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Improved identification of structural variants (SVs) in cancer can lead to more targeted and effective treatment options as

well as advance our basic understanding of the disease and its progression. We performed whole-genome sequencing of the

SKBR3 breast cancer cell line and patient-derived tumor and normal organoids from two breast cancer patients using

Illumina/10x Genomics, Pacific Biosciences (PacBio), and Oxford Nanopore Technologies (ONT) sequencing. We then in-

ferred SVs and large-scale allele-specific copy number variants (CNVs) using an ensemble of methods. Our findings show

that long-read sequencing allows for substantially more accurate and sensitive SV detection, with between 90% and 95% of

variants supported by each long-read technology also supported by the other. We also report high accuracy for long reads

even at relatively low coverage (25×–30×). Furthermore, we integrated SV and CNV data into a unifying karyotype-graph

structure to present a more accurate representation of the mutated cancer genomes. We find hundreds of variants within

known cancer-related genes detectable only through long-read sequencing. These findings highlight the need for long-read

sequencing of cancer genomes for the precise analysis of their genetic instability.

[Supplemental material is available for this article.]

Somatic mutations that drive cancer development range across all

genomic scales, from single-nucleotide variants through large-

scale genome rearrangements, and have been observed in nearly

all types of cancer at every stage of the disease progression

(Martincorena and Campbell 2015). Better detection, quantifica-

tion, and reconciliation of mutation types in cancer samples can

lead to a better understanding of disease progression and help im-

prove existing and develop new, often patient-specific, therapeutic

approaches for the disease (Baudino 2015). Furthermore, improve-

ments in detecting germline genetic variants in healthy cells can

allow for better risk assessment of bothhereditary and denovomu-

tations of various cancer types, leading to a more proactive rather

than reactive cancer treatment approach (Nielsen et al. 2016).

Our ability to detect genetic alterations has evolved over the

last several decades. Prior to the completion of the Human

Genome Project, only a small handful of oncogenes or tumor sup-

pressors were known (Taparowsky et al. 1982; Li et al. 1997). Large-

scale detection of cancermutations began around the year 2000 af-

ter the initial sequencing of the human genome using either mi-

croarrays (Schena et al. 1995; Perou et al. 2000) or PCR

amplification of known cancer-related genes sequenced on low-

throughput ABI capillary instruments (Fearon and Vogelstein

1990). In the late-2000s, the advent of Solexa, which later became

Illumina, second-generation sequencing instruments accelerated

the pace of discovery so that whole cancer genomes could be se-

quenced for the first time (Ley et al. 2008; Pleasance et al. 2010).

Since then, the improvements in the throughput and cost of

whole-genome sequencing (WGS) and whole-exome sequencing

(WES) (Hodges et al. 2007) have made these technologies increas-

ingly important in cancer studies, opening the door to widespread

sequencing of patients, and the advancement of precision and per-

sonalized medicine. Within The Cancer Genome Atlas project

(TCGA) (The Cancer Genome Atlas Research Network et al.

2013), the International Cancer Genome Consortium (ICGC)

(Zhang et al. 2011), and other large-scale efforts, several thousands

of tumors have been sequenced using short-read Illumina se-

quencing across dozens of major cancer types. These studies

have had a tremendous impact in cancer genomics, leading to

the discovery, for example, of different signatures and mutation

rates across cancer types andnew insights into the clonal structural

and evolution of tumors (Yates and Campbell 2012; Alexandrov

et al. 2013; Schwartz and Schäffer 2017).

These results have substantially advanced our understanding

of cancer susceptibility and progression, although the identifica-

tion and understanding of the genetic alterations in cancer remain

incomplete. A major contributor to our incomplete knowledge is

that the known mutations have chiefly been detected using

short-read Illumina sequencing (Goodwin et al. 2016). This
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technology is very effective for identifying single-nucleotide vari-

ants (SNVs) and large copy number variants (CNVs, especially

those 100 kb or larger), however, several studies have found it

has poor accuracy for structural variant (SV) detection (Sedlazeck

et al. 2018b; Chaisson et al. 2019; Zook et al. 2020). SVs are larger

mutations, 50 bp or larger, where sequence is added, removed, or

rearranged in the genome. Because of the short-read lengths,

Illumina sequencing is difficult to map across SV breakpoints, es-

pecially insertions that are not present in the reference genome.

Furthermore, SVs are frequently flanked by repetitive sequences

so that the short-read sequence data often cannot be unambigu-

ouslymapped back to its correct genomic position and de novo as-

sembly techniques also fail to capture the novel sequences

(Chaisson et al. 2019). Consequently, short-read analysis algo-

rithms systematically fail to detect SVs, with false negative and

false positive rates that can exceed 50% (Huddleston et al. 2017;

Sedlazeck et al. 2018a; Chaisson et al. 2019). As a result, we are fac-

ing a major limitation with short-read sequencing studies of can-

cer where the field has systematically missed many important

variants, potentially making it blind to entire classes of inherited

genetic risk factors and blind to how SVs may mediate cancer pro-

gression and patient survival.

New long-read, single-molecule sequencing technologies

from Pacific Biosciences (PacBio) and Oxford Nanopore

Technologies (ONT) have been shown to more reliably identify

SVs with substantial improvements to both sensitivity and specif-

icity. Reports by several groups have found a typical healthy hu-

man genome contains approximately 20,000 SVs, and that they

can be detected with 95% or greater sensitivity and specificity

with long reads (Sedlazeck et al. 2018b; Audano et al. 2019; De

Coster et al. 2019). These variants are especially important to accu-

rately identify for somatic mutations that are not in linkage dise-

quilibrium with any nearby SNVs. A total of 748 genes have

been identified that are inaccessible to short-read sequencing

(Ebbert et al. 2019), including 193 medically relevant genes with

at least one exon that cannot be sequenced with short reads, but

are accessible to long reads (Mandelker et al. 2016; Wenger et al.

2019). Long reads also have improved power to resolve complex re-

gions of the human genome, such as the highly variablemajor his-

tocompatibility complex (MHC) or the lipoprotein(a) (LPA) gene

sequence, and in some cases, identified causative SVs underlying

genetic disease that had been missed by short reads (Merker et al.

2018; Miao et al. 2018).

Within cancer genetics, we previously published one of the

first reports using PacBio long-read sequencing to study SVs in a

cancer cell line genome and found that long reads could detect

tens of thousands of variants that had been missed by short reads

(Nattestad et al. 2018; Sedlazeck et al. 2018b). This included vari-

ants in known cancer genes such as ERBB2 (also known as

HER2), APOBEC3B, and CDH1, as well as dozens of novel gene fu-

sions and other complex rearrangements that had substantially al-

tered the expression and regulation of genes in the cell. Since this

work, the cost and quality of third-generation sequencing plat-

formsmake themmore suitable than ever before in both academic

and medical settings (De Coster et al. 2019; Sone et al. 2019) and

thus require the improvement of existing and the development

of new methods for mutation detection and analysis.

Here, we aim to provide a comprehensive analysis of the

SKBR3 breast cancer cell line and patient-derived organoids repre-

senting tumor and matching normal cells from two breast cancer

patients sequenced with ONT, PacBio, and Illumina/10x

Genomics (10xG) third-generation sequencing technologies,

building on the sequencing of SKBR3 with PacBio and Illumina

we previously performed (Nattestad et al. 2018). We identify and

reconcile different types of large-scale genomic mutations in ob-

served samples with an ensemble of methods and highlight con-

cordance and differences observed across different mutation

inference methods and sequencing technologies, with the goal

of identifying which technologies andmethods are best able to re-

liably detect large-scale variation in cancer.

Results

Sample identification and sequencing

Building on our previous work, we first evaluated the widely stud-

ied SKBR3 breast cancer cell line. SKBR3 is one of the most widely

studied ERBB2+ breast cancer cell lines, with applications ranging

from basic to preclinical research (Neve et al. 2006; Lewis Phillips

et al. 2008; Navin et al. 2011; Ichikawa et al. 2012). SKBR3was cho-

sen for this study because of its importance as a basic research

model for cancer and because the SKBR3 genome contains many

of the common features of cancer alterations, including a number

of gene fusions, oncogene amplifications, and extensive rearrange-

ments. We previously sequenced this cell line using short-read

paired-end Illumina and long-read PacBio sequencing (Nattestad

et al. 2018); here, we additionally examine 10x Genomics Linked

Reads and Oxford Nanopore sequencing for this sample (Fig. 1A;

Methods).

In addition, we sequenced tumor and normal patient-derived

organoids from two breast cancer patients, here identified as pa-

tient 51 and patient 48, treated at Northwell Health and recruited

in accordance with their Institutional Review Board protocol

(Methods). Patient-derived organoids are three-dimensional cul-

tures of normal and cancer cells, propagated inside a basement-

membrane extract matrix, overlaid with a growth-factor-rich

growth medium tailored toward the origin of the individual tissue

(Sachs et al. 2018). The organoids were generated from cells har-

vested from surgical specimens from the patients and hence share

the same genetic composition as the patient normal and tumor

cells, with an estimated tumor purity of 0.98 (Methods). This al-

lows for us to propagate the cells in a stable environment so that

ample quantities of DNA were available for our three sequencing

platforms (Fig. 1A). Furthermore, several studies have shown orga-

noids are superior to standard 2D cell culture for recapitulating the

molecular characteristics, physiology, and treatment response of

patient tissues (Clevers 2016), allowing us to performmethylation

analysis, RNA-seq, and other assays on the samples.

Improved sensitivity and high concordance in structural variation

inference with ONT and PacBio long reads

Using these data (Fig. 1B,C; Supplemental Fig. 1), we then used an

ensemble of methods to infer all types of SVs at least 50 bp in size,

including insertions, deletions, inversions, translocations, and du-

plications. For both the ONT and PacBio data sets, we used two

state-of-the-art methods, Sniffles (Sedlazeck et al. 2018b) and

PBSV (https://github.com/PacificBiosciences/pbsv), and for the

Illumina/10xG data set, we used six SV inference methods, with

three—LUMPY (Layer et al. 2014), Manta (Chen et al. 2016), and

SvABA (Wala et al. 2018)—designed for regular paired-end short

Illumina reads, and three—NAIBR (Elyanow et al. 2018),

GROC-SVs (Spies et al. 2017), and LongRanger (Zheng et al.

2016)—which also use the single-molecule 10xGbarcode informa-

tion.We then iterativelymerged SVs using the SURVIVOR (Jeffares
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et al. 2017) package, first merging calls from all SV detectionmeth-

ods for each sequencing technology separately and then merging

across sequencing technologies to obtain sample-specific SV call

sets (Fig. 2A).

Because SVs inferred from paired-end short reads have higher

rates of false positives (Sudmant et al. 2015;Huddleston et al. 2017;

Sedlazeck et al. 2018b), for the Illumina/10xG data set we only

considered SVs supported by at least two methods. To mitigate

false positives in the long-read SV calls, we only report SVs that

were supported by at least one-quarter of the average alignment

read depth in either ONT or PacBio data sets (coverage require-

ments are discussed below). During the merging, we optimize pa-

rameters to minimize the effects of small thresholding issues, such

as a variant present in 10 reads in one sample, and hence called as a

variant, but only nine reads in the other, and hence not called (for

details, see Methods). Our results indicate a very strong concor-

dance between SVs inferred with ONT and PacBio. Between 90%

and 95% of variants called in at least one of the long-read data

types were supported by both, with slightly lower concordance be-

tween PacBio-only calls (Fig. 2B; Supplemental Fig. 2A,C).

Although >50% of SVs inferred from short-read data were also

identified by long reads, the total quantity of SVs inferred from

short reads, when support from two callers is required, is approxi-

mately four times less than for either of the long-read-based

inferences.

We further examined the concordance between SVs inferred

by individual short-read methods and long-read SVs, and find var-

iable concordance, with some sample/short-read caller combina-

tions having <10% of their SV calls also present in long-read

calls (SupplementalMethods; Supplemental Table 1), highlighting

the necessity of requiring calls from two short-read callers.We also

note that short-read exclusive SVs are often located in areas of ab-

normally high coverage of Illumina/10xG reads compared to es-

sentially uniform coverage for the ONT and PacBio data. These

A

B C

Figure 1. Sample collection, sequencing, and alignment pipeline and statistics overview. (A) Biological data sample collection, sequencing, and align-
ment workflow for SKBR3 breast cancer cell line and 3DMatrigel-grown organoids for solid breast cancer tumor tissues obtained from two females, patient
51 and patient 48. (B) Yield and alignment coverage statistics for observed samples acrossWGS experiments various sequencing platforms. Suffixes T andN
next to patient identifiers indicate tumor or matching normal tissue. Alignment values x (y) represent average read-depth x for aligned reads with (y) rep-
resenting average read depth when all unresolved Ns in the reference are also taken into consideration. (C) Length distribution for reads of length 1.5+ kbp
from PacBio and ONT sequencing runs for patient 51: (raw-yield) lengths of raw sequenced reads; (raw-aligned) lengths of raw reads that had any align-
ment inferred for them; (aligned) lengths of aligned parts of sequenced reads.
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regions account for >60% of short-read exclusive SVs in SKBR3,

and >70% in patient 51 (Supplemental Fig. 9). To examine these

coverage abnormalities, we also considered independently gener-

ated Illumina/10xG, ONT, and regular paired-end Illumina reads

for two additional noncancerous samples, NA12878 and HG002

(Supplemental Methods). From these data, we identified 7228

genomic regions shared across all five samples with abnormally

high coverage of Illumina/10xG reads (Supplemental Table 2;

Supplemental Figs. 13–16). We find that regular paired-end

(non-10xG) Illumina reads do not show coverage abnormalities

to the same degree (Supplemental Figs. 17, 18), suggesting a

10xG-specific amplification artifact. We

additionally note that short-read exclu-

sive SVs often have a nearby long-read

SV of a different type, a previously

described caveat of short-read SV

calls (Sedlazeck et al. 2018b) and/or over-

lap tandem repeats, which are known to

be difficult regions particularly for

short-read alignment (Methods; Supple-

mental Figs. 9–12). In Supplemental

Table 3, we quantify SVs that are support-

ed by either long or long and short reads

and overlap regulatory and functional

genomic regions (Dreos et al. 2013;

Fishilevich et al. 2017). Overall, these re-

sults show that across SVs sizes and types,

long-read-based SV inference outper-

forms that of short reads (Fig. 2C;

Supplemental Fig. 2B).

To quantify the level of patient-spe-

cific and common SVs in both the ob-

served patients and the SKBR3 cancer

cell line, we compared SVs inferred with

multiple sequencing technologies in

the presented study to SVs identified in

15 healthy human genomes sequenced

with PacBio long reads presented in the

recent study by Audano et al. (2019)

and SVs called using the same analysis

pipeline as our patient samples. We find

a high level of agreement between the

SVs themselves (20,116/26,148) and the

distributions of their breakends locations

identified in the cancer samples and the

healthy samples (Supplemental Fig. 3),

and in addition, we examine type and

size distributions (Supplemental Figs. 4–

8). We observe that in SVs identified ex-

clusively with long reads, insertions and

deletions dominate, comprising ∼50%

and 36%, respectively. Duplications

compose only 6% of the long-read exclu-

sive SVs call sets, whereas the inclusion

of SVs inferredwith 2+ short-read SV call-

ers increases that value several fold to

13%–16% in the multitechnology SV

call set. Duplications constitute 71%–

93% of the short-read exclusive SVs.

Inversion and translocation SVs consti-

tute similar fractions in both cancer and

healthy SV sets in either short, long, or

multitechnology SV sets.

For patient 51, both tumor and the matching normal cells

were sequenced, allowing us to perform additional analyses of

somatic variation. We observed that 77% (20,388/26,148) of the

SVs identified in the tumor sample were also identified in the

matching normal sample (Fig. 2B). A high fraction of SVs present

both in the cancer and in the normal cells is expected because

the cancer cells originate from normal tissue. Cancer cells, howev-

er, will generally acquire new mutations, although large deletions

and loss of heterozygosity can potentially decrease the count of in-

herited SVs (Cavenee et al. 1983). We also observed that for SVs

A

B

C

Figure 2. Structural variation inference across Illumina/10xG, ONT, and PacBio sequencing platforms
for sample 51. (A) Ensemble workflow for SV inference, with multiple methods and technologies used to
infer SVs, subsequent merging of, first method-specific results, and then technology-specific results, with
size and support restrictions applied. (B) SV inference comparison across SVs inferred from platform (x)
sequencing experiments, in which “platform” corresponds to sequencing technology, and (x) deter-
mines the average alignment read-depth coverage in the tumor sample. Methods-specific breakdown
is provided for every sequencing technology. SVs detected in the normal sample are in parentheses.
(C) Size distribution for SVs in sample 51Twith SVs being either exclusively inferred fromeither long reads
(either ONT, or PacBio, or both), or exclusively from Illumina/10xG short reads, or supported by both
long and short reads.
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called exclusively by short reads in 51T, only ∼11% (291/2683) are

also identified in thematchingnormal cells. This is several fold less

than for SVs inferred both exclusively with long reads (88%) and

with both long and short reads (97%), and we attribute this dis-

crepancy to a high false positive rate in short-read SV inference.

We further examined the putatively somatic variants for pa-

tient 51 (present in 51T and not 51N SV calls) and found that of

the 5760 SVs present in the tumor but not normal sample, 3368

are supported by long reads (Fig. 2B; Supplemental Fig. 4). We ex-

amined the size distribution and types of the somatic variants and

found a similar size distribution to the overall SV set, but with

somatic insertions more numerous than deletions relative to the

full SV set (Supplemental Fig. 8). Of the long-read supported

somatic variants, 28 and 470 overlapped promoter and enhancer

regions, respectively, and 161 were exonic (Supplemental Table

3). Following best practices (Hiltemann et al. 2015; Franco et al.

2019), we further refined the somatic variant calls by filtering com-

mon germline variants identified in 15 healthy human PacBio se-

quenced genomes fromAudano et al. (2019) (Supplemental Fig. 8).

By considering variants present in this set as not likely somatic,

this reduced the number of somatic, long-read supported variants

from 3368 to 811, of which 17 and 144 overlapped promoter and

enhancer regions and 61 were exonic (Supplemental Table 3). The

most common somatic SVs are insertions, whichmay be in part at-

tributable to reactivation of transposable elements in cancers, a

phenomenon which has been reported previously (Burns 2017;

Kong et al. 2019).

In addition to the above genomic analysis, we exploited a

unique capability of Nanopore sequencing to identify cytosine

methylation changes from DNA sequencing data without any

additional library preparation (Simpson et al. 2017). Using this ca-

pability, we also examined methylation characteristics within

the observed cancer and normal genomes (Methods). As previous-

ly reported (Hansen et al. 2011), we observed overall genome-wide

hypomethylation in the tumor samples relative to normal

(Supplemental Fig. 26A,B). Although this hypomethylation occurs

genome-wide in the cancer genomes, promoter regions stand out

as an exception to this trend (Supplemental Fig. 26C,D).

Furthermore, promoter regions that had SVs in them showed a

modest enrichment for hypomethylation when compared to pro-

moter regions without SVs (Supplemental Fig. 26E). We also ob-

served trends of similar averaged methylation frequencies

around transcription start sites (TSS) both in cancer and normal

samples (Supplemental Fig. 26F). We also identified several exam-

ples in which SVs located within promoter regions of known

COSMIC genes coincide with methylation changes between nor-

mal and tumor cells in patient 51: (1) An insertion in PRDM1 coin-

cides with hypomethylation of the respective promoter region in

the tumor (Supplemental Fig. 26G); (2) a duplication in the pro-

moter region of ZEB1 coincides with the increased methylation

of the affected area in the tumor genome (Supplemental Fig.

26H); and (3) an insertion in the promoter region of USP6 coin-

cides with the blocking of the TSS demethylation in tumor

(Supplemental Fig. 26I).

Additionally, we used RNA-seq gene expression data ob-

tained from the tumor 51T and the matching normal 51N sam-

ples to investigate the impact of SVs on transcription. For this,

we focused on differences in expression levels of those genes

with SVs present in 51T but not present in 51N or 15 other

healthy samples sequenced with long reads (for details, see

Methods). Overall, we see that duplications and deletions gener-

ally increase and decrease gene expression, respectively, especial-

ly when >50% of the gene sequence is impacted by an SV

(Supplemental Fig. 25A). Although in some examples

(Supplemental Fig. 25B) we observe the SV link to gene expres-

sion change more clearly, there is a considerable range in the ex-

pression levels so that we cannot conclude that the magnitude of

expression changes is solely explained by individual SVs. We

note that SVs of different types that span genes often do not

uniquely determine the copy number changes of the affected ge-

nomic regions owing to the rearranged nature of underlying can-

cer chromosomes. For example, localized deletions within larger

highly amplified regions can still show an overall increase in ge-

nomic copy number and increase in expression.

Overall, our results show that single-molecule long-read se-

quencing is essential for comprehensive SV inference. We further

highlight thatONT and PacBio produce highly concordant results,

thus providing validation of the long-read variant calls. We also

observe that a majority of SVs detected in tumor samples are also

present in both matching normal cells as well as in the union set

of SVs from healthy samples. These observations also underscore

the need for a patient-specific reference genome approach in the

analysis of structural variants and their role in cancer origination

and progression. Finally, our RNA-seq analysis highlights an im-

portant, yet evidently nonexclusive, role that somatic SVs can

play in tumor cells development and progression and thus the im-

portance of SV detection in cancer studies.

Coverage requirements for accurate structural variation inference

with long reads

Because cost remains one of the final barriers for widespread long-

read sequencing of patient genomes, we have measured how ro-

bust the SV inference with either ONT or PacBio reads is to lower

sequencing coverage. For this, we randomly down-sampled our

full coverage data sets to lower coverage levels and then compared

SVs inferred on the down-sampled data sets to the ground truth SV

call sets from the original full coverage data sets. As with all variant

callers, long-read variant callers report variants supported by a cer-

tain minimum number of reads, although the higher error rate for

long-read sequencing potentially makes this analysis more chal-

lenging.Wemeasured this effect by adjusting theminimumnum-

ber of long reads required to span (i.e., support) an SV for it to be

classified as present from one-third to one-fifth of the average

read-depth coverage (Fig. 3A). We found that for both ONT and

PacBio reads, the recall reaches a robust value of >80% and the pre-

cision reaches >90% with 24× to 30× coverage available (Fig. 3B;

Supplemental Fig. 19). Both ONT and PacBio data sets also showed

generally high consistency for minimum read supports, except for

very low coverage data sets (<10×). These observations allow us to

conclude that robust SV detection with single-molecule long-read

sequencing is possible even at relatively lowcoverage levels of 25×–

30× average read depth, with very similar results achievable with

either ONT or PacBio long reads.

Integration and refinement of copy number and structural

variations

With the consensus SV call sets available, we then refined the rear-

ranged structure of the cancer genome for patient 51 through an

integrative analysis of SNVs, CNVs, and SVs. We first analyzed

the short reads to infer large-scale allele-specific CNVs using two

state-of-the-art methods, TitanCNA (Ha et al. 2014) and

HATCHet (Zaccaria and Raphael 2018). As part of the automated

copy number profile inference, both HATCHet and TitanCNA
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have identified a homogeneous composition of the tumor sample

51Twithminimal admixture of normal cells. Tumor purity was es-

timated to be 0.982 and 0.979 by HACTCHet and TitanCNA, re-

spectively. Although these methods provide a genome-wide view

of large CNVs, the haplotype information is lost across both adja-

cent and distant fragments, and smaller (<50 kbp) CNVs are also

often missed. To mitigate these limitations and to incorporate SV

information, we extended our method RCK (Aganezov and

Raphael 2020) to infer a haplotype-specific cancer karyotype-

graph (Methods; Fig. 4B). This approach helps both to refine the

boundaries of large CNVs, predicted by short-read CNV inference

methods, as well as infer smaller CNVs based on the integration of

SV information (Supplemental Fig. 20).

In the new RCK v. 1.1 developed for this project, we added

long-read-based haplotype constraints for SVs breakends

(Methods). Both ONT and PacBio showed similar results in terms

of haplotype grouping multiple SVs’ breakends. As expected,

long reads most commonly introduced 2-breakend (i.e., single

SV) haplotype constraint groups, but also identified several hun-

dreds of 6+-breakend groups (i.e., 3+ SVs), as well as few 20+-break-

end groups in which constraint information could be determined

from multiple overlapping long reads (Fig. 4A).

Running RCK with our comprehensive SV call set along with

either TitanCNA and HATCHet CNVs produced highly similar re-

constructions of the rearranged cancer genome (Fig. 4C;

Supplemental Fig. 21A). We also observed that even though the

CNV profiles were refined by RCK to incorporate the input SVs,

the resulting CNV profiles remained very similar to the input

ones. (Supplemental Fig. 19B). Similarly, we further note that al-

though up to 10% of input SVs were allowed to be dismissed by

RCK as either erroneous or not concurring with the input CNVs

during the karyotype-graph analysis, we see very similar SV break-

end distribution across the input and refined SV call sets

(Supplemental Fig. 22).

Structural and copy number variants in COSMIC census genes

We then considered how many of the SVs in the three cancer

samples are within known cancer-related genes cataloged in the

COSMIC census gene set. We found 237 COSMIC census genes

that intersect at least one SV in 51T, with 622 total SVs present

in these genes (Fig. 5A). The majority (199/237) of the SV-inter-

secting COSMIC (Tate et al. 2019) census genes in patient 51

had intersecting SVs both the tumor and matching normal cells,

and the individual SV calls were mostly in both as well (466/622

in the initial SV call set and 428/568 in inferred karyotype

graphs). Long-read-based SV inference identified five times as

many COSMIC census genes with SVs than were identified by

short reads. Furthermore, the poor concordance between SVs in-

ferred exclusively with short reads between the tumor and nor-

mal samples (6/79) provides additional evidence that the short-

read SV calling is error-prone. In both patient 48 and the

SKBR3 cell line, we observed similar results (Fig. 5A) with long-

read SV inference outperforming short-read SV inference in

both the number of COSMIC census genes with SVs, as well as

the number of SVs intersecting them. We also observed strong

concordance across COSMIC genes with allele-specific CNVs as

determined by inferred karyotype graphs inferred with either

A

B

Figure 3. Structural variation inference on down-sampled long-read data sets. (A) Workflow for down-sampling full long-read data set and computing
concordance between down-sampled and full coverage data sets with distinctminimum fractional x/y read support for an SV to be considered. (B) Precision
and recall for SVs inferred on down-sampled ONT and PacBio data for sample 51T. SVs inferred on the full coverage data set at the matching read support
threshold are used as the ground truth.

Multiplatform analysis of breast cancer

Genome Research 1263
www.genome.org

 Cold Spring Harbor Laboratory Press on August 4, 2022 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.260497.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.260497.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.260497.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.260497.119/-/DC1
http://genome.cshlp.org/
http://www.cshlpress.com


TitanCNA or HATCHet input large-scale copy number profiles in

sample 51T (Fig. 5B).

To assess the population frequency of SVs within COSMIC

census genes, we genotyped the SVs from the three samples with

Paragraph (Chen et al. 2019) across 2504 short-read WGS samples

from the recent resequencing of the 1000Genomes Project (1KGP)

samples (Sudmant et al. 2015). Briefly, Paragraph genotypes SVs by

constructing localized sequence graphs containing the reference

allele and the candidate SV allele and performs a localized realign-

ment of paired-end short reads to the graph. The genotype is then

determined based on the coverage of reads uniquely supporting

the reference or variant allele breakpoints. Not all variants can be

genotyped by Paragraph, resulting in no genotype call when sup-

port is ambiguous, so we considered only SVs that Paragraph was

capable of genotyping in at least 1000 samples. We then summa-

rized rare variants identified in <5%, <1%, and <0.1%of the overall

observed samples (Table 1). Because Paragraph v2.1 only geno-

types insertions and deletions, we excluded inversions, transloca-

tions, and duplications from the genotyping analysis. As an

additional approach to filtering common variants, we examined

the presence of these variants in 15 healthy long-read-sequenced

genomes from Audano et al. (2019). The approaches are largely

A

B

C

Figure 4. Integration of SVs and CNVs for cancer genomes via karyotype-graph integration. (A) Haplotype constraint groups determined via uninter-
rupted SVs (uSVs) and long ONT and/or PacBio reads spanning multiple SVs. Distribution over the number of haplotype constraint groups inferred
with only uSVs, and various combinations of uSVs and short/long reads in patient 51. (B) Workflow of the reconstruction of haplotype-specific cancer kar-
yotype graphs (RCK) method with allele-specific copy number profiles on large fragments, resolved SV call set, and inferred haplotype constraint groups as
inputs. (C) Circos plot of the CNVs and SVs from karyotype graph inferred by RCK for patient 51 with HATCHet segment copy number (CN) input. The top
two tracks correspond to fractions x/y of the total length x of either amplified (CN≥1) or deleted (CN=0) fragments over the y=5×106 long windows.
Breakend track shows the total number (with 590 being the maximum value shown) of breakends inferred by RCK as being present.
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complementary, although we do find some discordance with a

subset of variants genotyped at low frequency (<5%) in the

1KGP individuals, but high frequency (≥20%) in the Audano

data set (Audano et al. 2019; Supplemental Table 4). Of 275

COSMIC gene variants with discordant frequencies, nearly all

(257) overlap tandem repeats (UCSC TRF track); Paragraph is

known to have a higher false negative rate in such tandem repeat

regions (Chen et al. 2019).

We combined these filtering approaches to identify a small

set of variants found at very low frequency (<0.1%) in the 1KGP in-

dividuals and fully absent from the 15 healthy long-read genomes.

These variants found at low-frequency in a healthy population are

thus the most likely candidates for cancer risk-factor mutations

(for full details, see Supplemental Table 5). These variants of inter-

est are identified almost exclusivelywith long reads, and the ability

of 15 long-read samples to additionally narrow the variants of in-

terest further underscores the need for long-read sequenced ge-

nomes, both with healthy and disease phenotypes. Short-read

genotype-based filtering of variants, although more conservative

than filtering via comparison to long-read variants, remains a pow-

erful tool to examine frequencies in larger cohorts than long-read

data currently provide. Short-read genotyping may also prove es-

pecially valuable for examining frequencies in cohorts with phe-

notypes for which there is not long-read data available (e.g.,

TCGA, ICGC) and where this analysis could be used to select for

high frequency variants within affected patients rather than

against low frequency variants.

Four examples of genome rearrangements within COSMIC

census genes in patient 51 are shown in Figure 6. We identified

two insertions, which were missed by short-read SV inference,

but were identified in both the ONT and PacBio data sets, in

BRCA1 and CHEK2 breast cancer genes (Fig. 6A,B). Both insertions

were also found exclusively with long reads in the matching nor-

mal tissue, with the insertion in the BRCA1 gene genotyped in

<1% of 1KGP samples and present only in a single sample in the

Audano et al. (2019) data set. In another example, we found mul-

tiple SVs present in NOTCH1 and ZNF331 (Fig. 6C,D). Both of

these genes have been previously observed to play a significant

role in tumor development (Yu et al. 2013; Nowell and Radtke

2017). Only one deletion (in NOTCH1) of the six SVs in

NOTCH1 and ZNF331, was identified from short-read data, where-

as all six of the considered SVs were identified in both ONT and

PacBio long-read data sets. The exon-spanning deletion

(Supplemental Fig. 23) in ZNF331 present in both 51T and 51N

samples was found in <1% of 1KGP samples but was identified

in 3/15 samples in the Audano et al. (2019) data set.

Furthermore, by using long reads that span multiple SVs at the

same time, we were able to phase SVs in NOTCH1 and ZNF331

and found these variants occurred on the same haplotype. The as-

signment of multiple SVs to either the same or different haplo-

types helps to better understand relationships between allele-

specific genetic alterations, which has been observed (Pastinen

2010) to provide important information in determining the possi-

ble effects on the functional activity of the genes.

Finally, beyond the presence of individual SVs in particular

genes, the somatic evolution of cancer genomes is also known to

be propagated by various complex rearrangements that may re-

quire 3+ breakages happening simultaneously, some of which

A

B

Figure 5. Structural and copy number variants in COSMIC census genes. (A) Comparison of the number of COSMIC census genes containing SVs, as well
as the number of SVs within COSMIC census genes, across inferred SV call set in 51T and N (parenthetical), SKBR3, and 48T, and SVs reported by RCK as
being present in the karyotype graphs reconstructed with either HATCHet or TitanCNA copy number profiles in 51T. (B) Comparison of the number of
COSMIC census genes with either allele-specific deletions or amplifications between copy number profiles from HATCHet, RCK+HATCHet, TitanCNA,
and RCK+TitanCNA in 51T.
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have been observed to have strong influence on the recovery prog-

nosis of the patient (Hirsch et al. 2013; Fontana et al. 2018). We

considered breakend groups in which pairs of breakends were ei-

ther connected via SVs or located within 50 bp of each other.

We identified several hundreds of breakend groups, mostly con-

sisting of just three breakends (Supplemental Fig. 24), nearly all

of which were only detectable with long reads. We note that not

all complex k-breaks (k≥3) produce breakend signatures, nor is

there always an unambiguous way to reconstruct complex rear-

rangements from the breakend groups. However without observ-

ing or reconstructing the full somatic evolutionary history, such

breakend grouping can be useful for emerging methods (Cortés-

Ciriano et al. 2020) that infer and analyze genomic regions that

are affected by a complex rearrangement history.

Discussion

In this study, we presented a comprehensive analysis of three can-

cer genomes that we sequenced with Illumina/10xG, ONT, and

PacBio sequencing technologies and subsequently analyzed for

large-scale (≥50 bp) structural genomic mutations with an ensem-

ble of methods. We observed how various SV and CNV inference

methods compare to one another, and how SV inference results

differ across sequencing technologies. We first showed that SVs

called with PacBio versus ONT data show high concordance,

with >90% of SVs called with one platform also called with the

other platform. Owing to their highly different methods of se-

quencing, this cross-validation indicates a high true positive rate

of SV inference from either long-read technology. We also showed

how SV and CNVmutations can be used together, reconciled, and

integrated to infer a haplotype-specific cancer genome karyotype

graph, which provides a refined view into the rearranged structure

of observed cancer genomes.

Our findings show the need for long-read sequencing tech-

nologies in clinical settings to improve genome-informed cancer

risk assessment, analysis, and treatment. Using long reads we

detect a large number of novel SVs that are missed by whole-ge-

nome short-read sequencing in genes in which other known vari-

ants have been shown to substantially increase cancer risk.

Although the full functional impact of these variants is currently

unknown, the detection of additional variants in cancer-relevant

genes indicates that current analysis pipelines may underestimate

the role of variants in hereditary cancer risk or the mutational bur-

den in a tumor sample.We observed that although long-reads pro-

vide previously unprecedented resolution for SV detection, the

sample preparation, sequencing, and analysis is on par with

short-read genome sequencing assays in terms of complexity,

time, and computational requirements. Although costs are amajor

consideration for a technology to becomewidely applicable for pa-

tient care, we show that robust SV detection is possible at relatively

low ∼30× average read-depth coverage with either ONT or PacBio

long-read sequencing platforms. When applied at scale, costs for

this amount of coverage is below US$1000 per sample for ONT

PromethION and below US$2000 for PacBio Sequel II, which is

highly comparable to ∼US$800/$1000 (Illumina/10xG) for

short-read sequencing. Even at the high end of this cost, it is

very cost efficient for the information it provides. It will however

exacerbate the computational and data storage issues that are

brought about by large-scale clinical DNA sequencing.

In the presented study we showed the complementary nature

of both short- and long-read sequencing technologies by integrat-

ing both SV (mostly inferred with from long-reads) and large-scale

allele-specific CNVs (determined by short-read coverage alter-

ations over the heterozygous germline SNP locations) into a unify-

ing karyotype-graph structure, which better describes the

structural alterations in the observed mutated cancer genomes.

As both SV and CNV call sets describe complementary measure-

ments of the true underlying rearranged chromosomes, their inte-

gration allows for refinement of both large-scale CNVs as well as

identification of spurious SV calls. We noted that long-reads pro-

vide both unprecedented resolution in SVs inference as well as

haplotype-of-origin constraints for groups of SVs breakends,

which can be important when determining effects of multiple

closely located SVs on the underlying functional sequences.

Short-reads, although less suited to SV detection, remain essential

for accurate detection of heterozygous germline SNPs and subse-

quent coverage analysis and large-scale CNV inference in an al-

lele-specific fashion in tumor samples. Furthermore, although

the cancer samples examined here were homogeneous owing to

their cell-line/organoid nature, primary cancer patient samples

are often heterogeneous and consist of multiple cancer clones

with possibly distinct karyotypes (Gundem et al. 2015; Zaccaria

and Raphael 2018). For such samples, long reads can provide valu-

able insight in assigning groups of SVs to particular clones, and fu-

ture long-read powered cancer studies can illuminate previously

unseen aspects of clonal evolution in cancer. As additional

Table 1. Genotyping of SVs within COSMIC genes in 1KGP and Audano et al. data sets

Sample
Number of SVs

[l|s]
Number of SVs in
COSMIC genes [l|s]

1KGP genotyping [l|s]

Not in Audano et al. 2019 union
SV call set and <0.1% in 1KGP

GT in >1k
individuals <5% <1% <0.1%

51T 26,148
[23,465 | 5941]

622
[542 | 161]

502
[494 |85]

186
[185 | 25]

144
[143 | 17]

112
[111 | 13]

30
[29 | 9]

48T 21,333
[21,333 | NA]

467
[467 | NA]

421
[421 | NA]

188
[188 | NA]

156
[156 | NA]

124
[124 | NA]

45
[45 | NA]

SKBR3 20,783
[19,316 | 4799]

564
[521 | 137]

461
[455 | 77]

216
[213 |31]

194
[192 | 25]

185
[183 | 23]

121
[119 | 19]

For every observed tumor sample, we report the total number of identified SVs, the number of SVs within known COSMIC census genes, and the
number of these SVs that were successfully genotyped (i.e., called in at least 1000 samples) in 1KGP WGS short-read data set with frequencies of <5%,
<1%, and <0.1%, respectively. For the rarest (i.e., <0.1% in 1KGP) SVs, we report the number of such SVs that are absent in the Audano et al. union
SV set. For every reported SVs count x we also show the numbers [l|s] of how many of SVs in x were inferred by long (l) or short (s) reads, respectively.
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sequencing coverage may be required for a thorough reconstruc-

tion of cancer subclones, these types of analyses will become

more feasible as sequencing costs continue to decrease. Further de-

velopment of methods capable of incorporating SNPs, small

indels, SVs, and large-scale CNVs, as well as examining somatic

phylogenies and cancer clone trajectories, will require both short-

and long-read sequencing, with long reads proving critical for sen-

sitive and accurate inference of SVs. Integration of long-read SV

analysis can also benefit methods (Aganezov et al. 2019;

Cameron et al. 2019; Deshpande et al. 2019) focusing on recover-

ing linear organization of rearranged cancer genomes.

We also noted that as long-read sequencing technologies be-

come more and more advanced it becomes possible to move away

from a generic haploid human genome reference into an era of

patient-specific reference sequences. We believe that future exten-

sion of the presentedmethodology can benefit from incorporating

patient-specific diploid healthy genome structure as a starting

point for mutation inference. We further underscored the impor-

tance of extending existing and developing newmethods for mul-

tisample, time-series, and multipatient integrative analysis of

genetic instability that drives and propagates cancer development.

It is only through a process of identifying these structural variants

in a large number of individuals that we can begin to broadly un-

derstand their frequency in populations and their implications in

human health and disease.

Methods

Patient-derived organoid culture

Tumor resections from breast cancer patients along with adjacent

normal tissue were collected fromNorthwell Health in accordance

with Institutional Review Board protocol IRB-03-012 (TAP16-08).

The collection of genomic and phenotypic data for this project

was consistent with 45 CFR Part 46 (Protection of Human

Subjects) and the NIH Genomic Data Sharing (GDS) Policy.

Patient-derived tumor and normal organoids were developed in

A B

C D

Figure 6. SVs identified in cancer-related COSMIC census genes in patient 51. All presented SVs are identified with both ONT and PacBio reads.
Superscripts indicate the following: (∗) marked SVs within known exons; (+) found as rare in 1KGP samples; and (s) identified by short-read SV inference
methods, respectively. (A) An insertion in the BRCA1 gene identified in <1% of samples in 1KGP samples. (B) An insertion in the CHEK2 gene. (C) An inser-
tion/duplication, deletion, and two duplications in theNOTCH1 gene, with deletion also found with short reads. All four SVs belong to the same haplotype
as indicated bymultiple long (both ONT and PacBio) reads spanning all of them at the same time. (D) An insertion and a deletion in the ZNF331 gene, with
the later deletionwithin an exon in theNM_001317121 transcript and genotyped in <1%of 1KGP project samples. Both SVs belong to the same haplotype
as indicated by long reads spanning all of them at the same time.
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accordance with a previously published protocol (Sachs et al.

2018). Briefly, the resected samples weremanually cut into smaller

pieces and treated with Collagenase IV at 37°C. The samples were

then manually broken down by pipetting into smaller fragments

and seeded in a dome of matrigel. The organoids were grown in

organoid culture media that contained 10% R-Spondin 1 condi-

tioned media, 5 nM Neuregulin 1 (Peprotech 100-03), 5 ng/mL

FGF7 (Peprotech 100-19), 20 ng/mL FGF10 (Peprotech 100-26), 5

ng/mL EGF (Peprotech AF-100-15), 100 ng/mL Noggin

(Peprotech 120-10C), 500 nM A83-01 (Tocris 2939), 5 uM Y-

27632 (Abmole Y-27632), 1.2 uM SB202190 (Sigma-Aldrich

S7067), 1× B27 supplement (Gibco 17504-44), 1.25 mM N-

Acetylcysteine (Sigma-Aldrich A9165), 5 mM Nicotinamide

(Sigma-Aldrich N0636), 1× GlutaMAX (Thermo Fisher Scientific

12634-034), 10 mM HEPES (Thermo Fisher Scientific 15630-

056), 100 units/mL Pen-Strep (Thermo Fisher Scientific 15140-

122), and 50 ug/mL Primocin (Thermo Fisher Scientific ant-pm-

1) in 1× Advanced DMEM-F12 (Thermo Fisher Scientific 12634-

034) (Sachs et al. 2018). Organoids were passaged every 2–4 wk us-

ing TrypLE (Thermo Fisher Scientific 12605028) to break down the

organoids into smaller clusters of cells and replating them.

Organoid DNA and RNA extraction

RNA was extracted using TRIzol (Thermo Fisher Scientific

15596018) RNA extraction protocol. DNAwas extracted by remov-

ingmatrigel fromorganoids using ice cold PBS or TrypLE following

by DNA extraction using Qiagen DNeasy Blood and Tissue kit

(Qiagen 69504).

SKBR3 growth

SKBR3 cells were purchased fromATCC (ATCCHTB 30). Cells were

grown in 5 mL of McCoy 5A Medium (ATCC 30-2007) with 10%

Fetal Bovine Serum ATCC 30-2020) and 1% penicillin/streptomy-

cin (Sigma-Aldrich 11074440001). Cells were grown at 37°C with

5% CO2. To harvest cells, the media was removed and 2 mL of

Trypsin-EDTA 0.25% (Sigma-Aldrich 25200056) was added. Cells

were allowed to sit at 37°C for 10 min. The harvested cells were

washed in PBS and either reseeded or used for DNA extraction.

Sample sequencing

10x Genomics Linked Read sequencing followed standard proto-

cols. For long-read sequencing, DNA was sheared to >20 kb via

Covaris G-tube (Covaris 520079). OxfordNanopore DNA sequenc-

ing was carried out on aMinION or GridION device. Sheared DNA

was prepared for sequencing using standard Oxford Nanopore

methods. Briefly, sheared DNAwas repaired with the NEB FFPE re-

pair module (NEB M6630L), ligated to Oxford Nanopore adapters

(Oxford Nanopore SQK-LSK108) via the NEB blunt/TAmaster mix

(NEB M0367L), and cleaned up with Ampure beads (Beckman

Coulter A63881). The full volume of the prepared libraries was

loaded on to a MinION R9.1 flow cell and run for 48 h.

PacBio sequencing was carried out on a Pacific Biosciences

Sequel instrument using standard PacBio methods. Briefly,

sheared DNA was prepared for sequencing via the SMRTbell tem-

plate prep kit 1.0 (Pacific Biosciences 100-991-900). The prepared

libraries were size selected on a Blue Pippin overnight with a 10–

50 kb range (Sage BUF7510). Libraries were loaded for sequencing

on a 1 M SMRTcell (Pacific Biosciences 101-531-000) with a con-

centration of 4–10 pM with diffusion loading and 10 h movies.

Read alignment

All read alignments were performed against the latest human ge-

nome reference GRCh38 (Schneider et al. 2017). ONT and PacBio

long-reads were aligned with NGMLR (Sedlazeck et al. 2018b)

v0.2.7. Illumina/10xG short reads were aligned with LongRanger

(Zheng et al. 2016) v2.1.6 pipeline. Only major Chromosomes 1–

22 and X were considered for the alignment and subsequent struc-

tural analysis. Alignment coverage was computed with SAMtools

(Li et al. 2009) v 1.9 depth command both with and without -a

flag and computes an average of the per-base coverage values. For

long reads, the distribution of raw-yield lengths considers se-

quenced lengths of all reads. Distribution of raw-aligned lengths

considers sequenced read lengths that have at least some part(s) of

them aligned to the reference. The distribution of aligned lengths

considers lengths of aligned portion(s) of sequenced reads.

SV inference workflow

For both ONT and PacBio long reads, we used Sniffles v1.0.11 and

PBSV v2.2.0 for SV inference. For Sniffles theminimumnumber of

reads supporting SV was set to 2, and theminimum SV size was set

to 30 bp, although the final variant calls were amore stringent sub-

set of these requiring higher read support and larger sizes. PBSV

was run with default settings. For Illumina/10xG reads, we used

SvABA v FH134, LUMPY v 0.2.13, Manta v 1.5.0, GROC-SVs v

0.2.5, NAIBR (version determined by 15eba96 commit GitHub

master branch), and LongRanger v 2.1.6. All short-read SV callers

were runwith recommended settings. Some SV inferencemethods

producedmore than a single SV call set (usually with SVs segregat-

ed by size), which we subsequently concatenated into method-

specific SV call sets. For example, for SvABAwe concatenated indel

and sv SV call sets, and for LongRanger we concatenated the dels

and large_svs SV call sets.

For every sequencing technology, the SVs produced by all

callers were merged together with the SURVIVOR (Jeffares et al.

2017) v1.0.6 software package into a ONT, PacBio, and Illumina/

10xG technology-specific SV call sets. SURVIVOR merge was run

with maximum distance between SVs set to 1000 and minimum

SV size set to 30. SV types were not taken into account during

the SURVIVORmerging as different methods may assign different

types, especially insertions versus duplications, to the same in-

ferred SV based on the respective method’s terminology, but

strand/orientation was required to match.

For SVs inferred on short reads, we removed any method-ex-

clusive SVs (i.e., supported by only one out of six methods) and re-

tained any SVs that had at least two methods inferring them. This

was done tomitigate false positives as we previously showed in our

SKBR3 analysis.

To ensure consistency when comparing against 15 healthy ge-

nomes, sequencedwithPacBio and reported inAudano et al. (2019),

we performed alignment and variant calling on the 15 sampleswith

the same pipeline described above. Raw reads from all 15 genomes

were downloaded and aligned with NGMLR to the main chromo-

somes of GRCh38 with the -x pacbio setting. Structural variants

were then called on each sample with Sniffles. Because all samples

were reported in Audano et al. (2019) as above 40× coverage, we

set Sniffles to require a minimum read support of 10 reads. A mini-

mum SV size of 30 bp was used. Comparisons against the SVs in

these 15 genomes were performed with SURVIVOR merge with a

maximumdistance of 1000, type and strand considered, and amin-

imum size of 30, with thresholding performed post merging to ex-

amine only variants of at least 50 bp, as described below.

Comparison of SVs inferred with different sequencing

technologies

ONT, PacBio, and Illumina/10xG technology-specific SV call sets

were subsequently merged together with the SURVIVOR package

Aganezov et al.

1268 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on August 4, 2022 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


into a sample-specific sensitive SV call set. SV types were not taken

into account for the samepurpose aswas described for the technol-

ogy-specific merging procedure, minimum size for SVs to be con-

sidered was set to 30, maximum distance between SVs was set to

1000.

We further removed from the sensitive SV call set any of the

SVs shorter than 50 bp to focus only on large-scale rearrange-

ments. This filtration was done after the merging of technology-

specific SV call sets, rather than before, tomitigate thresholding is-

sues that may have arisen in cases when the same underlying SV

had its length reported with slight imprecision around the size

threshold value. For example, a variant called as 49 bp in one

call set, and 51 bp in another, would have the 49 bp instance re-

moved before it could have been merged with the 51 bp instance,

producing a 50-bp-long merged SV, which would be retained.

To mitigate the relatively high per-base-pair error rate in long

reads and its possible effect on false positive calls in long-read-ex-

clusive (either from ONT, or PacBio, or both) SVs, we removed

long-read exclusive SVs for which the number of long reads sup-

porting them was less than a quarter of average read-depth in

bothONTand PacBio data sets. After length and long-read-support

filtration, we obtained the specific SV call set on which the agree-

ment and discordance in SVs inference between sequencing tech-

nologies and methods was analyzed.

Methylation analysis

For calling methylation on ONT sequencing data, we used the

nanopolish (Simpson et al. 2017) call-methylation module. A

threshold of 2.5was used to filter out ambiguousmethylation calls.

After aggregating methylation calls at each site, we smoothed the

raw methylation frequencies using BSmooth function from R (R

Core Team 2019) Bioconductor (Gentleman et al. 2004) package

bsseq (Hansen et al. 2012). Briefly, we first choose a window such

that at least 50 CpG sites and 500 bps of region are covered for

each locus lj. Assuming that (1) themethylation frequency f(lj) fol-

lows a binomial distribution; and (2) log
f (lj)

1− f (lj)

( )

is approximat-

ed by a second-degree polynomial, we fit a weighted generalized

linearmodel inside eachwindow.Theweights are inverselypropor-

tional to the standard errors of the per-sitemeasurements, and a tri-

cube kernel is used in relation to the distance from the locus lj . For

all subsequent analysis, we applied a coverage filter, removing data

points on lociwhere the total numberof callswas less than 5 in any

of the samples.

For global comparisons of genomic context methylation, we

used genomic contexts as determined by Ensembl (Cunningham

et al. 2019) gene annotations and regulatory feature sets. For

each region in the set, average methylation was calculated by di-

viding the sum of methylated calls by total calls.

RNA-seq expression analysis

RNA-seq libraries were prepared using Illumina TruSeq RNA

Library prep kit v2 (RS-122-2001) and sequenced as 75-bp paired

end. The reads were aligned using STAR (Dobin et al. 2013) v

2.5.3a. The built-in gene counts option was used to count raw

reads using the GENCODE (The ENCODE Project Consortium

2012; Davis et al. 2018) v27 GTF reference file. The counts files

were exported into R v3.5.1 and normalized using DESeq2 (Love

et al. 2014) v1.22.2. Normalized counts were used to calculate

log2 fold change of tumor versus normal samples.

SVs that were supported by long-read sequencing were used

for this analysis. Structural variants overlapping genes were deter-

mined using the BEDTools (Quinlan and Hall 2010) intersect –wo

command with GENCODE v27 GTF file as a reference. The graphs

were plotted using ggplot2 (Wickham 2016) v3.2.1. Percent over-

lap was calculated by dividing the number of overlapping base

pairs with the total length of the gene.

Down-sampling and SV inference

Wedesigned and implemented the down-samplingworkflow to an-

alyze the robustness of long-read SV inference at various read

depth coverages. Every full coverage long-read ONT or PacBio align-

ment data set reads.bam was down-sampled with SAMtools

v1.9 command view -s x.y reads.bam, where x determines the

seed for randomize alignments selection to be included in the

produced down-sampled alignment, and y determines the fraction

of the read alignments from the initial data set reads.bam to be

selected.

For sample 51T, the down-sampled coverage levels were set to

C= [5, 8, 10, 12, 16, 20, 24, 32, 38, 44]× for both ONT and PacBio,

for sample 48T coverage levels were set at C= [5, 8, 10, 12, 16, 24,

32, 36, 40]× for both ONT and PacBio, and for sample SKBR3

down-sampled coverage levels were set at C= [5, 10, 16, 20, 24,

28, 32]× for ONT, and additional coverage levels at C= [40, 48,

52]× were set for PacBio, because the PacBio data set for SKBR3

had higher coverage available than the ONT one.

For bothONT and PacBio, for every down-sampled target cov-

erage level we generated three distinct down-sampled read align-

ments data sets with different random seed values. SV inference

on the down-sampled alignment data sets was computed using

Sniffles v1.0.11 with the minimum number of reads required to

support an SV set to 2, and the minimum SV size set to 30. As pre-

viously described, to mitigate a relatively high per-base-pair error

rate in long reads, several reads are required to span an SV for it

to be considered true. We observed how SV inference was affected

by this parameter by considering various fractions f [
1

3
,
1

4
,
1

5

[ ]

of an average down-sampled data set–specific read depth coverage

as a threshold for the minimum number of reads required to span

an SV. We then generated distinct f-SVs call sets by removing all

SVs that were supported by less than a fraction f of reads.

We then compared the technology-specific f-SVs call sets for

every down-sampled coverage level c∈C with the gold standard

(i.e., SVs call set on full coverage data set, using the matching

read support threshold) with SURVIVOR and averaged the preci-

sion and recall results over three randomly created down-sampled

data sets for every coverage target level c.

Integration and refinement of copy-number and structural

variations

To measure large-scale CNVs we used Illumina/10xG short-read

sequencing data sets from both the tumor and the matching nor-

mal cells. We used TitanCNA and HATCHet CNV-inference meth-

ods, which produce clone- and allele-specific segment copy

number profiles. Both methods were run with recommended

settings.

When considering possible errors in themeasured copy num-

ber values, we take into account that bothmethods infer CNV pro-

files on rather large (≥50 kbp) segments, which will miss any

smaller copy number variations (e.g., small deletions or duplica-

tions), and the specific boundaries of large CNVs. In order to com-

bine the SV and CNV mutation inference, we used our RCK

method, which integrates both SV and CNV mutations together

and infers the underlying clone- and haplotype-specific karyotype

graph or simply karyotype.

Multiplatform analysis of breast cancer
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In the new RCK v. 1.1 developed for this project, we added

long-read based haplotype constraints for SVs breakends, which

helps to resolve ambiguities arising from equally plausible solu-

tions in haplotype assignment. As single molecule platforms,

both ONT and PacBio long reads that span multiple SVs introduce

reference-haplotype-of-origin constraints, that is, ensuring that

grouped SVs breakends are assigned to the same haplotype

(Supplemental Methods).

We ran RCK v 1.1 on the inferred sample-specific SV call set

and both HATCHet and TitanCNA CNV profiles separately with

the required fraction P of input SVs to be used being set at 0.9.

We also significantly improved the performance of the original

version of RCK by introducing the per-chromosomal preprocess-

ing step. In this step RCK first solves the karyotype-graph inference

problem on a per chromosome basis, such that the union of

solutions would equal to the whole-genome problem solution ex-

cluding the inter-chromosomal SVs. Per-chromosomal solutions

are then used as starting vector for the whole-genome (with

inter-chromosomal SVs) MILP problem solution search.

Implementation of this pre-solve approach allowed us to improve

performance by reducing the running time from 48 to 6 h and

from 32 to 8 h wall clock time for TitanCNA and HATCHet CNV

input, respectively. RCK was run on a 24 core (with ‐‐run-threads

24 flags) machine with 512GB RAM (with a peak usage of ∼200

GB of RAM). We note that time and high RAM usage is caused

by tens of thousands of input SVs and haplotype constraint

groups; on simpler cancer samples (with∼1000 SVs), RCK can infer

cancer karyotypes in several minutes.

Circos plots (Krzywinski et al. 2009) shown in Figure 4C and

Supplemental Figures 3, 21, and 22 were constructed with Circa v

1.2.0 software (http://omgenomics.com/circa).

Analysis of COSMIC census genes intersecting SVs

For the analysis of SVs and COSMIC census gene interactions, we

considered genes from the COSMIC Cancer Gene Census v88. We

considered a COSMIC census gene g=A:[a, b], with start coordi-

nate a and end coordinate b on Chromosome A, being intersected

by SV s= {X:p, Y:q} with breakends p on Chromosome X and q on

Chromosome Y if either X=A and a≤ p≤ b or Y=A and a≤ q≤ b,

or both. We note that SV breakend strand orientations are not im-

portant in considering whether a gene is intersected by a SV, as in

either case the breakend disrupts the genomic region that contains

the gene.We say that aCOSMIC census gene g is intersected by SVs

if it is intersected by at least one SV, and we say that SV s intersects

COSMIC census genes if at least one COSMIC census gene g is in-

tersected by s.

We further analyzed the SVs interactions with the COSMIC

census genes with their flanking sequences (i.e., for every gene g

=A:[a, b], we considered gD = A: [a− D, b+ D], where Δ∈ [500,

1000, 5000]). We did not discover any additional COSMIC census

genes with flanking SVs nor have we observed any additional

SVs flankingCOSMIC census geneswith any of the considered val-

ues of Δ.

Analysis of COSMIC census genes intersected by CNVs

For the analysis of CNVs and COSMIC census gene interac-

tions, we considered genes from the COSMIC Cancer Gene

Census v 88.

We considered a COSMIC census gene g=A:[a, b], with start

coordinate a and end coordinate b onChromosomeA, being inter-

sected by an allele-specific deletion (amplification) if there exists a

segment j=A:[c, d ] that overlaps g, or more formally, either c≤ a≤

d, or c≤ b≤ d, or both, and j has the respective allele-specific CNV,

that is, either aj>1( < 1) or bj >1( < 1). Identification of theCOSMIC

census genes intersected by allele-specific CNVs was performed

with a RCK-based utility script. We note that the same COSMIC

census gene g (on either the same or different haplotypes) may

be simultaneously intersected by both allele-specific deletion(s)

and amplification(s).

Grouping of structural variation breakends

Complex rearrangements reflect an underlying double-stranded

breakage event of k≥3 double-stranded breaks. Segments resulting

from the breakage are then often amplified or lost, and the

subsequent ligation of involved segments are then detected as

SVs. In general, by simple observation of a group U of SVs,

we cannot determine whether all of the SVs in U we produced

by a single complex rearrangement or by several sequential

rearrangements.

To identify potential signatures of complex rearrangements

for a given set A of SVs, we constructed a complex rearrange-

ments graph GC= (V, E), where a set V = {{ jh, ( j+ 1)t } |

{ jhA, ( j+ 1)tA} [ A(R)} of vertices is determined by reference adja-

cencies (within 50 bp threshold), and every edge ea= {u, v}∈E is de-

termined by an SV a= {px, qy} such that px∈u and qy∈ v, or more

simply, if a connects extremities involved in u and v. Once the

GC is constructed, complex rearrangements are determined as con-

nected components with at least three vertices in them, as they

correspond to groups of reciprocal SVs. We note that not every

k-break produces reciprocal SVs. Grouping of SVs breakends for

identifying genomic locations potentially intersected by complex

rearrangements was implemented in RCK v1.1.

Software availability

The SV inference and comparison workflow is implemented

with Snakemake (Köster and Rahmann 2012) v 5.5.4 and is avail-

able at GitHub (https://github.com/aganezov/EnsembleSV).

RCK (Aganezov and Raphael 2020) v 1.1 used for cancer genome

karyotype inference is available at GitHub (https://github.com/

aganezov/RCK).A summaryof the availabledata andworkflows are

also available at https://schatz-lab.org/publications/bcorganoid/.

Data access

All raw sequencing data generated in this study for SKBR3 have

been submitted to the NCBI BioProject database (https://www

.ncbi.nlm.nih.gov/bioproject/) under accession number

PRJNA476239. All raw sequencing data and variant data in this

study from the patient samples have been submitted to the NCBI

database of Genotypes and Phenotypes (dbGaP; https://www

.ncbi.nlm.nih.gov/gap/) under accession number phs038843.v1.
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of Orion Genomics, which focuses on plant genomics and cancer

genetics.
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