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Abstract

Background: MicroRNAs (miRNAs) mediate posttranscriptional regulation of protein-

coding genes by binding to the 3’ untranslated region of target mRNAs, leading to

translational inhibition, mRNA destabilization or degradation, depending on the

degree of sequence complementarity. In general, a single miRNA concurrently

downregulates hundreds of target mRNAs. Thus, miRNAs play a key role in fine-

tuning of diverse cellular functions, such as development, differentiation, proliferation,

apoptosis and metabolism. However, it remains to be fully elucidated whether a set

of miRNA target genes regulated by an individual miRNA in the whole human

microRNAome generally constitute the biological network of functionally-associated

molecules or simply reflect a random set of functionally-independent genes.

Methods: The complete set of human miRNAs was downloaded from miRBase

Release 16. We explored target genes of individual miRNA by using the Diana-microT

3.0 target prediction program, and selected the genes with the miTG score ≧ 20 as

the set of highly reliable targets. Then, Entrez Gene IDs of miRNA target genes were

uploaded onto KeyMolnet, a tool for analyzing molecular interactions on the

comprehensive knowledgebase by the neighboring network-search algorithm. The

generated network, compared side by side with human canonical networks of the

KeyMolnet library, composed of 430 pathways, 885 diseases, and 208 pathological

events, enabled us to identify the canonical network with the most significant

relevance to the extracted network.

Results: Among 1,223 human miRNAs examined, Diana-microT 3.0 predicted reliable

targets from 273 miRNAs. Among them, KeyMolnet successfully extracted molecular

networks from 232 miRNAs. The most relevant pathway is transcriptional regulation

by transcription factors RB/E2F, the disease is adult T cell lymphoma/leukemia, and

the pathological event is cancer.

Conclusion: The predicted targets derived from approximately 20% of all human

miRNAs constructed biologically meaningful molecular networks, supporting the view

that a set of miRNA targets regulated by a single miRNA generally constitute the

biological network of functionally-associated molecules in human cells.
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Introduction

MicroRNAs (miRNAs) are a class of endogenous small noncoding RNAs conserved

through the evolution. They mediate posttranscriptional regulation of protein-coding

genes by binding to the 3’ untranslated region (3’UTR) of target mRNAs, leading to

translational inhibition, mRNA destabilization or degradation, depending on the degree

of sequence complementarity [1]. During the biogenesis of miRNAs, the primary miR-

NAs (pri-miRNAs) are transcribed from the intra- and inter-genetic regions of the gen-

ome by RNA polymerase II, followed by processing by the RNase III enzyme Drosha

into pre-miRNAs. After nuclear export, they are cleaved by the RNase III enzyme

Dicer into mature miRNAs consisting of approximately 22 nucleotides. Finally, a sin-

gle-stranded miRNA is loaded onto the RNA-induced silencing complex (RISC), where

the seed sequence located at positions 2 to 8 from the 5’ end of the miRNA plays a

pivotal role in recognition of the target mRNA [2]. At present, more than one thou-

sand of human miRNAs are registered in miRBase Release 16 http://www.mirbase.org.

The 3’UTR of a single mRNA is often targeted by several different miRNAs, while a

single miRNA concurrently reduces the production of hundreds of target proteins [3].

Consequently, the whole miRNA system (microRNAome) regulate greater than 60% of

all protein-coding genes in a human cell [4]. By targeting multiple transcripts and

affecting expression of numerous proteins, miRNAs play a key role in fine-tuning of

diverse cellular functions, such as development, differentiation, proliferation, apoptosis

and metabolism. Therefore, aberrant regulation of miRNA expression is deeply

involved in pathological events that mediate cancers [5] and neurodegenerative disor-

ders [6].

Recent advances in systems biology have made major breakthroughs by illustrating

the cell-wide map of complex molecular interactions with the aid of the literature-

based knowledgebase of molecular pathways [7]. The logically arranged molecular net-

works construct the whole system characterized by robustness, which maintains the

proper function of the system in the face of genetic and environmental perturbations

[8]. In the scale-free molecular network, targeted disruption of limited numbers of cri-

tical components designated hubs, on which the biologically important molecular

interactions concentrate, efficiently disturbs the whole cellular function by destabilizing

the network [9]. Therefore, the identification of the hub in the molecular network con-

structed by target genes of a particular miRNA helps us to understand biological and

pathological roles of individual miRNAs. Recently, Hsu et al. studied the human micro-

RNA-regulated protein-protein interaction (PPI) network by utilizing the Human Pro-

tein Reference Database (HPRD) and the miRNA target prediction program

TargetScan [10]. They found that an individual miRNA often targets the hub gene of

the PPI network, although they did not attempt to characterize relevant pathways, dis-

eases, and pathological events regulated by miRNA target genes.

At present, the question remains to be fully elucidated whether a set of miRNA tar-

get genes regulated by an individual miRNA in the whole human microRNAome gen-

erally constitute the biological network of functionally-associated molecules or simply

reflect a random set of functionally-independent genes. To address this question, we

attempted to characterize molecular networks of target genes of all human miRNAs by

using KeyMolnet, a bioinformatics tool for analyzing molecular interactions on the

comprehensive knowledgebase.
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Materials and methods

MicroRNA Target Prediction

The complete list of 1,223 human miRNAs was downloaded from miRBase Release 16

http://www.mirbase.org. We searched the target genes of individual miRNA on the

Diana-microT 3.0 target prediction program (diana.cslab.ece.ntua.gr/microT), which

was selected because of the highest ratio of correctly predicted targets over other pre-

diction tools [11]. Diana-microT 3.0 calculates the miRNA-targeted gene (miTG) score

that reflects the weighted sum of the scores of all conserved and non-conserved

miRNA recognition elements (MRE) on the 3’UTR of the target mRNA. The miTG

score correlates well with fold changes in suppression of protein expression [11]. To

optimize the parameter of miRNA-target interaction, we considered the target genes

with a cutoff of the miTG score equal to or larger than 20 as the highly reliable tar-

gets, because we found that the targets with the miTG score < 20 exhibited the signifi-

cantly lower precision score, an indicator of correctness in predicted interactions [11],

compared with those having the score ≧ 20 (p = 2.78E-08 by Mann-Whitney’s U-test).

Molecular Network Analysis

Ensembl Gene IDs of target genes retrieved by Diana-microT 3.0 were converted into

the corresponding Entrez Gene IDs by using the DAVID Bioinformatics Resources 6.7

program http://david.abcc.ncifcrf.gov[12], where non-annotated IDs were deleted.

Then, Entrez Gene IDs of miRNA target genes were uploaded onto KeyMolnet.

KeyMolnet is a tool for analyzing molecular interactions on the literature-based knowl-

edgebase that contains the contents on 123,000 molecular relationships among human

genes and proteins, small molecules, diseases, pathways and drugs, established by the

Institute of Medicinal Molecular Design (IMMD) (Tokyo, Japan) [13-15]. The core con-

tents are collected from selected review articles and textbooks with the highest reliability,

regularly updated and carefully curated by a team of expert biologists. KeyMolnet contains

a panel of human canonical networks constructed by core contents in the KeyMolnet

library. They represent the gold standard of the networks, composed of 430 pathways, 885

diseases, and 208 pathological events. Detailed information on all the contents is available

from IMMD http://www.immd.co.jp/en/keymolnet/index.html upon request.

We utilized the neighboring network-search algorithm that selects the set of miRNA

target genes as starting points to generate the network around starting points within one

path, composed of all kinds of molecular interactions, including direct activation/inactiva-

tion, transcriptional activation/repression, and the complex formation. By uploading the

list of Entrez Gene IDs onto KeyMolnet, it automatically provides corresponding mole-

cules and a minimum set of intervening molecules as a node on networks. The generated

network was compared side by side with human canonical networks described above. The

algorithm that counts the number of overlapping molecules and/or molecular relations

between the extracted network and the canonical network identifies the canonical network

showing the most statistically significant contribution to the extracted network. This algo-

rithm is essentially based on that of the GO::TermFinder [16]. The significance in the

similarity between the extracted network and the canonical network is scored following

the formula, where O = the number of overlapping molecules and molecular relations for

the pathway or overlapping molecules alone for the disease and the pathological event

between the extracted network and the canonical network, V = the number of molecules
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and/or molecular relations located in the extracted network, C = the number of molecules

and/or molecular relations located in the canonical network, T = the number of total

molecules and/or molecular relations of KeyMolnet, currently composed of approximately

15,700 molecules and 123,000 molecular relations, and the × = the sigma variable that

defines coincidence.

Score = −log2 (Score (p)) Score (p) =

Min(C,V)∑

x=O

f (x) f (x) = CCx · T−CCV−x/TCV (1)

Results

Molecular Network of MicroRNA Target Genes

Among 1,223 human miRNAs examined, Diana-microT 3.0 predicted the targets from

532 miRNAs (43.5%). Among the 532 miRNAs, 273 miRNAs contained a set of highly

reliable targets showing the miTG score ≧ 20. Among 273 miRNAs having reliable tar-

gets, KeyMolnet successfully extracted molecular networks from 232 miRNAs. They

are comprised of 19% of total human miRNAs (microRNAome). Then, the generated

network was compared side by side with human canonical networks of the KeyMolnet

library, composed of 430 pathways, 885 diseases, and 208 pathological events. We

found that not all 232 miRNAs contained entire categories of canonical networks

because several miRNAs comprised relatively small numbers of targets. See Additional

file 1 for all the information on 232 miRNAs and their target networks. When top

three pathways, diseases, and pathological events were individually totalized, the most

relevant pathway is ‘transcriptional regulation by RB/E2F’ (n = 39; 6.8% of total), fol-

lowed by ‘TGF-beta family signaling pathway’ (n = 32; 5.6%) and ‘transcriptional regu-

lation by POU domain factor’ (n = 24; 4.2%), the most relevant disease is ‘adult T cell

lymphoma/leukemia’ (n = 68; 12.1%), followed by ‘chronic myelogenous leukemia’ (n =

65; 11.5%) and ‘hepatocellular carcinoma’ (n = 51; 9.1%), and the most relevant patho-

logical event is ‘cancer’ (n = 97; 24.7%), followed by ‘adipogenesis’ (n = 46; 11.7%) and

‘metastasis’ (n = 36; 9.2%) (Figure 1 and Additional file 1).

Next, we identified the large-scale miRNA target networks by uploading targets greater

than 100 per individual miRNA onto KeyMolnet (Table 1). Fifty-two miRNAs that

construct such a large-scale miRNA target network include let-7, miR-9, 17, 19, 20, 26,

27, 29, 30, 32, 92, 93, 96, 98, 101, 106b, 124, 137, 147, 153, 218, 372, 429, 495, 506,

519, 520, 603, and their closely-related family members. The targets of these miRNAs

established highly complex molecular networks, in which the pathways of ‘transcrip-

tional regulation by RB/E2F’, ‘transcriptional regulation by Ets-domain family’, and

‘transcriptional regulation by p53’, the diseases of ‘chronic myelogenous leukemia’ and

‘viral myocarditis’, and the pathological event of ‘cancer’ were notably accumulated

(Table 1). Importantly, distinct members belonging to the same miRNA family, for

example, five miR-30 family members ranging from miR-30a to miR-30e constructed a

virtually identical molecular network (Table 1).

Biological Implications of MicroRNA Target Networks

As described above, the present observations indicated that a set of miRNA target

genes regulated by an individual miRNA generally constitute the biological network of
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functionally-associated molecules in human cells. Therefore, it is highly important to

obtain deeper insights into biological implications of miRNA target networks.

The protooncogene c-myb is a key transcription factor for normal development of

hematopoietic cells. A recent study showed that miR-15a targets c-myb, while c-myb

binds to the promoter of miR-15a, providing an autoregulatory feedback loop in

human hematopoietic cells [17]. Consistent with this study, we found ‘transcriptional

regulation by myb’ as the most relevant pathway to the miR-15a target network (the

score = 602; the score p-value = 7.39E-182) (Figure 2 and Additional file 1). These

observations propose a scenario that miR-15a synchronously downregulates both c-

myb itself and downstream genes transcriptionally regulated by c-myb, resulting in

Figure 1 The pathways, diseases, and pathological events relevant to 232 miRNA target networks.

Among 1,223 human miRNAs examined, Diana-microT 3.0 identified the set of reliable targets from 273

miRNAs. Among them, KeyMolnet extracted molecular networks from 232 miRNAs. The generated network

was compared side by side with human canonical networks of the KeyMolnet library, composed of 430

pathways, 885 diseases, and 208 pathological events to identify the canonical network showing the most

statistically significant contribution to the extracted network (see Table S1 for all the information). After top

three pathways, diseases, and pathological events were individually totalized, the cumulated numbers of

top 10 of (a) pathway, (b) disease, and (c) pathological event categories are expressed as a bar graph.
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Table 1 The large-scale human microRNA target networks

MicroRNA Number
of
Targets

Molecules
in
KeyMolnet
Networks

Top Pathway Score p-Value Top Disease Score p-Value Top
Pathological
Event

Score p-Value

hsa-let-7a 244 1022 Transcriptional
regulation by
p53

593 2.69E-179 Viral
myocarditis

113 1.21E-34 Cancer 206 1.31E-62

hsa-let-7b 242 1016 Transcriptional
regulation by
p53

594 1.83E-179 Viral
myocarditis

113 9.32E-35 Cancer 206 7.66E-63

hsa-let-7c 243 1020 Transcriptional
regulation by
p53

593 2.49E-179 Viral
myocarditis

113 1.11E-34 Cancer 206 1.10E-62

hsa-let-7d 145 885 Transcriptional
regulation by
RB/E2F

836 2.18E-252 Chronic
myelogenous
leukemia

72 1.95E-22 Cancer 130 9.68E-40

hsa-let-7e 236 1111 Transcriptional
regulation by
p53

575 8.90E-174 Viral
myocarditis

116 1.20E-35 Cancer 175 1.86E-53

hsa-let-7f 244 1022 Transcriptional
regulation by
p53

593 2.69E-179 Viral
myocarditis

113 1.21E-34 Cancer 206 1.31E-62

hsa-let-7g 245 1022 Transcriptional
regulation by
p53

593 2.69E-179 Viral
myocarditis

113 1.21E-34 Cancer 206 1.31E-62

hsa-let-7i 245 1022 Transcriptional
regulation by
p53

593 2.69E-179 Viral
myocarditis

113 1.21E-34 Cancer 206 1.31E-62

hsa-miR-9 352 1115 Transcriptional
regulation by
PPARa

340 5.28E-103 Hepatocellular
carcinoma

72 1.69E-22 Cancer 171 3.50E-52

hsa-miR-
17

195 961 Transcriptional
regulation by
RB/E2F

971 3.27E-293 Chronic
myelogenous
leukemia

92 2.83E-28 Cancer 181 3.58E-55

hsa-miR-
19a

226 1094 Transcriptional
regulation by
RB/E2F

760 2.10E-229 Chronic
myelogenous
leukemia

113 1.26E-34 Cancer 253 7.04E-77

hsa-miR-
19b

225 1094 Transcriptional
regulation by
RB/E2F

760 2.10E-229 Chronic
myelogenous
leukemia

113 1.26E-34 Cancer 253 7.04E-77

hsa-miR-
20a

165 1038 Transcriptional
regulation by
RB/E2F

856 1.64E-258 Chronic
myelogenous
leukemia

87 6.09E-27 Cancer 85 3.33E-26

hsa-miR-
20b

198 981 Transcriptional
regulation by
RB/E2F

962 2.35E-290 Chronic
myelogenous
leukemia

98 3.39E-30 Cancer 183 6.98E-56

hsa-miR-
26a

148 672 Transcriptional
regulation by
RB/E2F

919 1.76E-277 Chronic
myelogenous
leukemia

107 6.15E-33 Cancer 181 3.20E-55

hsa-miR-
26b

148 672 Transcriptional
regulation by
RB/E2F

919 1.76E-277 Chronic
myelogenous
leukemia

107 6.15E-33 Cancer 181 3.20E-55

hsa-miR-
27a

229 1192 Transcriptional
regulation by
CREB

1022 2.23E-308 Chronic
myelogenous
leukemia

95 1.96E-29 Cancer 194 3.05E-59

hsa-miR-
27b

261 1337 Transcriptional
regulation by
CREB

1022 2.23E-308 Chronic
myelogenous
leukemia

94 4.51E-29 Cancer 211 4.11E-64

hsa-miR-
29a

119 543 Transcriptional
regulation by
Ets-domain
family

430 4.36E-130 Glioma 85 3.46E-26 Cancer 139 1.41E-42
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Table 1 The large-scale human microRNA target networks (Continued)

hsa-miR-
29b

118 578 Transcriptional
regulation by
Ets-domain
family

422 1.15E-127 Glioma 82 1.55E-25 Cancer 146 1.44E-44

hsa-miR-
29c

118 543 Transcriptional
regulation by
Ets-domain
family

430 4.36E-130 Glioma 85 3.46E-26 Cancer 139 1.41E-42

hsa-miR-
30a

455 1494 Transcriptional
regulation by
RB/E2F

777 9.43E-235 Chronic
myelogenous
leukemia

86 1.11E-26 Cancer 195 2.39E-59

hsa-miR-
30b

455 1480 Transcriptional
regulation by
RB/E2F

781 1.08E-235 Chronic
myelogenous
leukemia

87 7.01E-27 Cancer 188 1.92E-57

hsa-miR-
30c

454 1495 Transcriptional
regulation by
RB/E2F

778 6.13E-235 Chronic
myelogenous
leukemia

86 1.15E-26 Cancer 191 3.63E-58

hsa-miR-
30d

452 1491 Transcriptional
regulation by
RB/E2F

778 7.28E-235 Chronic
myelogenous
leukemia

86 1.01E-26 Cancer 195 1.96E-59

hsa-miR-
30e

455 1481 Transcriptional
regulation by
RB/E2F

780 1.29E-235 Chronic
myelogenous
leukemia

87 7.25E-27 Cancer 188 2.05E-57

hsa-miR-
32

261 905 Transcriptional
regulation by
RB/E2F

842 2.74E-254 Gastric cancer 80 8.85E-25 Cancer 157 4.19E-48

hsa-miR-
92a

219 642 Transcriptional
regulation by
MEF2

335 1.51E-101 Viral
myocarditis

59 1.62E-18 Epithelial-
mesenchymal
transition

83 7.76E-26

hsa-miR-
92b

258 701 Transcriptional
regulation by
MEF2

328 1.59E-99 Viral
myocarditis

60 1.23E-18 Cancer 94 3.97E-29

hsa-miR-
93

195 958 Transcriptional
regulation by
RB/E2F

972 2.37E-293 Chronic
myelogenous
leukemia

92 2.47E-28 Cancer 181 2.77E-55

hsa-miR-
96

142 688 Transcriptional
regulation by
Ets-domain
family

407 3.42E-123 Viral
myocarditis

36 1.06E-11 Cancer 106 1.37E-32

hsa-miR-
98

162 671 Transcriptional
regulation by
Myb

549 4.73E-166 Viral
myocarditis

85 2.66E-26 Cancer 126 1.42E-38

hsa-miR-
101

188 806 Transcriptional
regulation by
AP-1

492 1.10E-148 Hepatocellular
carcinoma

70 6.40E-22 Cancer 127 4.26E-39

hsa-miR-
106b

164 1028 Transcriptional
regulation by
RB/E2F

854 7.21E-258 Chronic
myelogenous
leukemia

87 5.48E-27 Cancer 85 2.93E-26

hsa-miR-
124

285 1346 Transcriptional
regulation by
RB/E2F

756 3.57E-228 Chronic
myelogenous
leukemia

83 9.34E-26 Cancer 185 1.90E-56

hsa-miR-
137

288 941 Transcriptional
regulation by
MITF family

339 1.19E-102 Adult T cell
lymphoma/
leukemia

66 1.30E-20 Cancer 179 1.00E-54

hsa-miR-
147

199 867 Transcriptional
regulation by
RB/E2F

805 4.06E-243 Chronic
myelogenous
leukemia

113 6.60E-35 Cancer 132 2.57E-40

hsa-miR-
153

154 1019 Transcriptional
regulation by
Myb

507 2.35E-153 Multiple
myeloma

60 6.44E-19 Cancer 174 4.31E-53
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efficient inactivation of the whole molecular network governed by the hub gene c-myb.

These results suggest a collaborative regulation of gene expression at both transcrip-

tional and posttranscriptional levels that involve coordinated regulation by miRNAs

and transcription factors.

The retinoblastoma protein Rb/E2F pathway acts as a gatekeeper for G1/S transition

in the cell cycle. The Rb/E2F-regulated G1 checkpoint control is often disrupted in

cancer cells. A recent study showed that miR-106b is directly involved in posttranscrip-

tional regulation of E2F1 [18]. E2F1 activates transcription of miR-106b, while miR-

Table 1 The large-scale human microRNA target networks (Continued)

hsa-miR-
218

155 830 Transcriptional
regulation by
AP-1

344 2.28E-104 Hepatocellular
carcinoma

69 1.63E-21 Cancer 136 1.52E-41

hsa-miR-
372

101 562 Transcriptional
regulation by
RB/E2F

1022 2.23E-308 Chronic
myelogenous
leukemia

85 1.90E-26 Cancer 144 2.75E-44

hsa-miR-
429

123 634 Transcriptional
regulation by
RB/E2F

918 2.45E-277 Chronic
myelogenous
leukemia

76 1.71E-23 Cancer 130 5.28E-40

hsa-miR-
495

156 601 Transcriptional
regulation by
Ets-domain
family

431 2.14E-130 Rheumatoid
arthritis

77 5.90E-24 Adipogenesis 79 1.32E-24

hsa-miR-
506

394 1536 Transcriptional
regulation by
Ets-domain
family

317 4.69E-96 Viral
myocarditis

99 1.73E-30 Cancer 172 1.43E-52

hsa-miR-
519a

281 1256 Transcriptional
regulation by
RB/E2F

811 5.32E-245 Chronic
myelogenous
leukemia

106 1.34E-32 Cancer 220 8.03E-67

hsa-miR-
519b-3p

281 1256 Transcriptional
regulation by
RB/E2F

811 5.32E-245 Chronic
myelogenous
leukemia

106 1.34E-32 Cancer 220 8.03E-67

hsa-miR-
519c-3p

281 1256 Transcriptional
regulation by
RB/E2F

811 5.32E-245 Chronic
myelogenous
leukemia

106 1.34E-32 Cancer 220 8.03E-67

hsa-miR-
520a-3p

184 690 Transcriptional
regulation by
RB/E2F

1022 2.23E-308 Chronic
myelogenous
leukemia

94 6.95E-29 Cancer 146 1.12E-44

hsa-miR-
520b

182 690 Transcriptional
regulation by
RB/E2F

1022 2.23E-308 Chronic
myelogenous
leukemia

94 6.95E-29 Cancer 146 1.12E-44

hsa-miR-
520c-3p

182 690 Transcriptional
regulation by
RB/E2F

1022 2.23E-308 Chronic
myelogenous
leukemia

93 9.28E-29 Cancer 145 1.77E-44

hsa-miR-
520d-3p

183 690 Transcriptional
regulation by
RB/E2F

1022 2.23E-308 Chronic
myelogenous
leukemia

94 6.95E-29 Cancer 146 1.12E-44

hsa-miR-
520e

184 690 Transcriptional
regulation by
RB/E2F

1022 2.23E-308 Chronic
myelogenous
leukemia

94 6.95E-29 Cancer 146 1.12E-44

hsa-miR-
603

252 1150 Transcriptional
regulation by
Ets-domain
family

344 3.26E-104 Multiple
myeloma

84 4.36E-26 Cancer 161 4.24E-49

Among 1,223 human miRNAs examined, Diana-microT 3.0 predicted reliable targets from 273 miRNAs. Among them, KeyMolnet extracted molecular

networks from 232 miRNAs. The generated network was compared side by side with human canonical networks of the KeyMolnet library, composed of

430 pathways, 885 diseases, and 208 pathological events. The canonical pathways, diseases, and pathological events with the most statistically significant

contribution to the extracted network are shown. The table contains only the large-scale miRNA target networks generated by importing targets greater

than 100 per individual miRNA into KeyMolnet. See Additional file 1 for all the information on 232 miRNAs and their target networks.
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106b targets E2F1, serving as a miRNA-directed negative feedback loop in gastric can-

cer cells [18]. Supporting these findings, we identified ‘transcriptional regulation by

Rb/E2F’ as the most relevant pathway to the miR-106b target network (the score =

854; the score p-value = 7.21E-258) (Figure 3, Table 1 and Additional file 1). The rela-

tionship between miR-106b and Rb/E2F would provide another example of coordinated

regulation of gene expression by miRNAs and transcription factors.

We found ‘transcriptional regulation by p53’ as the most relevant pathway to the tar-

get network of all let-7 family members except for let-7d (Table 1). It is worthy to

note that the tumor suppressor p53 regulates the expression of components of the

miRNA-processing machinery, such as Drosha, DGCR8, Dicer, and TARBP2, all of

which have p53-reponsive elements in their promoters [19]. Furthermore, Dicer and

TARBP2, along with p53, serve as a target of the let-7 family miRNAs, suggesting a

close link between p53 and let-7 in miRNA biogenesis [19]. The expression of let-7

family members was greatly reduced in certain cancer cells [20].

The micropthalmia associated transcription factor (MITF), a basic helix-loop-helix

zipper (bHLH-Zip) transcription factor, acts as not only a master regulator of melano-

cyte differentiation but also an oncogene promoting survival of melanoma. Recent stu-

dies indicate that MITF is a direct target of both miR-137 and miR-148b [21,22].

Again, we identified ‘transcriptional regulation by MITF family’ as the most relevant

pathway to both miR-137 (the score = 339; the score p-value = 1.19E-102) and miR-

Figure 2 Molecular network of miR-15a targets. By the “neighboring” network-search algorithm,

KeyMolnet illustrated a highly complex network of miR-15a targets that has the most statistically significant

relationship with the pathway of ‘transcriptional regulation by myb’. Red nodes represent miR-15a direct

target molecules predicted by Diana-microT 3.0, whereas white nodes exhibit additional nodes extracted

automatically from the core contents of KeyMolnet to establish molecular connections. The molecular

relation is indicated by solid line with arrow (direct binding or activation), solid line with arrow and stop

(direct inactivation), solid line without arrow (complex formation), dash line with arrow (transcriptional

activation), and dash line with arrow and stop (transcriptional repression). The transcription factor myb is

highlighted by a blue circle.
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148b (the score = 40; the score p-value = 3.91E-142) target networks (Table 1 and

Additional file 1).

Cellular responsiveness to glucocorticoids (GCs) is regulated by the delicate balance

of the glucocorticoid receptor (GR) protein, GR coactivators and corepressors, GR

splice variants and isoforms, and regulators of GR retrograde transport to the nucleus.

A recent study showed that miR-18a targets the GR protein, and thereby inhibits GR-

mediated biological events in neuronal cells [23]. Consistent with this, we found ‘tran-

scriptional regulation by GR’ as the most relevant pathway to the miR-18a target net-

work (the score = 1022; the score p-value = 2.23E-308) (Additional file 1).

Zinc finger transcription factors ZEB1 and ZEB2 act as a transcriptional repressor of

E-cadherin. A recent study showed that the expression of miR-200b, which targets

both ZEB1 and ZEB2, was downregulated in the cells that undergo TGF-beta-induced

epithelial to mesenchymal transition (EMT), and was lost in invasive breast cancer

cells [24]. We identified ‘transcriptional regulation by ZEB’ as the third-rank significant

pathway (the score = 155; the score p-value = 1.88E-47) and ‘EMT’ as the third-rank

significant pathological event relevant to the miR-200b target network (the score = 61;

the score p-value = 4.15E-19) (Additional file 1).

Discussion

In general, a single miRNA concurrently downregulates hundreds of target mRNAs by

binding to the corresponding 3’UTR of mRNA via either perfect or imperfect sequence

complementarity [3]. Such fuzzy mRNA-miRNA interactions result in the redundancy

Figure 3 Molecular network of miR-106b targets. By the “neighboring” network-search algorithm,

KeyMolnet illustrated a highly complex network of miR-106b targets that has the most statistically

significant relationship with the pathway of ‘transcriptional regulation by Rb/E2F’. Red nodes represent miR-

106b direct target molecules predicted by Diana-microT 3.0, whereas white nodes exhibit additional nodes

extracted automatically from the core contents of KeyMolnet to establish molecular connections. The

molecular relation is indicated by solid line with arrow (direct binding or activation), solid line with arrow

and stop (direct inactivation), solid line without arrow (complex formation), dash line with arrow

(transcriptional activation), and dash line with arrow and stop (transcriptional repression). The transcription

factor E2F is highlighted by a blue circle.
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of miRNA-recognized targets. By targeting multiple transcripts and affecting expression

of numerous proteins at one time, miRNAs regulate a wide range of cellular functions,

such as development, differentiation, proliferation, apoptosis and metabolism. There-

fore, we have the question whether a set of miRNA target genes regulated by an indivi-

dual miRNA generally constitute the biological network of functionally-associated

molecules or simply reflect a random set of functionally-independent genes. If the for-

mer is the case, what kind of biological networks does the human microRNAome most

actively regulates?

To address these questions, first we identified the set of credible target genes for all

individual human miRNAs by using the Diana-microT 3.0 program. Then, we investi-

gated miRNA target networks by applying them to KeyMolnet, a bioinformatics tool

for analyzing molecular interactions on the comprehensive knowledgebase. Diana-

microT 3.0 identified highly reliable targets from 273 miRNAs out of 1,223 all human

miRNAs. Previous studies showed that the list of predicted targets for each miRNA

varies among different miRNA target prediction programs armed with distinct algo-

rithms, such as TargetScan 5.1 http://www.targetscan.org, PicTar (pictar.mdc-berlin.

de), miRanda http://www.microrna.org and Diana-microT 3.0 [25]. Therefore, miRNA

target networks are to some extent flexible, depending on the target prediction pro-

gram employed. Among the programs described above, we have chosen Diana-microT

3.0 because of the highest ratio of correctly predicted targets over other prediction

tools and the simplicity of setting a cut-off point for detection of reliable miRNA-tar-

get interactions based on the miTG score [11].

Here we found that highly reliable targets of substantial numbers of human miRNAs

actually constructed biologically meaningful molecular networks. These observations

strongly supported the theoretical view that miRNA target genes regulated by an indi-

vidual miRNA in the whole human microRNAome generally constitute the biological

network of functionally-associated molecules. A recent study showed that interacting

proteins in the human PPI network tend to share restricted miRNA target-site types

than random pairs, being consistent with our observations [26].

We also found that there exists a coordinated regulation of gene expression at the

transcriptional level by transcription factors and at the posttranscriptional level by

miRNAs in miRNA target networks. Recently, Cui et al. investigated the relationship

between miRNA and transcription factors in gene regulation [27]. Importantly, they

found that the genes with more transcription factor-binding sites have a higher prob-

ability of being targeted by miRNAs and have more miRNA-binding sites.

A recent study by miRNA expression profiling of thousands of human tissue samples

revealed that diverse miRNAs constitute a complex network composed of coordinately

regulated miRNA subnetworks in both normal and cancer tissues, and they are often

disorganized in solid tumors and leukemias [28]. During carcinogenesis, various miR-

NAs play a central role, acting as either oncogenes named oncomir or tumor suppres-

sors termed anti-oncomir, by targeting key molecules involved in apoptosis, cell cycle,

cell adhesion and migration, chromosome stability, and DNA repair [5]. Many miRNA

gene loci are clustered in cancer-associated genomic regions [29]. Furthermore,

miRNA expression signatures well discriminate different types of cancers with distinct

clinical prognoses [30]. In the present study, KeyMolnet analysis of miRNA target net-

works showed that the most relevant pathological event is ‘cancer’, when top three
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pathological events were overall cumulated. Furthermore, the highly relevant diseases

include ‘adult T cell lymphoma/leukemia’, ‘chronic myelogenous leukemia’, and ‘hepa-

tocellular carcinoma’. These observations suggest that the human microRNAome plays

a more specialized role in regulation of oncogenesis. Therefore, the miRNA-based ther-

apy directed to targeting multiple cancer-associated pathways simultaneously might

serve as the most effective approach to suppressing the oncogenic potential of a wide

range of cancers.

Conclusion

The reliable targets predicted by Diana microT 3.0 derived from approximately 20% of

all human miRNAs constructed biologically meaningful molecular networks by Key-

Molnet. These observations support the view that miRNA target genes regulated by an

individual miRNA in the whole human microRNAome generally constitute the biologi-

cal network of functionally-associated molecules. In the human miRNA target net-

works, the most relevant pathway is transcriptional regulation by transcription factors

RB/E2F, the disease is adult T cell lymphoma/leukemia, and the pathological event is

cancer. In miRNA target networks, there exists a coordinated regulation of gene

expression at the transcriptional level by transcription factors and at the posttranscrip-

tional level by miRNAs.

Additional material

Additional file 1: KeyMolnet identifies microRNA target networks in 232 human miRNAs. The prediction of

target genes of individual miRNA was performed by Diana-microT 3.0. Entrez Gene IDs of miRNA target genes

were uploaded onto KeyMolnet. The generated network was compared side by side with human canonical

networks composed of 430 pathways, 885 diseases, and 208 pathological events of the KeyMolnet library. Top-

three pathways, diseases, and pathological events with the statistically significant contribution to the extracted

network are shown.
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