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Background. Cancer stem cells play an important role in endometrial cancer (EC). It is closely related to self-renewal and
therapeutic resistance of EC. Methods. In this study, WGCNA (weighted gene coexpression network analysis) was used to
analyze the relationship between genes and clinical features. We also performed immune cell infiltration analysis of a key
module by using ImmuCellAI (Immune Cell Abundance Identifier). Then, key genes were verified in the GEO database. Finally,
causal relationship analysis and protein-protein interaction analysis were performed in DisNor tool and STRING. Result. The
mRNA expression-based stemness index (mRNAsi) is significantly lower in normal tissues and is significantly higher in
individuals with stage IV or high-grade cancer and those who are obese or postmenopausal. Nineteen key genes (ORC6,
C1orf112, RAD54L, SGO2, BUB1, PLK4, KIF18B, BUB1B, TTK, NCAPG, XRCC2, CENPF, KIF15, RACGAP1, ARHGAP11A,
TPX2, KIF14, KIF4A, and NCAPH) that were enriched mainly in terms related to the cell cycle and DNA replication were
selected by weighted gene coexpression network analysis (WGCNA). Based on the key modules, the numbers of NKT cells, NK
cells, and neutrophils in the normal group were significantly higher than those in the cancer group. PLK1, CDK1, and
MAD2L1, which were correlated with upstream genes, may be an regulated upstream of key genes. Conclusion. PLK1, CDK1,
and MAD2L1 which were strongly correlated with upstream genes may be a regulated upstream of key genes.

1. Introduction

Endometrial cancer (EC) is one of the most common gyneco-
logical malignancies. Nearly 382,100 new cases per year are
diagnosed worldwide, and 89,900 patients die from the
disease each year [1, 2]. Menopause status, diabetes, obesity,
the total number of pregnancies, and smoking status are con-
tributing risk factors for EC [3]. The different pathological
stages and histological types of this disease have a variable
prognosis. Patients with advanced-stage EC are predicted to
exhibit poor outcomes. To improve the poor prognoses
of people with EC, further investigations of tumorigenic
mechanisms are required.

Recent studies have shown that cancer stem-like cells
(CSCs) are linked with ECs [4, 5]. CSCs are thought to be

crucial in determining recurrence and progression, which
are important for cancer metastasis and therapeutic resis-
tance ([5–7]. Cancer stemness has been extensively studied
by using deep learning methods. For example, the Progenitor
Cell Biology Consortium (https://www.synapse.org/pcbc)
has typically used several types of stem cells, such as embry-
onic stem cells (ESCs), induced pluripotent stem cells
(iPSCs), and stem cell- (SC-) derived embryoid bodies
(EBs), to define stem cell signatures. Amultiplatform analysis
that included transcriptomes, methylomes, and transcription
factor binding sites was carried out to quantify stemness,
resulting in the generation of a DNA methylation-based
stemness index (mDNAsi) and a mRNA expression-based
stemness index (mRNAsi). Histopathological grades may
respond to biological processes in cancer stem cells (CSCs)
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and tumor dedifferentiation and are indicated by mRNAsi
scores. mRNAsi and mDNAsi scores have been calculated
for certain CSCs by The Cancer Genome Atlas (TCGA) on
the basis of this stemness [8].

Weighted gene coexpression network analysis (WGCNA)
is used to construct gene networks in which the correlations
between gene sets are identified and weighted by their associ-
ated expression levels [9]. WGCNA is a widespread approach
for processing gene expression data and investigating network
changes. In brief, WGCNA uses topological overlap dissimi-
larity to estimate the distance between genes and can identify
network topologies and subnetworks. Therefore, the gene
modules are composed only of highly coexpressed genes that
can be associated with clinical features of interest. These mod-
ules are tightly correlated with the investigated clinical features
and are therefore selected as essential modules for ensuring the
accuracy of the results.

Our research investigates the key genes related to stem-
ness by combining WGCNA with the EC mRNAsi in TCGA.
The aim of this study is not to develop an innovative method
to identify stemness-related genes but rather to obtain new
knowledge about the functions of CSC-related genes in
cancer.

2. Methods

We used R software (version 3.5.1) [10], GraphPad Prism
(version 7), and Bioconductor [11] for all statistical analyses
in our study.

2.1. Data Acquisition and Preprocessing. The RNA sequenc-
ing (RNA-seq) data of 587 samples (552 cancer samples
and 35 normal samples) were obtained from the University
of California Santa Cruz Genome Browser (UCSC: https://
xenabrowser.net, version: 2019-07-20), and corresponding
clinical data were extracted from the TCGA Pancancer Clin-
ical Data Resource (TCGA-CDR) [12]. According to TCGA-
CDR, a progression-free interval (PFI) event was defined as a
new tumor event in a patient, including progression of the
disease, local recurrence, distant metastasis, new primary
tumors at all sites, or death associated with cancer without
a new tumor event, including new tumor events whose type
was N/A. The mRNA expression-based stemness index
(mRNAsi) of the uterine corpus endometrial carcinoma
(UCEC) cohort was obtained from a previous study [8]. In
total, 563 samples with mRNAsi data were included in our
study.

2.2. Comparison of mRNAsi among Molecular Subtypes and
Different Clinical Features of EC. To investigate the prognos-
tic role of mRNAsi scores in EC, we analyzed the relationship
between mRNAsi and clinical features, including histological
type, pathological stage, body mass index (BMI), menopause
status, and total number of pregnancies, by using GraphPad
Prism (version 7).

In addition, the patients were divided into a high-
mRNAsi group and a low-mRNAsi group based on the
optimal cutpoint chosen by using the “survival” R package
[13]. Based on the overall survival (OS) and PFI data

obtained from TCGA-CDR, we then performed the log-
rank test to compare the OS/PFI between these two groups
with a threshold of p < 0:05, and Kaplan-Meier curves were
also generated.

2.3. Selection of Differentially Expressed Genes (DEGs). DEGs
were selected between normal and cancer EC samples by using
the “limma” R package [14] with the following criteria: false
discovery rate ðFDRÞ < 0:05 and ∣log 2 − fold change ∣ >1.
Genes showing a low expression (expression levels < 1) were
deleted.

2.4. WGCNA. With the “WGCNA” R package [9], WGCNA
was performed on selected DEGs showing the highest vari-
ance (top 25%). We performed average linkage hierarchical
clustering with a minimum gene dendrogram size of 20 by
using TOM-based dissimilarity measurements. By analyzing
the modules, we calculated the dissimilarity and constructed
module dendrograms for these modules.

We then calculated gene significance (GS) to estimate the
significance of each module and measure the relationships
between genes and sample traits. A cutoff (0.25) was selected
to merge the modules based on heights. Next, mRNAsi data
and epigenetically regulated mRNAsi data were selected as
clinical phenotypes and combined with gene modules for
further analysis.

For the identification of key genes, the GS and module
membership (MM, the correlation between the genes in the
module and their expression profiles) of every key gene were
calculated with the following thresholds: cor:geneGS > 0:5
and cor:geneMM> 0:8.

2.5. Functional Enrichment Analysis of Key Modules. To
understand the biological function of crucial modules
selected by WGCNA, Metascape (http://metascape.org),
which includes abundant functional annotations, such as
KEGG pathway, Reactome pathway, canonical pathway,
GO biological process, and CORUM (the comprehensive
resource of mammalian protein complexes) annotations,
was then used to perform functional enrichment analysis
with a p value of < 0.001 as the cutoff value [15]. Selected
terms with a p value of < 0.01 and a number of genes greater
than or equal to 3 were considered significant terms.

2.6. Immune Cell Infiltration Analysis of Key Modules.
Immune Cell Abundance Identifier (ImmuCellAI) is a tool
that can calculate the abundance of 18 T cell subsets and 6
other immune cell types (B cells, NK cells, monocytes, mac-
rophages, neutrophils, and DCs) based on RNA-seq data
[16]. We used ImmuCellAI to compare the proportions of
T cell subsets among key modules.

2.7. Validation of the Expression of Key Genes. To verify the
expression of key genes in EC, we selected GSE146889, which
included 176 samples (91 tumor and 85 normal tissues, 139
MSI and 37 MSS tissues), from the Gene Expression Omni-
bus (GEO) database to compare the differential expression
levels of key genes between the tumor and normal tissues
by the Mann–Whitney U test. We also compared the MSI
and MSS tissues.
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2.8. Causal Relationship Analysis and Protein-Protein
Interaction Analysis. DisNor (https://disnor.uniroma2.it/) is
a web-based tool that can generate and explore protein inter-
action networks based on disease genes by usingMentha pro-
tein interaction data and causal interaction information
annotated by SIGNOR.

We used DisNor to explore the causal relationships
between key genes. Next, STRING (version 11.0, https://
string-db.org/) was used to construct a protein-protein
interaction network to investigate the interactions among
multiple proteins with an interaction score of 0.7 (high
confidence).

2.9. Gene Coexpression Analysis. To investigate the strength
of the relationships between key genes, we then assessed the
coexpression relationships between these key genes based
on their expression levels through Pearson correlation
analysis with the R “corrplot” package.

3. Results

3.1. Relationships between the mRNAsi and Clinical Features
and Molecular Subtypes of EC. In total, 563 samples with
mRNAsi data were included in our study. As shown in
Figure 1(a), the mRNAsi of normal tissues was significantly
lower than that of tumor tissues (p < 0:0001). In the survival
analysis, we found that the OS times (Figure 1(a)) and PFI
times (Figure 1(b)) of patients in the low-mRNAsi score
group were significantly greater than those of patients in
the high-mRNAsi score group.

In the comparison of the mRNAsi among clinical
phenotypes of EC, we found that the mRNAsi score was
significantly higher in patients with stage IV disease, with
an increasing trend from stage I to stage IV (stage I < stage
II < stage III < stage IV) (p = 0:0046, Kruskal-Wallis test)
(Figure 1(c)), and the pathological grade presented the same
trend (grade 1 (G1) < grade 2 (G2) < grade 3 (G3) < high-
grade) (p < 0:0001, Kruskal-Wallis test) (Figure 1(d)).
According to the classification system [17] and certain guide-
lines regarding obesity [18, 19], we then divided the patients
into 4 groups based on BMI: underweight (BMI < 18 kg/m2),
healthy body weight (BMI between 18.5 and 24.9 kg/m2),
overweight (BMI between 25 and 29.9 kg/m2), and obese
(BMI > 30 kg/m2) (Figure 1(e)). We found a decreasing trend
in the mRNAsi score from the underweight to the obese
group (p = 0:046, one-way ANOVA test). When we com-
pared the mRNAsi scores by menopausal status, we found
that the mRNAsi score was significantly higher in patients
with postmenopausal status (p = 0:0085, Kruskal-Wallis test,
Figure 1(f)) (supplementary table 1). When we investigated
the relationship between the mRNAsi score and the total
number of pregnancies (Figure 1(g)), we found that there
was no significant difference in the mRNAsi score among
the groups with different numbers of pregnancies.

3.2. Selection of DEGs. Selection of DEGs was then performed
by using the R “limma” package with the following criteria:
false discovery rate ðFDRÞ < 0:05 and ∣log 2 − fold change ∣ >
1. After the filtering and normalization of data, differential

gene expression analysis was performed. Finally, 3226 DEGs
were selected (Figure 1(h)).

3.3. WGCNA: Selection of the Most Significant Modules and
Genes. A gene coexpression network was then constructed
by WGCNA to select the most significant gene modules
and genes. This procedure can also help to elucidate the rela-
tionships between genes and EC. We first eliminated the out-
lier samples (Supplementary Figure 1A), after which 5987
DEGs were selected through cluster analysis, including the
25% of DEGs showing the highest variance in the module, for
further analysis. Next, a scale-free network was constructed
with a soft threshold of β = 4 (SFT:R:sq = 0:930), and 14
modules were selected with a minimum module size of 50 for
further analysis (Figure 2(a)).

Then, the overall expression gene level was taken as the
MS to estimate the relationships between the corresponding
modules and clinical phenotypes (Figure 2(b)). Based on
the results, we found that the turquoise module showed the
most significant positive correlation with the mRNAsi score
(cor = 0:78), and the salmon module also exhibited a positive
correlation with the mRNAsi score (cor = 0:45). In addition,
the blue module was significantly negatively associated with
the mRNAsi score (cor = 0:75) (Figures 2(c)–2(e). Therefore,
the turquoise module was chosen for the screening of key
genes.

The key gene screening threshold was set as follows: cor
:MM> 0:8 and cor:GS > 0:5. Finally, 19 genes were selected:
ORC6, C1orf112, RAD54L, SGO2, BUB1, PLK4, KIF18B,
BUB1B, TTK, NCAPG, XRCC2, CENPF, KIF15, RACGAP1,
ARHGAP11A, TPX2, KIF14, KIF4A, and NCAPH.

3.4. Functional Enrichment Analysis of KeyModules. By using
Metascape, we found that the genes in the turquoise mod-
ule were enriched mainly in terms related to the cell cycle
(R-HSA-1640170), cell cycle phase transition (GO: 0044770),
and DNA replication (GO: 0006260) (Figure 3(b)).

3.5. Immune Cell Infiltration Analysis of KeyModules. Immu-
CellAI was employed to analyze the infiltration status in the
turquoise module. We found that the abundances of naïve
CD8 cells (p < 0:0001), effector memory cells (p < 0:0001),
and B cells (p < 0:0001) in the cancer group were significantly
higher than those in the normal group. We also found that
NKT cells (p < 0:0001), NK cells (p < 0:0001), and neutro-
phils (p < 0:0001) were significantly more abundant in the
normal group than in the cancer group (Figure 3(a)).

3.6. Comparison and Validation of the Expression Levels of
Key Genes. To explore key genes, we then compared the
expression levels of these genes between tumor and normal
tissues. We found that the expression levels of key genes were
significantly higher in tumor tissues (p < 0:0001, Figure 4(a)).

Then, we validated the GEO dataset (GSE146889), and the
results showed that all 18 genes exhibited significantly higher
expression in tumor samples (p < 0:0001, Figure 4(b)). We
also compared expression levels between the MSI and MSS
subtypes. We found that the expression levels of ARH-
GAP11A, BUB1B, KIF14, NCAPG, NCAPH, ORC6, and
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Figure 1: Continued.

4 Computational and Mathematical Methods in Medicine



PLK4 were significantly higher in the MSI subtype (p < 0:05,
Figure 4(d)).

3.7. Construction of the Interaction and Relationship
Network. By using the DisNor tool, we screened the first
neighboring genes of the key genes, and we found that some
upstream genes, such as PLK1, KNL1 (CASC5), CENPE,
CDK1, and MAD2L1, were affected by at least two key genes
(Figure 3(c)). KNL1 (CASC5) and CENPE mainly indi-
rectly upregulated key genes. Therefore, PLK1, CDK1, and
MAD2L1 were chosen as ideal gene targets for further analy-
sis. Next, to investigate the relationships between the
upstream genes and key genes, a protein-protein interaction
network was constructed (Figure 3(d)).

3.8. Comparison and Validation of the Expression Levels of
Key Genes. To explore key genes, we then compared the
expression levels of these genes between the tumor and
normal tissues. We found that the expression levels of key
genes were significantly higher in tumor tissues (p < 0:0001,
Figure 4(a)).

Then, we validated the GEO dataset (GSE146889), and
the results showed that all 18 genes exhibited signifi-
cantly higher expression in tumor samples (p < 0:0001,
Figure 4(b)). We also compared expression levels between
the MSI and MSS subtypes. We found that the expression
levels of ARHGAP11A, BUB1B, KIF14, NCAPG, NCAPH,
ORC6, and PLK4 were significantly higher in the MSI sub-
type (p < 0:05, Figure 4(c)).

3.9. Coexpression Analysis between Key Genes and Selected
Upstream Genes. As shown in Supplement figure 2, we
found that the key genes were significantly correlated with
the upstream genes PLK1, CDK1, and MAD2L1. The
highest correlation was observed between MAD2L1 and
SGO2 (r = 0:79). We also found that PLK1 was closely
related to KIF18B (r = 0:71) and that CDK1 was closely
related to RACGAP1 (r = 0:71), ARHGAP11A (r = 0:71),
and SGO2 (r = 0:71).

4. Discussion

EC is one of the most common malignant gynecologic
tumors. Recently, an increasing number of studies have
shown that CSCs play an essential role in certain features of
tumors, such as recurrence, progression, and therapeutic
resistance [20]. Therefore, it is essential to screen targets for
the treatment of EC stem cells. In this study, we used
WGCNA to identify hub genes related to CSC characteristics
based on mRNAsi scores. We analyzed the relationships
between the mRNAsi scores and the clinical features and
molecular subtypes of EC. In the comparison of mRNAsi
scores between clinical phenotypes of EC, we found that
mRNAsi scores increased as the pathological grade and
clinical stage increased, with stage IV and high-grade EC
associated with the highest scores.

In contrast, the mRNAsi scores increased as BMI
decreased. Moreover, patients with postmenopausal status
exhibited the highest mRNAsi scores. When we investigated
the relationship between the mRNAsi score and the total
number of pregnancies, we found no significant difference
in the mRNAsi score among the groups with different num-
bers of pregnancies. Due to the critical role of pluripotent
stem cells in the development of all organ tissues, the key
genes may be correlated with the maintenance of stem cell
properties in many kinds of cancers. The proteins encoded
by these genes are closely related. Therefore, it is necessary
to analyze the relationship between CSCs and the progres-
sion of EC. It is also crucial to identify genes that may be
related to cancer development and progression.

Increasing evidence shows that traditional therapy is not
ideal for cancer cells that enter the CSC state by activating the
EMT program; thus, the incidence of clinical recurrence
mediated by CSC is also high [21]. Additionally, the tumor
cells of undifferentiated primary tumors present a greater
ability to migrate over long distances, which is more likely
to lead to disease progression and a poor prognosis. Cancer
progression usually manifests as a loss-of-differentiation
phenotype [22]. In this study, the changes in progression
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Figure 3: Continued.
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Figure 3: (a) Comparison of the infiltration of immune cells in the turquoise module. (b) Functional enrichment analysis in the turquoise
module. (c) Causal interaction analysis of key genes using DisNor. (d) Protein-protein interaction analysis between key genes and
upstream genes.
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Figure 4: (a) Comparison of the expression levels of key genes between tumor and normal tissues (Mann–Whitney U test). Validation of the
key genes in the GEO database by using the Mann–Whitney U test. (b) Comparison of the expression levels of key genes between the tumor
and normal tissues. (c) Comparison of the expression levels of key genes between the MSI and MSS subtypes.
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after the development of EC were observed to be critical. In
the survival analysis, we found that patients with high
mRNAsi scores exhibited shorter OS and PFI times. We also
noted that stage IV and high-grade EC patients presented
increased CSC characteristics, which means that the increase
in stem cell properties begins at the initiation stage of
metastasis.

The expression level of key genes was higher in the tumor
than in normal tissues. When we validated the data in the
GEO dataset (GSE146889), we found that the expression
levels were significantly related to the tumor subtype. How-
ever, we found that the expression levels of ARHGAP11A,
BUB1B, KIF14, NCAPG, NCAPH, ORC6, and PLK4 were
significantly higher in the MSI subtype, but the other genes
did not seem to differ between these two subtypes. These
results indirectly indicated that these genes might maintain
the characteristics of stem cells.

According to the functional enrichment analysis of the
turquoise module, we found that the functional annotations
were related mainly to the cell cycle, cell cycle phase transi-
tion, and DNA replication. Then, according to the GS and
MM, we selected the key genes from the turquoise module.
Moreover, we constructed a protein-protein interaction net-
work and observed strong relationships. We found that the
key genes were significantly correlated with the upstream
genes PLK1, CDK1, and MAD2L1. Based on the protein cau-
sality and interaction analysis, PLK1, CDK1, and MAD2L1,
all of which affected at least two genes, were selected as ideal
treatment targets. Although KNL1 (CASC5) and CENPE also
affected two or more genes, their effects are exerted mainly
indirectly.

The expression level of polo-like kinase 1 (PLK1), which
is the key regulator of mitosis, is increased in various kinds of
cancer, such as non-small-cell lung cancer, head and neck
cancer, breast cancer, ovarian cancer, EC, and thyroid cancer
[23]. Another study showed that PLK1 targeting combined
with low-dose cisplatin therapy exhibited strong antitumor
efficacy by inducing arrest at the G2/M checkpoint, increas-
ing DNA breakage, and sensitizing tumor cells to antitumor
drugs [24]. Cyclin-dependent kinase 1 (CDK1) plays an
important role in the regulation of PLK1 activity at the
G2/M transition in EC [25]. Studies have shown that mitotic
arrest deficient 2-like 1 (MAD2L1) is closely related to lymph
node metastasis in EC [26]. Therefore, we speculate that
these genes affect tumor biological behavior by affecting the
characteristics of CSCs in EC.

In conclusion, 19 key genes identified in this study play
critical roles in the biological behavior of EC stem cells. Three
upstream genes, PLK1, CDK1, and MAD2L1, may be poten-
tial targets for EC treatment by inhibiting the characteristics
of EC stem cells. However, the results of this study were
based on public data; thus, additional biological studies are
needed to further validate these findings.
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CSCs: Cancer stem-like cells
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