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Ferroptosis is a newly defined mode of programmed oxidative cell death. Knowledge of ferroptosis-related long noncoding (lnc)
RNA in the tumor immune microenvironment of colon cancer is lacking. We systematically analyzed the correlations between
ferroptosis-related lncRNAs and the tumor microenvironment, immune cell infiltration, and patient prognosis for 379 colon
cancer samples in the Cancer Genome Atlas (TCGA). Using consensus clustering, we divided the 379 colon cancer patients
into two subgroups (clusters 1 and 2) based on the differentially expressed ferroptosis-related lncRNAs. Cluster 1 was
preferentially associated with longer overall survival, upregulated immune checkpoint inhibitor expressions, higher
immunoscores, higher stromal scores, higher estimated scores, and distinct immune cell infiltration. Cancer- and metabolism-
related pathways were enriched by gene set enrichment analyses. We constructed a prognostic signature of 15 ferroptosis-
related lncRNAs (ZEB1-AS1, LINC01011, AC005261.3, LINC01063, LINC02381, ELFN1-AS1, AC009283.1, LINC02361,
AC105219.1, AC002310.1, AL590483.1, MIR4435-2HG, NKILA, AC021054.1, and AL450326.1) and divided the patients into
the high- and low-risk-score groups. The signature was validated using TCGA training and testing cohorts. The risk signature
was an independent prognostic factor for predicting survival and excellently predicted the prognoses of patients with colon
cancer. Moreover, the risk signature was related to immune characteristics. Chemosensitivity analyses showed that low-risk-
score patients were more sensitive to sorafenib. In summary, our work revealed the important role of ferroptosis-related
lncRNAs in the tumor microenvironment and immune cell infiltration and may help determine personalized prognoses and
treatment for patients with colon cancer.

1. Introduction

As one of the most common malignant tumors worldwide,
colon cancer exhibits high morbidity and mortality, and
the age of onset is becoming increasingly younger in China
[1]. According to Cancer Statistics, approximately 148,000
new cases of colon cancer were diagnosed in the United
States in 2020, leading to more than 53,200 deaths [2].

Moreover, people are being diagnosed with colon cancer at
increasingly younger ages, indicating that the incidence in
younger people is gradually trending upward. To date, the
precise underlying mechanisms of colon cancer and the ini-
tiation of its progression remain unclear. Ferroptosis is a
newly defined mode of programmed oxidative cell death,
which is distinct from other cell deaths such as apoptosis,
necrosis, and autophagy. Ferroptosis is iron-dependent and

Hindawi
Journal of Immunology Research
Volume 2022, Article ID 9480628, 16 pages
https://doi.org/10.1155/2022/9480628

https://orcid.org/0000-0002-7890-7580
https://orcid.org/0000-0002-2500-7773
https://orcid.org/0000-0003-3615-6712
https://orcid.org/0000-0001-8165-5428
https://orcid.org/0000-0003-0402-853X
https://orcid.org/0000-0002-8262-5236
https://orcid.org/0000-0003-2977-3798
https://orcid.org/0000-0003-1709-2688
https://orcid.org/0000-0001-7304-6729
https://orcid.org/0000-0002-2943-2144
https://orcid.org/0000-0002-6369-7306
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/9480628


is triggered by lipid peroxidation and lethal reactive oxygen
species (ROS) [3]. Many studies have shown the roles of fer-
roptosis in gastrointestinal cancer progression, invasion,
migration, and death. For example, exosomal miR-522
secreted by cancer-associated fibroblasts targets ALOX15
and blocks lipid-ROS accumulation to inhibit ferroptosis in
gastric cancer cells [4]. The polyunsaturated fatty acid
(PUFA) biosynthesis pathway was shown to play an essential
role in ferroptosis and determine ferroptosis sensitivity in
gastric cancer [5]. Betulaceae extract induced HO-1 expres-
sion and resulted in ferroptosis-associated cell death in
human colon cancer cells [6]. Cytoglobin, a regulator of lipid
ROS, promoted sensitivity to ferroptosis by regulating the
p53-YAP1 axis in colon cancer cells [7].

Increasing evidence suggests that ferroptosis-related long
noncoding (lnc) RNAs play important roles in tumorigene-
sis, progression, and metastasis via multiple mechanisms.
The lncRNAs GABPB1-AS1 and GABPB1 can regulate
erastin-induced ferroptosis in hepatocellular carcinoma cells
[8]. The lncRNA LINC00336 inhibits ferroptosis in lung
cancer by functioning as a competing endogenous RNA
[9]. MT1DP can induce ferroptosis by regulating the miR-
365a-3p/NRF2 axis in non-small cell lung cancer cells [10].

However, whether ferroptosis-related lncRNAs are cor-
related with the prognosis of patients with colon cancer
remains unknown. Hence, we constructed and validated a
ferroptosis-related lncRNA prognostic signature, and
explored the potential mechanism in colon cancer. The
tumor microenvironment, immune cell infiltration, immune
check inhibitors, functional enrichment, and chemosensitiv-
ity were also analyzed. Investigating the effects of
ferroptosis-related lncRNAs on tumor immune infiltration
will help decode how the tumor microenvironment is mod-
ulated and help better predict the prognosis and treatment
outcomes of patients with colon cancer.

2. Materials and Methods

2.1. Dataset Collection. Raw counts of RNA-seq tran-
scriptome data and the corresponding clinical data for 39

normal colon tissues and 379 colon cancer tissues were
extracted from TCGA database. Data for 259 ferroptosis-
related genes were downloaded from FerrDb (http://www
.zhounan.org/ferrdb) [11] (Table S1). Pearson’s correlation
was used to assess the relationship of the ferroptosis-
related lncRNAs and colon cancer genes. A Pearson
correlation coefficient > 0:3 and p < 0:01 were considered
statistically significant. Prognostic ferroptosis-related
lncRNAs were screened via the univariate Cox regression
analyses.

2.2. Identification of Subgroups and Evaluation of Immune
Infiltration. According to the expressions of the included
ferroptosis-related lncRNAs, all colon cancer patients were
divided into subgroups via the “ConsensusClusterPlus”
package [12]. Survival analysis and gene set enrichment
analyses (GSEA) between two subgroups were also per-
formed. ESTIMATE [13] algorithms were used to evaluate
the immune, stromal, and estimated scores. Infiltration data
for 22 immune cells were downloaded from the TIMER [14]
and CIBERSORT [15] databases. The relationships between
the expression levels of genes related to immune check
inhibitors and their subgroups, including ferroptosis-
related lncRNAs, were also studied.

2.3. Construction and Validation of the Ferroptosis-Related
lncRNA Prognostic Signature. The prognostic signature of
15 ferroptosis-related lncRNAs was constructed using least
absolute shrinkage and selection operator (LASSO) regres-
sion analysis. The formula for the prognostic signature was

risk score =〠 Exp lncRNA½ � × coef lncRNA½ �ð Þ, ð1Þ

where ExpðlncRNAÞ is the corresponding expression of the
included lncRNA and coef ðlncRNAÞ represents the regres-
sion coefficient. The patients were randomly divided into
the training or testing cohort. According to the above for-
mula, the risk score of each patient was separately calculated
for the training and testing cohorts. The patients were
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Figure 1: Differential expression of ferroptosis-related lncRNAs in colon cancer and adjacent normal tissues. (a) Boxplot. (b) Heatmap.
∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001. The univariate Cox regression analysis results showed that 28 ferroptosis-related lncRNAs
correlated with overall survival (OS) of colon cancer patients from TCGA database.
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further classified into low-risk or high-risk groups according
to the median risk score.

Survival analysis and univariate and multivariate Cox
regression analyses were conducted to verify the indepen-

dent prognostic value of the ferroptosis-related lncRNA
prognostic signature. Nomograms that included age, sex,
stage, Tumor, Node, Metastasis (TNM) classification, and
risk score were used to calculate the total score and predict
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Figure 2: Differential clinicopathological features and overall survival of colon cancer patients in clusters 1 and 2. (a) Consensus clustering
matrix for k = 2. (b) The Kaplan-Meier curves of overall survival (OS) for patients with colon cancer in clusters 1 and 2; p < 0:05. (c)
Heatmap and clinicopathologic features of clusters 1 and 2.
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Figure 3: Continued.
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the 1-, 3-, and 5-year survival probabilities. The 1-, 3-, and 5-
year dependent receiver operating characteristic (ROC)
curves were used to assess the nomogram performance.

2.4. Application of the Signature in Clinical Treatment. To
evaluate the use of the signature in clinically treating colon
cancer, we calculated the half inhibitory concentrations
(IC50s) of commonly administered chemotherapeutic and
target therapeutic drugs, including cisplatin, paclitaxel,
sorafenib, and sunitinib, with the pRRophetic package [16].
The difference in the IC50s between the high- and low-risk
groups was compared via the Wilcoxon signed-rank test,
and the results are shown as box plots.

2.5. Statistical Analysis. All statistical analyses were per-
formed in R, version 4.0.4. Differentially expressed lncRNAs
were identified using the Benjamini-Hochberg method. Cor-
relation analyses of subtypes, clinicopathological factors, risk
score, immune check inhibitors, and immune infiltration
levels were conducted using a Pearson correlation test. Sur-
vival analysis was conducted using the Kaplan-Meier
method and validated via the log-rank test. The predictive
efficiencies of the ferroptosis-related lncRNA signatures for
1-, 3-, and 5-year overall survival (OS) were assessed using
ROC curves. p < 0:05 was considered statistically significant.

3. Results

3.1. Ferroptosis-Related lncRNAs in Colon Cancer. We con-
firmed 1,241 differentially expressed ferroptosis-related
lncRNAs of 39 normal colon tissues and 379 colon cancer tis-
sues via coexpression analyses between ferroptosis genes and
differentially expressed lncRNAs (p < 0:01, Pearson’s
correlation coefficient > 0:3). Univariate Cox regression analy-
ses were conducted to screen overall prognostic ferroptosis-
related lncRNAs for 28 differentially expressed lncRNAs:
ZEB1-AS1, LINC01011, AC005261.3, LINC01063a, LINC
02381, AC068870.2, AL392172.1, ELFN1-AS1, AC009283.1,
AL451050.2, LINC02361, AC007128.1, AC105219.1, LINC

01836, AC002310.1, AL162586.1, LBX2-AS1, LINC00174,
AL161729.4, AL590483.1, AC009948.1, MIR4435-2HG,
NKILA, AC021054.1, LINC01138, AL450326.1, AC073508.3,
and PCAT6. These lncRNAs were significantly related to the
OS of colon cancer patients (p < 0:05; Table S2). Compared
with normal colon tissues, four of these lncRNAs
(LINC02381, LBX2-AS1, AL450326.1, and AC073508.3)
were downregulated in cancer tissues, and 24 were
upregulated. Figures 1(a) and 1(b) show the box plots and
heatmap.

3.2. Consensus Clustering for Ferroptosis-Related lncRNAs
Was Significantly Correlated with the Characteristics and
Survival of Patients with Colon Cancer. To explore the effect
of ferroptosis-related lncRNAs in progression of colon can-
cer, the tumor samples were divided into clusters via the
ConsensusClusterPlus R package. We found that k = 2
showed optimal clustering stability from k = 2 to k = 9
according to the cumulative distribution function (CDF)
curve of the consensus score (Figure 2(a)). The 379 patients
with colon cancer were clustered into clusters 1 (n = 287)
and 2 (n = 92). Supplementary Figure 1 shows the CDF
curve, relative change in area under the CDF curve, and
tracking plots. The OS of cluster 2 was shorter than that of
cluster 1 (Figure 2(b)). The clinicopathological features did
not differ between the two clusters (Table S3), indicating
no heterogeneity between the two clusters (Figure 2(c)).

3.3. Consensus Clustering for Ferroptosis-Related lncRNAs
Associated with Immune Cell Infiltration and Immune
Checkpoint Inhibitors. To further explore the reason for the
different OS between the two clusters, we investigated the
infiltration fractions of 22 immune cells (B cells naive, B cells
memory, plasma cells, T cells CD8, T cells CD4 naive, T cells
CD4 memory resting, T cells CD4 memory activated, T cells
follicular helper, T cells regulatory (Tregs), T cells gamma
delta, NK cells resting, NK cells activated, monocytes, mac-
rophages M0, macrophages M1, macrophages M2, dendritic
cells resting, dendritic cells activated, mast cells resting, mast
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Figure 3: Distinct immune cell infiltration in two clusters and association of immune checkpoint inhibitors in colon cancer. (a) Infiltration
levels of 22 immune cell types in clusters 1 and 2, (b) immunoscores in clusters 1 and 2, (c) stromal scores in clusters 1 and 2, (d) estimated
scores in clusters 1 and 2, (e) PD1 expression levels in clusters 1 and 2, (f) PDL1 expression levels in clusters 1 and 2, (g) CTLA4 expression
levels in clusters 1 and 2, (h) correlation between PD1 expression level and differential expression of ferroptosis-related lncRNAs, (i)
correlation between PDL1 expression level and differential expression of ferroptosis-related lncRNAs, and (j) correlation between CTLA4
expression level and differential expression of ferroptosis-related lncRNAs, ∗∗p < 0:01 and ∗∗∗p < 0:001.
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cells activated, eosinophils, and neutrophils). Cluster 1 was
more strongly correlated with eosinophils and neutrophils;
however, cluster 2 had higher infiltration levels of activated
memory B cells and natural killer (NK) cells (Figure 3(a)).
We further analyzed the immune, stromal, and estimated
scores between the two clusters and found that cluster 1
had higher immune, stromal, and estimated scores
(Figures 3(b)–3(d)), demonstrating that ferroptosis-related
lncRNAs regulated the tumor microenvironment to affect
patients’ prognoses.

Ferroptosis is reported to enhance the effect of immuno-
therapy by regulating immune responses [17, 18]. Thus, we
explored whether the expression of ferroptosis-related
lncRNAs was correlated with immune checkpoint inhibitors
such as PD1, PDL1, and CTLA4. Difference analyses showed
that PD1, PDL1, and CTLA4 expression levels were signifi-
cantly higher in cluster 1 (Figures 3(e)–3(g)). PD1 expres-
sion was significantly positively associated with LINC02381
expression levels and significantly negatively correlated with
ELFN1-AS1 expression levels (Figure 3(h)). PDL1 expres-
sion was significantly positively associated with LINC02381
and LINC02361 expression levels and significantly nega-
tively correlated with AL590483.1 expression levels

(Figure 3(i)). CTLA4 expression was significantly positively
associated with LINC01011, AC005261.3, AL392172.1,
AC007128.1, AC002310.1, AL162586.1, AL161729.4,
AC009948.1, and LINC01138 (Figure 3(j)).

GSEA was used to elucidate the differences in biological
functions between the two clusters (Table S4). The top five
pathways enriched in cluster 1 were the Kyoto Encyclopedia
of Genes and Genomes (KEGG) TGF-beta signaling
pathway, KEGG pathways in cancer, KEGG focal adhesion,
KEGG renal cell carcinoma, and KEGG regulation of actin
cytoskeleton, which are mainly related to tumorigenesis and
tumor metastasis (Supplementary Figure 2 A–E). The KEGG
colorectal cancer pathway (Figure 4 and Supplementary
Figure 2K) was also enriched, and the Wnt, PI3K-AKT,
ErbB, TGF-β and p53 signaling pathways were included.
The top five pathways enriched in cluster 2 were KEGG
RNA polymerase, KEGG ribosome, KEGG glycine serine
and threonine metabolism, KEGG base excision repair, and
KEGG pentose phosphate pathway, which are mainly related
to tumor metabolism (Supplementary Figure 2 F–J). Thus,
the ferroptosis-related lncRNAs may affect immune cell
functions via cancer- and metabolism-related pathways and
may affect patient prognoses.
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3.4. Construction and Validation of Prognostic Signatures for
Ferroptosis-Related lncRNAs. The 379 patients were ran-
domly divided into the training (191 patients) and testing
(188 patients) cohorts. To precisely predict the clinical out-
comes of colon cancer patients, we performed the LASSO
regression analysis based on the expression values of the
ferroptosis-related lncRNAs, which were screened via the uni-
variate Cox regression analyses (Supplementary Figure 3). We
identified 15 lncRNAs: ZEB1-AS1, LINC01011, AC005261.3,
LINC01063, LINC02381, ELFN1-AS1, AC009283.1,
LINC02361, AC105219.1, AC002310.1, AL590483.1,
MIR4435-2HG, NKILA, AC021054.1, and AL450326.1. We
then constructed and validated a 15 ferroptosis-related
lncRNA signature to predict patient prognoses using the
training and testing cohorts and the risk score equation =
0:0019 × Exp ðZEB1 −AS1Þ + 0:1752 × Exp ðLINC01011Þ +
0:2194 × ExpðAC005261:3Þ + 0:3713 × ExpðLINC01063Þ +
0:0683 × ExpðLINC02381Þ + 0:0276 × ExpðELFN1 −AS1Þ +
0:0450 × Exp ðAC009283:1Þ + 0:3155 × ExpðLINC02361Þ +
0:1286 × ExpðAC105219:1Þ + 0:1528 × ExpðAC002310:1Þ +
−1:1310 × ExpðAL590483:1Þ + 0:1252 × ExpðMIR4435 − 2
HGÞ + 0:2576 × ExpðNKILAÞ + 0:1841 × ExpðAC021054:1Þ
+ 0:2207 × ExpðAL450326:1Þ:

Patients in the training and testing cohorts were divided
into the high- or low-risk group according to their median
risk score. The risk score distribution, survival overview,
and gene expression heatmaps of the 15 ferroptosis-related
lncRNA-based signatures in the training (Figures 5(a), 5(c),
and 5(e)) and testing (Figures 5(b), 5(d), and 5(f)) cohorts
are shown. The survival analysis illustrated that the high-
risk group had a significantly worse OS compared with that
of the low-risk group in both cohorts (Figures 5(g) and
5(h)). The areas under the time-dependent ROC curve of
the training and testing cohorts were 0.796 and 0.668, sug-
gesting that the risk scores calculated based on the 15
ferroptosis-related lncRNA signatures had a good prediction
performance.

3.5. Prognostic Risk Scores Correlated with Clinico
pathological Characteristics. We evaluated the connections
between risk score, clinicopathological features of 379 colon
cancer patients, and expression levels of 15 ferroptosis-
related lncRNAs. The OS of the high-risk group was signifi-
cantly shorter than that of the low-risk group in patients
aged both > 65 and ≤ 65 years; in both sexes; in T1-2, T3-4,
N0, N1-2, M0, and M1 classifications; and in stages I–II
and III–IV (Figures 6(a)–6(l)). The heatmap demonstrated
that high-risk patients were significantly correlated with N
classification, stage, and cluster (Figure 6(m)).

Univariate and multivariate Cox regression analyses
were performed in both cohorts to explore whether the risk
score independently predicted the prognoses of patients with
colon cancer. The univariate Cox regression showed that
stage, TNM classification, and risk score were significantly
associated with OS in the training cohort (Figure 7(a)).
The multivariate Cox regression confirmed that risk score
was an independent prognostic indicator in the training
cohort (Figure 7(c)). In the testing cohort, the univariate
Cox analysis showed that age, stage, TM classification, and
risk score were significantly associated with OS
(Figure 7(b)). The multivariate Cox regression showed that
age and risk score were independent prognostic indicators
(Figure 7(d)). The results showed that risk score was an
independent prognostic factor for colon cancer patients.

Prognostic nomograms of both cohorts incorporating
clinicopathological characteristics and the prognostic signa-
ture of 15 ferroptosis-related lncRNAs were established to
provide a quantitative and visual method for predicting the
1-, 3-, and 5-year OS probabilities of colon cancer patients
(Figures 7(e) and 7(f)). The area under the ROC curve
(AUC) values of the training cohort for 1-, 3-, and 5-year
OS were 0.796, 0.828, and 0.866, respectively (Figure 7(g)).
In the testing cohort, the AUC values for 1-, 3-, and 5-year
OS were 0.668, 0.724, and 0.856, respectively (Figure 7(h)).
From these findings, we concluded that the prognostic
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Figure 5: Construction and validation of prognostic signature of 15 ferroptosis-related lncRNAs in the training and testing cohorts. (a, b)
Risk score distribution. (c, d) OS status. (e, f) Heatmaps. (g, h) The Kaplan-Meier curves for OS. (i, j) ROC curves.
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Figure 6: Continued.
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signature of the 15 ferroptosis-related lncRNAs could inde-
pendently predict the prognosis and may be applied to clin-
ically manage colon cancer patients.

3.6. Estimation of Immune Cell Infiltration and
Chemotherapeutic Correlation of the Ferroptosis-Related
lncRNA Signature. Because ferroptosis is related to the
immune microenvironment, we investigated the relationship
between the risk score and immune cell infiltration to esti-
mate the effect of the prognostic signature of the 15
ferroptosis-related lncRNAs on the colon cancer immune
microenvironment. CD4 T cell was significantly positively
correlated with risk score (Figure 8(b)). B cell, CD8 T cell,
dendritic cell, macrophage, and neutrophil were not corre-
lated with risk score (Figures 8(a) and 8(c)–8(f)).

To use the signature to help clinicians determine the best
treatment, we attempted to identify the association between
risk score and the efficacies of common chemotherapeutics
in treating colon cancer. For sorafenib, a high-risk score

was associated with a higher chemotherapeutic IC50, dem-
onstrating that the signature is a potential predictor of che-
mosensitivity (Figure 9(c)). However, cisplatin, paclitaxel,
and sunitinib showed no correlation with scores
(Figures 9(a), 9(b), and 9(d)).

4. Discussion

Owing to the absence of easily observable symptoms, colon
cancer is often discovered at a late stage during a patient’s
clinical course, and most patients with colon cancer suc-
cumb to the disease owing to distant metastasis [19]. Tumor
progression is dependent on the tumor microenvironment
[20], as well as on the characteristics of the tumor cells,
and inflammation in the tumor microenvironment
[21–23]. Conventional systems for predicting prognoses,
such as the American Joint Committee on cancer TNM
and Duke staging systems, cannot accurately predict the
prognoses of cancer patients. Further research has shown
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Figure 6: The Kaplan-Meier survival subgroup analysis for the prognostic signature of 15 ferroptosis-related lncRNAs stratified by clinical
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that the molecular subtypes of colon cancer can help define
prognostic factors, predict patient survival, and indicate
treatment. Ferroptosis is a newly defined mode of pro-
grammed oxidative cell death, but its specific role and effect
on the prognoses of colon cancer patients remain unclear.
The current study is the first to divide ferroptosis-related
lncRNAs into different subgroups, construct a prognostic
signature, and systematically investigate the correlation
between the tumor microenvironment, immune cell infiltra-
tion, immune check inhibitors, and ferroptosis-related
lncRNAs to indicate treatment.

Our study identified and validated two ferroptosis-
related lncRNA subtypes in colon cancer. Cluster 2 had a
worse OS than did cluster 1. The tumor microenvironment
plays an important regulatory role in promoting tumor
growth, and its heterogeneity affects patients’ prognoses
and therapeutic responses [24]. It had been reported that
spatial and temporal heterogeneity for lymphocyte infiltra-
tion in advanced urothelial cancer and that CD3+, CD8+,
and FoxP3+ cell densities decreased during treatment with
platinum-based chemotherapy [25]. Thus, we explored the
immune cell infiltration landscape and tumor microenviron-
ment of the two subtypes. Cluster 1 had more eosinophils
and neutrophils and fewer activated memory B cells and
NK cells than did cluster 2. Differences in the tumor micro-
environments were also explored, and cluster 1 had higher
immune, stromal, and estimated scores. Differences in
PD1, PDL1, and CTLA4 expression levels were significantly
higher in cluster 1. These results indicated that cluster 1 dis-
played a superior response to immunotherapy. A previous
report of triple-negative breast cancer demonstrated that a
marked reduction in the percentage of CD8+ T lymphocytes
and a significant increase in the frequencies of CD4+ T lym-
phocytes and CD4+ and CD8+ T lymphocytes expressing
PD1 and CD39 were evident in tumor tissue in comparison

with the normal breast tissue [26]. It was also found that an
increased percentage of activated CD4+CD25+Foxp3- and
CD8+CD25+ T cells reduced tumor progression during colo-
rectal cancer development in vivo [27]. We further showed
that risk score was positively correlated with the CD4+ T cell
infiltration levels and was not correlated with B cell, CD8 T
cell, dendritic cell, macrophage, and neutrophil. To study the
clinical application value, we conducted chemosensitivity
analyses, which showed that low-risk-score patients were
more sensitive to sorafenib, but not sensitive to cisplatin,
paclitaxel, and sunitinib. These findings suggested that
ferroptosis-related lncRNAs are partially involved in regulat-
ing the tumor microenvironment and may facilitate person-
alized treatment for patients with colon cancer.

GSEA elucidated the specific mechanisms of the two
subtypes. The ferroptosis-related lncRNAs were mainly
involved in tumorigenesis, metastasis, and metabolism-
related pathways. The KEGG colorectal cancer pathway
was enriched, and the Wnt, PI3K-AKT, ErbB, TGF-β, and
p53 signaling pathways were involved. Previous studies con-
firmed that some of these pathways were involved in regulat-
ing ferroptosis in different cancers. A study highlighted that
Andrographis could activate ferroptosis and suppress the β-
catenin/Wnt signaling pathways to mediate chemosensitiza-
tion in colorectal cancer [28]. Hyperactive mutation of
PI3K-AKT-mTOR signaling protects cancer cells from oxi-
dative stress and ferroptotic death through SREBP1/SCD1-
mediated lipogenesis [29]. XCT expression was repressed
by TGF-β1 by activating Smad3 and enhancing lipid perox-
idation in hepatocellular carcinoma cells [30]. Mutant p53
sensitized tumor cells to ferroptosis [31]. These results pro-
vide critical references for individualized treatment of
patients with colon cancer.

Finally, we constructed and validated a ferroptosis-
related lncRNA prognostic signature in two independent
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Figure 7: Independent analysis and construction of nomogram and performance assessment. (a, b) The univariate Cox regression analysis
of prognostic factors. (c, d) The multivariate Cox regression analysis of prognostic factors. (e, f) Nomogram based on clinical factors and risk
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cohorts. Some lncRNAs that constituted the signature were
related to colon cancer pathogeneses and progression.
ELFN1-AS1 drives colon cancer cells to proliferate and
invade by adjusting the miR-191-5p/SATB1 axis [32].
lncRNA MIR4435-2HG-mediated cisplatin resistance occurs
via the Nrf2/HO-1 pathway in colon cancer [33]. No reports
have been published on other lncRNAs in colon cancer;

thus, our future studies will focus on those lncRNAs. Sur-
vival and clinicopathological analyses demonstrated that
the signature performed favorably in predicting the progno-
sis and was an independent prognostic factor for colon can-
cer. Nomograms provided a quantitative and visual method
for predicting the 1-, 3-, and 5-year OS probabilities of colon
cancer patients. ROC curves indicated that the ferroptosis-
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related lncRNA prognostic signature was highly accurate
and reliable.

The present study differs from previous studies [34, 35]
regarding the ferroptosis-related prognostic signature of
colon cancer and has some advantages. First, consensus clus-
tering for ferroptosis-related lncRNAs was used in colon
cancer. Second, because colon cancer is a typical
microsatellite-instable tumor, its correlation with ferroptosis
requires further study. This study comprehensively analyzed
the relationship between the ferroptosis-related lncRNA
prognostic signature and the tumor microenvironment as
well as immune cell infiltration, providing a new perspective
on the predictive function of ferroptosis-related lncRNA sig-
natures in immunotherapy. Third, this study explored the
correlation between the ferroptosis-related lncRNA signa-
ture and immune checkpoint inhibitor expression and che-
mosensitivity. This may help clinicians to more accurately
choose the best clinical policy and therapy for patients with
colon cancer.

Our study had several limitations. First, the main data-
sets in our study were obtained from TCGA, and other data-
sets as well as our own data should be obtained to reduce
selection bias. Additionally, some crucial clinicopathological
parameters, such as CEA, MSI, dMMR, KRAS, NRAS, and
BRAF mutation statuses, were not obtained in the nomo-
gram; thus, the function of this ferroptosis-related lncRNA
signature must be validated in clinical research.

5. Conclusion

In summary, we systematically evaluated the prognostic
value, the role in the tumor microenvironment and immune
cell infiltration, the potential regulatory mechanisms of
ferroptosis-related lncRNAs, and the correlation between
immune checkpoint inhibitors and chemosensitivity with
colon cancer. The identified signature of 15 ferroptosis-
related lncRNAs accurately predicted the prognoses of
patients with colon cancer and may help determine individ-
ual therapeutic strategies and expand on insights for advanc-
ing therapeutic approaches.
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