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Abstract

Multielectrodes have been used with great success to simultaneously record the activity of neuronal populations in awake,
behaving animals. In particular, there is great promise in the use of this technique to allow the control of neuroprosthetic
devices by human patients. However, it is crucial to fully characterize the tissue response to the chronic implants in animal
models ahead of the initiation of human clinical trials. Here we evaluated the effects of unilateral multielectrode implants on
the motor cortex of rats weekly recorded for 1–6 months using several histological methods to assess metabolic markers,
inflammatory response, immediate-early gene (IEG) expression, cytoskeletal integrity and apoptotic profiles. We also
investigated the correlations between each of these features and firing rates, to estimate the impact of post-implant time
on neuronal recordings. Overall, limited neuronal loss and glial activation were observed on the implanted sites. Reactivity
to enzymatic metabolic markers and IEG expression were not significantly different between implanted and non-implanted
hemispheres. Multielectrode recordings remained viable for up to 6 months after implantation, and firing rates correlated
well to the histochemical and immunohistochemical markers. Altogether, our results indicate that chronic tungsten
multielectrode implants do not substantially alter the histological and functional integrity of target sites in the cerebral
cortex.
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Introduction

The use of chronic multielectrodes for recording the activity of

neuronal populations in awake behaving animals [1–6] represent-

ed a great step forward in our understanding of the function of the

brain. In particular, there is great promise in the use of this

approach to allow human patients to control neuroprosthetic

devices, designed to restore function after either traumatic injury

of the central nervous system (CNS) or neurodegenerative diseases

[7–14].

An important prerequisite for any invasive brain machine

interface is to maintain a stable signal in the CNS for the longest

time possible without causing either structural, cellular or

metabolic changes capable of compromising the device’s perfor-

mance and/or resulting in tissue degeneration around the

implanted electrode [15]. For this reason, laboratories around

the world have tested different materials and designs for microwire

arrays in rodents [16,17], non-human primates [14,18,19] and

humans [20].

However, despite the increasing popularity of chronic micro-

electrode implants, relatively little is known about their long-term

effects on brain parenchyma. One of the initial events which is

better understood is activation of microglial cells after the implant

[18]. Microglial cells are very sensitive to early pathological

conditions, even if they mean only variations in extracellular ionic

concentrations [21]. These cells are fundamental for the control of

brain homeostasis and integrate the intrinsic brain defense system

[22], being immediately activated in several pathological condi-

tions such as stroke, chemical and traumatic injuries and

neurodegenerative disorders [21,23–27]. The local activation of

glial cells due to chronic electrode implants usually causes

electrode encapsulation [28], and the resulting increase in
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electrical impedance of the recording tip over time [29]. This

process presumably leads to an initial improvement of extracellular

signal’s selectivity, followed by a progressive decrease in the

number of recorded neurons, until the complete cessation of signal

[29].

Astrocytes are the major components of the encapsulating tissue

that is deposited around chronically implanted electrodes [30].

These cells are usually recruited to the site of CNS injury,

contributing to the glial scar that prevents axonal regeneration

[31]. Some authors have proposed that glial encapsulation, a

phenomenon called gliosis (i.e. a proliferation of astrocytes in CNS

injured areas) [32], insulates implanted electrodes from nearby

neurons, thereby hindering diffusion and increasing impedance

[28] or creating an inhibitory environment for neurite extension.

Understanding the complex interactions between chronic

neural implants and the cells that form the brain parenchyma is,

therefore, a crucial step in developing stable, long-term micro-

electrodes. However, many questions still remain to be clarified,

mainly regarding the effects of chronic multielectrode implants in

tissue metabolism, cell structure, brain cytoarchitecture, and cell

death, and how these potential changes relate to quality of

electrophysiological recordings over time. To address these

questions, we set out to evaluate how tungsten microelectrode

arrays implanted in the rat brain affect biological markers of tissue

metabolism, inflammatory response, immediate early gene (IEG)

expression, cytoskeletal integrity, and apoptotic cell death. To

provide a comprehensive picture of the effect of microelectrode

implants in cortical homeostasis, we also investigated the

correlation of these markers with electrophysiological signals over

time. We choose the motor cortex as target of our study because of

the relevance of this region to neuroprosthetic applications

[9,33,34].

Results

Electrophysiology
On average, 72621 (mean6SD) neuronal units per session

were chronically recorded in each animal. Recording sessions

initiated between 7 and 14 days after the implant. Figure 1

illustrates the results from a recording session in a rat implanted

during 6 months. Waveforms from 72 neuronal units recorded 1

month after array implantation are illustrated in the top left panel

of Figure 1A, with a decay of around 45% of units recorded after 3

months (middle panel) and around 85% after 6 months (right

Figure 1. Recording session in a rat implanted during six months. Waveforms of 72 sorted units recorded with a 32 microwire array
implanted in the motor cortex. Distinct neuronal units are well identified six months after implant (A). Neuronal activity varies with implantation time.
In (B) we see representative examples of neuronal ensemble firing over implantation time, showing a natural decrease of firing rates and in the
number of recorded neurons 6 months after array implantation.
doi:10.1371/journal.pone.0027554.g001
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panel) (1 month: 72621; 3 months: 39611; 6 months: 1163.2;

mean6SD). The bottom panels (B) show representative samples of

neuronal ensemble firing over time, showing a decrease of firing

rates and of the number of recorded neurons 6 months after array

implantation. A summary of the total number of recorded neurons

across animals shows the existence of single-unit activity even 6

months after implantation (Figure 2).

Concerning the analysis of LFP power, although LFP can be

used to detect changes in recording quality over time, the LFP

signal is very robust and changes little over months. In fact, it is

very common that one can still record LFP from a given channel

even after no spike signal can be detected. To assess this issue we

did an analysis of power spectrum for different bands of frequency

as function of time for channels with and without spikes. We first

separated the LFP signal in standard spectral bands (0–4; 4–8; 8–

12; 12–24, and 24–60 Hz). For each rat, the band power was

divided by the total LFP power. Channels with spikes present were

compared to channels without spikes at different time points. The

results show that the relative LFP power in different bands varies

similarly in both groups of channels (Figure S1).

General histological pattern of implanted tissue
Figure 3A shows the typical pattern of electrode tracks left by

the implants in sections obtained from animals at every survival

time evaluated. The Nissl staining showed minimal cell loss in the

implanted tissue, with a preservation of neuronal bodies near the

electrode track and the absence of vacuolization. Pycnotic nuclei,

an indirect evidence of cell death, were not detected. Based solely

on the Nissl staining, the electrode arrays appear to be well

integrated and tolerated for up to 6 months after implantation.

Metabolic markers
Histochemistry for both NADPH-d and CO revealed a similar

pattern of tissue preservation (Figure 4A,B, top). Decreased

reactivity was restricted to tissue adjacent to the recording wires.

Tissue located far from the immediate vicinity of the electrodes

was not affected, showing normal reactivity, similar to the

unaffected contralateral hemisphere. This qualitative pattern was

confirmed by densitometric analysis: there was no significant

difference between regions located in the vicinity of the implanted

sites and their contralateral counterpart (Mann-Whitney test,

p.0.05) (Figure 4A,B, bottom). We noticed a non-significant trend

for a small reduction in reactivity in late survival times (Kruskal-

Wallis - Bonferroni post hoc test, p.0.05).

Pattern of neuronal labeling
NF-M, a marker of neuron integrity, revealed the presence of

morphologically normal neurons around the electrode tracks in all

survival times (Figure 5). Overall, it was possible to visualize a well-

preserved pattern of both apical and basal dendrites, and

unequivocally distinct pyramidal cell bodies in both implanted

and contralateral hemispheres. In addition, we did not detect any

difference in the pattern of cell labeling (Figure 5).

Glial activation and inflammatory response around
electrode tracks
Astrocytosis was observed around the electrode tracks, espe-

cially in later survival times, as a dense strip of cells throughout the

implanted tissue (Figure 3B). In the implantation site we identified

an astrocytic activation, as reflected by the presence of cells

displaying hypertrophic cell bodies and shorter and thicker

Figure 2. Neuronal recording average neurons/firing rate along weeks. Average number of neurons recorded over post-implantation time.
It is possible to detect good electrophysiological signal 6 months after implantation. Progression of the time of recording (in weeks) is evidenced by
the color code (first weeks: ‘hot’ colors; last weeks: ‘cold’ colors).
doi:10.1371/journal.pone.0027554.g002
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processes (Figure 3C). In the contralateral hemisphere astrocytes

had a non-activated morphology with cells presenting non-

hypertrophic cell bodies and absence of short and thick processes.

To evaluate the presence of activated microglia, we immuno-

stained brain sections with ED-1. Glial reactivity to the

microelectrode presence in all survival times was characterized

by relatively small and localized cell activation, consisting of

macrophages/microglia located only near the implantation site

(Figure 6, top). Quantitatively, there was a small number of ED1-

positive cells close to the microelectrode (Figure 6, bottom), with

no significant difference among post-implantation times (p = 0.21,

Kruskal-Wallis – Bonferroni post hoc test, corrected for the number

of comparisons). We observed an absence of ED-1-reactive cells in

a short distance away from the implanted sites and also in the

contralateral hemisphere, used as an intrinsic control (Figure 6).

Apoptotic profiles
We evaluated the presence of apoptotic profiles around

electrode tracks using the caspase-3 immunohistochemistry. We

found only a small amount of apoptotic cell death along the

electrode track across survival groups (Figure 7), but never far from

it, even in the 6-month survival group (Figure 7). In addition, since

double-labeling using caspase-3 and GFAP antibodies revealed a

strict co-localization, we propose that the observed small amount

of cell death does not correspond to neuronal death. Also, as

aforesaid, we did not detect pycnotic profiles using Nissl staining,

corroborating the relative absence of apoptotic death.

Immediate early-gene expression
The pattern of egr-1 nuclear localization was similar in both

contralateral and implanted hemispheres, with profiles varying

from intensely to weakly reactive in every region (Figure 8). This

pattern was confirmed quantitatively: there was no significant

difference between implanted and contralateral regions until 6

months of electrode implantation (Figure 8).

Relationship between histological pattern and
electrophysiological signal
In order to relate the pattern of tissue integrity to the dynamics of

electrophysiological changes, we calculated the non-parametric

Spearman correlation coefficient between firing rate and several

histological parameters, followed by a two-tailed t test for

significance (Figure 9). Correlations were separately calculated for

each group of implants and were based on median firing rates. For

rate calculation, we divided the spike count of each neuron by the

total time of recording. The resulting number allowed us to estimate

the variation of spiking activity throughout the several weeks of

recording (the absolute values are shown in Figure 2). The amount

of cells positive for Egr-1 exhibit higher correlation values during

the first weeks for all groups, with a slight decrease over time

Figure 3. General pattern of tissue preservation in implanted sites. Nissl staining reveals a minimal cell loss in the implanted tissue (arrows),
with a preservation of neurons near the electrode track and the absence of vacuolization and pycnotic profiles. In (B) we see GFAP immunostaining
revealing astrocytosis restricted to the vicinity of electrode tracks, especially in later survival times, as a dense strip of cells throughout the implanted
tissue. Notice the reactivity along electrode tracks (arrows). Astrocytes displayed a non-activated morphology with cells presenting non-hypertrophic
cell bodies and absence of short and thick processes in contralateral hemisphere (C, right side, arrowheads). In the implantation site we identified an
astrocytic activation, as reflected by the presence of cells displaying hypertrophic cell bodies and shorter and thicker processes (C, left side,
arrowheads). Scale bars: 500 mm (A, B); 100 mm (C).
doi:10.1371/journal.pone.0027554.g003
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(Figure 9). The late group (up to 6 months) presented increased

correlations in the middle of the implant period. In addition, the

early group (1–2 months) presented a relative constant correlation

throughout the implantation period. The same can be noticed when

we correlated firing rates with the histochemical patterns of

NADPH-d and CO. ED-1 and caspase-3 positive cells showed an

increasing correlation with firing rates during the latter implantation

period, well-correlated with the decrease of neuronal signal.

Discussion

Here we have comprehensively characterized the general

pattern of tissue reaction and tolerance to chronic cortical

implants of tungsten microelectrode arrays, using a broad range

of histological, histochemical and immunohistochemical methods.

In addition, we established correlations between these markers and

the quality of electrophysiological signals recorded by the arrays.

We have obtained four main findings. First, the implanted tissue is

histologically, structurally, and metabolically well-preserved.

Second, electrode implantation does not affect the normal

physiology of the implanted tissue, as indicated by IEG reactivity.

Third, despite a small amount of inflammatory response and

gliosis in the implanted sites, cell death is minimal after the

multielectrode implantation. Finally, we have also observed that

electrophysiological signals were still detectable even after 6

months of implantation, in correspondence with the general

pattern of tissue integrity. There was, however, a significant decay

in the number of recorded neurons over time.

Figure 4. General pattern of histochemical markers in the implanted tissue. A small decrease is observed only in the implantation site
(arrows), with a good pattern of preservation in the subjacent tissue for both techniques (NADPH diaphorase, A; cytochrome oxidase, B), as attested
by densitometric analysis of the implanted regions when compared with their counterparts of the contralateral hemisphere (bottom of the figures).
Values referred as mean6SEM. Scale bar in A: 500 mm.
doi:10.1371/journal.pone.0027554.g004
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Chronic implants and tissue integrity
Biocompatibility can be defined as the capability of an

implanted prosthesis to coexist in harmony with the host tissue

without causing deleterious changes. Different materials have been

used to manufacture biocompatible multielectrode arrays so far,

such as microwire arrays and bundles [35], silicon [30] and

platinum [18], with varied impacts on tissue integrity, as measured

by the amount of reactive glia attracted to the implant site and by

the decrease in the signal-to-noise ratio (SNR) of the electrophys-

iological signal. Other factors in addition to the electrodes’

material should be considered in order to generate biocompatible

and stable implants, such as electrode shape, size, texture, tip

geometry and array configuration. Szarowski et al. (2003), in a

comparative study evaluating the tissue response to silicon

implants of different sizes, surface characteristics, and implantation

procedures, reported that glial scar formation was unaffected by

that range of variables, although distinct array geometries may

influence the initial wound response [36]. In that work, however,

the authors used only a small number of animals by group (1–2

animals), and therefore may have overlooked the inter-animal

response variability. Ward et al. (2009) assessed the effectiveness of

some commercial microelectrodes with distinct configurations

[37]. According to these authors, none of the examined arrays can

be considered superior to others, especially with respect to the

relationship between electrophysiological signal and inflammatory

response induced by the implant, although they did not quantify in

detail the glial activation levels. Biran et al. (2005) evaluated the

impact of the chronic silicon electrode arrays in the nervous tissue,

observing an elevation of glial cells numbers (both astrocytes and

microglia) accompanied by a decrease in the number of neurons in

the electrodes’ vicinity [38]. The development of this histological

pattern was accompanied by a steady decrease in the SNR,

suggesting that the glial response and cell loss impair single-unit

recordings over time.

In the present work we observed a small degree of tissue

alteration induced by the presence of tungsten microelectrode

arrays. Tungsten is a good choice of material for chronic implants

since it is a stable and inert metal, and has been successfully used

to simultaneously record neuronal populations for several months

and even years [3,19,35,39]. In agreement with this, we detected

small metabolic loss restricted to the sites of electrode implanta-

tion, a well-preserved structural organization, as revealed by the

normal morphology of pyramidal cells, and a normal tissue

physiology, indicated by unaltered levels of Egr-1 expression,

directly involved with synaptic plasticity [40,41]. In addition,

neuronal death was not more prominent in the implanted sites.

Altogether, these results indicate that Teflon-coated tungsten

microwire arrays are well-tolerated by the nervous tissue. Some

other factors that could explain these findings are the flexibility of

the electrode’s shaft and the shape of the tip. Tungsten microwires

are sufficiently rigid to allow tissue penetration, and yet are flexible

enough to prevent shear and tear due to their relative movement

with respect to the brain. Biocompatibility is also aided by the use

of blunt electrode tips, instead of electrodes with sharp tips that

easily damage the tissue when movement occurs. The combination

of these features likely explains why multielectrode arrays made of

blunt tungsten wires may be chronically implanted for several

months and still be sturdily tolerated by the nervous tissue, without

causing widely deleterious effects.

In our study we observed the decay of the neuronal activity

during implantation time. Based in the well-preserved pattern of

neuronal morphology and Egr-1 expression, we believe that the

progressive drop of neuronal activity is associated more directly to

the glial encapsulation of the electrode rather than a loss of tissue

Figure 5. Pattern of neuronal labeling around electrode tracks.
Using immunohistochemistry for NF-M we observed normal neuronal
morphology around the electrode tracks (arrow) in all survival time
groups it is possible to visualize a well-preserved pattern of both apical
and some basal dendrites, as well as distinct pyramidal cell bodies
(enlargements). Scale bars: 500 mm; 100 mm (enlargements).
doi:10.1371/journal.pone.0027554.g005
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functionality around it, a result well-correlated with previous

reports (see [42] for a review). Further studies, mainly employing

electronic microscopy to evaluate the tissue attached to the

electrode after withdrawal from the parenchyma can help to

clarify this issue.

Specifically concerning Egr-1 expression, since we did not apply

extra sensory stimulation to the animals other than the normal

amount of stimulation of being awake in a cage, we did not assess

Egr-1 response to stimulation. Instead, we evaluated baseline levels

of its expression, which tend to be high [43,44] and proportional

to neural activity [43,74]. So, the fact that Egr-1 labeling was

constant over time indicates that the decaying firing rates detected

by the multielectrode implants in our study does not reflect a

physiological decay, but rather an effect of gliosis.

Electrode implants and inflammatory response
The inflammatory response is a very important physiological

mechanism to safeguard tissue against the action of aggressive

agents or mechanical/chemical injuries. Accordingly, no matter

the array configuration and the material, the inflammatory

response is always present in chronic implants and consequently

electrodes tend to lose their effectiveness over time. The

induction of tissue inflammation by chronic neural implants

cannot be completely avoided because even a tiny mechanic

lesion provokes alterations in the tissue milieu and a consequent

recruitment of inflammatory cells and the glial activation [27].

Since it seems obvious that some inflammatory response will

occur, especially during the process of electrode implantation,

one of the main goals would be to ensure that the tissue reaction

to the foreign body can be maintained at a tolerable level.

Bjornsson et al. (2006) reported extensive short-term effects of

electrode insertion, including cell death (both neuronal and glial),

severed neuronal processes and blood vessels, mechanical tissue

compression, and collection of debris resulting from cell death

[45]. A prolonged and exacerbated inflammatory response

mediated by pro-inflammatory cytokines such as tumor necrosis

factor alpha (TNF-a), interleukin 1 beta (IL-1b), and nitric oxide

(NO) can be highly harmful to the nervous tissue [46–48]. For

instance, even when the foreign body cannot be degraded, as in

the case with implanted electrodes whose material composition is

resistant to enzymatic dissolution, yet the inflammatory reaction

contributes to recording failure, by releasing necrotic substances

into the immediate vicinity [49] and contributing to cell death

around the electrode. However, the deleterious effects of

inflammation can be modulated with pharmacological approach-

es, such as the administration of the N-methyl-d-aspartate

receptor antagonist MK-801 and minocycline, a synthetic

analogue of tetracycline [50–53], which can easily cross the

blood-brain barrier [54,55]. These drugs could act directly in the

implantation site in order to control the inflammatory response,

helping to sustain an effective electrophysiological record for a

longer period of time.

It is important to keep in mind regarding tissue response to

microelectrode implants that although microglial cells seem to

have the same role as resident macrophages in the nervous system

of all mammalian species, other functions could be more species

specific [56]. In this context, it is interesting to have in perspective

the action of these cells in humans submitted to a chronic

multielectrode implant. For example, in rats, reactive microglia

produces a higher amount of nitric oxide (NO) than in humans

[56]. This interspecies difference could explain, for instance, why

chronic recordings in non-human primates last longer than in rats.

Although we cannot generalize the results we found in rats, our

findings are promising, given the lesser reactivity of human

microglial cells as compared to the rat’s [56]. The use of anti-

inflammatory substances could help maintain the implant’s

functionality for a longer time by the selective blockade of

microglial activity, since reactive oxygen species produced by

microglia are widely harmful to the nervous tissue [47].

Conclusion
Our results have particular relevance for the future develop-

ment of cortical neuroprosthetic devices [6,9,11,14,57]. The main

long-term goal of this research line is to contribute with

information that may in the future allow neurological patients to

use spared brain tissue to compensate for the loss of function,

based on the correlation between neuronal activity and specific

behaviors [58]. To this end, more studies need to be carried out,

testing for instance alternative electrode array configurations, in

order to provide a stable and biocompatible interface for humans

patients suffering degenerative diseases, such as Parkinson’s,

Alzheimer’s, cerebral palsy, amyotrophic lateral sclerosis, stroke

and spinal cord injury [33,59–62]. Further studies employing the

use of specific substances to control the inflammatory process

triggered mainly during the electrode implant can also contribute

to increase the effectiveness of the implant.

Materials and Methods

Multielectrode implants
Twenty-four adult male Wistar rats (300–350 g) were used in

this study. All experimental procedures were strictly in accordance

with the National Institute of Health Guide for the Care and Use

of Laboratory Animals (NIH Publications No. 80–23) and were

approved by the Edmond and Lily Safra International Institute of

Neuroscience of Natal Committee for Ethics in Animal Experi-

mentation (permit ID # 04/2009).

Surgeries for multielectrode implantation were performed in

rats deeply anesthetized with 100 mg/kg of ketamine chlorhydrate

and 5 mg/kg xylazine chlorhydrate, as described in detail

elsewhere [29]. Briefly, rats were placed in a stereotaxic head

holder, and a small craniotomy was made over the implant target

area, the primary motor cortex, using the following coordinates (in

millimeters relative to bregma): 1.0–3.0, anteroposterior (AP); 2.0–

3.0, mediolateral (ML); 1.8–2.0, dorsoventral (DV) [63]. Each

animal was slowly implanted with multielectrode arrays (468 with

500 mm spacing) made of 32 Teflon-coated tungsten electrodes

(35-mm microwire diameter, 1.5 MOhm at 1.0 KHz), attached to

an Omnetics connector (Omnetics Connector Corp., USA)

(Figure 10). All the implantation procedures were guided by

multiunit recordings, though without online sorting, for a better

dorsoventral localization. Although this procedure prolongs the

surgery, it ensures best results for chronic spike recordings. In our

Figure 6. General pattern of inflammatory response.We found a relatively small but persistent and localized microglial activation consisting of
macrophages/microglia located only nearly implantation site (A, arrow). Notice the similar morphological aspect of activated microglia in all groups
(B). The quantitative analysis revealed a non-significant difference among groups, although there is a trend to a high number of activated microglial
cells in the 6 months group (C). Quantitative analysis reveals that microglial activation is restricted to the vicinity of implants (D). Values expressed as
mean6SEM. Scale bar: 500 mm; 100 mm (enlargements).
doi:10.1371/journal.pone.0027554.g006
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surgery procedure the connector of the electrode array always

stayed above the cranium, outside the tissue, in order to prevent

any alteration in the cortical mantle (Figure S2).

After 1 week to surgical recovery, animals underwent weekly

sessions of electrophysiological recordings. Four survival time

groups were formed, according to the time of killing: 1–2, 3, 4–5

and $6 months after implant.

Electrophysiological recordings
A 32-channel multi-neuron acquisition processor (MAP, Plexon

Inc., USA) was used for digital spike waveform discrimination and

storage. Single-unit recording sessions lasted for at least 30 minutes

in a weekly basis, while the rats moved freely in their cages

(Figure 10). Online spike sorting was conducted with the help of

the SortClient 2002 software (Plexon Inc., USA). All the action

Figure 7. Relationship between cell death and astrocytosis in implanted tissue. We found a small amount of apoptotic cell death across
groups located throughout the electrode tracks (arrows) even in the later group, as revealed by immunofluorescence. In addition we can see the
astrocytes located around the electrode tracks in all time points. Scale bar: 500 mm.
doi:10.1371/journal.pone.0027554.g007
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potentials of a maximum of 4 neuronal units per channel were

sorted online by only one investigator and validated by offline

analysis (Offline Sorter 2.3, Plexon Inc., USA) according to the

following cumulative criteria: a) voltage thresholds .3 standard

deviations of amplitude distributions; b) signal-to-noise ratio .2.5

(as verified on the oscilloscope screen); c) less than 0.5% of inter-

spike intervals (ISI) smaller than 1.0 ms; d) stereotypy of waveform

shapes, as determined by a waveform template algorithm and

principal component analysis. Local field potentials (LFP) were

simultaneously recorded from the wires and pre-amplified (500x),

filtered (0.3–400 Hz), and digitized at 500 Hz using a Digital

Acquisition board (National Instruments, USA) and a MAP box

(Plexon Inc., USA) (Figure 10).

Sort Client, the main user interface in the recording software

from Plexon Inc. (RASPUTIN software), allows spike sorting

through two basic tasks: detection and classification. A voltage-

threshold trigger is one of the simplest ways to detect spikes and

sorting them in real time according to their shape. The detection

process can be easily applied within a brief period of time for all 32

channels, and the classification of neurons was made individually,

channel by channel. Usually large amplitude waveforms were

quite different from those closer to threshold, allowing an

unambiguous discerning of distinct neurons (Figure 11).

We compared sorting performed both online and offline for

consistency. The electrophysiological sorting criteria were updated

in every recording session, but we used the manual online sorting

capability of the SortClient software instead of the automated

online sorting. The selection of individual neurons in all recording

sessions followed the same criteria over time, as defined above. In

this way, we could follow the amount of clearly distinct individual

neurons, despite variations in the background noise.

Perfusion
At the end of pre-specified survival times, animals were deeply

anesthetized with 5% isoflurane and overdosed with sodium

thiopental (90 mg/kg). Animals were then perfused intracardially

with 0.9% heparinized saline followed by 4% paraformaldehyde in

0.1 M phosphate buffer (PB), pH 7.4. Next, the brains were

removed from the skull and immersed in 20% sucrose in 0.1 M

phosphate buffer saline (PBS) for 12 h. The tissue was then frozen in

a embedding medium (Tissue Tek, Sakura Finetek, Japan) and

sectioned frontally at 20 mm in a cryostat (Carl Zeiss Micron HM

550, Germany). The sections were mounted on electrically charged

glasses (Super Frost Plus – VWR International, USA) and submitted

to histological, histochemical and immunohistochemical procedures.

Basic histology and histochemistry
To evaluate tissue reactivity around the electrode tracks we

used nicotinamide adenine dinucleotide phosphate-diaphorase

(NADPH-d) and cytochrome oxidase (CO) histochemistries, both

outstanding markers of cortical modules and layers [64,65]. In

Figure 8. Immediate-early gene activation across implanted sites. We identified a normal pattern of labeling of Egr-1 protein, with a pattern
of nuclear localization similar in contralateral and implanted hemispheres (A), with profiles varying from intensely to weakly reactive (B). There was no
significant difference between implanted and contralateral regions until 6 months of electrode implantation (C). Quantitative analysis reveals that
number of Egr-1-active cells does not differ significantly when regions near and far from the implant are compared (D). Values expressed as
mean6SEM. Scale bars: 500 mm; 100 mm (enlargements).
doi:10.1371/journal.pone.0027554.g008

Figure 9. Correlation between different markers of tissue integrity and firing rates. In all groups histological markers exhibit higher
correlations with firing rates during the initial post-implantation weeks, with a gentle decrease over time. The later group (up to 6 months) presented
an increased correlation at the middle of implant period, mainly concerning histochemistry techniques. In addition, the early group (1–2 months)
presented a relative constant correlation throughout the implantation period.
doi:10.1371/journal.pone.0027554.g009
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brief, to reveal NADPH-d activity, brain sections were washed in

0.1 M Tris buffer, pH 8.0 and incubated in a solution containing

0.6% malic acid, 0.03% nitroblue tetrazolium, 1% dimethylsulf-

oxide, 0.03% manganese chloride, 0.5% b-NADP and 1.5%

Triton X-100 in 0.1 M Tris buffer, pH 8.0 [66]. The histochem-

ical reaction was monitored every 30 min to avoid overstaining

and was interrupted by rinsing sections in 0.1 M PB. We revealed

CO activity by incubating sections in a solution containing 0.05%

diaminobenzidine (DAB), 0.03% cytochrome c and 0.02% catalase

in 0.1 M PB [67]. Similar to NADPH-d, the CO histochemical

reaction was monitored every 30 minutes and was terminated by

washing sections in 0.1 M PB.

Alternate sections were stained with cresyl violet (Nissl method)

in order to identify the location of the electrode tracks. Before

visualization, all sections were dehydrated and coverslipped with

Entellan (Merck, Germany).

Figure 10. General aspect of multielectrode array and electrophysiological signal recording. A 32 channel microelectrode array (A). In (B)
we see a recording session after a 1-month of implantation procedure, with the headstage connected to the rat. (C) shows examples of sorted
waveforms using the Real-time Acquisition System Programs for Unit Timing in Neuroscience (RASPUTIN - Plexon Neurotechnology Research
Systems) after one (top), three (middle) and six months of implantation (bottom). Samples of channels in which at least three clearly well-isolated
single neurons are identified and recorded in real-time during the exploratory activity of the animal.
doi:10.1371/journal.pone.0027554.g010
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Immunohistochemistry
In order to evaluate tissue integrity, we performed a series of

immunohistochemical procedures. We labeled activated microglia

with ED-1 antibody (1:500; Serotec, UK) [68]. Astrocytes were

labeled with an antibody against the glial fibrillary acid protein

(GFAP; 1:500; Sigma Company, USA) [69]. IEG activation was

measured with immunohistochemistry against egr-1 (1:100; Santa

Cruz Biotechnology, USA), a well-known marker of calcium-

dependent neuronal activity [70]. Neurofilament M (NF-M), a

structural constituent of neuronal cytoskeleton, was revealed using

a monoclonal NF-M antibody (1:100; Santa Cruz Biotechnology,

USA) [71]. Apoptotic cells were labeled using caspase-3 antibody

(1:250; Promega, USA), a very sensible marker of these cells in the

brain [72]. In brief, the sections were washed during 20 minutes in

phosphate buffer saline-Tween (PBS-T) and incubated in a

blocking buffer solution (0.5% fresh skim milk and 0.3% Triton

X-100 in 0.1 M PBS) for 30 minutes to block non-specific binding.

Afterward, sections were incubated overnight in primary antibody

(diluted in blocking buffer) at 18uC, washed in PBS-T by 20

minutes, incubated with a biotinylated secondary antibody (1:200,

Vector Labs, USA; diluted in blocking buffer) for 2 h, washed

during 20 minutes in PBS-T, and then incubated in avidin-biotin-

peroxidase solution (Vectastain Standard ABC kit, Vector Labs,

USA) for 2 h. Slides were then placed in a solution containing

0.03% 3,39 diaminobenzidine (DAB) (Sigma Company, USA) and

0.001% hydrogen peroxide in 0.1 M PB, dehydrated and

coverslipped with Entellan (Merck). In order to certify the

specificity of the labeling the primary antibodies were replaced

by blocking buffer in some test sections.

To determine which cells were apoptotic, animals from every

group had some sections immunohistochemically stained using

fluorescent labels. Briefly, sections were washed during 1 h in

0.5% Triton X-100 in 0.1 M PB and pre-incubated in blocking

buffer solution during 30 minutes. Thereafter, the sections were

incubated overnight with primary antibodies (NF-M, GFAP and

caspase-3) at 18uC. Sections were then washed in 0.1 M PB (3x, 5

minutes each) and incubated in a mixture of Alexa Fluor 488-

conjugated horse anti-mouse and Alexa Fluor 594-conjugated goat

anti-rabbit overnight (1:500 in 0.1 M PBS, Invitrogen, USA).

Finally, the sections were mounted using Vectashield mounting

medium for fluorescence (DAPI/Antifade solution) (Vector Labs,

USA) and sealed with Entellan (Merck). The following combina-

tions were evaluated: NF-M with caspase-3 and GFAP with

caspase-3.

Qualitative and quantitative analysis
NADPH-d and CO reactivities were assessed by optical

densitometry with the Image J software (http://rsb.info.nih.gov/

Figure 11. Multielectrode recording. All the electrode implants were guided by multiunit recordings, though without online sorting (detection
by threshold or classification) (A). Multiunit activity in a single channel. The default threshold for the highlighted channel allowed the detection of
multiple spikes and three units could have been easily isolated (A, left side). After adequate thresholding it was possible to isolate distinct units in the
channel (defined by different colors) (B). Large amplitude waveforms stand out from those closer to threshold (C). PCA analysis was used to single out
three different units in this channel (D, right side).
doi:10.1371/journal.pone.0027554.g011
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ij/). Measurements were obtained inside a 0.02 mm2 square

window positioned across electrode tracks. To minimize the effects

of within-group variability, we adopted a normalized scale based

on the reactivity of the underlying white matter (averaged over

measurements of 10 different sites using the same window). For

each animal, a contrast index was calculated according to the

equation: C= (G–W)/(G+W) [73], in which G is the average

optical density (OD) of cortical tissue around the electrode tracks,

and W is the OD of the underlying white matter. Reactivity values

were obtained for each implanted region and compared with their

contralateral counterpart. Statistical significance was assessed

using non-parametric Mann-Whitney test and Bonferroni post hoc

test with an alpha level of 0.05.

To quantify the immunohistochemical data, we counted the

total number of cells labeled by egr-1, ED-1 and caspase-3 in the

region around electrode tracks in the four survival time groups (1–

2, 3, 4–5 and $6 months of implant) using the Neurolucida system

(MBF Bioscience Inc., USA). For every marker, we quantified 3

sections per animal, sampling tissue from regions where the

electrode tracks could be unequivocally observed (n=4–5 animals

by group). The cell density (cells/10,000 mm2) was estimated using

an automatic grid from the Neurolucida program. The contours of

positive astrocytes and NF-M labeled cells were qualitatively

evaluated across groups in order to characterize astrocytic

activation and general morphology, respectively. The hemisphere

contralateral to the implant was adopted as an intrinsic control in

all animals. Average values for all measurements were assessed

with non-parametric Kruskal-Wallis test and Bonferroni post hoc

test. The criterion for statistical significance was preset at an alpha

level of 0.05. Average values are expressed as mean6standard

error of mean (SEM).

To obtain digital images we used a CX9000 camera (MBF

Bioscience Inc., USA), attached to a light field Nikon Eclipse 80i

optical microscope (Nikon, Japan - 10x and 20x objectives).

Co-localization of NF-M and GFAP with caspase-3
Double-labeled sections for NF-M with caspase-3 and GFAP

with caspase-3 were evaluated with the aid of a Nikon Eclipse 80i

microscope (Nikon, Japan) equipped with a mercury fluorescence

light source. Images were captured with the abovementioned

digital camera at a single focal depth in the superficial portion of

the section, to which both primary antibodies had penetrated. The

images (20 and 40x objectives) were captured for each combina-

tion of antibodies from different sections processed. A composite

image was obtained by superimposing the two images captured for

each fluorophore using Image J software.

Electrophysiological signal
We evaluated the quality of the electrophysiological signal by

comparing the total number of neuronal units observed in the first

and last recording sessions. We also characterized the decay of

recorded units over time, thus assessing the quality of signal

throughout all weeks of recording.

Correlation between electrophysiological variables and
histological features
In order to measure the relationship between the pattern of

electrophysiological records throughout implantation and the

tissue integrity, we calculated the non-parametric Spearman

correlation coefficient of (or between) neuronal average firing rate

(or average spiking counting), taken for each week, and distinct

histochemical/immunohistochemical techniques, followed by a

two-tailed t test for significance (with p,0.05) using Matlab 2008

software (The MathWorks Inc., USA).

Supporting Information

Figure S1 Relative LFP power across distinct frequency

bands varies little over time, and does not differ

between channels with or without spike signals. The

top panels depict raw LFP signals recorded at different time points

(weeks), obtained from channels with or without spike signals (red

and blue lines, respectively). The remaining panels show the

temporal evolution of the relative LFP power within standard

spectral bands, for the two groups of channels described above.

(TIF)

Figure S2 Multielectrode implantation. Figure showing

the procedure of multielectrode implantation. In our surgeries the

connector of the electrode array always stayed above the cranium,

in order to prevent any alteration in the cortical mantle (zoomed at

the right side).

(TIF)
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