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Comprehensive analysis of single cell ATAC-seq
data with SnapATAC
Rongxin Fang1,2, Sebastian Preissl 3, Yang Li1, Xiaomeng Hou3, Jacinta Lucero4, Xinxin Wang 3,

Amir Motamedi5, Andrew K. Shiau5, Xinzhu Zhou6, Fangming Xie7, Eran A. Mukamel 7, Kai Zhang 1,

Yanxiao Zhang 1, M. Margarita Behrens 4, Joseph R. Ecker 4,8 & Bing Ren 1,3,9✉

Identification of the cis-regulatory elements controlling cell-type specific gene expression

patterns is essential for understanding the origin of cellular diversity. Conventional assays to

map regulatory elements via open chromatin analysis of primary tissues is hindered by

sample heterogeneity. Single cell analysis of accessible chromatin (scATAC-seq) can over-

come this limitation. However, the high-level noise of each single cell profile and the large

volume of data pose unique computational challenges. Here, we introduce SnapATAC, a

software package for analyzing scATAC-seq datasets. SnapATAC dissects cellular hetero-

geneity in an unbiased manner and map the trajectories of cellular states. Using the Nyström

method, SnapATAC can process data from up to a million cells. Furthermore, SnapATAC

incorporates existing tools into a comprehensive package for analyzing single cell ATAC-seq

dataset. As demonstration of its utility, SnapATAC is applied to 55,592 single-nucleus ATAC-

seq profiles from the mouse secondary motor cortex. The analysis reveals ~370,000 can-

didate regulatory elements in 31 distinct cell populations in this brain region and inferred

candidate cell-type specific transcriptional regulators.
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A
multicellular organism comprises diverse cell types, each
highly specialized to carry out unique functions. Each cell
lineage is established during development as a result of

tightly regulated spatiotemporal gene expression programs1, which
are driven in part by sequence-specific transcription factors that
interact with cis-regulatory sequences in a cell-type specific manner2.
Thus, identifying the cis-elements in the genome and their cellular
specificity during development is an essential step towards under-
standing the developmental programs encoded in the linear genome
sequence.

Since the cis-regulatory elements are often marked by hyper-
sensitivity to nucleases or transposases when they are active or
poised to act, approaches to detect chromatin accessibility, such as
ATAC-seq (Assay for Transposase-Accessible Chromatin using
sequencing)3 and DNase-seq (DNase I hypersensitive sites
sequencing)4 have been widely used to map candidate cis-reg-
ulatory sequences. However, conventional assays that use bulk
tissue samples as input cannot resolve cell-type-specific usage of
cis-elements and lacks the resolution to study their temporal
dynamics. To overcome these limitations, a number of methods
have been developed for measuring chromatin accessibility in
single cells. One approach involves combinatorial indexing to
simultaneously analyze tens of thousands of cells5. This strategy
has been successfully applied to embryonic tissues in D. melano-
gaster6, developing mouse forebrains7 and adult mouse tissues8. A
related method, scTHS-seq (single-cell transposome hypersensitive
site sequencing), has also been used to study chromatin landscapes
at single-cell resolution in the adult human brains9. A third
approach relies on isolation of individual cells using microfluidic
devices (Fluidigm, C1)10 or within individually indexable wells of a
nano-well array (Takara Bio, ICELL8)11. More recently, single-cell
ATAC-seq analysis has been demonstrated on droplet-based
platforms12,13, enabling profiling of chromatin accessibility from
hundreds of thousands cells in a single experiment13. Hereafter,
these methods are referred to collectively as single-cell ATAC-seq
(scATAC-seq).

The growing volume of scATAC-seq datasets coupled with the
sparsity of signals in each individual profile due to low detection
efficiency (5–15% of peaks detected per cell)7 present a unique
computational challenge. To address this challenge, a number of
unsupervised algorithms have been developed14. One approach,
chromVAR15, groups similar cells together by dissecting the
variability of transcription factor (TF) motif occurrence in the
open chromatin regions in each cell. Another approach employs
the natural language processing techniques such as Latent
Semantic Analysis (LSA)8 and Latent Dirichlet Allocation (LDA)16

to group cells together based on the similarity of chromatin
accessibility. A third approach analyzes the variability of chro-
matin accessibility in cells based on the k-mer composition of the
sequencing reads from each cell13,17. A fourth approach, Cicero18,
infers cell-to-cell similarities based on the gene activity scores
predicted from their putative regulatory elements in each cell.

Because the current methods often require performing linear
dimensionality reduction such as singular value decomposition
(SVD) on a cell matrix of hundreds of thousands of dimensions,
scaling the analysis to millions of cells remains very challenging
or nearly impossible. In addition, the unsupervised identification
of cell types or states in complex tissues using scATAC-seq
dataset does not have the same degree of sensitivity as that from
scRNA-seq19. One possibility is that the current methods rely on
the use of predefined accessibility peaks based on the aggregate
signals. There are several limitations to this choice. First, the cell-
type identification could be biased toward the most abundant cell
types in the tissues, and consequently lack the ability to reveal
regulatory elements in the rare cell populations that could be
underrepresented in the aggregate dataset. Second, a sufficient

number of single-cell profiles would be required to create robust
aggregate signal for creating the peak reference.

To overcome these limitations, we introduce a software package,
Single Nucleus Analysis Pipeline for ATAC-seq—SnapATAC
(https://github.com/r3fang/SnapATAC)—that does not require
population-level peak annotation prior to clustering. Instead, it
resolves cellular heterogeneity by directly comparing the similarity in
genome-wide accessibility profiles between cells. We also adopt a
technique, ensemble Nyström method20,21, that improves the
computational efficiency and enables the analysis of scATAC-seq
from up to a million cells on typical hardware. SnapATAC also
incorporates many existing tools, such as integration of scATAC-seq
and scRNA-seq dataset19, prediction of enhancer–promoter inter-
action, discovery of key transcription factors22, identification of
differentially accessible elements23, construction of trajectories dur-
ing cellular differentiation, correction of batch effect24 and classifi-
cation of new dataset based on existing cell atlas19, into one single
package to maximize its utility and functionalities. Thus, SnapATAC
represents a comprehensive solution for scATAC-seq analysis.

Through extensive benchmarking using both simulated and
empirical datasets from diverse tissues and species, we show that
SnapATAC outperforms current methods in accuracy, sensitivity,
scalability and reproducibility for cell-type identification from
complex tissues. Furthermore, we demonstrate the utility of
SnapATAC by building a high-resolution single-cell atlas of the
mouse secondary motor cortex. This atlas comprises of ~370,000
candidate cis-regulatory elements across 31 distinct cell types,
including rare neuronal cell types that account for less than 0.1%
of the total population analyzed. Through motif enrichment
analysis, we further infer potential key transcriptional regulators
that control cell-type specific gene expression programs in the
mouse brain.

Results
Overview of SnapATAC workflow. A schematic overview of
SnapATAC workflow is displayed in Fig. 1. SnapATAC first
performs preprocessing of sequencing reads including demulti-
plexing, reads alignments and filtering, duplicate removal and
barcode selection using SnapTools (https://github.com/r3fang/
SnapTools) (Methods section). The output of this preprocessing
step is a snap (Single-Nucleus Accessibility Profiles) file specially
formatted for storing single-cell ATAC-seq datasets (Supple-
mentary Fig. 1a). A snap file contains numerous quality control
metrics and users could select high-quality single-cell profiles for
subsequent analysis based on metrics such as the number of
unique fragments detected from the cell and percentage of
promoter-overlapping fragments25.

Next, SnapATAC resolves the heterogeneity of cell population
by assessing the similarity of chromatin accessibility between
cells. To achieve this goal, each single-cell chromatin accessibility
profile is represented as a binary vector, the length of which
corresponds to the number of uniform-sized bins that segment
the genome. Through systematic benchmarking, a bin size of 5 kb
is chosen in this study (Supplementary Fig. 2b). A bin with value
“1” indicates that one or more reads fall within that bin, and the
value “0” indicates otherwise. The set of binary vectors from all
the cells are converted into a Jaccard similarity matrix, with the
value of each element calculated from the fraction of overlapping
bins between every pair of cells. Because the value of Jaccard
Index could be influenced by sequencing depth of a cell, a
regression-based normalization method is developed to remove
such confounding factor (Supplementary Figs. 3–4). Using the
normalized similarity matrix, eigenvector decomposition is
performed for dimensionality reduction. Finally, in the reduced
dimension, SnapATAC uses Harmony24 to remove potential
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batch effect between samples introduced by technical variability
(Methods section).

The computational cost of the algorithm scales quadratically
with the number of cells. To improve the scalability of
SnapATAC, an efficient technique to generate low-rank matrix
approximations—the Nyström method21—is used to generate the
low-rank embedding for large-scale datasets (Methods section).
Nyström method contains two major steps: (1) it computes the
low-dimension embedding for a subset of selected cells (also
known as landmarks); (2) it projects the remaining cells to the
embedding structure learned from the landmarks. This achieves
significant speedup considering that the number of landmarks
could be substantially smaller than the total number of cells.
Through benchmarking, we further demonstrate that this
approach will not sacrifice the performance once the landmarks
are chosen appropriately (Supplementary Fig. 5a–c and Methods
section) as reported before20.

Nyström method is stochastic and could yield different
clustering results in each sampling. To overcome this limitation,
a consensus approach is used that combines a mixture of low-
dimensional manifolds learned from different sets of sampling
(Methods section). Through benchmarking, we demonstrate that
the ensemble approach can significantly improve the reproduci-
bility of clustering outcome compared to the standard Nyström
method (Supplementary Fig. 5d). In addition, this consensus
algorithm naturally fits within the distributed computing
environments where their computational costs are roughly the
same as that of the standard single sampling method.

As a standalone software package, SnapATAC also provides a
number of commonly used functions for scATAC-seq analysis by
incorporating many existing useful tools, as described below:

First, to facilitate the annotation of resulting cell clusters,
SnapATAC provides three different approaches: (i) SnapATAC
annotates the clusters based on the accessibility score at the
canonical marker genes (Methods section); (ii) it infers cell-type
labels by integrating with corresponding single-cell RNA-seq
datasets19 (Methods section); (iii) it allows supervised annotation
of new single-cell ATAC-seq dataset based on an existing cell
atlas (Methods section).

Second, SnapATAC allows identification of the candidate
regulatory elements in each cluster by applying peak-calling

algorithm26 to the aggregate chromatin profiles. Differential
analysis is then performed to identify cell-type-specific regulatory
elements23. Candidate master transcription factors in each cell
cluster are discovered through motif enrichment analysis of the
differentially accessible regions in each cluster22. SnapATAC
further conducts Genomic Regions Enrichment of Annotation
Tool (GREAT)27 analysis to identify the biological pathways
active in each cell type.

Third, SnapATAC incorporates an approach to link candidate
regulatory elements to their putative target genes. In contrast to
previous method18 that relies on analysis of coaccessibility of
putative enhancers and promoters, SnapATAC infers the linkage
based on the association between gene expression and chromatin
accessibility in single cells where scRNA-seq data is available
(Methods section). First, SnapATAC integrates scATAC-seq and
scRNA-seq19. Second, for each scATAC-seq profile, a corre-
sponding gene expression profile is imputed based on the
weighted average of its k-nearest neighboring cells (i.e., k= 15)
in the scRNA-seq dataset. A “pseudo” multiomics cell is created
that contains the information of both chromatin accessibility and
gene expression. Finally, logistic regression is used to quantify
the association between the gene expression and binarized
accessibility state at putative enhancers (Methods section). This
approach is used to integrate ~15 K peripheral blood mono-
nuclear cells (PBMC) chromatin profiles and ~10 K PBMC
transcriptomic profiles (Fig. 2a). These two datasets are
represented in a joint t-SNE embedding space (Fig. 2a) with
98% of the single-cell ATAC-seq cells can be confidently
assigned to a cell type defined in the scRNA-seq dataset
(Supplementary Fig. 6a). Enhancer-gene pairs are predicted for
3000 genes differentially expressed between cell types in PBMC
as determined by scRNA-seq. The validity of the prediction is
supported by two lines of evidence. First, the association score
exhibits a distance decay from the TSS, consistent with the
distance decay of interaction frequency observed in chromatin
conformation study28 (Supplementary Fig. 6b). Second, the
predictions match well with the expression quantitative trait loci
(cis-eQTLs) derived from interferon-γ and lipopolysaccharide
stimulation of monocytes29 with reasonable prediction power
(AUROC= 0.66, AUPRC= 0.68; Supplementary Fig. 6c–d and
Methods section). It is important to note that while statistical
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association between scATAC-seq and scRNA-seq provides
another approach to symmetrically link enhancers to their
putative target genes, the predictions would require further
experimental validation.

Fourth, SnapATAC has incorporated a function to construct
cellular trajectories from single-cell ATAC-seq. As a demonstra-
tion of this feature, SnapATAC is used to analyze a dataset that
contains 4259 cells from the hippocampus in the fetal mouse
brain (E18) (data source listed in Supplementary Table 1).
Immature granule cells originating in the dentate gyrus give
rise to both mature granule cells (DG) and pyramidal neurons
(CA3)30. Analysis of 4259 cells reveals a clear branching structure
in the first two dimensions (Fig. 3a), the pattern of which is
similar to the result previously obtained from single-cell
transcriptomic analysis31. For instance, the DG-specific transcrip-
tion factor Prox1 is exclusively accessible in one branch whereas
Neurod6 that is known to be specific to CA3 are accessible in the
other branch. Markers of progenitors such as Hes5 and Mki67,
however, are differentially accessible before the branching point
(Fig. 3b). Further using lineage inference tool such as Slingshot32,
SnapATAC defines the trajectories of cell states for pseudo-time
analysis (Fig. 3a). These results demonstrate that SnapATAC can
also reveal lineage trajectories with high accuracy.

Performance evaluation. To compare the accuracy of cell clus-
tering between SnapATAC and published scATAC-seq analysis

methods, a simulated dataset of scATAC-seq profiles is generated
with varying coverages, from 10,000 (high coverage) to 1000
reads per cell (low coverage) by down sampling from 10 pre-
viously published bulk ATAC-seq datasets22 (Supplementary
Table 2 and Methods section). Based on a recent summary of
single-cell ATAC-seq methods33, LSA8 and cis-Topic16 outper-
forms the other methods in separating cell populations of dif-
ferent coverages and noise levels in both synthetic and real
datasets. Therefore, we choose to compare SnapATAC with these
two methods.

The performance of each method in identifying the original cell
types is measured by both Adjusted Rank Index (ARI) and
Normalized Mutual Index (NMI). The comparison shows that
SnapATAC is the most robust and accurate method across all
ranges of data sparsity (Wilcoxon signed-rank test, p < 0.01; Fig. 4a;
Supplementary Fig. 7). Next, a set of 1423 human cells
corresponding to 10 distinct cell types generated using C1 Fluidigm
platform, where the ground truth is known15, is analyzed by
SnapATAC and other methods. Again, SnapATAC correctly
identifies the cell types with high accuracy (Supplementary Fig. 8).

To compare the sensitivity of SnapATAC on detecting cell types
to that of previously published methods, we analyzed two scATAC-
seq datasets representing different types of bio-samples. First, to
quantify the clustering sensitivity, we applied an existing integration
method to predict the cell type of 4792 PBMC cells using
corresponding 10× single-cell RNA-seq by following the tutorial
(https://satijalab.org/seurat/v3.1/atacseq_integration_vignette.html).
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To obtain the most confident prediction, we only kept single-cell
ATAC-seq profiles whose cell-type prediction score is greater than
0.9. Using the remaining cells, we calculated the connectivity index
(CI; Methods section) in the low-dimension manifold for each of the
methods (LSA, cis-Topic, and SnapATAC). Connectivity index

estimates the degree of separation between clusters in an unbiased
manner and a lower connectivity index represents a higher degree of
separation between clusters. SnapATAC exhibits substantially higher
sensitivity in distinguishing different cell types compared to the
other two methods (Fig. 4b). The second is a newly produced dataset
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that contains 9529 single-nucleus open chromatin profiles generated
from the mouse secondary motor cortex. Based on the gene
accessibility score at canonical marker genes (Supplementary Fig. 9),
SnapATAC uncovers 22 distinct cell populations (Supplementary
Fig. 10) whereas alternative methods fail to distinguish the
rare neuronal subtypes including Sst (Gad2+ and Sst+), Vip
(Gad2+ and Vip+), L6b (Sulf1− and Tl4e+), and L6.CT (Sulf1+
and Foxp2+). These results suggest that SnapATAC outperforms
existing methods in sensitivity of separating different cell types in
both synthetic and real datasets.

To compare the scalability of SnapATAC to that of existing
methods, a previous scATAC-seq dataset that contains over 80k
cells from 13 different mouse tissues8 is used (data source listed in
Supplementary Table 1). This dataset is downsampled to different
number of cells, ranging from 20,000 to 80,000 cells. For each
sampling, SnapATAC and other methods are performed, and the
CPU running time of dimensionality reduction is monitored
(Methods section). The running time of SnapATAC scales
linearly and increases at a significantly lower slope than
alternative methods (Fig. 4c). Using the same computing
resource, when applied to 100k cells, SnapATAC is much faster
than existing methods (Fig. 4c). For instance, when applied to
100k cells, SnapATAC is nearly 10 times faster than LSA and
more than 100 times faster than cis-Topic. More importantly,
because SnapATAC avoids the loading of the full cell matrix in
the memory and can naturally fit within the distributed
computing environments (Methods section), the running time
and memory usage for SnapATAC plateau after 20,000 cells,
making it possible for analyzing datasets of even greater volumes.
To test this, we simulate 1 million cells of the same coverage with
the above dataset (Methods section) and process it with
SnapATAC, LSA, and cis-Topic. Using the same computing
resource, SnapATAC is able to process up to one million cells
with regular hardwire configuration (Fig. 4c and Methods
section). These results demonstrate that SnapATAC provides a
highly scalable approach for analyzing large-scale scATAC-seq
dataset.

To evaluate the clustering reproducibility, the above mouse
scATAC-seq dataset is downsampled to 90% of the original
sequencing depth in five different iterations. Each downsampled
dataset is clustered using SnapATAC and other methods.
Clustering results are compared between sampled datasets to
estimate the stability. SnapATAC has a substantially higher
reproducibility of clustering results between different down-
sampled datasets than other methods (Fig. 4d).

The improved performance of SnapATAC likely results from
the fact that it considers all reads from each cell, not just the
fraction of reads within the peaks defined in the population. To
test this hypothesis, clustering is performed after removing the
reads overlapping the predefined peak regions. Although the
outcome is worse than the full dataset as expected, it still
recapitulates the major cell types obtained from the full dataset
(Supplementary Fig. 11). This holds true for all three datasets
tested (Supplementary Fig. 11a–c). One possibility is that the off-
peak reads may be enriched for the euchromatin (or compart-
ment A) that strongly correlates with active genes28 and varies
considerably between cell types34,35. Consistent with this
hypothesis, the density of the nonpeak reads in scATAC-seq
library is highly enriched for the euchromatin (compartment A)
as defined using genome-wide chromatin conformation capture
analysis (i.e., Hi–C) in the same cell type28 (Supplementary
Fig. 12). These observations suggest that the nonpeak reads
discarded by existing methods can actually contribute to
distinguish different cell types.

Including the off-peak reads, however, raises a concern
regarding whether SnapATAC is sensitive to technical

variations (also known as batch effect). To test this, SnapATAC
is applied to four datasets generated using different technol-
ogies (data source listed in Supplementary Table 1). Each
dataset contains at least two biological replicates produced by
the same technology. In all cases, the biological replicates are
well mixed in the t-SNE embedding space showing no obvious
batch effect (Supplementary Fig. 13), suggesting that SnapA-
TAC is robust to the technical variations.

To test whether SnapATAC is robust to technical variation
introduced by different technological platforms, it is used to
integrate two mouse brain datasets generated using plate and
droplet-based scATAC-seq technologies (data source listed in
Supplementary Table 1). In the joint t-TSNE embedding space,
these two datasets are separated based on the technologies
(Supplementary Fig. 14a). To remove the platform-to-platform
variations, Harmony24, a single-cell batch effect correction
tool, is incorporated into the SnapATAC pipeline (Methods
section). After correction by Harmony24, these two datasets are
well mixed in the joint t-SNE embedding (Supplementary
Fig. 14b) and clusters are fairly represented by both datasets
(Supplementary Fig. 14c).

A high-resolution cis-regulatory atlas of the mouse secondary
motor cortex. To demonstrate the utility of SnapATAC in
resolving cellular heterogeneity of complex tissues and identify
candidate cis-regulatory elements in diverse cell type, it is applied
to a new single-nucleus ATAC-seq dataset generated from the
secondary mouse motor cortex in the adult mouse brain as part
of the BRAIN Initiative Cell Census Consortium36 (Supple-
mentary Fig. 15a). This dataset includes two biological replicates,
each pooled from 15 mice to minimize potential batch effects.
The aggregate signals show high reproducibility between biolo-
gical replicates (Pearson correlation= 0.99; Supplementary
Fig. 15b–d), a significant enrichment for transcription start sites
(TSS) and less than 1% of mitochondria DNA (3), indicating a
high signal-to-noise ratio (Supplementary Fig. 15e). After fil-
tering out the low-quality nuclei (Supplementary Fig. 16a) and
removing putative doublets using Scrublet37 (Methods section;
Supplementary Fig. 16b), a total of 55,592 nuclear profiles with
an average of ~5000 unique fragments per nucleus remain and
are used for further analysis (Supplementary Data 1).

SnapATAC identifies initially a total of 20 major clusters using
the consensus clustering approach (Supplementary Fig. 17). The
clustering result is highly reproducible between biological
replicates (Pearson correlation= 0.99; Supplementary Fig. 18a)
and is resistant to sequencing depth effect (Supplementary
Fig. 18b). Based on the gene accessibility score at the canonical
marker genes (Supplementary Fig. 19), these clusters are classified
into 10 excitatory neuronal subpopulations (Snap25+, Slc17a7+,
Gad2−; 52% of total nuclei), three inhibitory neuronal sub-
populations (Snap25+, Gad2+; 10% of total nuclei), one
oligodendrocyte subpopulation (Mog+; 8% of total nuclei), one
oligodendrocyte precursor subpopulation (Pdgfra+; 4% of total
nuclei), one microglia subpopulation (C1qb+; 5% of total nuclei),
one astrocyte subpopulation (Apoe+; 12% of total nuclei), and
additional populations of endothelial, and smooth muscle cells
accounting for 6% of total nuclei (Fig. 5a).

In mammalian brain, GABAergic interneurons exhibit specta-
cular diversity that shapes the spatiotemporal dynamics of neural
circuits underlying cognition38. To examine whether iterative
analysis could help tease out various subtypes of GABAergic
neurons, SnapATAC is applied to the 5940 GABAergic nuclei (CGE,
Sst, and Vip) identified above, finding 17 distinct subpopulations
(Supplementary Fig. 20a) that are highly reproducible between
biological replicates (Pearson correlation= 0.99; Supplementary

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21583-9

6 NATURE COMMUNICATIONS |         (2021) 12:1337 | https://doi.org/10.1038/s41467-021-21583-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Fig. 20b). Based on the chromatin accessibility at the marker genes
(Supplementary Fig. 21), these 17 clusters are classified into five Sst
subtypes (Chodl+, Cbln4+, Igfbp6+, Myh8+, and C1ql3+), two Pv
subtypes (Tac1+ and Ntf3+), two Lamp5 subtypes (Smad3+ and
Ndnf+), four Vip subtypes (Mybpc1+, Chat+, Gpc3+, Crhr2+),
Sncg and putative doublets (Fig. 5b). These clusters include a rare
type Sst-Chodl (0.1%) previously identified in single-cell RNA39 and
single-cell ATAC-seq analysis40. While the identity and function of
these subtypes require further experimental validation, our results
demonstrate the exquisite sensitivity of SnapATAC in resolving
distinct neuronal subtypes with only subtle differences in the
chromatin landscape.

A key utility of single-cell chromatin accessibility analysis is to
identify regulatory sequences in the genome. By pooling reads
from nuclei in each major cluster (Fig. 5a), cell-type-specific
chromatin landscapes can be obtained (Supplementary Fig. 22
and Methods section). Peaks are determined in each cell type,
resulting in a total of 373,583 unique candidate cis-regulatory
elements. Most notably, 56% (212,730/373,583) of these open
chromatin regions cannot be detected from bulk ATAC-seq data
of the same brain region (Methods section). The validity of these
additional open chromatin regions identified from scATAC-seq
data are supported by several lines of evidence. First, these open
chromatin regions are only accessible in minor cell populations
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Fig. 5 A high-resolution cis-regulatory atlas of mouse secondary motor cortex (MOs). a T-SNE visualization of 20 major cell types in MOs identified

using SnapATAC. b Fourteen GABAergic subtypes revealed by iterative clustering of 5940 GABAergic neurons (Sst, Pv, and CGE in a). c Gene accessibility

score of canonical marker genes for GABAergic subtypes is projected onto the t-SNE embedding. d k-means clustering of 294,304 differentially accessible

elements based on chromatin accessibility. e Gene ontology analysis of each cell-type predicted by GREAT analysis27. f Transcription factor motif enriched

in each cell group identified using Homer22 (Poisson p-value).
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(Supplementary Fig. 23a) that are undetectable in the bulk
ATAC-seq signal. Second, these sequences show significantly
higher conservation than randomly selected genomic sequences
with comparable mappability scores (Supplementary Fig. 23c).
Third, these open chromatin regions display an enrichment for
transcription factor (TF) binding motifs corresponding to the TFs
that play important regulatory roles in the corresponding cell
types. For example, the binding motif for Mef2c is highly
enriched in novel candidate cis-elements identified from Pvalb
neuronal subtype (P-value= 1e-363; Supplementary Fig. 23d),
consistent with previous report that Mef2c is upregulated in
embryonic precursors of Pv interneurons41. Finally, the new open
chromatin regions tend to test positive in transgenic reporter
assays. Comparison to the VISTA enhancer database42 shows that
enhancer activities of 256 of the newly identified open chromatin
regions have been previously tested using transgenic reporter
assays in e11.5 mouse embryos. Sixty five percent (167/256; 65%)
of them drive reproducible reporter expression in at least one
embryonic tissue, which was substantially higher than back-
ground rates (9.7%) estimated from regions in the VISTA
database that lack canonical enhancer mark43. Four examples are
displayed (Supplementary Fig. 23e).

SnapATAC identifies 294,304 differentially accessible elements
between cell types (Methods section; Fig. 5d). GREAT analysis
(Fig. 5e) and motif inference (Fig. 5f) identify the master
regulators and transcriptional pathways active in each of the cell
types. For instance, the binding motif for ETS-factor PU.1 is
highly enriched in microglia-specific candidate CREs, motifs for
SOX proteins are enriched in Ogc-specific elements, and bHLH
motifs are enriched in excitatory neurons-specific CREs (Fig. 5f).
Interestingly, motifs for candidate transcriptional regulators,
including NUCLEAR FACTOR 1 (NF1), are also enriched in
candidate CREs detected in two inhibitory neuron subtypes
(Lamp5.Ndnf and Lamp5.Smad3). Motif for CTCF, a multi-
functional protein in genome organization and gene regulation44,
is highly enriched in Sst-Chodl. Finally, motifs for different basic-
helix-loop-helix (bHLH) family transcription factors, known
determinants of neural differentiation45, show enrichment for
distinct Sst subtypes. For instance, E2A motif is enriched in
candidate CREs found in Sst.Myh8 whereas AP4 motif is
specifically enriched in peaks found in Sst.Cbln4, suggesting
specific role that different bHLH factors might play in different
neuronal subtypes.

SnapATAC enables reference-based annotation of new
scATAC-seq datasets. Unsupervised clustering of scATAC-seq
datasets frequently requires manual annotation, which is labor-
intensive and limited to prior knowledge. To overcome this
limitation, SnapATAC provides a function to project new single-
cell ATAC-seq datasets to an existing cell atlas to allow for
supervised annotation of cells. First, the Nyström method is used
to project the query cells to the low-dimension manifold pre-
computed from the reference cells (Methods section). In the joint
manifold, a neighborhood-based classifier is used to determine
the cell type of each query cell based on the label of its k-nearest
neighboring cells in the reference dataset (Methods section). The
accuracy of this method is determined by five-fold cross valida-
tion using the mouse motor cortex atlas. On average, 98% (±1%)
of the cells can be correctly classified, suggesting a high accuracy
of the method (Fig. 6a).

To demonstrate that SnapATAC could be applied to datasets
generated from distinct technical platforms, it is used to annotate
4,098 scATAC-seq profiles from mouse brain cells generated
using a droplet-based platform (data source listed in Supplemen-
tary Table 1). After removing batch effect introduced by different

platforms using Harmony24, the query cells are well mixed with
the reference cells in the joint embedding space (Supplementary
Fig. 24). The predicted cluster labels are also consistent with the
cell types defined using unbiased clustering analysis (NMI= 0.85,
ARI= 0.68; Fig. 6b).

To investigate whether SnapATAC could recognize cell types
in the query dataset that are not present in the reference atlas,
multiple query datasets are sampled from the above mouse motor
cortex dataset and a perturbation is introduced to each sampling
by randomly dropping a cell cluster. When this resulting query
dataset is analyzed by SnapATAC against the original cell atlas,
the majority of the cells that are left out from the original atlas are
filtered out due to the low prediction score (Supplementary
Fig. 25), again suggesting that our method is not only accurate but
also robust to the novel cell types in the query dataset.

Discussion
In summary, SnapATAC is a comprehensive bioinformatic
solution for single-cell ATAC-seq analysis. The open-source
software runs on standard hardware, making it accessible to a
broad spectrum of researchers. Through extensive benchmarking,
we have demonstrated that SnapATAC outperforms existing tools
in sensitivity, accuracy, scalability, and robustness of identifying
cell types in complex tissues.

SnapATAC differs from previous methods in at least seven
aspects. First, SnapATAC incorporates many useful tools and
represents the most comprehensive solution for single-cell
ATAC-seq data analysis to date. In addition to clustering
analysis, SnapATAC provides preprocessing, annotation, tra-
jectory analysis, peak calling26, differential analysis23, batch
effect correction24, and motif discovery22 all in one package.
Second, SnapATAC identifies cell types in an unbiased manner
without the need for population-level peak annotation, leading
to superior sensitivity for identifying rare cell types in complex
tissues. Third, with Nyström method46, SnapATAC sig-
nificantly reduces both CPU and memory usage, enabling
analysis of large-scale dataset of a million cells or more. Fourth,
SnapATAC not only incorporates existing method to integrate
scATAC-seq with scRNA-seq dataset19 but also provides a new
method to predict promoter–enhancer pairing relations based
on the statistical association between gene expression and
chromatin accessibility in single cells. Fifth, our method
achieves high clustering reproducibility using a consensus
clustering approach. Finally, SnapATAC also enables super-
vised annotation of a new scATAC-seq dataset based on an
existing reference cell atlas.

It is important to note that a different strategy has been used to
overcome the bias introduced by population-based peak anno-
tation8. This approach involves iterative clustering, with the first
round defining the crude clusters in complex tissues followed by
identifying peaks in these clusters, which are then used in sub-
sequent round(s) of clustering. However, several limitations still
exist. First, the strategy of iterative clustering requires multiple
rounds of clustering, aggregation, and peak calling, thus hinder-
ing its application to large-scale datasets. Second, the crude
clusters represent the most dominant cell types in the tissues;
therefore, peaks in the rare populations may still be under-
represented. Finally, peak-based methods hinder multi-sample
integrative analysis where each sample has its own unique peak
reference.

Finally, SnapATAC is applied to a newly generated scATAC-
seq dataset including 55,592 high-quality single-nucleus ATAC-
seq profiles from the mouse secondary motor cortex, resulting in
a single-cell atlas consisting of >370,000 candidate cis-regulatory
elements across 31 cell types in this mouse brain region. The
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cellular diversity identified by chromatin accessibility is at a high
resolution and is consistent with mouse neurogenesis and tax-
onomy revealed by single-cell transcriptome data39,47. Besides
characterizing the constituent cell types, SnapATAC identifies
candidate cis-regulatory sequences in each of the major cell types
and infers the likely transcription factors that regulate cell-type
specific gene expression programs. Importantly, a large fraction
(56%) of the candidate cis-elements identified from the scATAC-
seq data are not detected in bulk analysis. While further experi-
ments to thoroughly validate the function of these additional
open chromatin regions are needed, the ability for SnapATAC to
uncover cis-elements from rare cell types of a complex tissue will
certainly help expand the catalog of cis-regulatory sequences in
the genome.

Methods
SnapATAC pipeline workflow
Fastq file demultiplexing. Using a custom python script, we first perform FASTQ
file demulticomplexing by integrating the cell barcode into the read name in the
following format: @+barcode+:+original_read_name.

Sequencing reads alignment. Demultiplexed sequencing reads are aligned to the
corresponding reference genome (i.e., mm10 or hg19) using bwa (0.7.13-r1126) in
pair-end mode with default parameter settings. Aligned reads are then sorted based
on the read name using samtools (v1.9) to group together reads originating from
the same barcodes.

Quality control and reads filtering. Pair-end reads are converted into fragments and
only those that meet the following criteria are kept: (1) properly paired (according
to SMA flag value); (2) uniquely mapped (MAPQ > 30); (3) insert distance within
[50–1000 bp]. PCR duplicates (fragments sharing the same genomic coordinates)
are removed for each cell separately. Given that Tn5 introduces a 9 bp staggered,

reads mapping to the positive and negative strand were shifted by +4/−5 bp,
respectively48.

Barcode filtering. We identify the high-quality cells based on two criteria: (1) total
number of unique fragment count [>1000]; (2) fragments in promoter ratio—the
percentage of fragments overlapping with annotated promoter regions [0.2–0.8].
The promoter regions used in this study are downloaded from 10× genomics for
hg19 and mm10.

Snap-file generation. Using the remaining fragments, we next generate a snap-
format (Single-Nucleus Accessibility Profiles) file using snaptools (https://github.
com/r3fang/SnapTools). A snap file is a hierarchically structured hdf5 file that
contains the following sections: header (HD), cell-by-bin matrix (BM), cell-by-peak
matrix (PM), cell-by-gene matrix (GM), barcode (BD), and fragment (FM). HD
session contains snap-file version, date, alignment and reference genome infor-
mation. BD session contains all unique barcodes and corresponding meta data. BM
session contains cell-by-bin matrices of different bin sizes. PM session contains
cell-by-peak count matrix. GM session contains cell-by-gene count matrix. FM
session contains all usable fragments for each cell. Fragments are indexed based on
barcodes that enables fast retrieval of reads belonging to the same barcodes.
Detailed information about snap file can be found here: https://github.com/r3fang/
SnapTools/blob/master/docs/snap_format.docx.

Creating cell-by-bin count matrix. Using the resulting snap file, we next create cell-
by-bin count matrix. The genome is segmented into uniform-sized bins and single-
cell ATAC-seq profiles are represented as cell-by-bin matrix with each element
indicating number of sequencing fragments overlapping with a given bin in a
certain cell.

Choosing bin size. To evaluate the effect of bin size to clustering performance, we
apply SnapATAC to three datasets namely 5 K PBMC (10×), Mouse Brain (10×),
and MOs-M1 (snATAC) (data source listed in Supplementary Table 1). These
datasets are generated by both plate and droplet platforms using either cell or
nuclei with considerably different depth, allowing us to systematically evaluate the
effect of bin size.
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Fig. 6 SnapATAC enables supervised annotation of new scATAC-seq dataset using reference cell atlas. a MOs snATAC-seq dataset is split into 80%

and 20% as training and test dataset. A predictive model learned from the training dataset predicts cell types on the test dataset of high accuracy (left) as

compared to the original cell-type labels (right). b A predictive model learned from the reference dataset—MOs (snATAC)—accurately predicts the cell types

on a query dataset from mouse brain generated using a different technological platform, the 10× scATAC-seq. The t-SNE embedding is inferred from the

reference cell atlas (left) or generated by SnapATAC in an unbiased manner from 10× mouse brain dataset (middle and right). Cells are visualized using t-SNE

and are colored by the cell types predicted by supervised classification (middle) compared to the cluster labels defined using unsupervised clustering (right).
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For each dataset, we define the “landmark” cell types in a supervised manner.
First, we perform cis-Topic16 for dimensionality reduction and identify cell clusters
using graph-based algorithm Louvain49 with k= 15. Second, we manually define
the major cell types in each dataset by examining the gene accessibility score at the
canonical marker genes (see Supplementary Fig. 9 as an example for MOs-M1).
Third, clusters sharing the same marker genes are manually merged and those
failing to show unique signatures are discarded. In total, we define nine most
convincing cell types in PBMC 5 K (10×), 14 types in Mouse Brain 5 K (10×) and
14 types in MOs-M1 (snATAC). Among these cell types, 14 cell populations that
account for less than 2% of the total population are considered as rare cell
populations (Supplementary Fig. 2a).

We next evaluate the performance of each bin size selection using three metrics:
(1) cluster connectivity index (CI), which estimate the degree of connectedness of
the landmark cell types; a lower CI represents a better separation. The connectivity
index is computed in the following manner. For each cell i, the K (K= 15) nearest
neighbors are found and sorted from the closest to furthest. The algorithm checks if
those neighbors are assigned to the same cluster with cell i. At the beginning,
connectivity value equals 0 and increases with value 1/i when the ith nearest
neighbors is not assigned to the same cluster with cell i. This procedure is repeated
for all cells in the dataset. In general, the higher the connectivity index is, the less
separated the defined landmark cell types are. The connectivity index is computed
using “connectivity” function implemented in R package clv. (2) coverage bias,
which estimates the read depth distribution in the two-dimensional embedding
space; (3) sensitivity to identify rare populations. Through systematic
benchmarking, we found that bin size in the range from 1 to 10 kb appeared to
work well on the three benchmarks, we selected 5 kb as the default bin width for all
the analysis in this work (Supplementary Fig. 2 and Methods section).

Matrix binarization. We found that the vast majority of the elements in the cell-by-
bin count matrix is “0”, indicating either closed chromatin or missing value.
Among the non-zero elements, some has abnormally high coverage (>200) perhaps
due to the alignment errors or other unknown reasons. These items usually account
for less than 0.1% of total non-zero items in the matrix. Thus, we change the top
0.1% elements in the matrix to “0” to eliminate potential alignment errors. We next
convert the remaining non-zero elements to “1”.

Bin filtering. We next filter out any bins overlapping with the ENCODE blacklist
downloaded from http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/
for corresponding reference genome. Second, we remove reads mapped to the X/Y
chromosomes to eliminate sex effect. Third, we remove mitochondrial DNA to get
rid of potential contamination. We next sort the bins based on the coverage and
filter out the top 5% to remove the invariant features. Please note that we do not
perform coverage-based bin filtering for a dataset that has low coverage (average
fragment number less than 5000) where the ranking of bin may be fluctuated by
the noise.

Dimensionality reduction. We next apply the following dimensionality reduction
procedure to project the high-dimension data to a low-dimension manifold for
clustering and visualization. Let X 2Rn ´m be a dataset with n cells and m bins
and X ¼ f0; 1g. The first step is to compute a similarity matrix between the m
high-dimensional data points to construct the n-by-n pairwise similarity matrix
using a kernel function kn that is an appropriate similarity metric. A popular
choice is gaussian kernel:

kn xi; xj

� �
¼ expð�

dðxi; xjÞ
2

ϵ

Þ ð1Þ

where dðxi; xjÞ is the Euclidean distance between observations i and j.

Due the binarization nature of single-cell ATAC-seq dataset, in this case, we
replace the Gaussian kernel with Jaccard coefficient, which estimates the similarity
between cells simply based on ratio of overlap over the total union:

jaccardðxi; xjÞ ¼
xi \ xj

���
���

xi ∪ xj

���
���

ð2Þ

The Jaccard coefficient, which is symmetric and positivity preserving meets the
requirement of being a kernel function.

Using jaccard as a kernel function, we next form a symmetric kernel matrix
J 2Rn ´ n where each entry is obtained as Ji;j ¼ jaccardðxi; xjÞ.

Theoretically, the similarity Ji,j would reflect the true similarity between cell xi
and xj, but unfortunately, due to the high-dropout rate, this is not the case. If there
is a high sequencing depth for cell xi or xj, then Ji,j tend to have higher values,
regardless whether cell xi and xj is actually similar or not.

This can be proved theoretically. Given 2 cells xi and xj and corresponding
coverage (number of “1”s) Ci ¼

Pm
k xik and Cj ¼

Pm
k xjk , let Pi ¼ Ci=m and

Pj ¼ Cj=m be the probability of observing a signal in cell xi and xj where m is the

length of the vector. Assuming xi and xj are two “random” cells without any
biological relevance, in another word, the “1”s in xi and xj are randomly

distributed, then the ratio of expectation between cell xi and xj can be calculated as:

Eij ¼
PiPj

Pi þ Pj � PiPj
ð3Þ

Although the ratio of expectations does not in general equal the expectation of
the ratio, the two are approximately equal in this case because the coefficient of
variation is much less than 1 for both the numerator and the denominator. The
increase of either Pi or Pj will result in an increase of Eij, which suggests the Jaccard
similarity between cells is highly affected by the read depth. Such observation
prompts us to develop an ad hoc normalization method to eliminate the read depth
effect.

To learn the relationship between the Eij and Jij from the data, we next fit a
curve to predict the observed Jaccard coefficient Jij as a function of its expected
value Eij by fitting a polynomials regression of degree 2 using R function lm.
Theoretically, Eij should be linear with Jij if cells are completely random, but in real
dataset, we have observed a nonlinearity between Eij and Jij especially among the
high-coverage cells. We suspect, to some extent, the degree of randomness of
fragment distribution in a single cell is associated with the coverage. To better
model the nonlinearity, we include a second order polynomial in our model:

Jij ¼ β0 þ β1Eij þ β2E
2
ij ð4Þ

This fitting provided estimators of parameters f bβ0; bβ1; bβ2g. As such, we next
use it to normalize the observed Jaccard coefficient by:

Nij ¼ Jij=ð
bβ0 þ bβ1Eij þ bβ2E2

ijÞ ð5Þ

The fitting of the linear regression, however, can be time consuming with a large
matrix. Here we test the possibility of performing this step on a random subset of y
cells in lieu of the full matrix. When selecting a subset of y cells to speed up the first
step, we do not select cells at random with a uniform sampling probability. Instead,
we set the probability of selecting a cell i to

1

dðlog10ðCiÞÞ
ð6Þ

where d is the density estimate of all log10-transformed cell fragment count and Ci

is the number of fragments in cell i and Ci ¼
Pm

k xik . Similar approach was first
introduced in SCTranscform50 to speed up the normalization of single-cell RNA-
seq.

We then proceed to normalize the full Jaccard coefficient matrix J 2Rn ´ n

using the regression model learned from y cells and compared the results to the
case where all cells are used in the initial estimation step as well. We use the
correlation of normalized Jaccard coefficient to compare this partial analysis to the
full analysis. We observe that using as few as 2000 cells in the estimation gave rise
to virtually identical estimates. We therefore use 2000 cells in the initial model-
fitting step. To remove outliers in the normalized similarity, we use the 0.99
quantile to cap the maximum value of the normalized matrix.

Next, using normalized Jaccard coefficient matrix N, we normalize the matrix
by:

A ¼ D�1=2ND�1=2 ð7Þ

where D 2Rn ´ n is a diagonal matrix, which is composed as Di;i ¼
P

j Ni;j . We

next perform eigenvector decomposition against A.

A ¼ UΛUT ð8Þ

The columns φi 2R
n of U 2Rn ´ n are the eigenvectors. The diagonal matrix

Λ 2Rn ´ n has the eigenvalues λ1 ≥ λ2 ≥ ¼ ≥ 0 in descending order as its entries.
Finally, we report the first r eigenvectors as the final low-dimension manifold.

Evaluation of ad hoc normalization method. To assess the performance of nor-
malization of SnapATAC we processed three datasets. As shown in Supplementary
Fig. 3, before normalization, SnapATAC exhibits a strong gradient that is corre-
lated with sequencing depth within the cluster (Supplementary Fig. 3a). Although
the sequencing depth effect is still observed in some of the small clusters, it is clear
that the normalization has largely eliminated the read depth effect as compared to
the unnormalized ones (Supplementary Fig. 3b).

To better quantify the coverage bias, we next computed the Shannon entropy
that estimates the “uniformness” of the distribution of cell coverage in the UMAP
embedding space. In detail, we first chose the top 10% cells of the highest coverage
as “high-coverage” cells. Second, in the 2D UMAP embedding space, we discretize
“high-coverage” cells from a continuous random coordinate (umap1, umap2) into
bins (n= 50) and returns the corresponding vector of counts. This is done using a
function called “discretize2d” in the “entropy” R package. Third, we estimated the
Shannon entropy of the random variable from the corresponding observed counts.
This is done using function “entropy” in the “entropy” R package. A higher entropy
indicates that the “high-coverage” cells are more uniformly distributed in the
UMAP embedding space, overall suggesting a better normalization performance.

We next examine another eight possible sources of biases by projecting to the
UMAP embedding space, some metrics show cluster specificity for all three
methods perhaps due to biological relevance, but all three methods can reveal
significant biological heterogeneity without exhibiting substantial intracluster bias
for any metrics examined (Supplementary Fig. 4).
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Removing batch effects using harmony. When the technical variability is at a larger
scale than the biological variability, we apply batch effect corrector—Harmony24—
to eliminate such confounding factor. Given two datasets generated using different
technologies, we first calculate the joint low-dimension manifold as described
above. We next apply Harmony to regress out the batch effect, resulting in a new
harmonized coembedding. This is implemented as a function “runHarmony” in
SnapATAC package.

Selection of eigenvector and eigenvalues. We next determine how many eigenvectors
to include for the downstream analysis. Here we use an ad hoc approach for
choosing the optimal number of components. We look at the scatter plot between
every two pairs of eigenvectors and choose the number of eigenvectors that start
exhibiting “blob”-like structure in which no obvious biological structure is revealed.

Nyström method. The computational cost of the dimensionality reduction scales
quadratically with the increase of number of cells. For instance, calculating and
normalizing the pairwise kernel Matrix N becomes computationally infeasible for
large-scale dataset. To overcome this limitation, here we apply Nyström
method21,51 to calculate the low-dimensional embedding for large-scale dataset.

A Nyström algorithm can be divided into three major steps: (i) sampling:
sample a subset of K (K � N) cells from N total cells as “landmarks”. Instead of
random sampling, here we adopt a density-based sampling approach50 to preserve
the density distribution of the N original points; (ii) embedding: compute the low-
dimension embedding for K landmarks; (iii) extension: project the remaining N–K
cells onto the low-dimensional embedding as learned from the landmarks to create
a joint embedding space for all cells.

This approach significantly reduces the computational complexity and memory
usage given that K is considerably smaller than N. The out-of-sample extension
(step iii) further enables projection of new single-cell ATAC-seq datasets to the
existing reference single-cell atlas. This allows us to further develop a supervised
approach to predict cell types of a new single-cell ATAC-seq dataset based on an
existing reference atlas.

A key aspect of this method is the procedure according to which cells are
sampled as landmark cells, because different sampled landmark cells give different
approximations of the original embedding using full matrix. Here we employ the
density-based sampling as described above, which preserves the density
distribution of the original points.

Let X 2Rn ´m be a dataset with n cells and m variables (bins) and N 2 Rn ´ n be
a symmetric kernel matrix calculated using normalized Jaccard coefficient. To
avoid calculating the pairwise kernel matrix and performing eigen-decomposition
against a big matrix N 2Rn ´ n , we first sample k ðk � nÞ landmarks without
replacement. This breaks down the original kernel matrix N 2Rn ´ n into four
components.

N ¼
Nkk Nkv

Nvk Nvv

 !
ð9Þ

in which Nkk 2Rk ´ k is the pairwise kernel matrix between k landmarks and

Nvk 2Rðn�kÞ ´ k is the similarity matrix between ðn� kÞ cells and k landmarks.
Using Nkk, we perform dimensionality reduction to obtain the r-rank manifold

Ukk 2Rk ´ r as described above.
Using Nvk, which estimates the similarity between n–k cells and k landmark

cells, we project the rest of n–k cells to the embedding previously obtained using k
landmark:

Avk ¼ ðDvvÞ�
1
2ðNvkÞðDkkÞ�

1
2 ð10Þ

where Dvv 2Rðn�kÞ ´ ðn�kÞ is a diagonal matrix which is composed as
Dvk
i;i ¼

P
j N

vk
i;j . The projected coordinates of the new points onto the r-dimensional

intrinsic manifold defined by the landmarks are then given by

Uvk ¼ AvkUkk=Λkk ð11Þ

The resulting Uvk 2Rðn�kÞ ´ r is the approximate r-rank low-dimension
representation of the rest n–k cells. Combing Ukk and Uvk creates a joint
embedding space for all cells:

~U ¼
Ukk

Uvk

" #
ð12Þ

In the approximate joint r-rank embedding space ~U, we next create a k-nearest
neighbor (KNN) graph in which every cell is represented as a node and edges are
drawn between cells within k-nearest neighbors defined using Euclidean distance.
Finally, we apply community finding algorithm such as Louvain (implemented by
igraph package in R) to identify the ‘communities’ in the resulting graph, which
represents groups of cells sharing similar profiles, potentially originating from the
same cell type.

Choosing the number of landmarks. To evaluate the effect of the number of
landmarks, we apply our method to a complex dataset that contains over 80k cells
from 13 different mouse tissues. We employ the following three metrics to evaluate
the performance. First, using different number of landmarks (k) ranging from 1000

to 10,000, we compare the clustering outcome to the cell-type label defined in the
original study. The goal of this is to identify the “elbow” point that performance
drops abruptly. Second, for each sampling, we repeat for five times using different
set of landmarks to evaluate stability between sampling. Third, we spiked-in 1%
Patski cells to assess the sensitivity of identifying rare cell types. We choose Patski
cells because these cells were profiled using the same protocol by the same group
(Data source listed in Supplementary Table 1) to minimize the batch effect.

We observe that using as few as 5000 landmarks can largely recapitulate the
result obtained using 10,000 landmarks (Supplementary Fig. 5a), and 10,000
landmarks can achieve highly robust embedding between sampling
(Supplementary Fig. 5b) and successfully recover spiked-in rare populations
(Supplementary Fig. 5c). To obtain a reliable low-dimensional embedding, we use
10,000 landmarks for all the analysis performed in this study.

Ensemble Nyström method. Nyström is stochastic in its nature, different sampling
will result in different embedding and clustering outcome. To improve the
robustness of the clustering method, we next employ Ensemble Nyström Algorithm
which combines a mixture of Nyström approximation to create an ensemble
representation52. Supported by theoretical analysis, this Ensemble approach has
been demonstrated to guarantee a convergence and in a faster rate in comparison
to standard Nyström method52. Moreover, this ensemble algorithm naturally fits
within distributed computing environments, where their computational costs are
roughly the same as that of the standard Nyström single sampling method.

We treat each approximation generated by the Nyström method using k
landmarks as an expert and combined p ≥ 1 such experts to derive an improved
approximation, typically more accurate than any of the original experts52.

The ensemble setup is defined as follows. Given a dataset X 2Rn ´m of n cells.
Each expert Sj receives k landmarks randomly selected from matrix X using
density-based sampling approach without replacement. Each expert Sr, r 2 ½1; p� is

then used to define the low-dimension embedding ~Uj 2R
n ´ r as described above.

For each low-dimension embedding ~Uj 2R
n ´ r , we create a KNN-graph as ~Gj .

Thus, the general form of the approximation, ~G
en
, generated by the ensemble

Nyström method is

~G
en

¼
Xp

j¼1

μj ~G
j

ð13Þ

Here we choose to use the most straightforward method by assigning an equal
weight to each of the KNN-graph obtained from different samplings,
μj ¼ 1=p; r 2 ½1; p�. While this choice ignores the relative quality of each Nyström
approximation, it is computational efficient and already generates a solution
superior to any one of the approximations used in the combination. Using the

ensemble weighted KNN-graph ~G
en
, we next apply community finding algorithm

to identify cell clusters. By testing on the mouse atlas dataset8, we demonstrate that
the clustering stability of the ensemble approach is significantly higher than the
standard Nyström method (Supplementary Fig. 5d).

Visualization. We use the t-SNE implemented by FI-tsne, Rtsne or UMAP
(umap_0.2.0.0) to visualize and explore the dataset.

Gene accessibility score. To annotate the identified clusters, SnapATAC calculated
the gene-body accessibility matrix G using “calGmatFromMat” function in Sna-
pATAC packge where Gi,j is the number of fragments overlapping with jth genes in

i-th cell. Gi,j is then normalized to CPM (count-per-million reads) as ~G. The
normalized accessibility score is then smoothed using Markov affinity-graph-based
method:

Ĝ ¼ ~GA
t

ð14Þ

where A is the adjacent matrix obtained from K-nearest neighbor graph and t is
number of steps taken for Markov diffusion process. We set t= 3 in this study.
Please note that the gene accessibility score is only used to guide the annotation of
cell clusters identified using cell-by-bin matrix. The clusters are identified using
cell-by-bin matrix in prior.

Read aggregation and peak calling. After annotation, cells from the same cluster are
pooled to create aggregated signal for each of the identified cell types. This allows
for identifying cis-elements from each cluster. MACS2 (version 2.1.2) is used for
generating signal tracks and peak calling with the following parameters:
“–nomodel–shift 100–ext 200–qval 1e-2 -B –SPMR”. This can be done by “run-
MACS” function in SnapATAC package.

Motif analysis. SnapATAC incorporates chromVAR15 to estimate the motif
variability and Homer22 for de novo motif discovery. This is implemented as
function “runChromVAR” and “runHomer” in SnapATAC package.

Identification of differentially accessible peaks. For a given group of cells Ci, we first
look for their neighboring cells Cj (jCij ¼ jCjj) in the low-dimension manifold as

“background” cells to compare to. If Ciaccounts for more than half of the total cells,
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we use the remaining cells as local background. Next, we aggregate Ci and Cj to
create two raw-count vectors as Vci and Vcj. We then perform differential analysis
between Vci and Vcj using exact test as implemented in R package edgeR (v3.18.1)
with BCV= 0.1. P-value is then adjusted into False Discovery Rate (FDR) using
Benjamini–Hochberg correction. Peaks with FDR less than 0.05 are selected as
significant DARs.

GREAT analysis. SnapATAC incorporates GREAT analysis27 to infer the candidate
biological pathway active in each cell populations. This is implemented as function
“runGREAT” SnapATAC package.

Integration with single-cell RNA-seq. We use canonical correlation analysis
(CCA) embedded in Seurat V319 to integrate single-cell RNA-seq and single-cell
ATAC-seq. We first calculate the gene accessibility account at variable genes
identified using single-cell RNA-seq dataset. This can be done using a function
called “createGmatFromMat” in SnapATAC package. Next, SnapATAC converts
the snap object to a Seurat v3 object using a function called “SnapToSeurat” in
preparation for integration. Different from integration method in Seurat, we use
the low-dimension manifold as the dimensionality reduction method in the Seurat
object. We next follow the vignette in Seurat website (https://satijalab.org/seurat/
v3.0/atacseq_integration_vignette.html) to integrate these two modalities. The cell
type for scATAC-seq is predicted using function “TransferData” in Seurat V3.

Finally, for each single-cell ATAC profile, we infer its gene expression profile by
calculating the weighted average expression profile of its nearest neighboring cells
in the single-cell RNA-seq dataset19. By doing so, we create pseudo-cells that
contain information of both chromatin accessibility and gene expression profiles.
The imputation of gene expression profile is done by “TransferData” function in
Seurat V3.

Linking enhancers to putative target genes. Using the “pseudo” cells, we next
sought to predict the putative target genes for regulatory elements based on the
association between expression of a gene and chromatin accessibility at its
enhancer elements. Given a gene G, we first identify its surrounding regulatory
elements within 1MB window flanking G. Let YG be the imputed gene expression
value for gene G among n cells. We perform logistic regression using YG as variable
to predict the binary state for each of peaks surrounding G. The idea behind using
logistic regression is that if there is a relationship between the gene expression
(continuous variable) and chromatin accessibility (categorical variable), we should
be able to predict chromatin accessibility from the gene expression. Logistic
regression does not make many of the key assumptions such as normality of the
continuous variables. In addition, since we only have one variable (gene expres-
sion) for prediction every time, there is no problem of multicollinearity.

We next fit logistic regression between each of flanking peak and gene
expression using “glm” function in R with binomial(link= ‘logit’) as the family
function. By doing so, we obtain the regression coefficient β1 and its corresponding
P-value for each peak separately. Here we used 5e-8, a standard P-value cutoff for
human genome-wise association study to determine the significant association.
While this cutoff is less sample or gene specific compared to more complicated
methods such as permutation test, it is computational efficient and already
generates a reasonable set of gene–enhancer pairings.

To evaluate the performance of our methods, we compare our prediction with
cis-eQTL derived from interferon-γ and lipopolysaccharide stimulation of
monocytes29. Significant cis-eQTL associations are downloaded from
supplementary material in Fairfax (2014)29. We filter cis-eQTL based on two
criteria: (1) only cis-eQTLs that overlap with the peaks identified in PBMC dataset
are considered; (2) In addition, we only keep the cis-eQTLs whose genes overlap
with the variable genes determined by scRNA-seq. This filtering reduced the cis-
eQTL list to 456 candidates.

Next, we estimate the association for each of cis-eQTLs by preforming logistic
regression test as described above. To make a comparison, we derive a set of
negative pairs matched for the distance. The negative control pairs for cis-eQTL are
chosen in the following manner to control for both distance and chromatin
accessibility: for each positive eQTL pair pij which connects gene i and enhancer j
with a distance of dij, we look for the enhancer k on the opposite direction of the
gene i that minimizes | dij � diz |. By doing so, the negative sets are controlled for

distance, chromatin accessibility level and gene expression level.

Simulation of scATAC-seq datasets. First, we download the alignment files (bam
files) for ten bulk ATAC-seq experiment from ENCODE (data source listed in
Supplementary Table 2). From each bam file, we simulate 1000 single-cell ATAC-
seq datasets by randomly down sampling to a variety of coverages ranging from
1000 to 10,000 reads per cells. We next create a cell-by-bin matrix of 5 kb which is
used for SnapATAC clustering. Merging peaks identified from each bulk experi-
ment, we create cell-by-peak matrix used for LSA, Cis-Topic, Cicero, and
chromVAR for clustering. We repeat the sampling for n= 10 times to estimate the
variability of the clustering.

Comparison of scalability. To compare the scalability between SnapATAC to
other methods, we next simulate multiple datasets of different number of cells

ranging from 20k to 1M. These datasets are simulated in the following manner.
Using the 80k mouse atlas dataset, we randomly sample this dataset to different
number of cells ranging from 20k t0 1 M cells. For the sampling that has cells more
than 80 K, we sample with replacement and introduce perturbation to each cell by
randomly removing 1% of the “1”s in each of the cells. This removes the duplicate
cells and largely maintains the density of the matrix.

For each sampling, we then perform dimensionality reduction using LSA and
cis-Topic and compare their CPU running time. Specifically, we monitor the
running time for (1) TF-IDF transformation and Singular Value Decomposition
(SVD) for LSA, (2) function “runModels” with topics= c(2, 5, 10, 15, 20, 25, 30, 35,
40) and “selectModel” function in cis-Topic. The time for matrix loading is not
counted.

All the comparisons were tested on a machine with 5 AMD Operon (TM)
Processor 6276 CPUs.

Doublets detection using scrublet. To identify doublets from secondary motor
cortex single-nucleus ATAC-seq datasets, we use single-cell RNA-seq doublets
detection algorithm Scrublet37. Briefly, Scrublet identifies doublets in the following
manner: (1) Scrublet performs normalization, gene filtering, and principal com-
ponents analysis (PCA) to project the high-dimension data to a low-dimension
space; (2) Scrublet simulates doublets by adding the unnormalized counts from
randomly sampled observed transcriptomes; (3) the simulated doublets are pro-
jected to the low-dimension embedding computed in step 1. The more neighbors of
a cell are the simulated doublets, the more likely this cell is a “doublet”. Based on
this idea, a KNN classifier was then used to estimate the doublet score for each cell.

Since Scrublet was designed for detecting doublets in single-cell RNA-seq, it is
unclear whether it can be used for single-cell ATAC-seq. To examine this, we
applied Scrublet to a single-cell ATAC-seq dataset of mixed human and mouse
cells where the “ground-truth” doublets can be identified based on the alignment
ratio to human and mouse genome. Compared to the ground truth, Scrubet can
identify over 90% of the doublets in this dataset with ~90% accuracy
(Supplementary Fig. 26). This result suggests that although Scrubet was not
developed for detecting doublets in single-cell ATAC-seq, it can find the doublets
in scATAC-seq dataset with reasonable accuracy and sensitivity.

Projection of single-cell ATAC-seq datasets to reference atlas. We reason that
landmark-extension algorithm can provide a mean to project new single-cell

ATAC-seq datasets to a reference atlas. Given a query dataset Y 2Rl ´m that
contains l query cells with m bins and a reference dataset X 2Rn ´m with n
reference cells of m bins. We first randomly sample k= 10,000 landmarks from X
as described above. Next, we compute the pairwise similarity using normalized

Jaccard coefficient for k landmarks as Nkk 2Rk´ k and obtain the low-dimension

manifold Uk 2Rk´ r . We then compute Nlk 2Rl ´ k which estimates the similarity
between l query cells and k landmark cells, and then project the l query cells to the
embedding precomputed for k landmark cells as following:

Al ¼ ðDlÞ�
1
2ðUkÞðDkÞ�

1
2 ð15Þ

where Dl 2 Rl ´ l is a diagonal matrix, which is composed as Dl
i;i ¼

P
j N

l
i;j and

Dk 2Rk´ k is a diagonal matrix which is composed as Dk
i;i ¼

P
j N

k
i;j

Ul ¼ AlUk=Λk ð16Þ

The resulting Ul 2Rl ´ r is the predicted low-dimension manifold for l
query cells.

In the joint embedding space [Uk;Ul], we next identify the mutual nearest
neighbors between query and landmark cells. For each cell i1 2 Xk belonging to the
landmarks, we find the k.nearest (5) cells in the query dataset with the smallest
distances to i1. We do the same for each cell in query cell dataset to find its k.
nearest (5) neighbors in the landmark dataset. If a pair of cells from each dataset is
contained in each other’s nearest neighbors, those cells are considered to be mutual
nearest neighbors or MNN pairs (or “anchors”). We interpret these pairs as
containing cells that belong to the same cell type or state despite being generated in
both landmark and query cells. Thus, any differences between cells in MNN pairs
should theoretically represent the nonoverlapping cell types. Here we removed any
query cells that failed to identify an MNN pair correspondence in the reference
dataset.

To make a classification of the remaining query cells according to the reference
dataset, we next apply the neighborhood-based classifier and wish to highlight the
pioneering work by Seurat V319. First, we score each anchor (or MNN pair) using
shared nearest neighbor (SNN) graph by examining the consistency of edges
between cells in the same local neighborhood as described in the original study19.
Second, we define a weight matrix that estimates the strength of association
between each query cell c, and each landmark i. For each query cell c, we identify
the nearest s landmarks in the reference dataset in the joint embedding space.
Nearest anchors are then weighted based on their distance to the cell c over the
distance to the s-th anchor cell. For each cell c and anchor i, we compute the
weighted similarities as:

Dc;i ¼ 1�
distðc; aiÞ

distðc; asÞ

� �
Sai ð17Þ
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where distðc; iÞ is the Euclidean distance in the joint embedding space and Sai is the
weight for the corresponding MNN pair (anchor). We then normalize the
similarity using exponential function:

fDc;i ¼ 1� e

�Dc;i

2
sdð Þ

2 ð18Þ

where sd is set to 1 by default. Finally, we normalize across all s anchors:

Wc;i ¼
fDc;iPj¼s
1
fDc;j

ð19Þ

Here we set s= 50. Please note that the similarity to cells beyond the sth anchor
neighbor is set to be zero.

Let L 2Rk´ t be the binary label matrix for k landmarks with t clusters. Li;j ¼ 1

indicates the class label for ith landmark cell is j-th cluster. The row sum of L must
be 1, suggesting each landmark cell can only be assigned to one cluster label. We
then compute label predictions for query cells as Pl:

Pl ¼ WL ð20Þ

The resulting Pl is a probability matrix within 0 and 1, Pl
i;j indicates the

probability of a cell i belong to j cluster. Similarly, we infer the t-SNE position of
query cells by replacing L with t-SNE coordinates of reference points. It is
important to note that the distance between cells in the inferred t-SNE coordinate
does not neccessarily reflect the cell-to-cell relationship.

Tissue collection and nuclei isolation. Adult C57BL/6 J male mice were pur-
chased from Jackson Laboratories. Brains were extracted from P56-63 old mice and
immediately sectioned into 0.6-mm coronal sections, starting at the frontal pole, in
ice-cold dissection media. The secondary motor cortex (MOs) region was dissected
from the first three slices along the anterior-posterior axis according to the Allen
Brain reference Atlas (http://mouse.brain-map.org/, see Supplementary Fig. 15a for
depiction of posterior view of each coronal slice; dashed line highlights the MOs
regions on each slice). Slices were kept in ice-cold dissection media during dis-
section and immediately frozen in dry ice for posterior pooling and nuclei pro-
duction. For nuclei isolation, the MOs dissected regions from 15–23 animals were
pooled, and two biological replicates were processed for each slice. Nuclei were
isolated as described in previous studies53,54, except no sucrose gradient purifica-
tion was performed. Flow cytometry analysis of brain nuclei was performed as
described in Luo et al.53. Animal protocols were approved by the Salk Institute
Institutional Animal Care and Use Committee. Animal ethics approval has been
obtained for the mouse study.

Tn5 transposase purification and loading. Tn5 transposase was expressed as an
intein chitin-binding domain fusion and purified using an improved version of the
method first described by Picelli et al.55. T7 Express lysY/I (C3013I, NEB) cells were
transformed with the plasmid pTXB1-ecTn5 E54K L372P (#60240, Addgene)55. An
LB Ampicillin culture was inoculated with three colonies and grown overnight at
37 °C. The starter culture was diluted to an OD of 0.02 with fresh media and shaken
at 37 °C until it reached an OD of 0.9. The culture was then immediately chilled on
ice to 10 °C and expression was induced by adding 250 μM IPTG (Dioxane Free,
CI8280-13, Denville Scientific). The culture was shaken for 4 h at 23 °C after which
cells were harvested in 2 L batches by centrifugation, flash frozen in liquid nitrogen
and stored at −80 °C. Cell pellets were resuspended in 20ml of ice-cold lysis buffer
(20mM HEPES 7.2-KOH, 0.8M NaCl, 1 mM EDTA, 10% Glycerol, 0.2% Triton
X-100) with protease inhibitors (Complete, EDTA-free Protease Inhibitor Cocktail
Tablets, 11873580001, Roche Diagnostics) and passed three times through a
Microfluidizer (lining covered with ice water, Model 110 L, Microfluidics) with a
5min cool down interval in between each pass. Any remaining sample was purged
from the Microfluidizer with an additional 25ml of ice-cold lysis buffer with pro-
tease inhibitors (total lysate volume ~50ml). Samples were spun down for 20min in
an ultracentrifuge at 125K × g (L-80XP, 45 Ti Rotor, Beckman Coulter) at 4 °C.
~45ml of supernatant was combined with 115ml ice-cold lysis buffer with protease
inhibitors in a cold beaker (total volume= 160ml) and stirred at 4 °C. 4.2 ml of 10%
neutralized polyethyleneimine-HCl (pH 7.0) was then added dropwise. Samples
were spun down again for 20min in an ultracentrifuge at 125K × g (L-80XP, 45 Ti
Rotor, Beckman Coulter) at 4 °C. The pooled supernatant was loaded onto ~10ml
of fresh Chitin resin (S6651L, NEB) in a chromatography column (Econo-Column
(1.5 × 15 cm), Flow Adapter: 7380015, Bio-Rad). The column was then washed with
50–100ml lysis buffer. Cleavage of the fusion protein was initiated by flowing
~20ml of freshly made elution buffer (20mM HEPES 7.2-KOH, 0.5M NaCl, 1 mM
EDTA, 10% glycerol, 0.02% Triton X-100, 100mM DTT) onto the column at a
speed of 0.8 ml/min for 25min. After the column was incubated for 63 h at 4 °C, the
protein was recovered from the initial elution volume and a subsequent 30ml wash
with elution buffer. Protein-containing fractions were pooled and diluted 1:1 with
buffer [20mM HEPES 7.2-KOH,1mM EDTA, 10% glycerol, 0.5 mM TCEP) to
reduce the NaCl concentration to 250mM. For cation exchange, the sample was
loaded onto a 1 ml column HiTrap S HP (17115101, GE), washed with Buffer A
(10mM Tris 7.5, 280mM NaCl, 10% glycerol, 0.5 mM TCEP) and then eluted using
a gradient formed using Buffer A and Buffer B (10mM Tris 7.5, 1M NaCl, 10%

glycerol, 0.5 mM TCEP) (0% Buffer B over 5 column volumes, 0–100% Buffer B
over 50 column volumes, 100% Buffer B over 10 column volumes). Next, the
protein-containing fractions were combined, concentrated via ultrafiltration to
~1.5 mg/mL and further purified via gel filtration (HiLoad 16/600 Superdex 75 pg
column (28989333, GE)) in Buffer GF (100 mM HEPES-KOH at pH 7.2, 0.5M
NaCl, 0.2 mM EDTA, 2mM DTT, 20% glycerol). The purest Tn5 transposase-
containing fractions were pooled and 1 volume 100% glycerol was added to the
preparation. Tn5 transposase was stored at −20 °C.

To generate Tn5 transposomes for combinatorial barcoding assisted single-
nucleus ATAC-seq, barcoded oligos were first annealed to pMENTs oligos (95 °C
for 5 min, cooled to 14 °C at a cooling rate of 0.1 °C/s) separately. Next, 1 µl
barcoded transposon (50 µM) was mixed with 7 ul Tn5 (~7 µM). The mixture was
incubated on the lab bench at room temperature for 30 min. Finally, T5 and T7
transposomes were mixed in a 1:1 ratio and diluted 1:10 with dilution buffer (50%
Glycerol, 50 mM Tris-HCl (pH= 7.5), 100 mM NaCl, 0.1 mM EDTA, 0.1% Triton
X-100, 1 mM DTT). For combinatorial barcoding, we used eight different T5
transposomes and 12 distinct T7 transposomes, which eventually resulted in 96
Tn5 barcode combinations per sample7 (Supplementary Table 4). Library quality
control for single-nucleus ATAC-seq can be found in Supplementary Table 3.

Bulk ATAC-seq data generation and analysis. ATAC-seq was performed on
30,000–50,000 nuclei. Nuclei were thawed on ice and pelleted for 5 min at 500 × g
at 4 °C. Nuclei pellets were resuspended in 30 µl tagmentation buffer (36.3 mM
Tris-acetate (pH= 7.8), 72.6 mM K-acetate, 11 mM Mg-acetate, 17.6% DMF) and
counted on a hemocytometer. 30,000–50,000 nuclei were used for tagmentation
and the reaction volume was adjusted to 19 µl using tagmentation buffer. After
addition of 1 µl TDE1 (Illumina FC-121-1030), tagmentation was performed at
37 °C for 60 min with shaking (500 rpm). Tagmented DNA was purified using
MinElute columns (Qiagen), PCR-amplified for eight cycles with NEBNext® High-
Fidelity 2X PCR Master Mix (NEB, 72 °C 5min, 98 °C 30 s, [98 °C 10 s, 63 °C 30 s,
72 °C 60 s] × 8 cycles, 12 °C held). Amplified libraries were purified using MinElute
columns (Qiagen) and SPRI Beads (Beckmann Coulter). Sequencing was carried
out on a NextSeq500 using a 150-cycle kit (75 bp PE, Illumina).

Bulk ATAC-seq reads were mapped to reference genome mm10 using BWA
and samtools version 1.2 to eliminate PCR duplicates and mitochondrial reads. The
paired-end read ends were converted to fragments. Using fragments, MACS226

version 2.1.2 was used for generating signal tracks and peak calling with the
following parameters:–nomodel–shift 100–ext 200–qval 1e-2 -B –SPMR. Library
quality control for bulk ATAC-seq can be found in Supplementary Table 5.

Single-nucleus ATAC-seq data generation. Combinatorial barcoding single
nucleus ATAC-seq was performed as described previously with modifications5,7. In
detail, for each sample two biological replicates were processed. Nuclei were pel-
leted with a swinging bucket centrifuge (500 × g, 5 min, 4 °C; 5920 R, Eppendorf).
Nuclei pellets were resuspended in 1 ml nuclei permeabilization buffer (5% BSA,
0.2% IGEPAL-CA630, 1 mM DTT and cOmpleteTM, EDTA-free protease inhi-
bitor cocktail (Roche) in PBS) and pelleted again (500 × g, 5 min, 4 °C; 5920 R,
Eppendorf). Nuclei were resuspended in 500 µL high salt tagmentation buffer (36.3
mM Tris-acetate (pH= 7.8), 72.6 mM potassium-acetate, 11 mM Mg-acetate,
17.6% DMF) and counted using a hemocytometer. Concentration was adjusted to
4500 nuclei/9 µl, and 4500 nuclei were dispensed into each well of a 96-well plate.
Glycerol was added to the leftover nuclei suspension for a final concentration of
25% and nuclei were stored at −80 °C. For tagmentation, 1 µL barcoded Tn5
transposomes7,55 (Supplementary Table 4) were added using a BenchSmart™ 96
(Mettler Toledo), mixed five times and incubated for 60 min at 37 °C with shaking
(500 rpm). To inhibit the Tn5 reaction, 10 µL of 40 mM EDTA were added to each
well with a BenchSmart™ 96 (Mettler Toledo) and the plate was incubated at 37 °C
for 15 min with shaking (500 rpm). Next, 20 µL 2 × sort buffer (2% BSA, 2 mM
EDTA in PBS) were added using a BenchSmart™ 96 (Mettler Toledo). All wells
were combined into a FACS tube and stained with 3 µM Draq7 (Cell Signaling)
(Supplementary Fig. 27). Using a SH800 (Sony), 20 nuclei were sorted per well into
eight 96-well plates (total of 768 wells) containing 10.5 µL EB (25 pmol primer i7,
25 pmol primer i5, 200 ng BSA (Sigma)7. Preparation of sort plates and all
downstream pipetting steps were performed on a Biomek i7 Automated Work-
station (Beckman Coulter). After addition of 1 µL 0.2% SDS, samples were incu-
bated at 55 °C for 7 min with shaking (500 rpm). We added 1 µL 12.5% Triton-X to
each well to quench the SDS and 12.5 µL NEBNext High-Fidelity 2× PCR Master
Mix (NEB). Samples were PCR-amplified (72 °C 5min, 98 °C 30 s, (98 °C 10 s, 63 °
C 30 s, 72 °C 60 s) × 12 cycles, held at 12 °C). After PCR, all wells were combined.
Libraries were purified according to the MinElute PCR Purification Kit manual
(Qiagen) using a vacuum manifold (QIAvac 24 plus, Qiagen) and size selection was
performed with SPRI Beads (Beckmann Coulter, 0.55× and 1.5×). Libraries were
purified one more time with SPRI Beads (Beckmann Coulter, 1.5×). Libraries were
quantified using a Qubit fluorimeter (Life technologies) and the nucleosomal
pattern was verified using a Tapestation (High Sensitivity D1000, Agilent). The
library was sequenced on a HiSeq2500 sequencer (Illumina) using custom
sequencing primers, 25% spike-in library and following read lengths: 50+ 43+
40+ 50 (Read1+ Index1+ Index2+ Read2)7.
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw and processed data generated in this study have been deposited to NCBI Gene
Expression Omnibus with the accession number GSE126724. Any data that support the
findings of this study beyond what is included in the Supplementary Information are
available from the corresponding author upon request. Please note that the information
on where previously published data used within this study can be found in
Supplementary Table 1. Source data are provided with this paper.

Code availability
The scripts and pipeline for the analysis can be found at https://github.com/r3fang/
SnapATAC.
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