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Abstract

We here present a comparative genome, transcriptome and functional network analysis of three human cancer cell

lines (A431, U251MG and U2OS), and investigate their relation to protein expression. Gene copy numbers

significantly influenced corresponding transcript levels; their effect on protein levels was less pronounced. We

focused on genes with altered mRNA and/or protein levels to identify those active in tumor maintenance. We

provide comprehensive information for the three genomes and demonstrate the advantage of integrative analysis

for identifying tumor-related genes amidst numerous background mutations by relating genomic variation to

expression/protein abundance data and use gene networks to reveal implicated pathways.

Background

Human cancer cell lines have been an invaluable and

practical resource for cancer research. The availability of

genomic, transcriptomic and proteomic data on these

lines is expected to further increase their utility. To this

end, we conducted whole-genome and transcriptome

sequencing on three tumor cell lines (A431, U251MG

and U2OS) for which there is a large body of proteo-

mics data [1]. The choice of these lines was also moti-

vated by their origin from different lineages (tumor cell

lines from mesenchymal, epithelial and glial tumors)

and abundance of literature.

A431 is used as a model cell line for epidermoid carci-

noma and there are currently 3,359 publications describ-

ing studies using this cell line. It was established from an

epidermoid carcinoma in the vulva of an 85-year-old

patient [2]. This cell line expresses high levels of epider-

mal growth factor receptor (EGFR) and is often used to

investigate cell proliferation and apoptosis. U251MG is a

commonly used glioblastoma cell line (over 1,200 pub-

lished articles) established from a male’s brain tissue [3].

U2OS is an osteosarcoma cell line derived from a 15-

year-old female [4]. Osteosarcoma tumors arise from

cells of mesenchymal origin that differentiate to osteo-

blasts. It is the most common form of bone cancer,

responsible for 2.4% of all malignancies in pediatric

patients, and its triggers are currently not known [5].

U2OS is a common choice for osteosarcoma research:

35% of the articles associated with the osteosarcoma

Medical Subject Headings (MeSH) term in the PubMed

database have used this cell line.

Using modern technologies, we subjected these three

cell lines to genome and RNA sequencing in order to

identify genomic alterations and expression of messenger

and microRNAs. A review by Ideker and Sharan sum-

marized studies that demonstrate how genes with a role

in cancer tend to cluster together on well-connected

sub-networks of protein-protein interactions [6]. We also

earlier demonstrated that somatic mutations in a glio-

blastoma cancer genome produced a pathway-like pat-

tern of enriched connectivity in the gene interaction

network. Hence, in this work we analyzed functional rela-

tions between all detected somatic mutations, structural

variations (altered copy number) and allelic imbalances

of expression via network enrichment analysis (NEA)

[7,8]. A biological pathway could be seen as an area of

densely connected genes in a functional gene network.

The idea of NEA when applied to cancer-related genes is

that multiple key mutations (which are believed to be
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common in cancer genomes) could alter normal cellular

programs for proliferation, differentiation, cell death, and

so on, sometimes even producing quasi-pathways [9].

These altered pathways could then be detected as denser

and more enriched areas and evaluated by comparing

patterns formed by the same set of genes in biologically

meaningless (random) networks. Either the whole group

or members of such a pathway could have links to indi-

vidual master switches of oncogenesis, which may them-

selves have not been altered.

In particular, Dutta and co-authors developed a valuable

idea, according to which effects of driver genes might be

seen as differential (mRNA or protein) expression of net-

work neighbors [10]. In the current work we pursue a

similar approach with the difference that we did not make

any prior assumptions about modular properties of driver

mutations and entirely summarized their relations to each

other and important pathways. This method is the closest

analog of gene set enrichment analysis (GSEA), with the

important novel option of analyzing single genes against

functional sets [11]. Apart from that, gene network infor-

mation enables much higher sensitivity, which we demon-

strate as well.

While different methods of network inference from

single or two data sources have been published [12], only

data integration networks have a broader scope and

include multiple molecular mechanisms required for our

analysis. For the highest completeness, we employed a

network of functional coupling that was drawn up using

the methodology of the data integration tool FunCoup

[13], and then merged with curated pathways from Kyoto

Encyclopedia of Genes and Genomes (KEGG), protein

complex data from CORUM, and a special network from

glioblastoma data. However, any state-of-the-art network

is likely incomplete or does not account for a specific

context and we thus complement the network analysis of

direct links with analogous statistics that accounts for

indirect links, that is, connections via third genes.

To enable a rigorous statistical evaluation, patterns of

potential functional couplings are compared to observa-

tions in a series of randomized networks that preserve

basic topological properties overall, but have no biological

function. This results in probabilistic estimates for every

tested hypothesis. As the analysis considers relative enrich-

ment rather than absolute signal strength, functional pat-

terns can be discerned in the presence of multiple

spurious mutations, which are referred to as passengers.

On the other hand, any computation-based gene network

would have a high number of individual false edges.

Again, looking at statistically significant enrichment pat-

terns instead of focusing on particular links allows ignor-

ing such false positive findings. Of note, a number of

reports were dedicated to discovery of network structures

(modules, clusters, hypothetical pathways, and so on) that

could characterize pathologic conditions [10,14,15].

Here we describe, to our knowledge, the first study in

which whole-genome and transcriptome data for three

cancer genomes were analyzed in conjunction with data

on global protein levels. First, we select genes with the

potentially highest signal concentration (that is, filter them

by expression values, correlation of those to genome

alteration, sequence features, and so on), and subject them

to network enrichment analysis to prove that both the

selection criteria and NEA can bring us closer to the true

sets of driver mutations in these genomes. Second, we re-

analyze in the interaction network all detected copy num-

ber and single nucleotide alterations and present the most

likely driver mutations within each genome. We show that

passengers account for the overwhelming majority of all

detected structural variations. We believe that the results

presented herein provide a basis for understanding the

functional interactions between the genome, transcrip-

tome and proteome for both these highly influential

model cell lines and cancer genomes in general.

Materials and methods

Sequencing and mapping

We sequenced six Illumina paired-end lanes for the osteo-

sarcoma (U2OS) cell line, and five for each of the other

two cell lines, glioblastoma (U251) and epidermoid carci-

noma (A431). In total, there were 16 lanes, amounting to

1.23 billion paired-end reads. The data are publicly avail-

able [ERP001947] [16]. The lanes were then mapped to the

human genome, hg19, using BWA [17]. BWA was run

with default parameters except for: -l 25 and -k 2. With

these settings, 90%, 92.6% and 88.3% of the reads were

mapped for the U251MG, U2OS and A431 cell lines,

respectively. Mapped lanes were then filtered on a mapping

quality higher than 30 to retain only the best mappings.

Reads that mapped in multiple locations, which are

reported by BWA as having quality 0, were discarded. This

conferred coverage of approximately 21 × for U2OS. For

U251 and A431 the coverage was approximately 15 ×. In

addition to the paired-end libraries, we also sequenced

three mate-pair lanes, one for each cell line. After clipping

adapter sequences and reverse complementing the reads,

we mapped them using BWA with the same parameters

as above.

mRNA sequencing

Total RNA was extracted using the RNeasy Mini extraction

kit from Qiagen (Hilden, Germany) and eluted in 50 μl of

RNase-free water. The quality of the RNA was analyzed

using the Experion Automated Electrophoresis Station

from Bio-Rad and the standard sensitivity RNA chip

(Hercules, California, US). The RNA quality indicator
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(RQI) was 10 for all samples. The RNA extracts were

stored at -80°C. Each RNA sample was bar-coded and pre-

pared according to Illumina mRNA-seq sample preparation

and kit with the automated platform previously described

[18]. The barcoded libraries were pooled together in pairs

at equal concentrations and clustered on a cBot cluster-

generation system using the Illumina HiSeq single-read

cluster generation kit according to the protocol from the

manufacturer. The pooled libraries were sequenced on

Illumina HiSeq 2000 following instructions for multiplex

single read sequencing and using 100 + 7 cycles. All lanes

were spiked with a control library of phiX, yielding about

1% of the sequencing reads per lane. Reads were then

mapped with TopHat with no quality trimming either

with g -5 or g -20 [19]. The data are publicly available

[ERP001948] [20].

Functional analysis of the gene interaction network

Network construction

The existing global networks of functional coupling, such

as FunCoup, PPI networks, the union of KEGG pathways,

and so on, are known to be of high quality and relevance

when applied to statistically evaluate functional relations

between larger gene sets. As the network for the enrich-

ment analysis, we predicted a human network of functional

coupling using the FunCoup computational framework at

a confidence cutoff for individual links defined as a final

Bayesian score >7 [13]. This updated version used the latest

protein-protein interactions from the IntAct database, pro-

tein expression atlas HPA [1] and sub-cellular localization

data from Gene Ontology. In addition, analysis of gli-

oblastoma multiforme (GBM) published by The Cancer

Genome Atlas [21] provided data on the methylation status

of about 2,000 genes, and the transcription of more than

17,000 genes; the GBM network was constructed by simul-

taneously profiling 147 individual tumors for genomic

changes in 500 genes. This dataset provided an opportunity

to reconstruct a cancer-specific network that considers the

three molecular mechanisms. Using partial correlation ana-

lysis [22], we obtained a compact and highly specific GBM

network of causative relations between somatic mutations,

methylation, and transcription (22,990 links between

15,197 gene symbols; (manuscript in preparation). The

FunCoup network was then merged with the GBM

network and 79,539 curated links between 5,763 genes

from the KEGG [23] and CORUM [24] databases. In total,

the union contained 889,654 unique links between 18,904

HUPO gene symbols.

Functional gene groups for network analysis

To characterize altered gene sets by involvement into

known biological processes, we compiled a list of gene

membership in pathways and other gene groups of impor-

tance in the cancer context: 1) all 235 pathways presented

in the KEGG database (as of 21 April 2010), including

9 cancer pathways; 2) 15 Gene Ontology terms that could

be related to hallmarks of cancer [9]; 3) 13 cancer-related

pathways from publications reporting on large-scale

cancer genome projects; 4) gene sets of epithelial-

mesenchymal transition (courtesy of S Souchelnytskyi)

and tumor-specific pH-shift (courtesy of A de Milito). The

list thus included 5,698 distinct HUPO gene symbols

assigned to 260 gene groups (multiple membership

allowed).

Network enrichment analysis

For two gene sets, one of which is a set of altered genes

(the altered gene set (AGS)) i and the other a functional

gene set (FGS) j, the confidence of functional connectivity,

that is, enrichment in network connections nij between

i and j, was estimated with a z-score:

z =

nij − n̂ij

σij

where nij is the total number of links between any genes

of i and any genes of j found in the given network. In

biological networks, the distribution of node degree (num-

ber of connections per gene node) follows the power law,

that is, is very uneven: many nodes have few links, while

few nodes have many links. Thus, the expected (mean)

number and standard deviation sij estimates are strongly

influenced by node degree compositions in particular gene

sets. To make the analysis unbiased, we applied the net-

work randomization procedure proposed by [25]. While

systematically re-wiring network nodes, that is, randomly

swapping edges between two nodes at a time, the proce-

dure preserved node degrees and the total number of

edges in the network. The expected mean n̂ij (counted in

the same way as the value of nij) and standard deviation sij
were learned after a sufficient number (50) of random net-

work permutations. The default statistic counted the direct

links. An alternative statistic counted links indirectly, via a

shared network neighbor, that is, if there was a third gene

linked to both genes in question. Under the true null, that

is, in the absence of any functional linkages between gene

groups, the z-scores must be normally distributed; hence,

Z could be converted to P-values by a standard procedure.

For both direct and indirect links in each analysis, we eval-

uated relevant false discovery rates by looking at the left

tail of the z-score distribution (that is, the depletion side)

where no significant findings were expected and, alterna-

tively, by permutation tests on random gene sets of match-

ing size and topological properties.

Each gene carrying a potentially damaging single

nucleotide variant (SNV) was individually tested for func-

tional relatedness to the rest of the genes with potentially

damaging SNVs from the same somatic genome. For-

mally, we tested for violation of the null hypothesis that

stated ‘the individual gene is not enriched in connections
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with somatically mutated genes from the same line’ using

two different statistics (direct and indirect links); we per-

formed 334 tests in total (2 × (57 + 51 + 54)).

Gene set enrichment analysis

GSEA was performed on fixed-size AGS against the same

FGS as described for NEA using the hypergeometric test,

also known as odds ratio test [26]. The z-scores were

converted to P-values and adjusted for multiple testing

with an R function using the Benjamini and Hochberg

method.

Results and discussions

Genes affected by structural variations and their

functional implications

Numerous structural variations were identified [27,28] and

their breakdown is given in Table S1 in Additional file 1.

In summary, we detected 1,405, 1,340 and 1,497 deletions

(≥300 bases) in A431, U251MG and U2OS, respectively

(Additional file 1). The depth of coverage was used to call

for gained or lost regions in these genomes (Table S2 in

Additional file 1) [29]. In A431, 27% of the genome was

amplified but only 2% of the genome was lost (Figure 1).

Similarly, the U251MG cell line gained 25% of its genome

and lost around 2% (Figure 1). In contrast, an equal por-

tion of the genome (19%) was gained and lost for the

U2OS cell line (Figure 1). The U2OS cell line has lost one

copy of TP53 (its expression is halved compared to other

cell lines), which could influence the extent of genomic

deletions [30]. U2OS also lost one copy of chromosome

13 and chromosome X, which constitute 40% of its losses

(Figure S1). It also has a mis-functioning copy of ATRX

due to a large deletion that removes 16 exons. Reduced

levels of ATRX, which performs regulatory functions at

interphase, can induce segregation defects resulting in lag-

ging chromosomes, which could explain whole chromo-

some losses in U2OS [31].

We also profiled mRNA expression in each cell line using

sequencing. To investigate the extent to which changes in

genomic copy number of a gene affect its level of tran-

scription, we classified all genes according to their copy

numbers. Genomic copy number changes showed pro-

nounced effects on transcript levels: genes with high copy

numbers were expressed at significantly higher levels

than those with lower copy numbers (Figure 2a; P-value

= 1e-06). The relationship between genomic copy num-

ber and protein expression was also investigated by con-

sidering protein abundance data obtained by SILAC-

based mass spectrometry analysis [32] for the proteins

encoded by the 4,554 most strongly expressed genes for

each cell line. In keeping with previous findings [33],

we observed a modest correlation between gene expres-

sion and protein abundance (Spearman’s r = 0.55-0.61;

Figure 2b). We then looked at the direct relationship

between copy number and protein abundance. There was

a positive relationship between copy number of genes

and their protein abundance. The impact of gene copy

number on protein levels was lower than that of mRNA

expression. This is expected since pre-translational steps

also modulate available transcript amounts for translation

(Figure 2c; P-value = 5e-04).

A431 overexpresses EGFR and is often used as a positive

control for EGFR expression. We found a complex pattern

of EGFR amplification in the A431 cells using long-insert

libraries (Additional file 1): a 247 kb region carrying most

of the 5’ end of EGFR was amplified by a factor of 154 and

an adjacent 392 kb region carrying the 3’ end of EGFR and

two other genes was amplified by a factor of approximately

77. The chromosome section encompassing both of these

regions was tandemly duplicated with its orientation

reversed several times. However, the 392 kb region had

been deleted in approximately half of the copies, which is

why it was only amplified half as much as the 247 kb

region. In cases where the 392 kb region had been deleted,

it was replaced with a 1.3 Mb region from chromosome 4,

which was also amplified by a factor of 77 as a result. In

addition, several regions from chromosomes 1, 21 and 3

were inserted and amplified together (Figure 3a). We per-

formed fluorescence in situ hybridization (FISH) experi-

ments using probes against EGFR and PPARGC1A loci to

locate their excess copies (Figure 3b,c; Additional file 1).

In addition to its native position, numerous copies of

EGFR were found in two artificial chromosomes that

appear to only carry the rearranged copies of EGFR and

PPARGC1A (Figure 3c). The region on chromosome 4

contains one gene, PPARGC1A, which is a transcriptional

coactivator involved in relaying environmental signals to

control the metabolic activity of cells [34]. Its normalized

expression levels (reads per kilobase per million mapped

reads (RPKM)/gene copy number) are similar in all cell

lines (approximately 0.8). In A431, however, its amplifica-

tion appears to have increased its RPKM to 56.8.

Analysis of potential downstream effects of point

mutations in all cell lines

SNVs were detected within coding genes [27] (Additional

file 1). We first investigated effects of splice site SNVs on

transcriptomes of the three cell lines. An in-house software

package was used to evaluate the effects of splicing site

SNVs on transcript structures (Additional file 1). Approxi-

mately 2,500 SNVs were found that may potentially affect

splicing in each cell line; after applying several filters,

around a dozen were identified as being potentially dama-

ging and only two of these were validated by reference to

mRNA data (Table S3 in Additional file 1). APIP was

found to undergo alternative splicing in U251, probably

due to a homozygous splice site SNV (chr11: 34905054_

G/C) at the upstream splice site of exon 6 (Figure S2a in
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Additional file 1). This mutation causes the sixth exon to

be skipped without shifting the reading frame. An aberrant

transcription of the proto-oncogene FES was detected

(Figure S2b in Additional file 1) in U2OS cells, which is

missing the first 15 exons (which contain the regulatory

region of its protein activity), leaving only 4 expressed

exons. FES without its regulatory part has also been

observed in lymphoma and lymphoid leukemia cell lines

[35], and appears to be produced from the same transcript

as we found in the U2OS osteosarcoma line in this work.

FES expression has been found to correlate with tumor

growth and metastasis [36] and it is likely that the short

transcript variant observed in U2OS was involved in

carcinogenesis.

We also assessed allelic imbalances in the expressed

genes by comparing individual SNV frequencies at the

DNA and RNA levels (Additional file 1). Genes carrying

SNVs that were heterozygous at the DNA level but homo-

zygous in RNA transcripts were considered allelically

imbalanced. We detected 17, 6 and 10 such genes in A431,

U251MG and U2OS, respectively (Table S4 in Additional

file 1), and only one of them (NDN) is imprinted [37]. In

A431, several transcription factor genes as well as HDAC8,

SMARCA1 and BCLAF1 were expressed from only one

allele. MAP2K3 was allelically imbalanced in both the

U2OS and U251MG cell lines.

We then looked at the non-synonymous SNVs in

these genomes. In order to enrich those involved in

Figure 1 Whole genome read coverage plots of A431 (blue), U251MG (green) and U2OS (red) cell lines in Circos format. The coverage

profile was computed for windows of 250 kb. For each cell line, the middle line corresponds to no copy number change, and data points

above represent amplifications and those below represent losses. The outermost circle represents the chromosomes with cytogenetic bands.
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Figure 2 Correlations between gene copy number, transcription, and protein abundance. Within each cell line, correlations between the

three values were estimated for the 4,554 genes that had protein intensity data. Each row shows data for one of the three cell lines. Left panels:

non-parametric ANOVA with gene copy number as the factor and the RPKM values as the response (the box shows the 25th, 50th, and 75th

percentiles. The length of the error bars is equal to 1.5 times the interquartile range and the quoted P-values refer to the Kruskal-Wallis ANOVA test).

Middle panels: relationship between RPKM values and protein intensity. Right panels: same as left panels but with protein intensity as the response.
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tumor maintenance, we applied filters based on their het-

erogeneity and common polymorphisms (Additional file

1). We then predicted their protein-level effects using

PolyPhen to filter out those with no obvious potential to

cause a functional change on the protein [38]. This left

us with 57, 54 and 51 genes carrying SNVs that were

likely to be damaging to protein function in A431,

U251MG and U2OS, respectively (Table S5 in Additional

file 1).

Cancer state is likely to be the result of a set of func-

tional mutations in key genes that perturb relevant gene

networks at multiple points [9,39]. To identify such coop-

erative actions of mutations, we used NEA aiming to find

the most likely key genes for each cell line, that is, the

impaired genes that contributed to the onset and/or

maintenance of the rapid proliferation state. To this end,

we evaluated network connections between the genes

impaired via SNVs within each cell line. In the A431 cell

line, 8 of 57 potentially impaired genes were strongly

connected to other genes within the same set; the corre-

sponding numbers for the U251MG and U2OS lines

were 12 and 7, respectively (false discovery rate (FDR)

<0.10; Table S6 in Additional file 1). One example is

PKMYT1, a gene that carries a heterozygous SNV that is

predicted to be damaging (NP_004194_E179G, PolyPhen

FDR = 0) in U2OS cells. This mutation is at a conserved

residue within the catalytic domain of the protein [40].

NEA indicated that this mutation was only directly linked

to one other damaging somatic mutation in U2OS - a

mutation in carbamoyl phosphate synthetase II (CAD).

However, analysis of indirect links (that is, those via

shared neighbors) revealed significant relationships

between PKMYT1 and the rest of the U2OS somatic

mutation set (790 links compared to 406.4 expected by

chance, NEA z-score = 19.21). Again, the majority of

such links (Figure S3 in Additional file 1) led to CAD

through BMP2K and CDK2 (502 links), nuclear protein

NUP93 (72 links), the WD repeat and HMG-box DNA

A) 

B) C) 

 7p11   4p15   7p11 

100 µm 100 µm 

Figure 3 Complex amplification of EGFR and PPARGC1A loci. (a) The region within the curly bracket is the tandemly duplicated unit in reverse

orientation. It contains a 639 kb region (chr7: 54,973,500-55,632,000, red arrow, carrying the EGFR gene) and its inverted partial duplicate that contains

the 1.3 Mb region on chr4 (chr4: 22,864,000-24-249,500, white box, carrying the PPARGC1A gene) and shorter regions from chromosomes 1, 21 and 3

(green, blue and purple boxes). (b) A431 cells in the metaphase, pink probes target amplified EGFR (340 kb), green probes target the centromere of

chromosome 7. EGFR is located in chromosome 7 as well as in two minute chromosomes. (c) The probes targeting the PPARGC1A locus (chr4p15) and

EGFR are visualized together, confirming the co-localization of these two heavily amplified loci in the minute chromosomes.
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binding protein WDHD1 (54 links), and the DNA pri-

mase PRIM2 (53 links). Collective actions of these heavily

connected impaired genes could produce alterations in

associated pathways such as cell cycle regulation [41,42].

Context-dependent meta-analysis of impaired genes in

the three cell lines

Somatic mutations in key genes are central to the initiation

of cancer state and concurrent copy number alterations

can contribute to further progression and maintenance of

the rapid proliferation state. Specifically, the affected genes

can facilitate subclonal expansion - for instance, by confer-

ring a growth advantage or enabling cell death evasion

[43]. The resulting cancer circuitry thus involves the con-

certed action of multiple genes that have undergone copy

number or point mutations; that is, the formation of the

circuitry is independent of the mechanism by which the

damage to each gene was sustained. Importantly, whether

a novel mutation/structural variation will be advantageous

for the rapid proliferation is defined by its interactions with

the rest of the (pre-existing) mutations and the transcrip-

tional landscape. To this end, we investigated functional

relations between genes affected by SNVs, allelic imbalance

or copy number alterations. There were more than 3,000

copy number-altered (CNA) genes per cell line. Obviously,

most of these did not contribute to the rapid proliferation

state. To identify genes with a significant impact, we

assumed that the transcript levels of such genes would mir-

ror the changes in their copy number, as would the levels

of the corresponding proteins. We therefore looked at the

correlations between expression/protein abundance and

the copy number of every gene across the three cell lines

to filter out CNA genes that do not affect transcript or pro-

tein levels and are thus less likely to be involved in achiev-

ing rapid proliferation. To control for the potentially high

FDR in this correlation analysis (due to the small number

of cell lines considered), we performed permutation tests

on the full CNA gene lists and recorded the log of the ratio

of the observed correlations to those obtained from the

permuted list (Figure S4 in Additional file 1). This high-

lighted genes with true correlations between their copy

number, mRNA expression, and protein abundance values

(the latter set of correlations was weaker than the former,

as expected). Genes with structural variation in more than

one cell line and with higher RPKM values yielded lower

FDRs (Figure S5 in Additional file 1). However, even after

the application of this filter, the FDR is likely to be high,

leaving hundreds of false positives in the pool for consid-

eration. Network analysis was therefore performed to

exclude genes that had undergone copy number changes

but are irrelevant within the context. We considered the

functional interactions between a single gene from the

CNA gene set and the much more strongly delineated

(around 50 genes per line, as described above) set of

impaired genes due to SNVs, so that the latter could serve

as a reference set. NEA z-score thresholds of increasing

stringency (the z-values ranged from 1.64 to 6.00, corre-

sponding to P-values of 0.1 to 0.000001 and FDR values of

0.2 to 0.01 in the network analysis) were applied in con-

junction with the expression and correlation criteria

described above. The fractions of CNA genes affecting

expression levels with and without functional couplings

(that is, with low or high NEA z-scores) were compared to

those for CNA genes that did not affect expression, or not

significantly expressed at all (low RPKM). Remarkably, the

latter group manifested much lower fraction of NEA-posi-

tive genes at any significance threshold (two- to four-fold;

Figure S6 in Additional file 1). Although neither method

and criteria set had perfect sensitivity, the final analysis was

performed using CNA gene lists for which the mean corre-

lation coefficient between copy number and expression/

protein abundance was above 0.8 and which yielded NEA

z-scores above 1.96, which corresponded to a FDR of less

than 0.1 (Figure S6 in Additional file 1). Using these cri-

teria, we identified 21 CNA genes from A431 that are likely

to be functionally related to damaging SNVs; the corre-

sponding numbers for U251MG and U2OS were 46 and

51, respectively (Figure 4; Table S7 in Additional file 1).

Figure 4 displays network relations between two or three

most connected CNA genes and respective SNVs of the

same cell line. Remarkably, the network links connecting

CNA genes and their interactors were mostly based on

mRNA expression analysis (blue lines in Figure 4). In the-

ory, copy number alterations should act through transcrip-

tion, and respective genes should produce functional

relations via transcription, which can then be seen in the

general context network we employed. Hence, in this case

we likely observed a true case of copy number alterations

interacting with SNV-impaired genes. Moreover, we

detected a common subnetwork (Figure S7 in Additional

file 1) when we combined impaired genes from the three

cell lines, although only parts of it were active in each

cell line.

We then looked at the overlap with and interactions

between our affected gene sets and a comprehensive list of

cancer-related genes generated by Ding et al. (referred to

as the Ding-set) [44]. SNV-impaired genes in U2OS and

U251MG were significantly enriched in terms of NEA

with the Ding-set but those from A431 were not. All lists

manifested some enrichment against KEGG cancer path-

ways, but only the U251 cell line was strongly associated

with these pathways. The other two only had significant z-

scores against small and non-small cell lung cancers as

well as prostate and bladder cancer, whereas U251 was

enriched with respect to all of these and ten other cancer

pathways. However, as a final test of CNA being a driver

mutation, we present a context-specific analysis: a NEA of

individual CNAs versus the filtered SNV gene sets of the
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A431 NEA (-) NEA (+) 

CN / TRX (-) 4227 81 

CN / TRX (+) 639 21 

z-value 2.17 

p-value 0.030 

U251MG NEA (-) NEA (+) 

CN / TRX (-) 4624 99 

CN / TRX (+) 569 46 

z-value 6.78 

p-value 1.2e-11 

U2OS NEA (-) NEA (+) 

CN / TRX (-) 6722 131 

CN / TRX (+) 888 51 

z-value 6.40 

p-value 1.55e-10 

Figure 4 Contingency tables for genes identified using two different filtering schemes. (a) A431, (b) U251MG and (c) U2OS cell lines. CN/

TRX (+) denotes genes for which the average Spearman coefficient over all three cell lines for the relationship between copy number and

transcription is >0.8. NEA (+) denotes genes exhibiting enriched connectivity to genes carrying damaging mutations in the same cell line (NEA z-score

>1.96). These criteria were selected to optimize the ‘sensitivity/specificity’ trade-off after having considered several alternatives (Figure S4 in Additional

file 1). In the network diagrams in the same cell line order, red triangles denote CNA genes coupled with more than five links to genes carrying

damaging SNVs in the same line, denoted as green diamonds. The color scheme for the connections is: red lines for physical protein interaction, blue

lines for mRNA co-expression, green lines for protein co-expression, purple lines for sub-cellular co-localization, khaki lines for coherence of

Gene Ontology annotation, deep bluish green lines for links in a KEGG pathway, and deep blue lines for known members of the same complex.
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same cell line (Table S7 in Additional file 1). This analysis

is analogous to the ‘SNV gene versus SNV gene set’ analysis

described above (Table S6 in Additional file 1). Figure S8 in

Additional file 1 shows the case for a specific SNV-

impaired gene, MCM3, in U251 and interacts with several

genes in cancer pathways as well as with other SNV-

impaired genes in the same cell line.

We also investigated the connectivity of each individual

CNA gene to cancer-related pathways, including apopto-

sis, the cell cycle, and the p53 pathway. Thirty-six CNA

genes displayed enriched connectivity to these pathways

(at least 5 links, z-value >2) in the A431 line; the corre-

sponding numbers of genes in the U251MG and U2OS

lines were 9 and 47, respectively. Twenty-seven CNA

genes were affected in more than one cell line and this

overlap was stronger than that between the unfiltered

CNA gene sets (P-value = 0.031). Fifteen cancer pathways

defined in the KEGG database were significantly enriched

in terms of connections to individual CNA genes from

each cell line (ranging from 3 to 40 genes per pathway and

cell line). Finally, we merged the three major classes of

genomic alterations (copy-number changes, SNVs, and

allelic imbalances) from each cell line and used network

analysis to demonstrate that all of these gene classes coop-

erate in cancer-related activities (Figure 5), that is, there

was significant network enrichment with regard to cancer-

specific gene sets, apoptosis, TP53, major signaling cas-

cades, cell-cycle and DNA-repair pathways and interac-

tions with one another. Importantly, alterations of the

three variation classes also had functional relations to each

other within the cell lines (indicated by red lines between

SNV and CNA and self-loops of allelic imbalance (AI) in

Figure 5).

Conclusions

In this study, we performed whole-genome, mRNA sequen-

cing and analyses for three tumor cell lines. The expression

and proteome profiles of these cell lines have already been

investigated and fair correlations were shown between

RNA expression and protein levels [32]. We here incorpo-

rated whole genome data such as gene copy number and

DNA variation profiles of these cell lines to perform an

Figure 5 Mapping of genomic alterations in three cell lines to most basic signaling pathways from the KEGG database, KEGG cancer

super-pathway 05200, and the group of 623 genes associated with cancer by Ding et al. [42]. Yellow boxes, U251MG; blue boxes, A431;

purple boxes, U2OS. A single line summarizes the network connections between each pair of gene sets, with the line’s width reflecting the

number of links in the global network connecting individual genes from the two functional gene sets (3...189). Only relations significant by NEA

are shown (P-value <0.05, FDR <0.10). Edge opacity and edge width reflect the number of individual gene-gene links behind the relation (also

printed in brown at each edge). Mapping between experimentally determined gene sets of cell lines is highlighted in red. AI, allelic imbalance;

MTOR, mammalian target of rapamycin; TGF, transforming growth factor; VEGF, vascular endothelial growth factor.

Akan et al. Genome Medicine 2012, 4:86

http://genomemedicine.com/content/4/11/86

Page 10 of 13



integrative analysis and discover impaired genes and path-

ways. Genes with elevated copy numbers were identified in

all three of the cell lines considered, giving more than 3,000

genes with copy number changes. The expression levels of

each such gene and the abundance of their corresponding

proteins were then used to identify genes that were likely to

contribute to the maintenance of the cancer state. This ana-

lysis narrowed the list of affected genes from thousands to a

few hundred per cell line, demonstrating the utility of using

DNA variation together with expression data. The cell lines

used in this work have different origins so our cross-corre-

lation analysis based on the assessment of copy number-

dependent expression could potentially generate false nega-

tives or positives due to some genes being differently regu-

lated in the different cell lines. However, we assume that

while these cell lines may retain some aspects of their origi-

nal identities, the extent of cell-specific changes in the

expression of genes in common pathways such as cell cycle

regulation, DNA replication or apoptosis have much less

impact than those induced by copy number changes.

While the reduction in the number of candidate genes

achieved by applying the first filter was substantial, it

was not sufficient by itself because the list still contained

many passengers. To address this issue, we assumed that

1) cancer is more likely to be maintained by a set of

interrelated mutations that alter cellular processes at

multiple points than by the effects of a single mutation,

and 2) proliferative benefit conferred from an alteration

can depend on already existing mutations or structural

variations. We therefore focused on CNA genes that

exhibited functional links to genes impaired by SNVs in

the same cell line. In conjunction with the first filtering

step based on the expression correlations with copy

number changes, this second filter afforded significant

improvements, reducing the number of putative genes

contributing to rapid proliferative state to around a few

dozen genes per cell line, all of which exhibited enriched

connectivity to major signaling, cell division and cancer-

specific gene sets. Despite the low overlap between the

altered gene sets for each cell line, the network analysis

demonstrated that their cancer-related functionality was

cooperative, which we detected at both the pathway and

global-network level.

Traditionally, novel experimentally determined AGSs are

characterized by significance of overlap (amount of shared

genes) with known functional gene sets. This method is

generally called gene set enrichment analysis. To illustrate

superiority of our NEA, we directly compare analyses from

GSEA and NEA in Figure S9 in Additional file 1. Only

four of all 420 analyzed AGS-FGS pairs showed a signifi-

cant GSEA overlap (each case was based on two shared

genes) when NEA did not detect enrichment. The number

for the opposite case (NEA+, GSEA-) was 75, and 18 pairs

were detected by both methods. In addition, grounding

a GSEA result on two or three genes would not be robust,

whereas NEA results are usually based on tens or hun-

dreds of network links. Of note, these comparisons were

only possible on AGS as sets of multiple genes, while sin-

gle gene analysis against FGS is a unique feature of NEA.

Cancer cells modulate their metabolism to switch from

mitochondrial to glycolic metabolism despite the presence

of sufficient oxygen levels to support the former; this is

known as the Warburg effect [45]. In A431 cells, lactase

dehydrogenase (LDHA) levels are elevated (RPKM of 751,

no gain or loss) which suggests heavy use of glycolic meta-

bolism. The gene PPARGC1A, expressed strongly in nor-

mal tissues with high-energy demands, including cardiac

tissue, brown fat, and the central nervous system [46-48],

is heavily amplified in these cells. It is a master co-activa-

tor for mitochondrial biogenesis, which might suggest uti-

lization of oxidative phosphorylation by A431 cells. The

functional implications of this amplification are currently

being assessed.

We also detected several allelically imbalanced genes and

most of these genes did not have any copy number

changes and/or damaging SNVs. One special case was nec-

din (NDN), a gene that is typically maternally imprinted

and is only expressed in the brain and placenta [49]. NDN

is highly expressed in the U2OS cell line but not in U251

or A431. Previous comparisons of H3K36me3 gene

expression patterns between osteoblasts and U2OS sug-

gested that it is not expressed in osteoblasts [50]. Mahes-

waran et al. [51] showed that overexpression of TP53

causes rapid apoptotic cell death in U2OS cells. However,

transfection of U2OS cells with necdin together with TP53

inhibited TP53-induced apoptosis [52]. A single functional

copy of TP53 is present in U2OS cells. This suggests that

U2OS cells may evade apoptosis in vivo due to their con-

stitutive expression of NDN together with reduced expres-

sion of TP53.

We also looked at splice-site SNVs and detected numer-

ous splice-site SNVs that could cause improper splicing.

Only a few were supported by RNA sequencing data,

which suggests that the splicing mechanism is fairly

robust, in keeping with previous findings [53].

This study demonstrates that the combined analysis of

genomic and transcriptomic data can provide a better

functional understanding of the mutational landscape of

cancer genomes than can be obtained by considering

either one of these sources in isolation. The combined

analysis of genomic variation and expression datasets

enabled us to distinguish between variants contributing to

rapid proliferation and those that are passengers. The

mutational landscapes of cancers are highly variable; few

shared mutations but numerous private mutations even

among similar ones [54,55]. Our method could be particu-

larly beneficial in these scenarios since it evaluates each

mutated gene within its biological context to reveal
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impaired functional couplings to cancer-related genes that

have themselves not been altered. Moreover, the analyses

over global gene and protein networks enabled us to

uncover relations between alterations that drive/are driven

by expression and those constitutively present in the cell

but mis-paired via damaging mutations. As an example, a

very recent study profiled 947 independent cancer cell lines

and provided information on the copy numbers and RNA

expression profiles of their genes [56]. Applying the com-

bined analysis reported herein to these cell lines could pro-

vide valuable insights into their impaired pathways and

related anticancer drug sensitivity.

Additional material

Additional file 1: Supplementary methods, Supplementary Figures

S1 to S9, and Supplementary Tables S1 to S7.
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