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Abstract. A comprehensive analysis of the stopping power of antiprotons and negative muons
in He and H2 gas targets for projectile velocities (equivalent antiproton energies) ranging
from about 0.1 to 10 au (0.25 keV to 2.5 MeV) is performed. Recent experimental data are
contrasted with theoretical results obtained from different approaches. The electronic stopping
power is evaluated within the coupled-state atomic-orbital method and the distorted-wave Born
approximation as well as, for low projectile velocities, within a generalized adiabatic-ionization
model that takes into account collisional-broadening effects. The departure of the antiproton
stopping power from the proton stopping power (‘Barkas effect’), observed for intermediate
projectile velocities, is discussed. The contribution to the stopping power arising from energy
transfer to the translational degrees of freedom of the target system (‘nuclear stopping’) is
evaluated. Our analysis results in a good understanding of the stopping mechanisms of negative
heavy particles in gases, in particular in He. Discrepancies between theory and experiment in
the H2 case are attributed to effects of the molecular structure of the target.

1. Introduction

The stopping cross section (‘stopping power’) of negatively charged, heavy particles
traversing gas targets has only recently become a subject of investigation. At the CERN
LEAR facility, the mean range and mean moderation time of antiprotons (p̄) in He and H2

targets were measured for kinetic energies ranging from about 0.5 keV to 1.1 MeV [1, 2].
The total stopping powerS p̄ was deduced by assuming a parametrized energy dependence of
S p̄ and determining the parameter values from a ‘best fit’ to the measured range curves and
moderation time curves. In experiments performed at the ‘muon-bottle apparatus’ atPSI,
the time distributionL(t) of the scintillation light emitted from excited target atoms during
the slowing down of negative muons (µ−) in He and H2 targets was measured for kinetic
energies ranging between about 0.05 keV and 0.5 MeV [3–5]. The stopping powerSµ−

was
derived from an analysis that uses the information provided byL(t) along with experimental
p̄ ionization cross sections as well as other experimental and theoretical information.
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Clearly, the totalp̄ and µ− stopping powers at given projectile velocityv ought to
be virtually identical,S p̄(v) = Sµ−

(v) (except for deviations at smallv due to the mass
dependence of the nuclear-stopping contribution). The experimentally determined values
for S p̄(v) and Sµ−

(v), however, deviate by about 20%. We assume these discrepancies
to reflect the experimental errors and the uncertainties of the analyses. In the following,
general discussion, we disregard the deviations and refer, for the sake of simplicity, mainly
to thep̄ case. Theµ− data will, of course, be explicitly included in the detailed comparison
of the experimental data with theory.

The experimental data for He and H2 targets have certain features in common, which
make them particularly attractive for a detailed theoretical analysis. A marked feature is
that for velocitiesv comparable to the velocityve of the active electron in the initial target
state, i.e. forv in the vicinity of the stopping power maximum, the ratio of thep̄ stopping
power to the corresponding stopping power of protons is considerably smaller than unity. A
similar behaviour, commonly referred to as the Barkas effect [6], has been observed already
in the stopping power in solid targets [7, 8] and was also found in total cross sections
for single ionization by protons and antiprotons in gas targets [9, 10]. The Barkas effect
reflects the polarization of the target electron cloud due to the attraction (repulsion) exerted
on the cloud when the proton (antiproton) passes by at larger distances from the target
nucleus. This polarization is responsible for a breakdown of the first Born approximation
which scales with the projectile charge numberZ asZ2 and which correctly describes the
confluence of antiproton and proton data in the limitv � ve.

Whenv decreases in the rangev < ve, the ratio of antiproton to proton stopping power
rises (for H2) or even becomes larger than unity (for He). Again, such a behaviour is known
from the ionization cross sections [9, 10]. Qualitatively, it may be ascribed to the ‘binding
effect’, which reflects the assumption that at lowv electronic transitions occur predominantly
in close (small-impact-parameter) collisions. When a proton (antiproton) penetrates slowly
into the target electron cloud, it produces an increase (decrease) in binding energy of the
initial target state, and thus the cross section is lowered (raised). However, when discussing
the observed discrepancies between the proton and antiprotonstopping powersat low v,
it may be insufficient to invoke merely the binding effect. Forv < ve, the cross section
for electron capture by protons may acquire the same order of magnitude as that of the
cross sections for ionization and excitation. Hence, a considerable fraction of the incoming
protons can be converted into (neutral) H atoms. The energy loss of H atoms colliding
with target atoms differs from the energy loss of protons. The observed proton stopping
power is a mean value over contributions from collisions of protons and of H atoms. For
antiprotons, the electron capture channel is closed.

In the rangev � ve, the experiments have provided some evidence for an increase of the
antiproton stopping power with decreasingv. This behaviour appears to deserve particular
attention since for very lowv a sizeable contribution to the stopping power should arise
from nuclear stopping [11]. The electronic stopping in the low-v limit is expected to reflect
the near-adiabatic behaviour of the projectile–target collision system. In near-adiabatic col-
lisions induced by protons (or other positively charged, heavy projectiles), excitation and
ionization can be understood in terms of transitions between the electronic states of the
transiently formed ‘quasimolecular’ collision complex (see for example [12]). In collisions
involving negative heavy projectiles, the electrons move in the field of the transient ‘qua-
sidipole’ formed by the heavy particles. The electronic states of the quasidipole experience
a monotonic loss of binding energy when the distance between the heavy particles decreases,
and even become unbound at certain non-zero, ‘critical’ distances if the ‘united atom’ formed
by the heavy particles does not support bound negative-ion states. This feature led Fermi
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and Teller [13] and Wightman [14] to assume that ‘adiabatic ionization’ is the principal
mechanism contributing to the stopping power of negative heavy particles in the low-v limit.

In this paper, we perform a comprehensive, quantitative analysis of the stopping power
of antiprotons and negative muons in He and H2 gas targets. The aim of this analysis is
to provide insights into the basic mechanisms that are responsible for the slowing-down
of negative particles in gases. We confront the existing experimental data with theoretical
results obtained from different approaches and present a systematic comparison with the
stopping power for protons. Particularly, we employ results of elaborate coupled-state
atomic-orbital calculations that cover the electronic stopping over a broadv-range. The
range of intermediate and highv is analysed within the distorted-wave Born approximation.
For discussing the low-v limit, we devise and apply a generalized adiabatic-ionization model
in which collisional-broadening effects are taken into account. The contribution of nuclear
stopping is also evaluated.

In the next section, we briefly summarize the ingredients of the different models and
approximations that will be used in our theoretical analysis of the experimental data. In
section 3, we analyse the stopping power of negative particles in a He target. The stopping
of negative particles in H2 is considered in section 4, while section 5 contains a summarizing
discussion. Unless stated otherwise, we use atomic units.

2. Theory

We assume the total stopping powerS of a heavy particle to be decomposed into an electronic
partSe and a nuclear partSn. The electronic stopping powerSe is, in general, a mean value
[15] over contributionsSα

e from the different charge statesα (with equilibrium fractionfα)
which the projectile can acquire in the target medium:

Se =
∑

α

fαSα
e (1)

Sα
e =

∑
f

1Eif σα
if . (2)

Here,σα
if is the cross section for an electronic transition from the initial target state labelled

i into a final state labelledf , and1Eif is the associated energy transfer. The sum overf

extends over all bound and continuum states of target and projectile. For incoming protons,
the mean electronic stopping powerS

p
e comprises contributions from protons (H+), H atoms

(H0) and negative H ions (H−). As the H− contribution is known to be very small [16], we
will neglect it in the present analysis and write

Sp
e = f+S+

e + f0S
0
e . (3)

No averaging over charge states is required, of course, in the stopping powerS
p̄
e of incoming

antiprotons.
A general, non-perturbative method for calculating the stopping power of ions traversing

atomic targets has been developed recently [17]. It is based on a coupled-state atomic-orbital
(AO) description of the individual atomic collisions taking place in the target medium. A
distinctive feature of theAO method is that, within the space of basis functions chosen
in the expansion of the (time-dependent) scattering wavefunction, the full projectile–target
interaction is treated in infinitely high order. In previous applications of theAO method, the
basis was composed of up to≈200 (bound and continuum) target-centred functions [17, 18],
plus a projectile-centred hydrogenic 1s function for the case of proton projectiles [19]. The
proton results for a He target have compared favourably with the available experimental
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data. In particular, they have allowed the uncovering of the dominating role of the capture
channel at intermediate and lowv and its importance for explaining the deviations of the
data [21, 22] from thev-proportionality assumed in semiempirical stopping power formulae
[23].

TheAO results that we apply here are largely taken from [18–20]. New calculations with
up to 350 basis states have been performed for thep̄He system. Further, we have extended
the v-range to values below 0.6 au, using an improved representation of the wavepackets
describing zero-energy electrons. Thereby, we avoid convergence problems with theAO

expansion, which we had encountered previously, in particular for thep̄H system. Here,
instead of scaling the non-diagonal matrix elements of the lowest continuum wavepackets,
we have performed a numerical integration over high-lying Rydberg states (n > 7) and
low-lying continuum states in order to determine the zero-energy wavepackets. In doing so,
we have exploited the fact that the energy dependence of the Rydberg wavefunctions and
the continuum wavefunctions (provided the latter functions are normalized on the energy
scale) is only weak near the nucleus. Thus, the high-lying Rydberg states are as accurately
described as the continuum states in our previous work (atomic states withn 6 7 are treated
explicitly). This results in an improved representation of the quasidipole behaviour of the
total wavefunction at lowv.

It is noted that we have performed, within theAO method, test calculations for lowv, in
which the recoil effect [24] has been taken into account. This effect is of kinematic origin
and represents the contribution to target ionization due to the recoil of the target nucleus
arising from its interaction with the projectile nucleus. When the target nucleus becomes
accelerated, the target electrons experience inertial forces which may induce ionization. For
our cases, no indication for a significant contribution from the recoil effect was found.

In the present analysis, we further employ theoretical results obtained within the
distorted-wave (DW) approach of [25, 26]. Specifically, this approach adopts the continuum-
distorted-wave–eikonal-initial-state (CDW–EIS) model [27] (in conjunction with a hydrogenic
description of the target) to calculate cross sections for bare projectiles, while for the neutral
charge state the cross sections are obtained from the first Born approximation [28–30]. In
DW approximations of this kind, higher-order effects are embodied in the initial-state and
final-state wavefunctions, while theresidual projectile–target interaction is treated in first
order. Therefore, these approximations are expected to be valid at intermediate and high
v. For proton stopping in He, theDW results forv above the stopping power maximum
were indeed found [26] to be in very good agreement with theAO results and with the
experimental data. Good agreement persists even forv far below the maximum.

For analysing the stopping power of antiprotons in the low-v range, we evaluate the
electronic stopping power within a simple model that generalizes the adiabatic-ionization
(AI) model of Fermi and Teller [13] and Wightman [14]. Starting from adiabatic potential
curves for the electronic states in the field of the quasidipole formed by the antiproton and
the nucleus of the target atom, we take into account the effect of the finite collision time by
introducing a ‘collisional broadening’ of the potential curves [31]. From simple estimates
for the velocity and impact parameter dependence of this broadening, we obtain the velocity
dependence of the critical interparticle distances at which the broadened levels merge in the
continuum.

Figure 1 shows adiabatic potential curves for the states of thep̄H andp̄He systems that
are relevant to the present discussion (effects of the molecular structure of the H2 target will
be discussed below). The lowest curve (1σ ) of the p̄H system emerges from the H(1s) state
at infinite interparticle distanceR. With decreasingR, the binding energy of the 1σ state
decreases monotonically and becomes zero at the ‘critical’ distanceRc = 0.639 au [13, 14].
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Figure 1. Adiabatic potential curves for electronic states of thep̄H and p̄He systems. The
p̄He(16) andp̄He(26) curves are from [33], the other curves were calculated using the method
of [32]. The upper arrow marks the critical distance at which thep̄H(1σ ) and p̄H(2σ ) curves
merge in the continuum, the lower arrow the distance at which thep̄He(26) curve reaches the
first ionization threshold.

The 2σ curve that originates from the H(n = 2) manifold merges in the continuum at
precisely the sameRc-value. It may be instructive to note that this property is shared by the
infinity of σ -states which correspond to fixed spheroidal quantum numbernµ = 0 (in the
notation of [32]) and which are distinguished by different values of the spheroidal quantum
numbernλ. While being independent ofnλ throughout, the critical distancesRc exhibit
a monotonic increase with increasing angular momentum projectionm and increasingnµ

[32]. All energy curves except the 1σ curve fall above the 2σ curve, so that no (real or
avoided) curve crossings with the 1σ curve can occur.

The lowest curve (16) of the p̄He system [33] (see also [34, 35]) originates from the
He(1s2 1S0) state atR = ∞ and rises monotonically, with decreasingR, towards the ground-
state energy of the H− ion at R = 0. The reference curve to which the 16 curve is to be
compared in the present context is the 1σ curve of thep̄He+ system. This curve defines
the lowest continuum threshold for thēpHe system and hence the threshold for adiabatic
ionization in this system. It is seen that thēpHe(16) curve stays consistently below the
p̄He+(1σ ) curve. Thep̄He(26) curve [33], on the other hand, reaches the threshold curve
at Rc = 2.4 au. By analogy with thēpH case, we may assume that the 26 energy curve in
the p̄He system is a lower bound to any curve except the 16 curve and that crossings with
the latter curve will not occur.

The behaviour of the potential curves shown in figure 1 suggests that, in a strictly
adiabatic picture, the ionization probability in collisions of antiprotons with (ground-state)
H atoms is unity if the distance of closest approachR0 is belowRc = 0.639 au, and zero
otherwise. As no crossings of the 1σ curve with other curves occur, the probability for
excitation to bound H states will be zero throughout. For collisions of antiprotons with
(ground-state) He atoms, zero probabilities are expected for both ionization and excitation.
We suspect, however, that for antiproton interactions with atoms the strictly adiabatic picture
may not be fully adequate even at very lowv.
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It is seen from figure 1 (see also figures 3 and 6 below) that thep̄H(1σ ) energy curve
varies only weakly withR whenR rises fromRc to ≈1.5 au. Similarly, thēpHe(16) curve
stays close to the continuum threshold forR up to ≈1 au. In this situation, the critical
distancesR(v)

c at which thebroadenedenergy curvesstart to overlapwith the continuum
are expected to depend strongly onv. Such a behaviour differs from the case of ‘level
promotion into the continuum’ in heavy (many-electron) quasimolecular collision systems
[12, 36]. In that case, strongly promoted levels like, for example, the 4fσ level, experience
a rapid loss of binding energy in a narrowR-range, so that the critical distances and the
ionization cross sections derived therefrom depend only weakly onv.

For calculating the electronic stopping power of antiprotons within our generalized
adiabatic-ionization model, we write the collisional broadening0(v)(b) for a collision at
velocity v and impact parameterb as

0(v)(b) = 1/τ (v)(b) = v/a(b) (4)

whereτ (v)(b) is a characteristic interaction time anda(b) the associated characteristic length.
Generalizing a prescription given by Bohr [37], we take

a = d + 2b (5)

whered is the ‘diameter’ of the unperturbed target electron cloud. This expression fora

appears to represent a plausible interpolation between the limiting cases of small and large
impact parameters. Here, we use

d = 2rK (6)

whererK is the mean K-shell radius of the H or He atom. Hence,

0(v)(b) = v

2(rK + b)
. (7)

In the present cases,b can be safely identified with the distance of closest approachR0.
Then, assuming the adiabatic energy curves to become symmetrically broadened, we can
determine the critical distanceR(v)

c associated with a broadened curve from the condition

∣∣E(R(v)
c )

∣∣ = 0(v)(R(v)
c )

2
(8)

whereE(R) is the adiabatic energy as measured from the continuum threshold. Finally, the
electronic stopping power (per atom) of antiprotons is calculated as

S p̄
e(v) = 2π

∫ R
(v)
c

0
db b1Ep̄ = π1Ep̄

[
R(v)

c

]2
(9)

where1Ep̄ is the mean energy loss of the antiproton. Within the near-adiabatic picture, it
is reasonable to identify1Ep̄ with the first ionization potential of the target system.

In evaluating the nuclear-stopping contributionS p̄
n for antiproton energies equal to

or larger than 1 keV, we use the prescription of [17]. For energies below 1 keV, we
apply perturbation theory. This corresponds to the use of time-independent projectile–target
interaction potentials, as they are assumed in most nuclear-stopping models [23, 37]. The
perturbative results are normalized to the results of the full calculation at 1 keV (the value
of the normalization factor is close to unity).
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3. Stopping power of negative particles in He

Turning now to the detailed analysis of the stopping power of negative particles in gas
targets, we begin by considering stopping in He targets. We have chosen to discuss the
He case first because we found its analysis simpler than that of the H2 case where specific
difficulties seem to arise from the molecular structure of the target.

In figure 2, the CERN antiproton data [2] and thePSI negative-muon data [3, 4] for He
are plotted against the projectile velocityv and against the ‘equivalent’ antiproton energy.
Also shown are our theoretical results for the electronic stopping power as well as for the
nuclear stopping power of antiprotons. When comparing theory and experiment, we assume,
in conformity with the estimates given in [2], uncertainties of about±10% in thep̄He data.
Uncertainties in theµ−He data [3, 4] are about±10% for v beyond, and in the vicinity
of, the stopping-power maximum, and increase rapidly to more than±50% with decreasing
v. Therefore, a separate comparison with thep̄ andµ− data, respectively, does not make
sense. Rather, it is appropriate to compare the theoretical results to an average stopping
power curve that is defined as the (unweighted) mean value ofS p̄ andSµ−

down tov ≈ 1
au, and that rapidly approaches thep̄ stopping power for smallerv.

The maximum of the experimentally determined stopping power in figure 2 is located
at a projectile velocity slightly larger than the mean velocityvK(He) = 1.697 au of the He
K-shell electrons. Both theAO and theDW results reproduce the position and the height of
the maximum as well as the high-v tail of the data within the experimental uncertainties.
Deviations of theAO and DW results from the ordinary first-order Born approximation,
which show up forv smaller than≈4 au, indicate the onset of higher-order effects of the
projectile–target interaction. Below the maximum, theAO and DW results progressively
diverge with decreasingv. The AO results (including the nuclear-stopping contribution)
stay consistently above the data, with deviations increasing from 15% atv = 1 au to 80%
at v = 0.2 au.

Figure 2. Stopping power (per atom) of antiprotons and negative muons in a He target, plotted
as a function of projectile velocityv and of equivalent antiproton energy. The experimental
results for p̄ are from [2], those forµ− from [3]. Our theoretical results for the electronic
stopping powerSe have been obtained from the coupled-state atomic-orbital (AO) method, the
distorted-wave (DW) approach, and the generalized adiabatic-ionization (AI) model, respectively.
Also shown is our theoretical result for the nuclear stopping powerS

p̄
n of antiprotons.
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Figure 3. Full curve: the p̄He(16) energy,
referred to the continuum threshold as given by
the p̄He+(1σ ) energy curve of figure 1. Dotted
curves: the function−0(v)(R)/2 (cf. equation (7))
with rK(He) = 0.5906 au, plotted for projectile
velocitiesv corresponding to equivalent antiproton
energies of 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50 and
100 keV (from top to bottom). The points of
intersection of the dotted curves with the full curve
define the critical distancesR(v)

c (cf. equations (8)
and (9)).

To understand the deviations between theAO results and the data, it is important to realize
that ourAO model treatsoneactive electron moving in the potentials of the heavy particles
and of thefixed(ground-state Hartree–Fock) density distribution associated with the second
(inactive) electron. Within the frame of this model, the accuracy of our results is about
3%. Thus, any larger deviation from the data is to be attributed essentially todynamictwo-
electron effects. Theoverestimationof the data by our results in the low-v (near-adiabatic)
range can be ascribed to a lowering of the effective ionization threshold as compared with
a fully relaxed two-electron treatment, which gives a threshold of≈0.7 eV at R = 0 in
the p̄He system (cf. figures 1 and 3). In fact, a sample calculation has shown that in the
adiabatic limit of our one-electronAO model, no bound state exists atR = 0, i.e. there is no
ionization threshold. Therefore, the presentAO calculations are expected to overestimate the
inelastic cross section, in particular the ionization cross section, and hence also the electronic
stopping power. Indeed, theAO ionization cross section for̄pHe collisions turns out to be
significantly larger than the measured cross section [9] for antiproton energies below 40 keV.

In contrast to thēpHe case,proton stopping in He is not expected to be greatly affected
by near-adiabatic two-electron effects. In the pHe system, the ionization potential atR = 0
is overestimated by 15% in our one-electronAO model. The resulting underestimation of
the target ionization cross section is not crucial because the proton stopping power in the
low-v range is dominated by the capture and loss channels. These channels are reasonably
well described in theAO model [19] as well as in theDW approach [26].

The DW stopping power for antiprotons in He exhibits, below the stopping power
maximum, a much steeper decrease than do the data. TotalDW cross sections for single
ionization in low-v p̄He collisions, on the other hand, are in very good agreement with
the experimental data [9]. Hence, the deviation of theDW stopping power from the data
is to be attributed to an underestimation of the calculated excitation cross section (note
that measurements of excitation cross sections forp̄He collisions are not available). When
comparingDW and AO results at lowp̄ velocities, one has to keep in mind that in theDW

approach, in addition to the incomplete treatment of two-electron effects, higher orders of
the residual projectile–target interaction are neglected. Therefore, a qualitatively different
behaviour ofAO andDW results is no surprise.

To obtain theAI results shown in figure 2, we have solved (8) forR(v)
c (cf. figure 3 for

the graphical solution), identifyingE(R) with the difference of thēpHe(16) andp̄He+(1σ)
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energies of figure 1. The stopping power was calculated from (9), with1Ep̄ taken equal
to 24.58 eV, i.e. to the first ionization potential of the He atom. In the low-v range, the
experimental data are to be compared to the sum ofAI result and the calculated nuclear-
stopping contribution. As the uncertainties of the low-v µ− data are much larger than those
of the p̄ data, it is appropriate to addS p̄

n to the AI stopping power and compare the sum
curve (not shown in figure 2) to the average data curve defined above (i.e. essentially to
the p̄ data). The sum curve coincides with the data curve at the low-v end of the latter
curve and, moreover, exhibits a minimum there, in agreement with the tendency observed
in the data. For largerv, the sum curve stays below, but close to, the data curve, with the
deviations not exceeding 20%. Assuming an average experimental uncertainty of±10%
(see above), we find that the calculated sum ofAI and nuclear stopping powers is in quite
good agreement with the data.

In view of the simplicity of ourAI model, this appears to be a remarkable result,
the more so as we have fixed the specific form and the parameter values of the input
quantities (potential curves, collision broadening)a priori, i.e. no fitting to the data has
been performed. Since the calculatedAI stopping power is in general quite sensitive
to changes in the input quantities, we believe that the good agreement between theory
and experiment is anon-trivial result that reflects the correctness of our assumption that
ionization out of the quasidipolar collision complex is the principal stopping mechanism
for slow negative particles in gases. The theoretical description of near-adiabatic ionization
in negative-particle collisions with atoms is, of course, a simpler task than in collisions of
positive particles. In the former case, the near-adiabatic dynamics is governed essentially
by the coupling of the electronic ground state of the quasidipole to a quasicontinuum of
very loosely bound states and to the true continuum. So it appears somewhat plausible
that this coupling can be adequately treated in terms of a simple collisional-broadening
model. In positive-particle collisions, one has to deal, in general, with a large number of
bound quasimolecular states as well as with the two-centre continuum [12]. No consistent
treatment of positive-particle stopping within a quasimolecular approach, in particular for
light collision systems, has been attempted yet.

We note that ourAI model can be applied also tosingle ionizationof atoms by negative-
particle impact. The corresponding total cross section is immediately obtained from (9) by
removing the mean energy loss1Ep̄. For p̄He collisions, theAI cross section turns out to
be larger than the experimental ionization cross section [9] by a factor of two to three for
p̄ energies between 10 and 50 keV. Qualitatively, this discrepancy can be easily explained.
The stopping power is largely determined by electronic transitions into highly excited bound
states and low-lying continuum states. In theAI model, all these transitions are effectively
taken into account by identifying the mean energy loss with the first ionization potential.
The experimental ionization cross section, on the other hand, comprises only transitions
into the true continuum. Therefore, in general, theAI ionization cross section is expected
to overestimate the experimental cross section considerably. It is noted, however, that for
p̄He (and for any other collision system whose ground-state potential curve stays below the
ionization threshold for allR) the AI model predicts vanishing ionization cross sections for
very low v (cf. figure 3). The projectile energy below which the ionization cross section,
and hence theAI stopping power, are predicted to vanish is slightly smaller than 0.1 keV
for p̄He collisions.

We now consider theratio of antiproton to proton stopping power in He (note that
no measurements of the stopping power of positive muons exist, so that an independent
analysis based solely on muon data cannot be performed). In figure 4, this ratio is shown
as a function of projectile velocity and projectile kinetic energy. The experimental data
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Figure 4. Ratio of antiproton to proton stopping power in He, plotted as a function of projectile
velocity v and of projectile kinetic energy. The curve labelled ‘exp’ has been derived from the
p̄ data of [2] and from the proton data of [21] (3 to 20 keV) and [38] (40 to 600 keV). TheAO

stopping power for protons is taken from [19], theDW stopping power for protons from [26].

exhibit the Barkas effect, with a pronounced minimum with values as small as 0.6 for
v ≈ 1.2 au. Theoretical stopping power ratios have been obtained by combining the present
AO andDW results for antiprotons with the corresponding proton results of [19, 26]. Down
to the minimum, the theoretical ratios appear to agree with the data within the experimental
uncertainties. The different behaviour ofAO and DW ratios below the minimum reflects
essentially the differences in the correspondingp̄ stopping powers as exposed by figure 2.
The AO method, while somewhat overestimating the stopping power ratio belowv ≈ 0.6
au, correctly predicts the rapid rise of the ratio below the minimum. The failure of theDW

method to do so clearly indicates the importance of higher orders of the residual projectile–
target interaction in the description of slow collisions of negative particles with atoms.

In concluding this section, we mention that the results of recent classical-trajectory
Monte Carlo (CTMC) calculations [20] for thēp stopping power in He are in good agreement
with the presentAO results, in particular for projectile energies below 100 keV.

4. Stopping power of negative particles in H2

In figure 5, the experimental data for̄p andµ− stopping in H2 are shown along with our
theoretical results. The stopping power (per atom) for H2 is seen to bear a close resemblence
to the He data of figure 2, except for an overall reduction by about 20%. The maximum
of the H2 data shows up atv ≈ 2 au. This velocity is considerably larger than the Heitler–
London estimatev16g

= 0.946 au for the mean electron velocity in the16g ground state of
the H2 molecule.

The H2 data are compared in figure 5 toAO andDW results obtained foratomichydrogen.
For v beyond the observed stopping power maximum, agreement between experiment and
theory is found within the experimental uncertainties (the estimated uncertainties of the H2

data are about the same as those of the He data; cf. section 3). This shows that in collisions
with fast projectiles, the H2 molecule essentially behaves as a collection of two independent
H atoms. In fact,AO andDW ionization cross sections for̄p impact onatomichydrogen are



Stopping power of̄p andµ− in He and H2 317

Figure 5. Stopping power (per atom) of antiprotons and negative muons in an H2 target, plotted
as a function of projectile velocityv and of equivalent antiproton energy. The experimental
results for p̄ are taken from [2], those forµ− from [4]. Theoretical results are shown for
electronic stopping inatomic hydrogen (AO, DW, AI) as well as in H2 (AI). Also shown is our

theoretical result forS
p̄
n corresponding to H2.

both consistent with recent data [10] over the full energy range covered by the experiments
(>30 keV). Forv in the vicinity of, and below, the observed stopping power maximum,
neither of the two theoretical approaches is able to provide a satisfactory explanation of the
data. The deviations of theAO stopping power from the data are particularly striking. As the
AO calculations for the (one-electron) H atom are estimated to be accurate within≈3%, these
deviations are to be attributed essentially to effects of the molecular structure of the H2 target.

Also shown in figure 5 areAI results for atomic hydrogen (cf. figure 6). While grossly
overestimating the data, theAI stopping power deviates from theAO stopping power by about
10% only. This agreement indicates the basic validity of the two theoretical approaches in
the description of stopping in one-electron targets at low projectile velocities. It is noted
that, to some extent, ourAO results for atomic hydrogen may be used to optimize the form
of the collisional broadening0(v)(b) in the AI model. Taking, for example,a = 2rK + b

in (4), instead of the Bohr expression (5), we would obtain very good agreement between
AO and AI results for atomic hydrogen belowv = 1 au, and improved agreement between
AI results and the He data. Here, however, we adhere to (5) throughout.

A complete evaluation of the dynamics of negative-particle stopping in molecular targets
is beyond the scope of the present investigation, but molecular-structure effects can be
included, admittedly in a crude way, in theAI model.

In general, the treatment of near-adiabatic collisions of atomic particles with diatomic
molecules relies on electronic potential-energy hypersurfaces defined in the configuration
space of the three heavy particles. In the present case, the projectile motion, while being
slow with respect to the electronic motion in the target molecule, is still fast as compared
with the internal motion of the heavy particles in the molecule. We can therefore assume
that the interparticle distance in the molecule remains virtually unchanged during electronic
transitions, i.e. that the Franck–Condon principle holds. We are then left with the problem
of calculating the electronic energy as a function of the distance between projectile and
centre of mass (or centre of charge) of the molecule and as a function of the angle between
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Figure 6. Full curve: thep̄H(1σ ) energy curve (cf. figure 1). Long-broken curve: difference
between the lowest effective energy curve of thep̄H+

2 system and the lowest curve of thēpH2

system, obtained by describing the H+
2 and H2 molecules in the ‘quasiatomic’ approximation

(see the text). Dotted curves: the function−0(v)(R)/2 (cf. equation (7)) withrK(H) = 1.0 au,
plotted for the projectile velocitiesv of figure 3. For further explanation, see the caption to
figure 3.

the symmetry axis of the molecule and an arbitrary space-fixed axis. As this problem
is still too complicated to be solved with reasonable effort, we introduce a ‘quasiatomic’
description of the diatomic molecule, in which the effect of the two nuclear charges is
replaced with that of a single (effective) chargeZeff located at the centre of charge of
the molecule. Adopting an independent-electron model, we chooseZeff such that the total
electronic energy of a given molecular state is reproduced. Effects of averaging over the
spatial orientation of the molecule are not explicitly taken into account in the quasiatomic
picture. We believe, however, that, to some extent, this averaging is implicitly allowed
for by replacing the nonspherical electronic potential of the molecule with a spherical
one. Within the quasiatomic description of the target molecule, our generalized adiabatic-
ionization model can be directly applied by identifying the interparticle distanceR with the
distance between projectile and centre of charge of the molecule.

For H2, we chooseZeff
H2

= 1.371 in order to reproduce the total electronic energy of
the molecule at its equilibrium internuclear distance of 1.402 au. As in thep̄He case, we
assume threshold ionization to be the principal excitation mechanism also in thep̄H2 system.
According to the Franck–Condon principle, the final electronic state to be considered is then
the lowest H+2 state at an internuclear distance of 1.402 au. The electronic energy at this
distance is reproduced by choosingZeff

H
+
2

= 1.603. The effectivēpH+
2 andp̄H2 energy curves

in the quasiatomic approximation are readily calculated by using the method of [32]. Their
difference, shown in figure 6 in comparison with thep̄H curve, becomes zero atRc = 1.20
au, i.e. thēpH2 curve reaches the continuum threshold at this distance. The critical distances
R(v)

c corresponding to thēpH2 curve are calculated by takingrK = 1 au, i.e. the mean K-
shell radius of the H atom, in (7) for the collisional broadening. This choice is consistent
with a rough estimate for the ‘radius’ of the (spatially averaged) H2 ground-state density
distribution [39]. Due to the steep decrease of thep̄H2 energy curve, the critical distances
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are not very sensitive to changes in this radius anyhow.
Evaluating equation (9) with1Ep̄ equal to 16.183 eV, i.e. to the first ionization potential

of the H2 molecule, we obtain the electronic stopping powerper target molecule. The
electronic stopping powerper target atomshown in figure 5 is found to be considerably
smaller than theAI result for thep̄H system. However, upon adding the contribution of
nuclear stopping, the theoretical results nevertheless overestimate the experimental data
in the low-v range. With increasingv, the theoretical stopping power tends to become
somewhat smaller than the data (note that inclusion of the double-ionization channel H2 →
2H+ + 2e− would increase ourAI results by about 10% at an equivalent antiproton energy of
50 keV). Nevertheless, on average, our crude method to include molecular-structure effects
in the AI model appears to give improved agreement with the data.

Ratios of antiproton to proton stopping powers for H2 are shown in figure 7. The ex-
perimental ratio is close to that for He (cf. figure 4) forv > 1.0 au, i.e. the Barkas effect is
clearly visible also in the H2 data. The sharp rise, however, observed in the He data below
v = 1.0 au does not show up in the H2 data. This difference is essentially related to the
behaviour of the proton stopping power, which is, in the low-v range, much larger for H2
than for He [40]. The theoretical stopping power ratios shown in figure 7 correspond to
an atomicH target and have been obtained by combining the presentAO and DW stopping
powers for antiprotons withAO results (this work) andDW results [25] for protons. TheAO

andDW curves both follow the trend of the experimental curve down tov ≈ 1 au, but neither
calculation is able to explain the weak velocity dependence of the experimental data in the
low-v range. Notably, both calculations (in particular, theAO calculation) yield proton stop-
ping powers in good agreement with the H2 data down tov ≈ 0.5 au. So the discrepancies
between theory and experiment in the stopping power ratios of figure 7 essentially reflect
the corresponding discrepancies for the antiproton stopping power as exposed by figure 5.

We note thatCTMC calculations have been performed also for the stopping power of
negative particles in atomic hydrogen [20, 41]. The agreement with the presentAO results
is good.

Figure 7. Ratio of antiproton to proton stopping power in H2, plotted as a function of projectile
velocity v and of projectile kinetic energy. The experimental results have been derived from
the p̄ data of [2] and from the proton data of [40] (3 to 10 keV) and the fit curve of [23] (>

10 keV). The theoretical results have been calculated for an atomic H target (AO: present work;
DW: [25]).
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5. Summary and conclusions

In this paper, we have performed a comprehensive analysis of the stopping power of
antiprotons and negative muons in He and H2 gas targets for projectile velocities (equivalent
antiproton energies) ranging between about 0.1 and 10 au (0.25 keV and 25 MeV).
Recent experimental data have been compared to stopping powers calculated from different
theoretical approaches. It appears that the analysis has provided a good understanding of
the basic stopping mechanisms of negative particles in gases.

When assessing the agreement between experiment and theory in detail, one has to
realize two points. First, the uncertainties of the data are fairly large. Second, the
target systems considered are two-electron systems whose collision dynamics is extremely
complicated in general. So it is meaningless to expect agreement to within a few per cent.
Yet, by combining the evidence obtained by comparing the individual model results to the
data, we have been able to identify the dominating physical processes that are responsible
for negative-particle stopping in different ranges of the projectile velocity.

For the He target, we have demonstrated that higher-order effects of the projectile–target
interaction set in when the projectile velocity decreases towards the stopping power maxi-
mum. This onset is equally well described by the coupled-state atomic-orbital method and
by the continuum distorted-wave approach. The failure of the atomic-orbital method to pro-
vide a fully satisfactory description of the data below the stopping power maximum has been
shown to be related to the neglect of dynamic two-electron effects. At low velocities, these
effects are apparently much stronger in negative-particle collisions than in positive-particle
collisions. In the distorted-wave approach, in addition to two-electron effects, higher-order
effects of theresidualprojectile–target interaction are neglected. This may explain the large
deviations of the distorted-wave results from the low-velocity He data. To properly describe
the adiabatic relaxation of the electronic states at low velocities, we have devised and applied
a generalized adiabatic-ionization model in which collisional-broadening effects are taken
into account. The sum of the electronic stopping power calculated from this model and
the nuclear-stopping contribution agrees fairly well with the data below the stopping-power
maximum. This shows that ionization out of the transiently formed quasidipolar collision
system is the dominant stopping mechanism of negative particles at low projectile velocities.

The analysis of the stopping power data for H2 is apparently complicated by the
molecular structure of the target. The coupled-state and distorted-wave calculations for
atomic hydrogen describe the experimental data well for velocities beyond the stopping
power maximum, but these calculations as well as the results of the adiabatic-ionization
model deviate grossly from the data at low velocities. In order to get an idea of the
effect that is brought about by the molecular structure of the target, we have introduced a
quasiatomic approximation for the H2 molecule and applied the adiabatic-ionization model
to the two-centre system formed by projectile and quasiatom. Improved agreement with the
data is then obtained.
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