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Comprehensive cell surface 
proteomics defines markers of 
classical, intermediate and non-
classical monocytes
Benjamin J. Ravenhill, Lior Soday, Jack Houghton  , Robin Antrobus & Michael P. Weekes  *

Monocytes are a critical component of the cellular innate immune system, and can be subdivided into 

classical, intermediate and non-classical subsets on the basis of surface CD14 and CD16 expression. 
Classical monocytes play the canonical role of phagocytosis, and account for the majority of circulating 

cells. Intermediate and non-classical cells are known to exhibit varying levels of phagocytosis and 
cytokine secretion, and are differentially expanded in certain pathological states. Characterisation 
of cell surface proteins expressed by each subset is informative not only to improve understanding 
of phenotype, but may also provide biological insights into function. Here we use highly multiplexed 
Tandem-Mass-Tag (TMT)-based mass spectrometry with selective cell surface biotinylation to 
characterise the classical monocyte surface proteome, then interrogate the phenotypic differences 
between each monocyte subset to identify novel protein markers.

Monocytes play critical roles in the response to infection and in�ammation and antigen presentation. Key e�ector 
functions are mediated by di�erentiated cells, including macrophages and myeloid dendritic cells. Monocytes 
can be divided into subsets based on the presence of the cell surface lipopolysaccharide (LPS) co-receptor CD14, 
and Fc-Gamma Receptor III (CD16). CD14++ CD16− classical monocytes account for ~85% of circulating 
monocytes, intermediate cells (CD14++ CD16+) for ~5% and non-classical cells (CD14+ CD16++) for ~10% 
of circulating monocytes1,2. It has become increasingly well established that each subset plays divergent roles 
in di�erent diseases, as well as di�ering in the ability to secrete cytokines and respond to pathogen associated 
molecular patterns (PAMPs). Classical monocytes are phagocytic and readily secrete in�ammatory cytokines. 
Conversely, the CD16 positive non-classical cells are poorly phagocytic and are suggested to secrete TNFα in 
response to some stimuli, but less of other pro-in�ammatory molecules2–4. Intermediate monocytes are increased 
in diseases such as severe asthma, rheumatoid arthritis and sarcoidosis, and there is some evidence for expansion 
of classical monocytes in atherosclerosis5–8. It is still unclear whether intermediate monocytes represent a truly 
distinct monocyte subset, or merely a transitional stage between classical and non-classical cells9.

Cells of the innate and adaptive immune systems can be categorised on the basis of microscopic appearance 
and expression of plasma membrane (PM) proteins, enabling separation by �uorescence activated cell sorting 
(FACS). As such, systematic evaluation of the entire cell surface proteome expressed by a given immune cell popu-
lation is a powerful tool to characterise cellular function and distinguish cell types. Previous studies of monocytes 
subsets have examined transcriptional di�erences and o�er varying depths of information about subset markers, 
suitability of individual proteins for discriminating subsets by cell surface �ow cytometry and the importance of 
each protein in di�erent pathological states2,8,10,11. Usage of multiple complementary grouping systems has the 
bene�t of improving cellular assignment, in addition to enabling discovery of new cellular phenotypes8,12.

Here we use selective surface protein biotinylation with multiplexed tandem mass tag (TMT)-based mass 
spectrometry to directly measure the �rst comprehensive surface proteome of primary human classical mono-
cytes from three donors. 373 classical monocyte cell surface proteins were quanti�ed, and the relative abundance 
of each protein estimated. �e surface proteome of classical, intermediate and non-classical cells was then com-
pared to identify unique markers of each subset. Amongst these, Integrin alpha subunit 5 (ITGA5), complement 
receptor 1 (CR1/CD35) and Leukotriene B4 receptor (LTB4R) were de�ned as markers of classical monocytes, 
and Sialic Acid Binding Ig Like Lectin 10 (SIGLEC10) as a marker of non-classical cells.
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Results
Establishing a definitive classical monocyte surface proteome. To establish a surface proteome 
map, monocytes were enriched from three independent peripheral blood mononuclear cell (PBMC) donations 
from healthy donors by negative selection with magnetic beads. Classical monocytes were then enriched by FACS 
a�er staining for CD86, CD14 and CD16 (Supplementary Fig. S1). Selective surface oxidation and aminoxybioti-
nylation was used to label cell surface glycoproteins, which were enriched from cellular lysates using streptavidin 
beads, then digested into peptides using trypsin. Peptides were labelled with TMT, samples combined and then 
quanti�ed by MS3 mass spectrometry13,14 (Fig. 1a).

437 proteins were identi�ed from the three samples, of which 373 were annotated ‘cell surface’, ‘plasma mem-
brane’, ‘extracellular’ or with a short Gene Ontology term as previously described13,14 (Supplementary Table S1d). 
Application of DAVID so�ware to determine which pathways were enriched amongst these proteins indicated the 
presence of multiple components of integrin complexes and cell-cell junctions in addition to ‘glycosylation’ and 
‘disulphide bond’, serving to validate our selective labelling approach (Fig. 1b).

Quantification of the classical monocyte cell surface proteome. We used a method derived from 
identity based absolute quantitation (iBAQ) to compare the contribution of each protein to the classical mono-
cyte cell surface proteome. �e summed MS1 maximum precursor intensity for each protein across all matching 
peptides was divided by the theoretical number of tryptic peptides 7–30 amino acids in length. Values thus e�ec-
tively represent an average across three donors, o�ering the opportunity to provide precise information on the 
overall abundance of each PM protein, independent of individual genetic variation. Abundance values ranging 
over approximately �ve orders of magnitude were found, with 21 proteins collectively contributing 68.6% of the 
cell surface proteome, whilst individually contributing >1% (Fig. 2). �e �ve most abundant surface proteins, 
CD44, SPN, ICAM3, ITGB2 and BSG accounted for ~25% of the surface proteome, with CD14 representing 
~3.5% (Fig. 2). �e summed abundance of class I Major Histocompatability antigen (MHC) accounted for 2.0% 
of surface proteins, and class II MHC 0.7%.

By using multiplexed TMT-based proteomics, this study o�ered the opportunity to directly measure the varia-
bility in expression of whole surface proteomes across di�erent donors. 76.1% of proteins exhibited a <30% coef-
�cient of variation (%CV). �ere was also no systematic inverse relationship between abundance and variability, 
i.e. less abundant proteins were not systematically more poorly quanti�ed (Supplementary Fig. S2).

Comparison of the cell surface proteome of different monocyte subsets. Although the majority 
of circulating monocytes belong to the classical subset, the non-classical and intermediate subsets play an increas-
ingly appreciated role in di�erent diseases. Selective cell surface biotinylation with MS3-based mass spectrometry 
was used to investigate phenotypic di�erences between each subset in biological triplicate. From this analysis, 
313 proteins annotated ‘cell surface’, ‘plasma membrane’, ‘extracellular’ or with a short GO term were quanti�ed 
(Supplementary Table S1e). Principle component analysis (PCA) suggested that classical monocytes had a more 
distinct cell surface proteome in comparison to non-classical and intermediate cells (Fig. 3a). K-means cluster-
ing with 1–20 classes suggested there were at least eight distinct patterns of protein expression between mono-
cyte subsets (Fig. 3b,c). Examples of proteins selectively enriched on classical monocytes (Cluster A) included 
CD99 antigen and Sialic Acid-Binding Ig-Like Lectin 3 (CD33), validating previous transcriptomic studies2,10. 

Figure 1. Overview of experimental strategy and protein enrichment scores. (a) A schematic overview of 
the experimental approach. (b) Enrichment of pathways within all 373 classical monocyte surface proteins 
in comparison to all human proteins as background, using DAVID so�ware. Benjamini-Hochberg adjusted 
p-values are shown for each pathway.
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Clustering also highlighted a number of proteins enriched in non-classical cells (Cluster C), including CD16a 
(FCGRIIIA), the previously reported non-classical monocyte marker SIGLEC102 and Tetraspanin 14 (TSPAN14), 
which had not previously been reported. Distinguishing intermediate monocytes from other subsets was more 
challenging, however several candidate cell surface markers were identi�ed including Solute Carrier Family 6 
Member 6 (SLC6A6) (Cluster B). We then calculated the Benjamini-Hochberg corrected p-values for each mono-
cyte subset comparison. �is con�rmed that the ‘classical’ and ‘intermediate’ clusters were enriched in proteins 
showing signi�cantly di�erential abundance between the subsets (Supplementary Table S1e). �e enrichment for 
the third ‘non-classical’ cluster was poor, in keeping with the appearance of the k-means analysis.

Comparison to RNA microarray data. Previous analyses of monocyte subsets have mostly been per-
formed at the level of RNA expression2,8,10,11. Hierarchical clustering was used to assess the complementarity 
between one of the most comprehensive previous transcriptomic studies2 and this proteomic analysis. For 
each protein, each data type was normalised to a maximum of 1 a�er averaging signal:noise (proteomics) or 
median �uorescent intensity values (microarray) across donors (Supplementary Fig. S3). RNA and protein data 
for the classical subset clustered separately from non-classical and intermediate subsets. However, intermediate 
protein-RNA did not neatly separate from the non-classical pair suggesting that these cells may be more pheno-
typically similar to one another than classical monocytes, in keeping with the PCA (Fig. 3a). Another recently 
published transcriptomic analysis15 used single-cell RNAseq to analyse Lin-HLA-DR+ index sorted cells. �ese 
included dendritic cells, monocytes and a population of contaminating NK cells. A phenograph-clustering algo-
rithm aimed to identify within each cluster (i) cell types and (ii) di�erentially-expressed genes (DEGs). Eight 
clusters were identi�ed, and clusters 1 and 3 were related most closely to classical monocytes (CD14hi CD16−, 
Fig. 3B from Duterte et al.15), with cluster 7 most closely related to mixed intermediate and non-classical mono-
cytes (CD16+, Cluster 7 in the same �gure). Comparison of DEGs to our cell surface protein-level data largely 
con�rmed that these markers were di�erentially expressed at both the level of protein and RNA within classical 
and non-classical monocytes (Supplementary Fig. S4).

Validation of cell surface subset markers. Flow cytometry was used to validate a group of mono-
cyte subset markers identi�ed by proteomics, using independent samples from three di�erent healthy donors 
of European heritage. SIGLEC10 validated as a marker most abundantly expressed by non-classical monocytes 
(Fig. 4a,b)2. ITGA5, CR1 and LTB4R also validated as markers of classical monocytes identi�ed by proteomic data 
(Fig. 4a,b), in line with previous high throughput analyses for ITGA5 and LTB4R2.

Discussion
Here we use cell surface speci�c protein enrichment in combination with isobaric tagging and MS3 mass spec-
trometry to de�ne at high resolution the cell surface proteomes of monocyte subsets. �is has not only iden-
ti�ed novel markers of each subset but also provided a valuable resource for the future study of these crucial 
immune cells. �is represents the �rst cell surface proteomic study in primary monocyte subsets. Up to now, 

Figure 2. Pie chart showing the relative contribution of individual proteins to the classical monocyte surface 
proteome. Proteins contributing <1% are included in the ‘other’ category. �e summed abundances of all MHC 
class I molecules and MHC class II molecules were considered in order to account for di�erent alleles expressed 
by individual donors.
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Figure 3. Analysis of the surface proteome of monocyte subsets. (a) Principal component analysis of all 313 
proteins annotated ‘cell surface’, ‘plasma membrane’, ‘extracellular’ or with a short GO term. �e grouping of the 
samples suggested that subset type was the major driver of variability as opposed to donor-speci�c di�erences. 
(b) �e number of distinct classes of protein expression between monocyte subsets plotted against within-class 
variance. Proteins were clustered using a k-means approach with 1–20 classes, and the summed distance of each 
protein from its cluster centroid was determined. �is summed distance becomes smaller as more clusters are 
added, but the rate of decline decreases with each iteration, eventually reaching a fairly steady rate of decline 
(orange line) that is re�ective of over�tting. Clusters added before this point re�ect the underlying structure in 
the protein data, whereas clusters subsequently added through over�tting add no additional useful information. 
For these data the point of in�exion was between eight and nine classes, suggesting that there are at least eight 
distinct surface protein pro�les. (c) K-means based hierarchical cluster analysis of the 313 proteins identi�ed 
at the surface of the di�erent classes of monocyte. Right panels – enlargements of clusters particularly enriched 
in proteins of one class (the adjacent bar colour indicates where each enlargement matches the original cluster 
plot). C – Classical monocyte sample, I – Intermediate monocyte sample, NC – Non-classical monocyte sample.
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other cell surface proteomic analyses in primary cells have been limited to CD4+ T-cells16, erythrocytes17,18, NK 
cells, adipocytes and a subset of tumour cells19. We quantify 373 cell surface proteins from classical monocytes, 
and further quantify 313 proteins across all monocyte subsets. Based on our data we predict that the majority 
of the classical monocyte cell surface proteome is composed of a relatively small number of di�erent proteins. 
Limitations to this study include the number of donors. To ensure all samples could be directly compared in a 
single TMT analysis, three subpopulations of monocytes from three donors were analysed, since only 10 di�erent 
TMT tags were available. Furthermore, demographic information for each donor was not available, meaning that 
characteristics such as gender might bias our analysis. Nevertheless, we believe this study provides important cell 
surface protein level data to complement the rapidly growing array of RNA studies of di�erent leucocyte subsets.

Here we show CR1, LTB4R and ITGA5 are markers of classical monocytes, and SIGLEC10 is a marker of 
non-classical monocytes. CR1 (Complement Receptor type 1/CD35), acts as a cell surface receptor for particles 
opsonised by complement, facilitating their phagocytosis20. �e speci�c elevation of CR1 on classical monocytes 
is consistent with their predominant phagocytic role.

LTB4R (also known as BLT1) is a cell surface G-protein coupled receptor for the proin�ammatory leukotriene 
B4 (LTB4). It was originally functionally identi�ed by subtractive cloning of cDNAs from cells di�erentially able 
to bind LTB4, and was observed to enable chemotactic response to LTB4 even in non-specialised non-immune 

Figure 4. Validation of proteomics data by �ow cytometry. (a) Fresh human monocytes from three di�erent 
donors were analysed by �ow cytometry with antibodies speci�c to the indicated protein, in addition to 
anti-CD86, anti-CD14 and anti-CD16 to distinguish each monocyte subset. Corresponding pro�les as 
determined by MS are shown in the lower panel. For both types of analyses, data were normalised to a 
maximum of one then averaged across the three replicates. Data are shown as mean +/− SEM. For proteomic 
data, a Benjamini-Hochberg-corrected two-tailed t-test was used to estimate p-values. For �ow cytometry data, 
a two-tailed t-test was used to estimate p-values. *p < 0.05; **p < 0.005. (b) Representative contour plots from a 
single donor of �ow cytometry data for each illustrated marker coloured by cell subset. FSC-A (Forward Scatter 
Area.) was used as an intrinsic description of cell size (which would not be expected to change between subsets) 
to separate the points on a second axis. �is representation was advantageous compared to the alternative 
of histograms as it more clearly visually represents the distribution of data points with less confounding by 
absolute cell number. �e relative proportion of each monocyte subset is di�erent in peripheral blood, with 
classical monocytes predominating.
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cells21. Furthermore, LTB4R deletion has previously been reported to confer resistance to histopathological 
changes in response to a rodent model of in�ammatory arthritis22. Given the previous link of certain monocytic 
subsets to in�ammatory arthrititis6 it may be of interest to reassess the role of LTB4R positive classical monocytes 
in this pathology.

Integrin Alpha 5 (ITGA5, CD49e), is one of 18 mammalian alpha integrin chains which form cell surface het-
erodimers with integrin beta subunits23. Integrins are classically involved in extracellular adhesion and invasion, 
and also play roles in bidirectional transmembrane signalling24. SIGLEC10 was initially identi�ed as a sialic acid 
binding protein expressed across a variety of tissues, but found at a particularly high level in organs rich in hae-
matopoietic cells, and is notably expressed on dendritic cells and CD16+ cells10,25,26. SIGLEC10 acts as a ligand 
for vascular adhesion protein 1 (VAP1), and plays a role in lymphocyte adhesion to endothelial surfaces27. �e 
di�erential expression of both of these adhesion molecules between classical and non-classical monocytes may 
thus contribute to independent mobility or e�ector function, although future studies will be required to assess the 
biological function of SIGLEC10 on these cell types.

�e abundance of SLC6A6 was elevated at the surface of intermediate monocytes. SLC6A6 is a known tau-
rine and beta-alanine transporter with proposed roles in regulation of apoptosis28,29. Further studies will be 
required to investigate whether this molecule modulates the survival of intermediate monocytes relative to the 
other subsets. Similarly, our data suggested that TSPAN14 was relatively enriched on non-classical monocytes. 
TSPAN14 is a member of a family of tetraspanins known to regulate the subcellular localisation of metallopro-
teinase ADAM1030; this might in part explain di�erences in ADAM10 expression we observed between di�erent 
monocyte subsets.

To determine if any particular functional class of protein was enriched in each monocyte subpopulation, 
we used DAVID analysis to compare proteins enriched in di�erent subsets from our k-means analysis (Fig. 3c). 
Unfortunately, at least partly due to the relatively small background of proteins (313 proteins in total), only a sin-
gle term was signi�cantly enriched (p < 0.05) within these groupings. It is therefore di�cult to make con�dent, 
global statements about di�erences in the function of each monocyte subset. Manual inspection of the proteins 
enriched in each subset highlighted the presence of di�erent cell adhesion and interaction molecules: classical – 
CD33, CD93, CD99; intermediate – ALCAM; non-classical – ICAM2, CD97, SELPLG (Supplementary Table S3). 
We speculate that the divergent role of the monocyte subsets in varying disease states could partially be explained 
by their di�erential interactions consequent on di�erential expression of these molecules. For example, CD33 
polymorphisms have been implicated in genetic susceptibility to Alzheimer’s disease, with risk alleles correlating 
with increased CD33 expression and altered phagocytic activity31.

As standard in our cell surface proteomic analyses we included proteins annotated with the Gene Ontology 
Cellular Compartment terms ‘plasma membrane’ (267/313 proteins), ‘extracellular’ (110/313 proteins), ‘cell sur-
face’ (95/313 proteins) and a short term that indicates that the protein is membrane-integral, however that the 
subcellular localisation is presently unknown (7/313 proteins) (shown in Supplementary Table 1E)13,32. �is strat-
egy facilitates a comprehensive coverage of the cell surface proteome. From the 313 proteins, 31 were annotated 
‘extracellular’ but not ‘plasma membrane’ or ‘cell surface’. �ese included Lysozyme and Haptoglobin. Certain 
extracellular proteins can clearly bind to proteins or receptors at the plasma membrane. For example, Haptoglobin 
is known to bind CD16333, which we also detected in our analysis.

Although two previous reports have quanti�ed the whole cell proteome of monocyte subsets34,35, ours rep-
resents the �rst selective study of the cell surface proteome of these primary cell types. Furthermore, one of the 
previous studies34 pooled non-classical and intermediate phenotype cells prior to analysis, and the other did not 
examine intermediate phenotype cells35. We compared our data to both studies. As might be anticipated due to 
the low abundance and hydrophobic nature of cell surface proteins, each prior study only identi�ed a fraction of 
the cell surface proteins found by selective surface biotinylation. Furthermore, for each subset of proteins previ-
ously identi�ed as di�erentially expressed, there was generally poor correspondence to our data. �ere are a num-
ber of possible explanations for this �nding, particularly including a small sample size of di�erentially expressed 
proteins that were also quanti�ed in our study in each case. Additionally, correspondence between cell surface 
and whole-cell protein abundances can in any case be poor, and there may have been some confounding in one 
of the prior studies from isolation and measurement of protein samples in �ve di�erent locations, using four dif-
ferent types of mass spectrometer35. Neither prior study examined intermediate-phenotype cells. We believe this 
shows the clear bene�ts of selective interrogation of the cell surface proteome, in a single multiplexed experiment 
that can make precise quantitative comparisons.

Although the monocyte subsets can be delineated using CD14/CD16 expression, use of further markers 
in parallel could aid distinction of subgroups which may appear as a near continuum if viewed in only two 
dimensions12. It has previously been suggested that the intermediate monocyte subset may be a transitional state 
between the two larger circulating monocyte populations, and the classical subset are more distinct from inter-
mediate and non-classical cells than the latter two populations are from one another. Our data support this sec-
ond observation. However, we also identi�ed proteins that are uniquely up- or down-regulated in intermediate 
cells, arguing against the hypothesis that these cells may be purely transitional. Future work will be required 
to determine which combinations of markers can be used to de�nitively separate individual subsets, and will 
expand recent single cell transcriptomic data which has suggested that intermediate monocytes are more heterog-
enous than previously anticipated9,36. Additionally, further studies will also be required to examine the monocyte 
cell surface from individuals with diseases including asthma, rheumatoid arthritis and sarcoidosis to determine 
whether subpopulations exhibit phenotypic di�erences in these conditions. We thus provide an orthogonal anal-
ysis of monocyte subgroups to complement previous transcriptomic studies which will facilitate many future 
studies of monocytes. �is valuable resource may also be useful to assist elucidation of the true nature of inter-
mediate monocytes.
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Materials and Methods
Monocyte isolation. For proteomic studies, leukocyte enriched blood samples were obtained from healthy 
UK-based blood donors via NHS blood and transplant (NHSBT, Cambridge, UK). No further information about 
these donors was available from NHSBT, in line with their conditions of supply. Cells were eluted and PBMC iso-
lated by centrifugation on a Ficoll gradient (GE Healthcare) for 20 minutes at 800 g. PBMC were aspirated from 
the interface, and monocytes isolated using a negative selection kit (‘Pan Monocyte Enrichment’, Miltenyi Biotec, 
130-096-537). Monocyte subsets were subsequently de�ned by �ow cytometry a�er staining with anti-CD14, 
anti-CD16 and anti-CD86. For �uorescence activated cell sorting on either In�ux or Aria III cell sorter (Becton 
Dickinson), gating strategies are shown in Fig. 1. Live cells were de�ned by a forward and side-scatter gate. Live 
CD86+ cells were sorted into three subsets de�ned by CD14 and CD16 expression. Samples used for �ow-cytom-
etry based phenotypic validation of cell surface marker expression (Fig. 4) were derived from healthy donors of 
European ancestry local to Cambridge, UK. Here, 5–10 ml of whole anticoagulated blood was collected from each 
donor and subjected to enrichment and staining as described above, including stains for anti-CD14, anti-CD16 
and anti-CD86 in addition to individual markers of interest. Donated blood was collected with informed consent 
in accordance with the Declaration of Helsinki. Ethical approval was obtained from University of Cambridge 
Human Biology Research Ethics Committee (HBREC.2016.011).

Plasma membrane profiling. Plasma membrane profiling was performed broadly as previously 
described13, with the following modi�cations. �e total number of monocytes biotinylated was dependent on 
the yield from enrichment procedures detailed above, typically in the range of 105–106 cells for intermediate 
and non-classical monocytes, and 107 for classical monocytes. Precise sorted counts were collected during each 
enrichment from the In�ux or Aria III cell sorter. Each of the three donated samples was biotinylated and labelled 
separately, combining at the �nal stage prior to TMT analysis. Brie�y, for each enriched monocyte subset sample, 
sialic acid residues at the cell surface were oxidized using sodium meta-periodate (�ermo) and biotinylated 
with aminooxy-biotin (Biotium). Following quenching, cells were incubated in 1% (v/v) Triton X-100 lysis bu�er 
(10 mM Tris HCl, 1.6% Triton, 150 mM NaCl). Biotinylated glycoproteins were precipitated using high a�nity 
streptavidin agarose beads (Pierce), and washed extensively. Captured protein was then reduced with dithioth-
reitol (DTT), alkylated with iodoacetamide (Sigma) and digested on-bead with trypsin (Promega) in 200 mM 
HEPES pH 8.5 for 3 hours. Trypsin cleaves C-terminal to basic residues, except when they are N-terminal to a 
Proline residue. Tryptic peptides were collected and the whole sample labelled using TMT reagents following 
dilution in 200 mM HEPES pH 8.5 adjusted to a �nal 30% acetonitrile concentration (v/v). To ensure analy-
sis of each cell type in a 1:1:1 ratio, a fraction of each labelled peptide sample was combined in proportion to 
the number of cells collected for each subset. Labelling was as follows; classical monocytes donation 1 (126), 
intermediate monocytes donation 1 (127N), non-classical monocytes donation 1(127C), classical monocytes 
donation 2 (128N), intermediate monocytes donation 2 (128C), non-classical monocytes donation 2 (129N), 
classical monocytes donation 3 (129C), intermediate monocytes donation 3 (130N), non-classical monocytes 
donation 3 (130C). �e reaction was quenched with hydroxylamine, and TMT-labelled samples combined in a 
1:1:1:1:1:1:1:1:1 (all subsets) or 1:1:1 (Classical only) ratio. Labelled peptides were subjected to C18 solid-phase 
extraction (Sep-Pak, Waters) and vacuum-centrifuged to near-dryness.

Offline SCX fractionation. O�ine fractionation was performed as previously described14,37 with the fol-
lowing modi�cations. 10 mg of PolySulfethyl A bulk material (Nest Group Inc) was loaded on to a fritted 200 µl 
tip in 100% Methanol using a vacuum manifold. SCX material was conditioned slowly with 1 ml SCX bu�er A 
(7 mM KH2PO4, pH 2.65, 30% Acetonitrile), then 0.5 ml SCX bu�er B (7 mM KH2PO4, pH 2.65, 350 mM KCl, 
30% Acetonitrile) then 2 ml SCX bu�er A. Dried peptides were resuspended in 500 µl SCX bu�er A and added 
to the tip at a �ow rate of ~150 µl/min, followed by a 150 µl wash with SCX bu�er A. Fractions were eluted in 150 
µl bu�er at increasing K+ concentrations (10, 25, 40, 60, 90, 150 mM KCl), vacuum-centrifuged to near dryness 
then desalted using StageTips.

LC-MS3. LC-MS3 was performed with modi�cations as previously described38,39. Mass spectrometry data 
was acquired using an Orbitrap Lumos (�ermo Fisher Scienti�c, San Jose, CA). An Ultimate 3000 RSLC nano 
UHPLC equipped with a 300 µm ID × 5 mm Acclaim PepMap µ-Precolumn (�ermo Fisher Scienti�c) and a 
75 µm ID × 50 cm 2.1 µm particle Acclaim PepMap RSLC analytical column was used. An unfractionated single-
shot was analysed initially to ensure similar peptide loading across each TMT channel, thus avoiding the need 
for excessive electronic normalization. As all normalisation factors were>0.33 and <3.0, data for each singleshot 
experiment was analysed with data for the corresponding fractions to increase the overall number of peptides 
quanti�ed. For monocyte subset analysis, 2 µl of fractionated peptide was initially analysed by mass spectrometry, 
followed by the remainder of the sample having observed satisfactory chromatography.

For LC/MS3, loading solvent was 0.1% tri�uoroacetic acid (TFA), analytical solvent A: 0.1% FA and B: 80% 
acetonitrile + 0.1% FA. All separations were carried out at 55 °C. Samples were loaded at 10 µl/minute for 5 min-
utes in loading solvent before beginning the analytical gradient. �e following gradient was used: 3–7% B over 
4 minutes, 7–37% B over 58 minutes, 37–95% B over 4 minutes followed by a 2 minute wash at 95% B and equi-
libration at 3% B for 15 minutes. Each analysis used a MultiNotch MS3-based TMT method40,41. �e following 
settings were used: MS1: 380–1500 �, Quadrupole isolation, 120,000 Resolution and 2 × 105 AGC target, 50 ms 
maximum injection time. MS2: Quadrupole isolation at an isolation width of m/z 0.7, CID fragmentation (NCE 
35) with ion trap scanning out in rapid mode from m/z 120, 1.5 × 104 AGC target, 300 ms maximum injection 
time in centroid mode. MS3: in Synchronous Precursor Selection mode the top 10 MS2 ions were selected for 
HCD fragmentation (NCE 65) and scanned in the Orbitrap at 60,000 resolution with an AGC target of 1.5 × 105 
and a maximum accumulation time of 250 ms, ions were not accumulated for all parallelisable time. �e entire 
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MS/MS/MS cycle had a target time of 3 s. Dynamic exclusion was set to +/−10 ppm for 70 s. MS2 fragmentation 
was trigged on precursors 5 × 103 counts and above.

Data analysis. Data analysis was performed with modi�cations as previously described18,38. In the following 
description, we list the �rst report in the literature for each relevant algorithm. Mass spectra were processed using 
a Sequest-based so�ware pipeline for quantitative proteomics, “MassPike”, through a collaborative arrangement 
with Professor Steve Gygi’s laboratory at Harvard Medical School. MS spectra were converted to mzXML using 
an extractor built upon �ermo Fisher’s RAW File Reader library (version 4.0.26). In this extractor, the standard 
mzXML format has been augmented with additional custom �elds that are speci�c to ion trap and Orbitrap mass 
spectrometry and essential for TMT quantitation. �ese additional �elds include ion injection times for each 
scan, Fourier Transform-derived baseline and noise values calculated for every Orbitrap scan, isolation widths 
for each scan type, scan event numbers, and elapsed scan times. �is so�ware is a component of the MassPike 
so�ware platform and is licensed by Harvard Medical School.

A combined database was constructed from the human Uniprot database (26th January, 2017), and com-
mon contaminants such as porcine trypsin. The combined database was concatenated with a reverse data-
base composed of all protein sequences in reversed order. Searches were performed using a 20 ppm precursor 
ion tolerance42. Fragment ion tolerance was set to 1 Da. TMT tags on lysine residues and peptide N termini 
(229.162932 Da) and carbamidomethylation of cysteine residues (57.02146 Da) were set as static modi�cations, 
while oxidation of methionine residues (15.99492 Da) was set as a variable modi�cation.

To control the fraction of erroneous protein identi�cations, a target-decoy strategy was employed43,44. Peptide 
spectral matches (PSMs) were �ltered to an initial peptide-level false discovery rate (FDR) of 1% with subsequent 
�ltering to attain a �nal protein-level FDR of 1%45,46. PSM �ltering was performed using a linear discriminant 
analysis, as described previously47. �is distinguishes correct from incorrect peptide IDs in a manner analogous 
to the widely used Percolator algorithm48, though employing a distinct machine learning algorithm. �e follow-
ing parameters were considered: XCorr (minimum 1), ∆Cn, missed cleavages, peptide length, charge state, and 
precursor mass accuracy. Protein assembly was guided by principles of parsimony to produce the smallest set of 
proteins necessary to account for all observed peptides47.

Proteins were quanti�ed by summing TMT reporter ion counts across all matching peptide-spectral matches 
using”MassPike”, as described previously40,41. Brie�y, a 0.003 � window around the theoretical m/z of each 
reporter ion (126, 127n, 127c, 128n, 128c, 129n, 129c, 130n, 130c) was scanned for ions, and the maximum 
intensity nearest to the theoretical m/z was used. �e primary determinant of quantitation quality is the number 
of TMT reporter ions detected in each MS3 spectrum, which is directly proportional to the signal-to-noise (S:N) 
ratio observed for each ion49. Conservatively, every individual peptide used for quantitation was required to con-
tribute su�cient TMT reporter ions so that each on its own could be expected to provide a representative picture 
of relative protein abundance40. An isolation speci�city �lter was additionally employed to minimise peptide 
co-isolation50. Peptide-spectral matches with poor quality MS3 spectra (more than 9 TMT channels missing and/
or a combined S:N ratio of less than 135 (9-plex, monocyte subsets) or 45 (3-plex, classical monocytes) across all 
TMT reporter ions) or no MS3 spectra at all were excluded from quantitation. Peptides meeting the stated criteria 
for reliable quantitation were then summed by parent protein, in e�ect weighting the contributions of individual 
peptides to the total protein signal based on their individual TMT reporter ion yields. Protein quantitation values 
were exported for further analysis in Microso� Excel.

For protein quantitation, reverse and contaminant proteins were removed. For further analysis and display in 
�gures, fractional TMT signals were used (i.e. reporting the fraction of maximal signal observed for each protein 
in each TMT channel, rather than the absolute normalized signal intensity). �is e�ectively corrected for di�er-
ences in the numbers of peptides observed per protein.

Proteins were �ltered to include those most likely to be present at the cell surface with high con�dence. �ese 
contained proteins with the Gene Ontology (GO) terms of ‘plasma membrane’ (PM), ‘cell surface’ (CS), ‘extracel-
lular’ (XC) or with a short 4- or 5-part GO cellular compartment term that included ‘integral to membrane’, but 
with no subcellular assignment13 (ShG).

To estimate the relative abundance of each protein, a method based on iBAQ was employed. �e summed 
MS1 maximum precursor intensity for each protein across all matching peptides was calculated. Each value was 
divided by the number of theoretically observable tryptic peptides 7–30 amino acids in length for the respec-
tive protein, as determined by in silico trypsin digestion of human Swissprot canonical and isoform database 
(2017_01_26) using the OrgMassSpecR51 package in R 3.5.152.

For Fig. 1b, the Database for Annotation, Visualisation and Integrated Discovery (DAVID) version 6.8, was 
used to determine pathway enrichment53. 373 proteins identi�ed at the plasma membrane of classical monocytes 
were searched against a background of the whole human proteome.

Hierarchical centroid clustering based on Euclidian distance or uncentered correlation was performed 
using Cluster 3.054 (Stanford University) and visualised using Java Treeview55 (http://jtreeview.sourceforge.net). 
Principle component analysis and K-means analysis to determine the number of distinct patterns of protein 
expression between monocyte subsets was performed using XLSTAT v2019.1.2 (Addinso�). Once the number of 
expression pro�les was determined, Cluster 3.0 was used to perform K-means clustering.

Flow cytometric analysis of monocyte surface proteins. Monocytes were obtained by negative selec-
tion using a Pan-Monocyte enrichment kit as described above. Cells were incubated with Fc blocking reagent 
(Biolegend Human Trustain FcX) for 15 min at 4 °C. Four-colour staining was then used to validate phenotype, 
using anti-CD14, anti-CD16, anti-CD86 and an antibody against the marker of interest for 15 min at 4 °C. Speci�c 
antibodies used were: APC-Cy7 anti-CD14 (Biolegend, 325620), PE anti-CD14 (Biolegend, 301850), BV421 
anti-CD16 (Becton Dickinson, 562874), PE-Cy7 anti-CD86 (Becton Dickinson, 561128), FITC anti-ITGA5 
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(Miltenyi Biotec, 130-110-592), APC anti-SIGLEC10 (Miltenyi Biotec, 130-103-731), PE anti-LTB4R (BioRad, 
MCA2108PET), PE anti-CD35 (Miltenyi Biotec, 130-099-913). Cells were washed in PBS/0.4% (v/v) citrate/0.5% 
(v/v) BSA prior to �xation and analysis on a BD LSR Fortessa (Beckton Dickinson). A�er gating by forward and 
side-scatter, ≥30,000 events were captured. Data was analysed using FlowJo V10 (FlowJo, LLC). Monocytes were 
de�ned using forward and side-scatter �lters and positive CD86 expression as shown in Supplementary Fig. S1.

For Fig.  4, monocytes were gated into subsets: CD14++, CD16− (Classical), CD14++, CD16+ 
(Intermediate), CD14+, CD16++ (Non-classical). MFI values for each subset were normalised to a maximum of 
1 prior to averaging and calculation or the standard deviation and standard error of the mean.

Experimental design. For each proteomic analysis (classical monocyte or subset analysis) three independ-
ent samples were obtained and prepared separately prior to simultaneous isobaric tag labelling and further anal-
ysis. Triplicate analysis was chosen to take advantage of the capability to study up to 10 samples simultaneously 
using tandem mass tags. As such, three complete sets of three subsets were chosen. Validation studies using 
�ow cytometry were performed in biological triplicate from three independent donors as described above. Flow 
cytometry �uorophore staining was performed with singly stained and unstained control populations in addi-
tion to the test samples. For proteomic data, a Benjamini-Hochberg-corrected two-tailed t-test was used to esti-
mate p-values. For �ow cytometry data, a two-tailed t-test was used to estimate p-values based on an observed 
near-normal distribution of signal within subgroups.

Data availability
The mass spectrometry proteomics data has been deposited to the ProteomeXchange Consortium (http://
www.proteomexchange.org/) via the PRIDE56 partner repository, project identi�er PXD013832. Project name 
‘Comprehensive cell surface proteomics de�nes markers of classical, intermediate and non-classical monocytes’.
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