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More and more evidences show that TGF-β has a crucial role in tumor initiation and development. However, the mechanism of
the TGF-β signal regulator in esophageal cancer (EC) is still unclear. Here, we use a variety of bioinformatics methods to analyze
the expression and survival data of TGF-β signal regulators in patients with EC. We extracted the expression of the S-TGF-β
signal regulator from The Cancer Genome Atlas (TCGA). The cBioPortal database was used to assess the frequency of genetic
variation. The TGF-β signal regulator is expressed in EC and normal tissues. The objective is to use the Kaplan-Meier plotter
database to investigate the prognostic value of TGF-β signal regulators in cancer patients. The DAVID and clusterProfiler
software package were used for functional enrichment analysis. We found that patients with TGF-β signaling mutations have
shorter overall survival, disease-free survival, disease-specific survival, platinum overall survival, and platinum-free progression
survival. We found that compared with the noncancerous tissues of patients with EC, ZFYVE9, BMPR1B, TGFB3, TGFBRAP1,
ACVRL1, TGFBR2, SMAD4, SMAD7, ACVR2A, BMPR1, and SMAD9 were significantly downregulated in tumor tissues,
while ACVR1 and Smad1 were significantly upregulated in tumor samples. Univariate survival analysis showed that ACVR1,
TGFBR3, TGFBRAP1, BMPR1A, SMAD4, and TGFBR2 were positively correlated with overall survival (OS) prolongation. In
addition, TGF-β signal transduction regulators could be divided into two classes. Subclass 1 was involved in regulating cell
adhesion, PI3K-Akt signaling, and Rap1 signaling. Subclass 2 was related to regulating angiogenesis and PI3K signaling. In
short, all members of TGF-β signal regulators can be used as biomarkers to predict the prognosis of patients with EC.

1. Background

Esophageal cancer (EC) is the eighth most common malig-
nant tumor in the world, posing a great threat to public
health [1, 2]. Esophageal squamous cell carcinoma (ESCC)
has the characteristics of strong invasiveness, high metastasis
rate, and poor prognosis [3]. It is reported to be the most
common histological subtype of EC, accounting for nearly
80% of all EC incidences [4]. After 4 or 5 years of diagnosis,
the 5-year survival rate of patients with EC is only 15-25%
[4]. There is increasing evidence that some genetic and epige-
netic changes contribute to the tumorigenesis of ESCC [5]. It
is of great significance to find new therapeutic targets for
ESCC.

TGF-β exerts its function in human cells. In a typical sig-
naling, a TGF-β ligand binds to a heterotetrameric receptor

complex including TGFBR1 and TGFBR2 [6]. Then, the
ligand and receptor complex phosphorylated and activated
downstream SMAD2/3, which is a component of a tran-
scription factor [7]. The Smad complex then cooperates with
other regulators to direct transcription activation and regu-
late multiple downstream mechanisms [8]. However, Smad7
could also suppress the activation of TGF-β/Smad signaling
through competitively binding to TGFBR1 [9]. In addition,
the TGF-β pathway could crosstalk with Rho, PI3K, and
MAPK signaling to promote EMT, invasion, and angiogene-
sis [10]. Previous studies had demonstrated the important
roles of TGF-β in human cancers. For instance, TGF-β
modulates the cell cycle through the transcriptional regula-
tion inhibitors p15INK4 and p21CIP1 [11]. In addition,
the TGF-β/Smad axis also promotes cell stemness and mes-
enchymal transformation by upregulating multiple gene
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Figure 1: Continued.
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Figure 1: Prognostic relevance of genomic alterations of TGF-β signal regulators in human cancers. (a–k) The prognosis of genomic
alterations in multiple pathways was determined using TCGA esophageal adenocarcinoma datasets, including TGF-beta (a), survival and
cell death (b), cell cycle (c), migration and invasion (d), DNA damage (e), NOTCH (f), KRAS (g), RTK (h), PI3K-AKT (i), ribosome (j),
and angiogenesis (k).
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Figure 2: Continued.
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expression, such as Snail and Vim [12]. Understanding the
expression profile and potential functions of TGF-β signal-
ing could provide novel clues to identify novel treatment
markers for esophageal cancer.

To the best of our knowledge, a comprehensive analysis
has yet to be applied to clarify the role of TGF-β signaling
regulators in EC. Based on various bioinformatics databases,
this study detected the RNA levels and mutation status of
the TGF-β signal regulator in EC and predicted the potential
functions of these regulators in EC.

2. Materials and Methods

2.1. TCGA Database. TCGA included the RNA sequence
data of human genes in more than 30 cancer types. The
expression profile of the TGF-β signal regulator is retrieved
from TCGA database, and the clinicopathological informa-
tion of EC patients are also downloaded from this database
[13]. The receiver operating characteristic (ROC) [14] curve
assesses the diagnostic value of the TGF-β signal regulator in
EC patients.

2.2. cBioPortal Database. cBioPortal (https://www.cbioportal
.org/) provides large-scale cancer genome data and was used
to evaluate the frequency of TGF-β signal regulator muta-
tions in EC patients [15].

2.3. Analysis of Correlation and Function Enrichment of the
TGF-β Signal Regulator. The Corrplot [16] software package
was used to analyze the Pearson correlation coefficient
between the expression of the TGF-β signal regulator and
other mRNAs. We used the Database for Annotation, Visu-
alization and Integrated Discovery (DAVID) for the GO-

and KEGG-enriched analysis and annotation database to
comprehensively explore the potential biological significance
of the list of genes of interest. The clusterProfiler software
package of R software was used to visualize the enrichment
results according to the P value (P < 0:05). In order to reveal
the relationship between TGF-β signal regulators, we use the
STRING database (https://string-db.org/) to build a PPI
network [17].

2.4. Kaplan-Meier Plotter Database. The Proc software pack-
age [18] in the R software was used to analyze the ROC
curve to explore the sensitivity and specificity of TGF-β sig-
nal regulators in EC. The Kaplan-Meier plotter (https://
kmplot.com/) [19] is a database including microarray and
TCGA gene expression data, which was used to analyze the
correlation between TGF-β signal regulator expression and
survival status in EC [20].

3. Results

3.1. Prognostic Relevance of Genomic Alterations in Patients
with EC. In order to identify key pathways involved in regu-
lating the progression of ESCC, we determined the prognosis
of genomic alterations in multiple pathways using TCGA
esophageal adenocarcinoma datasets, including TGF-beta,
survival and cell death, cell cycle, migration and invasion,
DNA damage, NOTCH, KRAS, RTK, PI3K-AKT, ribosome,
and angiogenesis. We found that patients with mutations in
TGF-beta, survival and cell death, cell cycle, migration and
invasion, DNA damage, and NOTCH demonstrated worse
prognosis compared with patients without mutated signal-
ing (Figure 1).
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Figure 2: The correlation between mutation in TGF-β signal regulators and survival time in EC. (a–d) We analyzed the correlation between
mutations in the TGF-β signal and disease-free survival time (a), disease-specific survival time (b), platinum overall survival time (c), and
platinum progression-free survival time (d).
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Of note, we observed that TGF-beta was most signifi-
cantly associated with the overall survival time in EC. To
further confirm the prognostic value of TGF-beta signaling,
we analyzed the correlation between mutations in this sig-
naling and disease-free survival time (Figure 2(a)), disease-
specific survival time (Figure 2(b)), platinum overall survival
time (Figure 2(c)), and platinum progression free survival
time (Figure 2(d)). As expected, we found that patients with
mutations in TGF-beta signaling were significantly associ-
ated with shorter survival time compared to that without
these mutations.

3.2. Genetic Alteration Differences of TGF-β Signaling
Regulators in EC Patients. Furthermore, genetic alteration
of TGF-β signaling regulators in EC was analyzed using
the cBioPortal database, which included 1443 patients from
seven related studies. The mutation, amplification, and deep
deletion were the most common types of alteration in differ-
ent EC subtypes (Figure 3(a)). We also observed that TGF-β
signaling regulators were altered in 19% of EC patients
(254/1354) (Figure 3(b)). The mutation rates of TGF-β sig-
naling regulators for EC ranged from 0.8% to 12% for indi-
vidual genes (SMAD4, 12%; SMAD7, 5%; ACVR2A, 6%;

TGFBR2, 5%; BMP7, 5%; BMP5, 4%; BMP15, 4%; and
BMPR2, 4%) (Figure 3(c)).

3.3. Relative Transcriptional Expression of TGF-β Signaling
Regulators in EC Patients. Comparison of the RNA levels
of TGF-β signaling regulators in EC and noncancer samples
showed that RNA levels of ZFYVE9, BMPR1B, TGFB3,
TGFBRAP1, ACVRL1, TGFBR2, SMAD4, SMAD7,
ACVR2A, BMPR1A, SMAD9, and TGFBR3 were signifi-
cantly downregulated in EC tumor samples compared to
normal samples; however, ACVR1 and SMAD1 were upreg-
ulated in EC samples (Figure 4).

3.4. Diagnostic Value of TGF-β Signaling Regulators for
Distinguishing EC Patients. To investigate the prognostic
value of TGF-β signaling regulators in EC, we applied a
ROC curve analysis using TCGA database (Figure 5). ROC
analysis of TGF-β signaling regulators revealed that these
regulators had high diagnostic value for distinguishing EC
from normal individuals, including ACVR1 (0.7720),
ACVRL1 (0.6865), ACVR2A (0.7789), SMAD1 (0.7219),
SMAD7 (0.7356), SMAD4 (0.8550), SMAD9 (0.8349),
BMPR1A (0.6791), BMPR1B (0.7681), TGFBRAP1
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Figure 3: Genetic alteration differences of TGF-β signaling regulators in EC patients. (a) The genetic alteration of TGF-β signaling
regulators in EC patients. (b) The mutation, amplification, and deep deletion were the most common types of alteration in different EC
subtypes. (c) The hotspot mutations of SMAD2, SMAD7, ACVR2A, TGFBR2, and SMAD4.
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Figure 4: Relative transcriptional expression of TGF-β signaling regulators in EC patients. (a) Heatmap showed the comparison of the RNA
levels of TGF-β signaling regulators in EC and noncancer samples. (b) ZFYVE9, BMPR1B, TGFB3, TGFBRAP1, ACVRL1, TGFBR2,
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Figure 5: Continued.
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(0.8123), TGFBR2 (0.8354), TGFBR3 (0.8914), TGFB3
(0.7381), and ZFYVE9 (0.7553),

3.5. The Dysregulation of TGF-β Signaling Regulators
Correlated with Longer Survival Time in EC. Our results
showed upregulation of ACVR1, TGFBR3, TGFBRAP1,
BMPR1A, SMAD4, and TGFBR2 associated with a short
overall survival time in patients with EC (Figure 6).

3.6. Construction of the Protein-Protein Interaction Network
Regulated by Hub TGF-β Signaling Regulators in EC. In
order to investigate the potential mechanism of TGF-β sig-
naling regulators in EC, we applied coexpression network
analysis using the cBioPortal database and PPI network
using the STRING database in ESCC. The correlation
among ACVR1, ACVRL1, ACVR2A, SMAD1, SMAD7,
SMAD4, SMAD9, BMPR1A, BMPR1B, TGFBRAP1,
TGFBR2, TGFBR3, TGFB3, and ZFYVE9 is shown in
Figure 7. The results showed that these hub genes could be
divided into two subclasses, including subclass 1 (ACVR1,
SMAD1, ZFYVE9, BMPR1B, and TGFB3) and subclass 2
(TGFBRAP1, ACVRL1, TGFBR2, SMAD4, SMAD7,
ACVR2A, BMPR1A, SMAD9, and TGFBR3). The coex-

pressed genes with Spearman’s correlation > 0:8 were
selected as the potential targets of hub genes in ESCC. The
PPI network is shown in Figure 6. Based on PPI network
analysis, we revealed several key targets of TGF-β signaling
regulators in EC, including KDR, ACVR2A, PRRX1,
ACVRL1, TGFBRAP1, GDF6, BMPR1B, ENG, CD,
TGFBR2, SMAD4, SMAD7, FN1, SMAD1, ZFYVE9,
ACVR1, TGFB3, VWF, SMAD9, BMPR1A, and TGFBR3.

3.7. Functional Enrichment Analysis of TGF-β Signaling
Regulators. To investigate the functional roles in EC, we con-
structed the correlation between the expression of TGF-β
signaling regulators, PPI network, GO analysis, and KEGG
enrichment analysis (Figure 8). GO analysis showed that
ACVR1, SMAD1, ZFYVE9, BMPR1B, and TGFB3 were
related to regulating cell adhesion, extracellular matrix orga-
nization, collagen fibril organization, endodermal cell differ-
entiation, angiogenesis, negative regulation of chondrocyte
differentiation, extracellular matrix disassembly, integrin-
mediated signaling pathway, and wound healing. And sub-
class 2 was related to regulating angiogenesis, cell adhesion,
extracellular matrix organization, positive regulation of
GTPase activity, signal transduction, PI3K signaling, Rho
signal transduction, calcium ion transport, leukocyte migra-
tion, vasculogenesis, and peptidyl-tyrosine phosphorylation.

KEGG analysis showed that ACVR1, SMAD1, ZFYVE9,
BMPR1B, and TGFB3 were related to regulating proteogly-
can in cancer, focal adhesion, tight junction, PI3K-Akt sig-
naling pathway, cell adhesion molecules (CAMs), Rap1
signaling pathway, osteoclast differentiation, and Hippo sig-
naling pathway. And subclass 2 was related to regulating cell
adhesion molecules (CAMs), Rap1 signaling, cGMP-PKG
signaling, PI3K-Akt signaling pathway, calcium signaling,
focal adhesion, Ras signaling, platelet activation, and Staph-
ylococcus aureus infection.

4. Discussion

Previous studies had revealed that multiple oncogenetic
pathways were related to the tumorigenesis and
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development of EC, such as TGF-beta, survival and cell
death, cell cycle, migration and invasion, DNA damage,
NOTCH, KRAS, RTK, PI3K-AKT, ribosome, and angiogen-
esis signaling. For example, in a normal esophagus, NOTCH
regulates the development of the esophageal squamous epi-
thelium [21]. In ESCC, NOTCH plays either a tumor sup-
pressive or an oncogenetic role [21]. Activation of KRAS
induces the AKT-mTOR or RAF-ERK-pathways, which
have an important role in modulating tumor microenviron-
ment in EC [22]. Angiogenesis has a fundamental role in
cancer growth and metastasis [23]. In EC, increased angio-
genesis regulator expression was reported to be related to
worse response and prognosis of EC. In this study, as far
as we know, we used various large databases including
TCGA, GEO, STRING, and Kaplan-Meier plotter, for the
first time to analyze the level, gene changes, and functions
of TGF-β signal regulators in patients with esophageal can-
cer. Our results showed that the TGF-β signal plays an
important role in the diagnosis of EC. ROC analysis showed

that most TGF-β signal regulators have high diagnostic
value in distinguishing EC from normal patients. KM analy-
sis showed that ACVR1, TGFBR3, TGFBRAP1, BMPR1A,
SMAD4, and TGFBR2 were positively correlated with OS
prolongation. In addition, all TGF-β signal transduction reg-
ulators are closely related to multiple biological processes,
including cell adhesion, extracellular matrix tissue, collagen
catabolism, and PI3K signaling. In short, the members of
TGF-β signal regulators can be potential biomarkers for
the prediction of treatment and prognosis of EC.

More and more evidences indicate that TGF-β plays a
key role in tumor cells and switches its function between
tumor suppression and tumor promotion phenotypes [24].
For instance, TGF-β could arrest the cell cycle via CREB to
mediate the histone acetylation of PAI-1 in a p53/Smad-
dependent manner [25]. In addition, TGF-β can activate
FoxO1 to induce the expression of p21cip1 to induce the
G0/G1 arrest [11]. However, the role of the TGF-β factor
in esophageal squamous cell carcinoma needs further study.
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Figure 7: Construction of the protein-protein interaction network regulated by hub TGF-β signaling regulators in EC. (a) The correlation
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Compared with TGF-β-mutant patients, we did find a worse
prognosis in TGF-β-wild-type patients. In addition, we
found that patients with TGF-β signaling mutations were
significantly associated with shorter disease-free survival,
disease-specific survival time, platinum overall survival time,
and platinum progression-free survival time. Further analy-
sis showed that ZFYVE9, BMPR1B, TGFB3, TGFBRAP1,
ACVRL1, TGFBR2, SMAD4, SMAD7, ACVR2A, and
BMPR1AEC patients had significantly lower expression,
while ACVR1 and SMAD1 were expressed higher in EC
than in normal samples. Thus, we showed that TGF-β regu-
lators have high diagnostic capacity in distinguishing EC
patients from healthy donors. To further clarify the genetic
alteration of TGF-β signaling regulators, we analyzed the
cBioPortal database and found that the percentages of
genetic alterations in TGF-β signaling regulators for EC
varied from 0.8 to 14% for individual genes.

Of note, our results showed upregulation of ACVR1,
TGFBR3, TGFBRAP1, BMPR1A, SMAD4, and TGFBR2
associated with a short overall survival time in patients with
EC. ACVR1 is an activin type I receptor including 509
amino acids [26]. The ACVR1 was found to be expressed
in multiple human tissues and cell lines using RNA sequenc-
ing data. ACVR1 is a member of the BMP/TGFβ receptor
family [26]. ACVR1 forms a heterotetrameric receptor com-
plex with BMPR2, ACVR2A, and ACVR2B [27]. When the
signaling was activated, the type I receptor is trans-

phosphorylated by the type II receptor. As a result, the
kinase domain of the ACVR1 is activated and then phos-
phorylated the Smad1/5/8 protein [28]. In addition to the
typical Smad signaling pathway, ACVR1 can also activate
noncanonical signaling. New research shows that ACVR1
plays an important role in human cancer. For example, con-
stitutively active mutants of ALK2 have been identified as
the cause of FOP and were related to DIPG progression via
modulating BMP signaling [29]. In pancreatic cancer,
ACVR1 was found to regulate the stem cells and tumorige-
nicity of pancreatic cancer cells [30]. Deregulated ACVR1
was reported to be related to gastric cancer progression
[31]. ACVR1 is significantly increased in esophageal tumors.
In ESCC, the increase in the number of repeated copies of
ACVR1 and the corresponding transcriptional overexpres-
sion are associated with the survival rate of patients with
ESCC. In ESCC, TGFBR3 is an independent unfavourable
prognostic marker and positively correlated with Ki-67
[32]. The key roles of SMAD4 in ESCC had been demon-
strated in several previous reports. For example, Smad4 loss
is associated with an increased propensity for disease recur-
rence and poor survival in EC, and Smad4 protein level was
correlated with the depth of invasion of ESCC [33]. Smad7 is
an inhibitory factor of the TGF-beta superfamily which was
reported to be inversely correlated with depth of invasion of
EC [34]. Our study for the first time comprehensively ana-
lyzed the prognostic value of these genes in EC.
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Figure 8: Functional enrichment analysis of TGF-β signaling regulators: (a, b) the GO and KEGG analysis of subclass 1 genes; (c, d) the GO
and KEGG analysis of subclass 2 genes.
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To investigate the potential mechanism of TGF-β signal-
ing regulators in EC, we applied coexpression network anal-
ysis using the cBioPortal database and PPI network using the
STRING database in ESCC. The results showed that these
hub genes could be divided into two subclasses, including
subclass 1 (ACVR1, SMAD1, ZFYVE9, BMPR1B, and
TGFB3) and subclass 2 (TGFBRAP1, ACVRL1, TGFBR2,
SMAD4, SMAD7, ACVR2A, BMPR1A, SMAD9, and
TGFBR3). Subclass 1 was involved in regulating cell adhe-
sion, wound healing, PI3K-Akt signaling pathway, and
Hippo signaling pathway. Of note, several previous studies
had indicated that the hub genes in subclass 1 were related
to the regulation of these signalings. For example, the activa-
tion of the intracellular BMP-Smad1/5 pathway regulated
the expression of matrix macromolecules aggrecan and col-
lagen II [35]. Subclass 2 was involved in regulating angio-
genesis, cell adhesion, cGMP-PKG signaling, and PI3K-Akt
signaling. Emerging studies demonstrated that the abnormal
regulation of these signalings was observed in multiple
tumors and related to tumor initiation and metastasis [36].
For example, the Hippo coactivator YAP1 mediates EGFR
overexpression and confers chemoresistance in EC [37].
Targeting the Hippo coactivator YAP1 through BET bromo-
domain inhibition could suppress EC growth [38]. Of note,
various studies had indicated that TGF-β signaling was cross
talked with these signalings in human cancers. For example,
TGF-β upregulates the translation of USP15 via the
PI3K/AKT pathway to promote p53 stability [39]. PI3K/m-
TORC2 could regulate TGF-β/activin signalings by modu-
lating Smad2/3 activity [40]. In triple negative breast
cancer, TGF-β promotes noncanonical PI3K/Akt signaling
by reducing PTEN [41]. In addition, TGF-β targets the
Hippo pathway scaffold RASSF1A to facilitate YAP/SMAD2
nuclear translocation [42]. TGF-beta synergizes with defects
in the Hippo pathway to stimulate human malignant meso-
thelioma growth [43]. Therefore, we hypothesized that the
mechanism of the TGF-β signal regulator is to induce
tumorigenesis and development by regulating these path-
ways. This provides new ideas for the diagnosis and treat-
ment of EC.

Inevitably, this study had several limitations. First, most
of the findings in this study were obtained using public data-
bases. The biological functions of TGF-β regulators were
unclear, and more experimental validation is needed to fur-
ther confirm their functional importance in the EC. Second,
TCGA database was used in this study. Further studies inte-
grating multiomics datasets might strengthen the findings of
this study. Third, the clinical information of the patients was
limited. Thus, collecting more clinical samples to confirm
the expression and mutation profile of TGF-β regulators is
still needed.

5. Conclusions

In conclusion, TGF-β signal regulators are abnormally
expressed in EC. The high expression of ACVR1, TGFBR3,
TGFBRAP1, BMPR1A, Smad4, and TGFBR2 is positively
correlated with prolongation of OS. These genes play a key

role in EC and improve the survival rate and prognosis of
the EC marker of accuracy.
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The expression profile of the TGF-β signal regulator is
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