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Mitosis and spindle assembly require the microtubule-associated protein Xenopus kinesin-like protein 2 (TPX2). Although TPX2
is highly expressed in several malignant tumor forms, little is known about its role in cancer. In this study, we performed the gene
set enrichment analysis of TPX2 in 33 types of cancers and an extensive pan-cancer bioinformatic analysis using prognosis, tumor
mutational burdens, microsatellite instability, tumor microenvironment, and immune cell infiltration data. According to the
differential expression study, TPX2 was found to be overexpressed across all studied cancer types. Based on the survival
analysis, increased TPX2 expression was associated with a poor prognosis for most cancers. The TPX2 expression level was
confirmed to correlate with the clinical stage, microsatellite instability, and tumor mutational burden across all cancer types.
Furthermore, TPX2 expression has been linked to tumor microenvironments and immune cell infiltration, particularly in
bladder urothelial carcinoma, liver hepatocellular carcinoma, lung adenocarcinoma, stomach adenocarcinoma, and uterine
corpus endometrial carcinoma. Finally, the gene set enrichment analysis implicated TPX2 in the regulation of aminoacyl tRNA
biosynthesis, which is the most important tumor cell cycle signaling pathway. This comprehensive pan-cancer analysis shows
that TPX2 is a prognostic molecular biomarker for most cancers and suggests its potential as an effective therapeutic target for
the treatment of these diseases.

1. Introduction

Owing to its high expression throughout the cell cycle, p100,
now known as human TPX2 (targeting protein for Xklp2)
[1, 2], was first identified as a microtubule-associated protein
(MAP) responsible for mediating the localization of the
kinesin-like protein Xklp2 to the ends of microtubules dur-
ing mitosis [3, 4]. It is a microtubule-associated protein
required for the development and function of mitotic spin-
dles [5]. TPX2 possesses a nuclear localization sequence
and is localized to the nucleus during interphase; further, it
localizes to spindle microtubules during mitosis, with a pref-
erence for the spindle poles [6]. Like spindle flypaper, TPX2
directs numerous proteins to the spindle. For example,

TPX2 binds the mitotic kinase Aurora A, activates it, and
localizes it to the spindle [7]. In the vicinity of chromosomes,
the chromatin-driven spindle assembly pathway exerts such
regulatory effects, and TPX2 is one of the main targets of this
pathway [8]. Microtubule-binding proteins, motors, and
nucleation factors are only few of the proteins that TPX2
interacts with directly or indirectly to regulate spindle for-
mation and activity [9]. The role of TPX2 in tumor metabo-
lism and tumor immunity has not yet been discovered [10].

High-throughput sequencing methods and next-
generation omics platforms have enabled the unparalleled
molecular profiling of various diseases in recent years [11].
Transcriptome sequencing has become the primary tool for
measuring gene expression owing to technological
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advancements and its lower costs [12]. Furthermore, the
remarkable bioinformatic revolution has led to the genera-
tion of a vast quantity of data that could be utilized to map
out information about all known genes and cancer types
and identify useful patterns [13]. Pan-cancer analysis is a
bioinformatic approach that uses data from multiple data-
bases to assess the expression, mutational pattern, and func-
tion of a gene in the context of various cancers, taking into
consideration patient prognoses [14]. Such analyses can pro-
vide insight into the function of the genes involved and their
interactions in different types of cancers.

Whereas TPX2 overexpression has been observed in a
variety of cancers, no thorough pan-cancer investigation of
TPX2 has previously been performed. Our study is aimed at
elucidating the role of TPX2 in cancer metabolism and immu-
nity by performing a pan-cancer analysis of integrated multio-
mics data. In this study, bioinformatic analysis was performed
to investigate the relationship among TPX2 expression, prog-
nosis, clinical stage, tumor mutational burden (TMB), micro-
satellite instability (MSI), tumor microenvironment, and
immune cell infiltration (ICI) in multiple cancers.

2. Materials and Methods

2.1. Raw Data and TPX2 Expression Analysis. Gene expres-
sion RNA-sequencing data (HTSeq-FPKM), somatic muta-
tion data (VarScan2 variant aggregation and masking), and
clinical data for 33 cancer types were retrieved from The
Cancer Genome Atlas (TCGA) database and downloaded
using the UCSC Xena (https://xena.ucsc.edu/) [15]. For the
33 cancer types (Table S1), a boxplot was constructed
using the R package ggpubr to show differences in TPX2
expression between cancerous and normal tissues. The

statistical method to analyze differences was the Wilcoxon
signed-rank test.

2.2. Prognostic Survival Analysis. To learn more about the
prognostic significance of TPX2 in various cancers, we eval-
uated the connection between TPX2 expression and patient
survival using data from TCGA database. In different cancer
types, we evaluated the relationship between TPX2 expres-
sion levels and overall survival (OS), disease-free survival
(DFS), progression-free survival (PFS), and disease-specific
survival (DSS) using the Kaplan–Meier method and univar-
iate Cox proportional-hazards analysis. Analysis and visual-
ization were performed using the R packages limma,
survival, survminer, and forestplot.

2.3. Correlation Analysis of TPX2 Expression with Clinical
Stage, TMB, and MSI. TCGA database provides clinical-
stage data for 33 types of cancers. An ANOVA with an LSD
(least significance difference) post hoc test and the R packages
limma and ggpubr were used to study the correlation between
TPX2 expression and the clinical stage. When comparing two
clinical stages, p < 0:05 was considered as statistically signifi-
cant. TMB andMSI data for 33 types of cancers were obtained
from TCGA database. TMB, defined as the total number of
somatic mutations per coding region of a tumor genome
[16], is a novel clinical biomarker linked to ICI therapeutic
effectiveness. Insufficient repair of insertion-deletion loop
mismatches, which occur during DNA replication in tandem
repeat sequences across the genome, causes MSI, which has
been linked to the development of a variety of cancers [17].
The correlation between TPX2 expression and TMB/MSI
was analyzed for the 33 types of cancers using R software
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Figure 1: Boxplots depicting TPX2 expression differences between cancerous and normal tissues among 33 cancer types. ∗represents p <
0:05, ∗∗represents p < 0:01, and ∗∗∗represents p < 0:001.
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and the Spearman correlation method. Visualization was per-
formed using the R package fmsb.

2.4. Evaluation of Tumor Microenvironments and ICI. The
ImmuneScore, StromalScore, and ESTIMATEScore were
calculated to predict tumor purity in the tumor microenvi-
ronment for each sample using the R packages limma and
estimate. The correlation between TPX2 expression and
the stromal score/immune score was analyzed in the
tumor microenvironment using the Spearman correlation
method and the R packages ggpubr and ggExtra. If p <
0:001, visualization was performed using the R package
ggplot. Thorsson et al. [18], who used CIBERSORT (cell-
type identification by estimating relative subsets of RNA

transcripts), an analytical tool that imputes gene expres-
sion profiles and provides an estimation of the abundances
of member cell types in a mixed cell population using
gene expression data to construct pan-cancer immune cell
infiltration score of TCGA database, provided us with
these scores. Using the Spearman correlation analysis and
the R packages ggpubr and ggExtra, the relationship
between TPX2 expression and the number of infiltrating
immune cells was investigated. Visualization was per-
formed using the R package ggplot2. We also analyzed
the correlation between TPX2 expression and immune
checkpoint molecules using correlation test analysis and
the R package limma, and the R packages reshape2 and
the RColorBrewer were used to create the heat map.
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Figure 2: Univariate Cox proportional-hazards analyses comparing TPX2 expression levels and survival outcomes. Forest plots of hazard
ratios between TPX2 expression levels and (a) overall survival, (b) disease-specific survival, (c) disease-free survival, and (d) progression-
free survival in 33 cancer types.
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2.5. Gene Set Enrichment Analysis (GSEA). GSEA is a statis-
tical approach for determining the expression status of genes
inside a functional gene set by comparing them to prede-
fined gene sets [19]. To elucidate the biological functions
and pathways with which TPX2 is involved, we used the R
packages limma, http://org.Hs.eg.db, clusterProfiler, and
enrichplot to run GSEA on TPX2. We utilized the molecular
signatures database (MSigDB), which includes all Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) gene sets. GSEA findings were considered
significantly enriched with jNESj > 1 and nominal p < 0:05.

3. Results

3.1. TPX2 Expression across Cancer Types. TPX2 expression
levels in cancerous tissues were much higher than those in
normal tissues in 22 types of cancers, including BLCA,
BRCA, CESC, CHOL, COAD, ESCA, GBM, HNSC, KICH,
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Figure 3: Kaplan–Meier survival analysis of patients with high and low TPX2 expression in numerous cancers. (a) Overall survival. (b)
Disease-specific survival. (c) Disease-free survival. (d) Progression-free survival:p < 0:05 represents a significant difference between
survival outcomes.
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Figure 4: Correlation analysis between TPX2 expression levels and clinical T stage in 33 cancer types, showing the 12 cancer types for which
there was a statistically significant difference. ∗represents p < 0:05, ∗∗represents p < 0:01, and ∗∗∗represents p < 0:001; and ns: not significant.
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Figure 5: Correlation analysis of TPX2 expression levels with the tumor mutational burden (TMB) and microsatellite instability (MSI)
across cancer types. (a) Results of correlation analysis between TPX2 expression levels and TMB. (b) Results of correlation analysis
betweenTPX2 expression levels and MSI. ∗represents p < 0:05, ∗∗represents p < 0:01, and ∗∗∗represents p < 0:001.
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KIRC, KIRP, LIHC, LUAD, LUSC, PAAD, PCPG, PRAD,
READ, SARC, STAD, THCA, and UCEC (Figure 1). There
was no significant difference in TPX2 expression between
cancerous and normal tissues for THYM and SKCM can-
cers. TCGA database lacks data for normal tissue samples
for comparisons with cancers such as ACC, DLBC, LAML,
LGG, MESO, OV, TGCT, UCS, and UVM. Among the 33

cancer types, UCS had the highest TPX2 expression, whereas
KICH had the lowest.

3.2. TPX2 Is a Prognostic Biomarker for Several Cancer
Types. Hazard ratios (HRs) were significant between TPX2
expression and OS for ACC (HR = 2:889), KICH
(HR = 2:282), KIRC (HR = 2:282), KIRP (HR = 2:940), LGG

Cancer: BRCA Cancer: CESC Cancer: COAD Cancer: COAD Cancer: GBM

Cancer: GBM

Cancer: LUAD

Cancer: READ

Cancer: TGCT

Cancer: UCEC Cancer: UCEC

Cancer: TGCT Cancer: THCA Cancer: THCA Cancer: THYM

Cancer: SARC Cancer: SKCM Cancer: STAD Cancer: STAD

Cancer: LUSC Cancer: LUSC Cancer: PAAD Cancer: PAAD

Cancer: HNSC Cancer: KIRC Cancer: KIRC Cancer: LIHC

8

6

4

2

–2000 –1000 1000 2000

TP
X2

8

6

4

2

TP
X2

6

4

2

0

TP
X2

6

4

2

0

TP
X2

TP
X2

0
Stromal score

–2000 –1000 1000 20000
Stromal score

–2000 –1000 1000 20000
Stromal score

–2000 –1000 1000 20000
Stromal score

–2000 –1000 10000
Stromal score

–1000 1000 20000
Stromal score

–1000 1000 20000
Stromal score

–1000 1000 20000
Stromal score

–1000 10000
Stromal score

–1000 10000
Stromal score

–1000 1000 20000
Stromal score

Stromal score

–2000 –1000 1000 20000
Stromal score

–1000 10000
Stromal score

–1000 1000 20000
Stromal score

–1000 1000 20000–1000 1000 2000 30000
Immune score

–1000 1000 2000 30000
Immune score

–1000 1000 2000 30000
Immune score

1000 20000
Immune score

–1000 1000 2000 30000
Immune score

–1000 1000 2000 30000
Immune score

–1000 1000 2000 30000
Immune score

–1000 1000 2000 30000
Immune score

–1000 1000 2000 30000
Immune score

1000 2000 30000
Immune score

Immune score

7

6

5

4

TP
X2

7

6

5

4

3

TP
X2

6

8

4

2

TP
X2

7

6

5

4

TP
X2

7

6

5

4

TP
X2

7

6

5

4

TP
X2

3

2

1

TP
X2

3

2

1

3

TP
X2

7

6

5

4

3

TP
X2

6

5

4

3

2

TP
X2

6

5

4

3

2

TP
X2

6

5

4

3

2

TP
X2

6

4

2

TP
X2

6

4

2

0

TP
X2

6

4

2

TP
X2

6

4

2

TP
X2

6

4

2

TP
X2

6

4

2

TP
X2

6

4

2

TP
X2

6

4

2

TP
X2

6

4

2

TP
X2

6

4

2

TP
X2

6

4

2

0
–1500 1500–1000 1000–500 5000

Stromal score
–1500 –1000 1000–500 5000

R = –0.32 , p < 2.2e–16

R = –0.47 , p < 1.1e–10

R = –0.15 , p = 0.00065 

R = –0.21 , p = 2e–06

R = –0.37 , p < 2.2e–16

R = –0.4 , p = 1.1e–07

R = –0.38 , p = 1.3e–06

R = –0.27 , p = 3.3e–10 R = –0.24 , p = 7.7e–09

R = 0.38 , p < 2.2e–16 R = 0.39 , p < 2.2e–16 R = –0.38 , p = 2.7e–05R = –0.29 , p = 0.00021

R = –0.33 , p = 7.5e–08

R = –0.41 , p < 2.2e–16

R = –0.34 , p = 1.2e–11 R = –0.46 , p < 2.2e–16

R = –0.26 , p = 0.00055 R = –0.28 , p = 0.00018

R = –0.17 , p = 0.00017

R = 0.35 , p < 2.2e–16 R = 0.25 , p = 5.8e–09 R = –0.25 , p = 1e–06

R = –0.24 , p = 3.3e–05 R = –0.36 , p = 9.3e–16 R = –0.27 , p = 4.5e–09 R = –0.52 , p < 2.2e–16

Figure 6: Correlation analysis of TPX2 expression levels with stromal and immune scores in 18 cancer types.

6 Disease Markers



Cancer: BLCA

6

4TP
X2

2

0.0 0.1 0.2
Macrophages M0

0.3

R = 0.21, p = 0.00012

6

4TP
X2

2

0.00 0.05 0.10

Macrophages M1

0.15

R = 0.24, p = 7.4e–06

6

4TP
X2

2

6

4TP
X2

2

0.0 0.1 0.2 0.00 0.05 0.10 0.15
Mast cells resting T cells regulatory (tregs)

R = –0.27, p = 5.7e–07 R = –0.32, p = 2.1e–09

Cancer: BLCA Cancer: BLCA Cancer: BLCA

(a)

6

4

TP
X2

2

6

4

TP
X2

2

6

4

TP
X2

2

6

4

TP
X2

2

6

4

TP
X2

2

0.00 0.0 0.1 0.2 0.30.05 0.10 0.15

B cells naive Macrophages M0
0.20 0.25 0.0 0.00 0.05 0.100.1 0.2 0.3

Macrophages M2 T cells CD4 memory activated
0.00 0.03 0.06 0.09

T cells follicular helper
0.4 0.5

R = –0.19, p = 0.00081 R = 0.24, p = 3.3e–05 R = –0.31, p = 7e–08 R = 0.23, p = 6.9e–05 R = 0.37, p = 5.5e–11

Cancer: LIHC Cancer: LIHC Cancer: LIHC Cancer: LIHC Cancer: LIHC

(b)

6

4

TP
X2

2

Cancer: LUAD Cancer: LUAD

0.0 0.1

Macrophages M0

0.2 0.3

6

4

TP
X2

2

6

4

TP
X2

2

0.0 0.1 0.2 0.0 0.1 0.20.3 0.4

T cells CD4 memory resting T cells CD8

6

4

TP
X2

2

Cancer: LUAD

0.0 0.1

Dendrtic cells resting

0.2

R = –0.36, p < 2.2e–16

6

4

TP
X2

2

0.00 0.05

T cells CD4 memory activated

0.10 0.15

R = 0.43, p < 2.2e–16 R = –0.27, p = 2.2e–10 R = 0.18, p = 5.4e–05

R = 0.36, p < 2.2e–16

6

4

TP
X2

2

0.00

Macrophages M1

0.150.100.05

R = 0.44, p < 2.2e–16

6

4

TP
X2

2

0.00

Mast cells resting

0.15 0.200.100.05

6

4

TP
X2

2

0.00

Monocytes

0.10 0.150.05

R = –0.43, p < 2.2e–16 R = –0.15, p = 0.00085

Cancer: LUAD Cancer: LUAD Cancer: LUAD Cancer: LUAD Cancer: LUAD

(c)

6

4TP
X2

2

6

4TP
X2

2

6

4TP
X2

2

Cancer: STAD Cancer: STAD Cancer: STAD

0.0 0.1

Macrophages M0

0.2 0.3 0.00 0.05 0.10 0.15
Macrophages M1

0.00 0.05 0.10 0.15 0.20
Mast cells resting

R = 0.37, p = 2e–13

6

4TP
X2

2

0.00 0.04 0.08
T cells follicular helper

0.12

R = 0.32, p = 5.1e–10

R = 0.24, p = 2.5e–06 R = –0.37, p = 2.2e–13

6

4TP
X2

2

6

4TP
X2

2

Cancer: STAD Cancer: STAD

0.000 0.025 0.050 0.075 0.100 0.00 0.05 0.10 0.15 0.20
Monocytes T cells CD4 memory activated

R = –0.21, p = 7e–05 R = 0.24, p = 2.2e–06

Cancer: STAD

(d)

Figure 7: Continued.

7Disease Markers



(HR = 1:540), LIHC (HR = 1:457), LUAD (HR = 1:244),
MESO (HR = 2:018), PAAD (HR = 1:659), PCPG
(HR = 4:980), SARC (HR = 1:267), SKCM (HR = 1:199),
THYM (HR = 0:589), UCEC (HR = 1:586), and UVM
(HR = 1:848) (Figure 2(a)). HRs were also significant between
TPX2 expression and DSS for ACC (HR = 2:834), COAD
(HR = 0:760), KICH (HR = 2:287), KIRC (HR = 1:932), KIRP
(HR = 3:346), LGG (HR = 1:611), LIHC (HR = 1:372), LUAD
(HR = 1:207), MESO (HR = 2:319), PAAD (HR = 1:709),
PCPG (HR = 9:801), PRAD (HR = 2:856), SARC
(HR = 1:288), SKCM (HR = 1:237), UCEC (HR = 1:693),
and UVM (HR = 1:996) (Figure 2(b)). Moreover, HRs were
significant between TPX2 expression and DFS for KIRP
(HR = 3:031), LIHC (HR = 1:222), LUAD (HR = 1:241),
PAAD (HR = 1:665), PRAD (HR = 1:993), SARC
(HR = 1:381), THCA (HR = 2:607), and UCEC (HR = 1:393
) (Figure 2(c)). Finally, HRs were significant between TPX2
expression and PFS for ACC (HR = 2:333), KICH
(HR = 2:143), KIRC (HR = 1:564), KIRP (HR = 2:427), LGG
(HR = 1:351), LIHC (HR = 1:257), LUAD (HR = 1:169),
MESO (HR = 1:658), PAAD (HR = 1:599), PCPG
(HR = 2:803), PRAD (HR = 2:119), SARC (HR = 1:269),
THCA (HR = 1:907), UCEC (HR = 1:334), and UVM
(HR = 3:059) (Figure 2(d)).

As shown in Figure 3, TPX2 expression was found to sig-
nificantly affect prognosis, including OS, DSS, DFS, and PFS.
Higher TPX2 expression indicated low OS in ACC, KIRC,
KIRP, LGG, LIHC, LUAD, MESO, PAAD, SKCM, and
UCEC but better OS in THYM (Figure 3(a)). Patients with
TPX2 overexpression had lower DSS for ACC, KIRC, KIRP,
LGG, LIHC, LUAD, MESO, PAAD, PCPG, SKCM, and
UCEC (Figure 3(b)). Further, patients with high expression
of TPX2 had lower DFS for KIRP, LIHC, LUAD, MESO,
PAAD, SARC, THCA, and UCEC (Figure 3(c)). In ACC,
KIRC, KIRP, LGG, LIHC, LUAD, MESO, PAAD, PRAD,
SARC, THCA, and UCEC, patients with high TPX2 expres-
sion experienced shorter PFS (Figure 3(d)). The results thus
showed that TPX2 expression in KIRP, LIHC, LUAD,
PAAD, and UCEC is significantly correlated with OS, DSS,
DFS, and PFS outcomes.

3.3. TPX2 Expression Is Associated with Clinical Data across
Cancer Types.We next investigated the relationship between
clinical data and TPX2 expression in 33 cancers. Figure 4
displays the correlation between TPX2 expression levels

and specific T classifications of the TNM staging system in
ACC, BRCA, ESCA, KICH, KIRC, KIRP, LIHC, LUAD,
LUSC, SKCM, TGCT, and THCA. Among them, especially
for ACC, KICH, KIRC, KIRP, and TGCT, we found that
the expression levels of TPX2 in most tumors increased with
each increment of the T classification. These findings suggest
that increased TPX2 expression levels are associated with
cancer invasion and metastasis.

3.4. TPX2 Expression Correlates with TMB and MSI across
Cancer Types. In a variety of tumors, TMB and MSI are reli-
able prognostic biomarkers and indicators of immunological
therapy responses. We evaluated their respective associa-
tions with TPX2 expression in various cancer types to
uncover any link between TPX2 activity and mutations in
certain cancer types. In 23 of the 33 cancer types for which
data were available (ACC, BLCA, BRCA, CESC, CHOL,
COAD, HNSC, KICH, KIRC, LAML, LGG, LIHC, LUAD,
LUSC, MESO, OV, PAAD, PRAD, SARC, SKCM, STAD,
THCA, and THYM), the relationship between TPX2 expres-
sion and TMB was significant (p < 0:05), and of these,
THYM had the highest correlation coefficient (−0.7143, neg-
ative correlation), whereas COAD had the lowest correlation
coefficient (−0.1023, negative correlation) (Figure 5(a)). The
link between TPX2 expression and MSI was also investigated
in 33 cancer types, with statistical differences found for
BLCA, COAD, LIHC, LUSC, PAAD, SARC, STAD, UCEC,
UCS, and UVM (Figure 5(b)). Among the several types of
cancer, SARC had the highest correlation coefficient
(0.2947, positive correlation), whereas COAD had the lowest
correlation coefficient (−0.1090, negative correlation).

3.5. Tumor Microenvironment and Immune Cell Infiltration.
Figure 6 illustrates the cancers with the most significant rela-
tionship between TPX2 expression and stromal scores,
which were GBM, STAD, LUSC, THCA, and THYM,
whereas the cancers with the most significant relationship
between TPX2 expression and the immune score included
GBM, READ, TGCT, THCA, and LUSC. We also evaluated
whether TPX2 expression is related to the infiltration of
immune cells in several cancers. In BLCA, LIHC, LUAD,
STAD, and UCEC, TPX2 expression was significantly asso-
ciated with infiltrating immune cells, as shown in Figure 7.
In diverse cancer types, considerable coexpression of TPX2
with immune checkpoint genes, including CTLA4, LAG3,
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Figure 7: Correlation analysis of TPX2 expression levels with the level of immune cell infiltration in BLCA (a), LIHC (b), LUAD (c), STAD
(d), and UCEC (e) across cancer types.
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TIGIT, PDCD1, CD27, CD28, CD40, CD44, CD48, CD70,
CD80, CD86, CD160, CD200, CD244, CD274, and CD276,
was found. These findings suggested that TPX2 is involved
in the regulation of the tumor immune response via immune
checkpoint activity modulation (Figure S1).

3.6. GSEA. We next divided the cancer samples into two
groups based on high or low TPX2 expression levels and
used GSEA to identify the enrichment of GO and KEGG
gene sets in the two groups. Figure 8(a) shows the biological
processes that were highly enriched in both groups. G2-M
phase transition, DNA-binding transcription activator activ-
ity, cellular processes involved in reproduction in multicellu-
lar organisms, and dynein complexes were found to be the
most enriched biological processes in BRCA, KIRC, LUAD,
and UCEC, respectively. Figure 8(b) also shows the signaling

pathways that were highly enriched in both groups. Cell
cycle signaling pathways were the most enriched pathways
in BRCA, KIRC, and LUAD, whereas aminoacyl tRNA bio-
synthesis was the most enriched in UCEC. The results fur-
ther showed that TPX2 is mainly involved in the cell cycle
regulation signaling pathway. We found that TPX2 expres-
sion is highly correlated with cell cycle biological processes
and also analyzed the correlation among TPX2 expression
levels, cell cycle regulators (CCNA2, Cyclin A2; CDK2,
Cyclin-dependent kinase 2), and glycolytic metabolic path-
way key molecules (HK2, PFKM, and PKM) using the
GEPIA database (http://gepia.cancer-pku.cn/index.html).
The results showed that the expression of TPX2 was signifi-
cantly positively correlated with the expression of cell cycle
regulators (CCNA2 and CDK2) in BRCA, KIRC, LUAD,
and UCEC (Figure S2) and that the expression of TPX2
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Figure 8: Gene set enrichment analysis (GSEA) of TPX2. (a) Top five results of TPX2 GSEA ranked according to their correlation with
biological processes in BRCA, KIRC, LUAD, and UCEC. (b) Top five results of TPX2 GSEA ranked according to their correlation with
signaling pathways in BRCA, KIRC, LUAD, and UCEC.
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was significantly positively correlated with the expression of
glycolytic metabolic pathway key molecules (HK2, PFKM,
and PKM) in LUAD and UCEC (Figure S3).

4. Discussion

TPX2 is a microtubule-associated protein that directs the
kinesin Xklp2 to mitotic spindle poles [20, 21], and it plays
a vital role in the formation of the microtubules that make
up the spindle [22]. TPX2 is overexpressed in esophageal
cancer, colorectal cancer, hepatocellular carcinoma, colon
cancer, bladder cancer, clear cell renal carcinoma, pancreatic
cancer, ovarian carcinoma, breast cancer, and neuroblas-
toma, and its degree of expression has been associated with
poor prognoses [23–32]. Combined with its critical role as
a mitotic regulator, this association implicates TPX2 as a
potential oncogene. In this study, we discovered a correla-
tion between TPX2 overexpression and poor prognosis
among most cancers. However, it is unclear how TPX2 over-
expression contributes to genomic instability and carcino-
genesis. This might contribute to carcinogenesis by causing
spindle malfunction and chromosomal instability.

Several studies have found that a reduction in TPX2 levels
is beneficial for cancer treatment. For example, the depletion
of TPX2 can significantly inhibit prostate cancer and cholan-
giocarcinoma cell activity and migration, and TPX2 knock-
down can inhibit tumor growth considerably in vivo
[33–35]. Furthermore, the upregulation of TPX2 expression
has been shown to significantly promote non-small-cell lung
cancer, hepatocellular cell migration, and invasion; it has also
been associated with increased cell plasticity [36, 37]. TPX2
siRNA causes apoptosis, decreased cell proliferation, and inva-
sion. TPX2 has been shown to play a role in tumor growth reg-
ulation in cervical cancer, hepatocellular carcinoma, and
glioma [38–40]. Further, TPX2 siRNA inhibits tumor cell
invasion and metastasis promotes tumor cell death, and could
be a potential treatment option for esophageal carcinoma,
medullary thyroid carcinoma, colon cancer, and breast cancer
[41–44]. Our findings suggest a correlation between TPX2
overexpression and poor prognosis among most cancers and
the potential for it to be used as an important target in antitu-
mor metastasis therapy, which is conducive to precision med-
icine, for most malignancies.

We also investigated the relationship between TPX2
expression and TMB/MSI. This relationship was statistically
significant in the majority of cancer types, with THYM
(TMB) and SARC (MSI) having the highest correlation coef-
ficients. We also analyzed the correlation between TPX2
expression levels and the tumor microenvironment and
immune cell infiltration. In most cancer types, TPX2 expres-
sion levels were found to be negatively correlated with stro-
mal and immune cell contents, but the opposite was true for
KIRC and THCA. Meanwhile, our data indicate that TPX2 is
involved in the recruitment and modulation of tumor-
immune infiltrating cells, and that for BLCA, LIHC, LUAD,
STAD, and UCEC, it might be employed as a predictive bio-
marker. Therefore, in the future, on one hand, we can esti-
mate the effect of immunotherapy by detecting the
expression level of TPX2, and on the other hand, we can

develop targeted therapy for TPX2 for combinations with
traditional immunotherapy to improve its efficacy.

The process through which TPX2 depletion causes can-
cer cells to die is unclear; however, it might involve mitotic
disruption. TPX2 expression has been found to be increased
in ovarian cancer tissues, and knocking it out suppresses the
expression of polo-like kinase 1. Since this kinase regulates
the M phase of the cell cycle and the activity of Cdc2, its sup-
pression results in cell arrest during the G2/M phase check-
point and, therefore decreased cancer proliferation [45].
After hnRNP-F knockdown, TPX2 levels were found to
decline even further, causing cyclin D1 protein expression
to decrease and p21 protein expression to increase, resulting
in cell cycle arrest and the reduced proliferation of bladder
cancer cells [46]. Our GSEA results revealed that TPX2 gene
activity is linked to cell cycle factors (CCNA2 and CDK2)
and that the TPX2 expression level is positively correlated
with the expression of CCNA2 and CDK2 in BRCA, KIRC,
LUAD, and UCEC. TPX2 is mainly involved in cell cycle
regulation and promotes tumorigenesis and development.
In addition, TPX2 expression was determined to be posi-
tively related to key molecules of the glycolysis metabolic
pathway, and it might be involved in this pathway. In this
study, we also found that TPX2 expression is highly corre-
lated with multiple checkpoint molecules in multiple cancer
types. This suggested potential synergy between TPX2 and
known immune checkpoints. Finally, our findings suggest
that TPX2 has a carcinogenic effect in many cancers and is
a promising potential cancer treatment target. The limitation
of this study is that we used a bioinformatic approach, and
thus, further biological experiments are needed to validate
these claims.

5. Conclusions

In this study, we performed GSEA of TPX2 and comprehen-
sively analyzed its association with prognosis, TMB, MSI,
tumor microenvironments, and immune cell infiltration in
33 cancer types through an extensive bioinformatic pan-
cancer analysis. Our findings suggest that TPX2 has a carci-
nogenic effect on a variety of cancers and that it could be a
marker of immune infiltration and poor prognosis. While
the mechanism by which TPX2 overexpression leads to can-
cer remains unclear, it likely involves the role of this protein
in the regulation of mitotic spindle microtubules. We pro-
posed that TPX2 can be used as a prognostic biomarker
and therapeutic target for a variety of cancers.
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