1)) / (SPAN1 - SPAN3)
B(I, 2, K) = (T(I, 1) - TL(I, K1, 10)) / (SPAN1 - SPAN3)
B(I, 1, K+1) = (SPAN1 * UL(I, K1, 10) - SPAN3 * U(I, 1)) / (SPAN1 - SPAN3)
```

```
Page 32
```

```
B(I, 2, K+1) = (U(I, 1) - UL(I, K1, 10)) / (SPAN1 - SPAN3)
 230 CONTINUE
     CALL MATMUL(C,CT,CT1,4,4,N2)
     DO 240 II=1,4
     DO 240 IJ=1,N2
     A(I,II,IJ) = CT1(II,IJ)
 240 CONTINUE
     DO 260 I=1, MODES
     DO 260 J=1, NPATH
     IJ=2*J-1
     TL(I, J, 11) = 0.0
     UL(I, J, 11) = 0.0
     WL(I, J, 11) = 0.0
     VL(I, J, 11) = 0.0
     WLP(I, J, 11) = 0.0
     VLP(I, J, 11) = 0.0
     WL(I,J,11)=A(I,L,IJ)*SPAN1**(L-1)+WL(I,J,11)
     VL(I,J,11)=A(I,L,IJ+1)*SPAN1**(L-1)+VL(I,J,11)
     WLP(I, J, 11) = FLOAT(L-1) * A(I, L, IJ) * SPAN1 * (L-2) + WLP(I, J, 11)
     VLP(I, J, 11) = FLOAT(L-1) * A(I, L, IJ+1) * SPAN1** (L-2) + VLP(I, J, 11)
 250 CONTINUE
      TL(I, J, 11) = B(I, 1, IJ) + B(I, 2, IJ) * SPAN1
     UL(I,J,11)=B(I,1,IJ+1)+B(I,2,IJ+1)*SPAN1
 260 CONTINUE
      RETURN
      END
      С
```

SUBROUTINE GPROC (MODES)

1

Page 33

THIS SUBROUTINE FORMULATES THE EIGENVALUE PROBLEM REAL INTG DIMENSION A11(5,5), A12(5,5), A21(5,5), A22(5,5), A31(5,5), A32(5,5), 1A33(5,5),A41(5,5),A13(5,5),A14(5,5),A23(5,5),A24(5,5),A34(5,5), 2A35(5,5),A36(5,5),A42(5,5),B11(5,5),B12(5,5),B21(5,5),b33(5,5), 3B22(5,5),B31(5,5),B32(5,5),B41(5,5),A51(5,5),A52(5,5),A61(5,5), 4A62(5,5),A71(5,5),A72(5,5),A73(5,5),A83(5,5),D11(2,11),D12(2,11), 5D13(2,11),D14(2,11),D15(2,11),D16(2,11),D17(2,11),D18(2,11), 6D19(2,11),D110(2,11),D21(51),D22(51),D23(51),d111(2,11), 7D24(51), D25(51), D26(51), D27(51), D28(51), D29(51), D210(51), D211(51), 8D212(51),F11(2,11),F12(2,11),F13(2,11),F14(2,11),F15(2,11),F21 9(51),F22(51),F23(51),F24(51),F25(51),FD(2,2),F16(2,11),F17(2,11), 1F26(51),F27(51),D1(5,5),D2(5,5),C(10,10),C1(10,10),C2(10,10), 2WL(5,2,11),WLP(5,2,11),VL(5,2,11),VLP(5,2,11),TL(5,2,11),UL(5,2, 311), VXL(5,2,11), VXLP(5,2,11), W(5,51), WP(5,51), V(5,51), VP(5,51), 4t (5,51), U (5,51), VX (5,51), VXP (5,51), A (5,4,4), B (5,2,4), E1 (20,20), 5e2(20,20),E3(20,20),E4(20,20),DS(20,20),d112(2,11),d113(2,11), 6d213(51),a81(5,5),a82(5,5)

REAL MYL(5,2,11), MYLP(5,2,11), MZL(5,2,11), MZLP(5,2,11), 1mxl(5,2,11), MXLP(5,2,11), MY(5,51), MYP(5,51), MZ(5,51), MZP(5,51), 2mx(5,51), MXP(5,51)

COMMON/XM1/NPATH

С

COMMON/XM2/SPAN1, SPAN2, SPAN3, FD, OMEGAN

COMMON/XM3/D11,D12,D13,D14,D15,D16,D17,D18,D19,D110,D111,D112,D113 1,D21,D22,D23,D24,D25,D26,D27,D28,D29,D210,D211,D212,D213 COMMON/XGFCT2/MYL, MYLP, MZL, MZLP, MXL, MXLP, MY, MYP, MZ, MZP, MX, MXP, WL, 1WLP, VL, VLP, TL, UL, VXL, VXLP, W, WP, V, VP, T, U, VX, VXP

COMMON/XGPR1/DS

- DO 120 K=1, MODES
- DO 120 J=1, MODES
- DO 100 I=1, NPATH
- DO 100 L=1,11

F11(I,L) = D113(I,L) * WLP(J,I,L) * WLP(K,I,L)

```
F12(I,L) = D12(I,L) * TL(J,I,L) * WLP(K,I,L)
```

F13(I,L) = -MYLP(J,I,L) * WLP(K,I,L)

F14(I,L) = D11(I,L) * WL(J,I,L) * WL(K,I,L)

F15(I,L) = D13(I,L) * TL(J,I,L) * WL(K,I,L)

100 CONTINUE

DO 110 L=1,51

```
F21(L) = D213(L) * WP(J,L) * WP(K,L)
```

F22(L) = D22(L) * T(J, L) * WP(K, L)

F23(L) = -MYP(J,L) * WP(K,L)

```
F24(L) = D21(L) * W(J,L) * W(K,L)
```

```
F25(L) = D23(L) * T(J, L) * W(K, L)
```

110 CONTINUE

A11(K, J) = INTG(F11, F12)

A12(K, J) = INTG(F12, F22)

```
A14(K, J) = INTG(F13, F23)
```

B11(K, J) = INTG(F14, F24)

B12(K, J) = INTG(F15, F25)

A14(K, J) = A14(K, J) + W(K, 1) * (MYL(J, 1, 11) + MYL(J, 2, 11) - MY(J, 1))

A13 (K, J) = -FD(1, 2) * VXL(J, 1, 11) - FD(2, 2) * VXL(J, 2, 11)

120 CONTINUE

- DO 150 K=1, MODES
- DO 150 J=1, MODES
- DO 130 I=1,NPATH
- DO 130 L=1,11
- F11(I,L)=D113(I,L)*VLP(J,I,L)*VLP(K,I,L)
- F12(I,L) = D14(I,L) * TL(J,I,L) * VLP(K,I,L)
- F13(I,L) = -MZLP(J,I,L) * VLP(K,I,L)
- F14(I,L)=D11(I,L)*VL(J,I,L)*VL(K,I,L)
- F15(I,L) = -D15(I,L) * TL(J,I,L) * VL(K,I,L)
- 130 CONTINUE
 - DO 140 L=1,51
 - F21(L) = D213(L) * VP(J,L) * VP(K,L)
 - F22(L) = D24(L) * T(J, L) * VP(K, L)
 - F23(L) = -MZP(J, L) * VP(K, L)
 - F24(L) = D21(L) * V(J, L) * V(K, L)
 - F25(L) = -D25(L) * T(J, L) * V(K, L)
- 140 CONTINUE
 - A21(K, J) = INTG(F11, F21)
 - A22(K, J) = INTG(F12, F22)
 - A24(K, J) = INTG(F13, F23)
 - B21(K, J) = INTG(F14, F24)
 - B22(K, J) = INTG(F15, F25)

A24 (K, J) = A24 (K, J) + V (K, 1) * (MZL (J, 1, 11) + MZL (J, 2, 11) - MZ (J, 1))

A23(K, J) = -FD(1, 1) * VXL(J, 1, 11) - FD(2, 1) * VXL(J, 2, 11)

- 150 CONTINUE
 - DO 180 K=1, MODES
 - DO 180 J=1, MODES
 - DO 160 I=1,NPATH

DO 160 L=1,11

F11 (I,L) =-D12 (I,L) *VLP (J,I,L) *TL (K,I,L) +OMEGAN*D15 (I,L) *

- 1VL(J,I,L) * TL(K,I,L)
- F12(I,L) = D14(I,L) * WLP(J,I,L) * TL(K,I,L)
- F13(I,L) = D16(I,L) * TL(J,I,L) * TL(K,I,L)
- F14(I,L) = -MXLP(J,I,L) * TL(K,I,L)
- F15(I,L) = D17(I,L) * TL(J,I,L) * TL(K,I,L)
- F16(I,L)=D13(I,L)*WL(J,I,L)*TL(K,I,L)
- F17(I,L) =-D15(I,L) *VL(J,I,L) *TL(K,I,L)
- 160 CONTINUE
 - DO 170 L=1,51

```
F21(L) = -D22(L) *VP(J,L) *T(K,L) + OMEGAN*D25(L) *V(J,L) *T(K,L)
```

```
F22(L) = D24(L) * WP(J,L) * T(K,L)
```

```
F23(L) = D26(L) * T(J,L) * T(K,L)
```

F24(L) = -MXP(J,L) * T(K,L)

- F25(L) = D27(L) * T(J,L) * T(K,L)
- F26(L) = D23(L) * W(J,L) * T(K,L)

```
F27(L) = -D25(L) * V(J,L) * T(K,L)
```

170 CONTINUE

```
A31(K, J) = INTG(F11, F12)
```

- A32(K, J) = INTG(F12, F22)
- A33(K, J) = INTG(F13, F23)
- A36(K, J) = INTG(F14, F24)
- B31(K, J) = INTG(F17, F27)
- B32(K, J) = INTG(F16, F26)
- B33(K, J) = INTG(F15, F25)

A36(K, J) = A36(K, J) + T(K, 1) * (MXL(J, 1, 11) + MXL(J, 2, 11) - MX(J, 1))

A35 (K, J) = A35 (K, J) - FD (1, 1) * MYLP (J, 1, 11) * T (K, 1) - FD (2, 1)

```
1 \times MYLP(J, 2, 11) \times T(K, 1)
```

A32 (K, J) = A32 (K, J) + T (K, 1) * (D113 (1, 11) * WLP (J, 1, 11) * FD (1, 1) 1+D113 (2, 11) * WLP (J, 2, 11) * FD (2, 1))

A33 (K, J) = A33 (K, J) + T (K, 1) * (FD (1, 1) * D12 (1, 11) * T (J, 1))

1+FD(2,1)*D12(2,11)*T(J,2)+T(K,1)*(FD(2,1)*D14(2,11)*

2TL(J,1,11)+FD(2,2)*D14(2,11)*TL(J,2,11))

A34 (K, J) = A34 (K, J) + T (K, 1) * (FD (1, 2) * MZLP (J, 1, 11) + FD (2, 2)

1*MZLP(J,2,11))

A31 (K, J) = A31 (K, J) *T (K, 1) * (-FD (1, 2) *D113 (1, 11) *VLP (J, 1, 11)

```
1-FD(2,2)*D113(2,11)*VLP(J,2,11))
```

180 CONTINUE

- DO 210 K=1, MODES
- DO 210 J=1, MODES
- DO 190 I=1, NPATH
- DO 190 L=1,11

F11(I,L) = -OMEGAN*D11(I,J)*UL(J,I,L)*UL(K,I,L)

F12(I,L) = -VXLP(J,I,L) * UL(K,I,L)

F13(I,L)=D11(I,L)*UL(J,I,L)*UL(K,I,L)

190 CONTINUE

```
DO 200 L=1,51
```

F22(L) = -OMEGAN * D21(L) * U(J, L) * U(K, L)

```
F22(L) = -VXP(J,L) * U(K,L)
```

```
F23(L) = D21(L) * U(J, L) * U(K, J)
```

200 CONTINUE

A41(K, J) = INTG(F11, F21)

A42(K, J) = INTG(F12, F22)

B41(K, J) = INTG(F13, F23)

A42 (K, J) = A42 (K, J) + U (K, 1) * (VXL (J, 1, 11) + VXL (J, 2, 11) - VX (J, 1))

210 CONTINUE

DO 240 K=1, MODES

- DO 240 J=1, MODES
- DO 220 I=1,NPATH
- DO 220 L=1,11

F11(I,L)=UL(J,I,L)*VXL(K,I,L)

F12(I,L) = -D18(I,J) * VXL(J,I,L) * VXL(K,I,L)

F13(I,L) = TL(J,I,L) * MXL(K,I,L)

F14(I,L) = -D19(I,L) * MXL(J,I,L) * MXL(K,I,L)

220 CONTINUE

```
DO 230 L=1,51
```

F21(L) = U(J, L) * VX(K, L)

F22(L) = -D28(L) * VX(J,L) * VX(K,L)

```
F23(L) = T(J,L) * MX(K,L)
```

F24(L) = -D29(L) * MX(J,L) * MX(K,L)

230 CONTINUE

A51(K, J) = INTG(F11, F21)

A52(K, J) = INTG(F12, F22)

A61(K, J) = INTG(F13, F23)

A62(K, J) = INTG(F14, F24)

240 continue

- DO 270 K=1, MODES
- DO 270 J=1, MODES
- DO 250 I=1, NPATH
- DO 250 L=1,11

F11(I,L) = MZL(J,I,L) * MZL(K,I,L)

F12(I,L)=D111(I,L)*MYL(J,I,L)*MZL(K,I,L)

F13(I,L) = -D110(I,L) * MYL(J,I,L) * MZL(K,I,L)

F14(I,L) = MYL(J,I,L) * MYL(K,I,L)

F15(I,L) = -D112(I,L) * MYL(J,I,L) * MYL(K,I,L)

F16(I,L)=D112(I,L)*MZL(J,I,L)*MYL(K,I,L)

250 CONTINUE

```
DO 260 L=1,51
```

- F21(L) = MZ(J, L) * MZ(K, L)
- F22(L) = D211(L) * MY(J,L) * MZ(K,L)
- F23(L) = -D210(L) * MY(J, L) * MZ(K, L)
- F24(L) = MY(J,L) * MZ(K,L)
- F25(L) = -D112(2, L) * MY(J, L) * MY(K, L)
- F26(L) = D112(2, L) * MY(J, L) * MZ(K, L)

260 CONTINUE

A71(J,K) = INTG(F11,F21)

A72(J,K) = INTG(F13,F23)

A73(J,K) = INTG(F12,F22)

A81(J,K) = INTG(F14,F24)

A82(J,K) = INTG(F16, F26)

A83(J,K) = INTG(F15,F25)

270 CONTINUE

CALL SOLUTN (A52, MODES, -1, MODES) CALL MATMUL (A52, A51, D1, 5, 5, 5) CALL SOLUTN (A62, MODES, -1, MODES) CALL MATMUL (A62, A61, D2, 5, 5, 5) DO 280 I=1, MODES DO 280 J=1, MODES C(I, J)=A72(I, J) C(I, J+MODES)=A73(I, J) C(I+MODES, J)=A82(I, J) C(I+MODES, J+MODES) = A83(I, J)

C1(I,J) = A71(I,J)

- C1(I, J+MODES) = 0.0
- C1(I+MODES, J) = 0.0

C1(I+MODES, J+MODES) = 0.0

280 CONTINUE

N2=2*MODES

CALL SOLUTN (C, N2, -1, N2)

CALL MATMUL(C, C1, C2, N2, N2, N2)

N3=3*MODES

 $N4=4 \times MODES$

DO 285 I=1,N4

DO 285 J=1,N4

E1(I, J) = 0.0

E2(I, J) = 0.0

E3(I, J) = 0.0

E4(I, J) = 0.0

285 CONTINUE

DO 290 I=1, MODES

DO 290 J=1, MODES

E1(I, J+N2) = A11(I, J)

E1(I, J+N3) = A12(I, J)

E1 (I+MODES, J+MODES) = A21 (I, J)

E1(I+MODES, J+N3) = A22(I, J)

E1(I+N2, J+MODES) = A31(I, J)

E1(I+N2, J+N2) = A32(I, J)

E1(I+N2, J+N3) = A33(I, J)

E1(I+N3, J) = A41(I, J)

E2(I,J) = A13(I,J)

E2(I, J+N2) = A14(I, J)

E2(I+MODES, J) = A23(I, J)

- E2(I+MODES, J+MODES) = A24(I, J)
- E2(I+N2, J+MODES) = A34(I, J)

E2(I+N2, J+N2) = A35(I, J)

- E2(I+N2, J+N3) = A36(I, J)
- E2(I+N3, J) = A42(I, J)
- E3(I, J+N2) = B11(I, J)
- E3(I, J+N3) = B12(I, J)
- E3(I+MODES, J+MODES) = B21(I, J)
- E3(I+MODES, J+N3) = B22(I, J)
- E3(I+N2, J+N2) = B32(I, J)
- E3(I+N2, J+MODES) = B31(I, J)
- E3(I+N2, J+N3) = B33(I, J)
- E3(I+N3, J) = B41(I, J)
- E4(I,J) = -D1(I,J)
- E4(I+N3, J+N3) = -D2(I, J)
- E4(I+MODES, J+MODES) = C2(I, J)
- E4(I+MODES, J+N2) = C2(I, J+MODES)
- E4(I+N2, J+MODES) = C2(I+MODES, J)
- E4(I+N2, J+N2) = C2(I+MODES, J+MODES)
- 290 CONTINUE

CALL MATMUL(E2,E4,DS,N4,N4,N4) CALL SOLUTN(E3,N4,-1,N4) DO 300 I=1,N4 DO 300 J=1,N4 E2(I,J)=E1(I,J)+DS(I,J) 300 CONTINUE CALL MATMUL(E3,E2,DS,N4,N4,N4) RETURN END FUNCTION INTG(F1,F2) THIS FUNCTION INTEGRATES THE FUNCTION IN THE DOMAIN REAL INTG DIMENSION F1(2, 11), F2(51)COMMON/XM1/ NPATH COMMON/XM5/ HS1, HS2 H1=HS1/24.0 H2=HS2/24.0SUM=0.0 DO 110 J=1,NPATH SUM=SUM+(9.0*F1(J,1)+19.0*F1(J,2)-5.0*F1(J,3)+F1(J,4))*H1 DO 100 K=1,8 SUM=SUM+H1*(-F1(J,K)+13.0*F1(J,K+1)+13.0*F1(J,K+2)-F1(J,K 3)) 100 CONTINUE SUM=SUM+H1*(F1(J,8)-5.0*F1(J,9)+19.0*F1(J,10)+9.0*F1(J,11)) 110 CONTINUE SUM=SUM+(9.0*F2(1)+19.0*F2(2)-5.0*F2(3)+F2(4))*H2DO 120 K=1,48

SUM=SUM+H2*(-F2(K)+13.0*F2(K+1)+13.0*F2(K+2)-F2(K+3))

```
120 CONTINUE
    INTG=SUM+H2*(F2(48)-5.0*F2(49)+19.0*F2(50)+9.0*F2(51))
    RETURN
    END
    SUBROUTINE INTPOL(N,A,H)
    С
    THIS SUBROUTINE INTERPOLATES FOR THE REQUIRED VALUES
                                     ______
С
    DIMENSION A(51), STA(51), TABLE(51,1), B(51)
    COMMON/XM4/STA, NS
    NN=N-1
    A(N) = A(NS)
    NM1=NS-1
    DO 20 I=1,NM1
  20 TABLE (I, 1) = (A(I+1) - A(I)) / (STA(I+1) - STA(I))
    XARG=H
    DO 35 I=2,NN
    DO 25 J=1,NS
    IF (J.EQ.NS.OR.XARG.LE.STA(J)) GO TO 30
  25 CONTINUE
  30 MAX=J
    IF (MAX.LE.2) MAX=2
    ISUB=MAX-1
    YEST=TABLE (ISUB, 1)
    B(I)=YEST*(XARG-STA(ISUB))+A(ISUB)
  35 XARG=XARG+H
```

•		DO 40 J=2, NN
	40	A(J) = B(J)
Ĩ		RETURN
		END
С		***************************************
-		SUBROUTINE MATMUL(A, B, C, L, M, N)
с		***************************************
C		
c		MATRIX MULTIPLICATION
С		
c		
		DIMENSION A(L,M), B(M,N), C(L,N)
		DO 100 I=1,L
		DO 100 J=1,N
		C(I, J) = 0.0
N.		DO 100 K=1,M
		C(I, J) = C(I, J) + A(I, M) * B(M, J)
	100	CONTINUE
ļ		RETURN
		END
С		***************************************
1		SUBROUTINE SOLUTN (A, N, INDIC, NRC)
С		************************
C		
C		SOLUTION OF SIMULTANEOUS EQUATIONS & INVERSE
С		***************************************
C		
		DIMENSION A(NRC, NRC), X1(100), IROW(100), JCOL(100), JORD(100),

Page 44

1Y(100)

IND=0

MAX=N

IF (INDIC.GE.0) MAX=N+1

DETER=1.0

DO 80 K=1,N

KM1=K-1

PIVOT=0.0

DO 60 I=1,N

DO 60 J=1,N

IF (K.EQ.1) GO TO 55

DO 50 ISCAN=1,KM1

DO 50 JSCAN=1,KM1

IF (I.EQ.IROW(ISCAN)) GO TO 60

IF (J.EQ.JCOL(JSCAN)) GO TO 60

50 CONTINUE

55 IF (ABS(A(I,J)).LE.ABS(PIVOT)) GO TO 60

PIVOT=A(I,J)

IROW(K) = I

JCOL(K) = J

60 CONTINUE

IF (ABS(PIVOT).GT.0.1E-15) GO TO 65

DETER=0.0

IND=1

WRITE (50,61)

61 FORMAT('MATRIX IS ALGORITHMICALLY SINGULAR')

RETURN

65 IROWK=IROW(K)
```
JCOLK=JCOL(K)
```

DETER=DETER*PIVOT

DO 70 J=1,MAX

70 A(IROWK, J) = A(IROWK, J) / PIVOT

A(IROWK, JCOLK) =1.0/PIVOT

DO 80 I=1,N

AIJCK=A(I, JCOLK)

IF (I.EQ.IROWK) GO TO 80

A(I, JCOLK) =-AIJCK/PIVOT

• DO 75 J=1,MAX

75 IF (J.NE.JCOLK) A(I,J) = A(I,J) =

80 CONTINUE

DO 85 I=1,N

IROWI=IROW(I)

```
JCOLI=JCOL(I)
```

JORD (IROWI) = JCOLI

IF (INDIC.GE.0) X1 (JCOLI) = A (IROWI, MAX)

85 CONTINUE

INTCH=0

NM1=N-1

DO 90 I=1,NM1

IP1=I+1

DO 90 J=IP1,N

IF (JORD(J).GE.JORD(I)) GO TO 90

JTEMP=JORD (j)

JORD(J) = JORD(I)

JORD (I) = JTEMP

INTCH=INTCH+1

```
90 CONTINUE
```

IF (INTCH/2*2.NE.INTCH) DETER=-DETER

IF (INDIC.LE.0) GO TO 94

RETURN

```
94 DO 100 J=1,N
```

DO 95 I=1,N

```
IROWI=IROW(I)
```

```
JCOLI=JCOL(I)
```

```
Y(JCOLI) = A(IROWI, J)
```

95 CONTINUE

```
do 100 I=1,N
```

```
A(I, J) = Y(I)
```

100 CONTINUE

```
DO 110 I=1,N
```

```
DO 105 J=1,N
```

```
IROWJ=IROW(J)
```

```
JCOLJ=JCOL(J)
```

```
Y(IROWJ) = A(I, JCOLJ)
```

```
105 CONTINUE
```

```
DO 110 J=1,N
```

```
A(I,J) = Y(J)
```

```
110 CONTINUE
```

RETURN

END