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A b s t r a c t .  The same scene viewed under two different illuminants in- 

duces two different colour images. If the two illuminants are the same 

colour but are placed at different positions then corresponding rgb pixels 

are related by simple scale factors. In contrast if the lighting geometry 

is held fixed but the colour of the light changes then it is the individual 

colour channels (e.g. all the red pixel values or all the green pixels) that  

are a scaling apart. It is well known that  the image dependencies due to 

lighting geometry and illuminant colour can be respectively removed by 

normalizing the magnitude of the rgb pixel triplets (e.g. by calculating 

chromaticities) and by normalizing the lengths of each colour channel 

(by running the 'grey-world' colour constancy algorithm). However, nei- 

ther normalization suffices to account for changes in both the lighting 

geometry and illuminant colour. 
In this paper we present a new c o m p r e h e n s i v e  image  n o r m a l i z a t i o n  

which removes image dependency on lighting geometry and illumination 

colour. Our approach is disarmingly simple. We take the colour image and 

normalize the rgb pixels (to remove dependence on lighting geometry) 

and then normalize the r, g and b colour channels (to remove dependence 

on illuminant colour). We then repeat this process, normalize rgb pixels 

then r, g and b colour channels, and then repeat again. Indeed we repeat 

this process until we reach a stable state; that  is reach a position where 

each normalization is idempotent. Crucially this iterative normalization 

procedure always converges to the same answer. Moreover, convergence 

is very rapid, typically taking just 4 or 5 iterations. 
To illustrate the value of our "comprehensive normalization" procedure 

we considered the object recognition problem for three image databases 

that appear in the literature: Swain's database, the Simon Fraser database, 

Sang Wok Lee's database. In all cases, for recognition by colour distribu- 

tion comparison, the comprehensive normalization improves recognition 

rates (the results are near perfect and in all cases improve on results 

reported in the literature). Also recognition for the composite database 

(comprising almost 100 objects) is also near perfect. 
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1 I n t r o d u c t i o n  

The light reaching our eye is a function of surface reflectance, illuminant colour 

and lighting geometry. Yet, the colours that we perceive depend almost exclu- 

sively on surface reflectance; the dependencies due to lighting geometry and 

illuminant colour are removed through some sort of image normalization pro- 

cedure. As an example, the white page of a book looks white whether viewed 

under blue sky or under artificial light and remains white, independent of the 

position of the light source. While analogous normalizations exist in computer 

vision for discounting lighting geometry or illuminant colour there does not ex- 

ist a normalization which can do both, together at the same time. Yet, such a 

comprehensive normal iza t ion  is clearly needed since both lighting geome- 

try and illuminant colour can be expected to change from image to image. A 

comprehensive normalization is developed in this paper. 

Image normalization research in computer vision generally proceeds in two 

stages and we will adopt the same strategy here. First, the physics of image 

formation are characterized and the dependency due to a given physical vari- 

able is made explicit. In a second stage, methods for removing this dependency 

(that is, canceling dependent variables) are developed. As an example of this 

kind of reasoning, it is well known that, assuming a linear camera response, if 

light intensity is scaled by a factor s then the image scales by the same factor: 

each captured (r, g, b) pixel becomes (sr, sg, sb). Relative to this simple physical 

model it is easy to derive a normalization procedure which is independent of the 

intensity of the viewing illuminant: 

r g b (1) 
r + g + b ' r + g + b ' r + g + b  

The normalized image colours are sometimes represented using only the chro- 
r and __a__ (since b _ 1-r-g~ maticities ~ r + g + b  rWg+b  - -  r + g + b ] "  

The normalization shown in (1) is well used, and well accepted, in the com- 

puter vision literature (e.g. [SW95,CB97,MMK95,FDB91,Hea89]) and does an 

admirable job of rendering image colours independent of the power of the view- 

ing illuminant. As we shall see later, lighting geometry in general (this includes 

the notions of light source direction and light source power) affects only the 

magnitude of a captured rgb and so the normalization shown in (1) performs 

well in diverse circumstances. 

Dependency due to illumination colour is also very simple to model (subject 

to certain caveats which are explored later). If (rl, gl, bl) and (r2, g2, b2) denote 

camera responses corresponding to two scene points viewed under one colour 

of light then (arl,  ~gl, 7bl) and (ar2, fig2,7b2) denote the responses induced by 

the same points viewed under a different colour of light[WB86] (the red, green 

and blue colour channels scale by the factors c~, ~ and 7). Clearly, it is easy to 

derive algebraic expressions where c~, ~ and 7 cancel: 

2rl 2gl 2bl 2r2 2g2 2b2 ) (2) 

(r, +r.,'g, )' 7  'gl + 
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The two pixel case summarized in (2) naturally extends to N-pixels: the 

denominator term becomes the sum of all pixels and numerators are scaled by 

N. Notice that after normalization, the mean image colour maps to (1,1,1); 

that is, to 'grey'. For this reason, Equation (2) is sometimes called 'grey-world' 

normalization[Hun95,G JT88,Buc80]. 

Unfortunately, neither normalization (1) or (2) suffices to remove depen- 

dency on both lighting geometry and illuminant colour. To see that this is so, 

it is useful to step through a worked example. Let (sl~r1,sl/3g2,slTbl) and 

(s2(~r2, s.)/392, suTb2) denote image colours corresponding to two scene points 

where (sl, s2) and (c~, fl, ~) are scalars that model lighting geometry and illumi- 

nant colour respectively. Under lighting geometry normalization, Equation (1), 

the pixels become: 

. . ,  

~" o ~ r 2 ~ g 2 + T b 2  ' o~r2~/392+Tb2 ' olr2+/392+9"b2 ) 

(3) 

and under illuminant colour normalization, Equation (2): 

2sir1 2slgl 2slb1 ~ r 2s2r2 2s2g2 2s2b2 [ 

~slrl + s2r2' slgl + s292' slbl + s2b2 j ' ~Slrl +s2r2 '  slgl +s292' slbl + s2b2) 
(4) 

In both cases only some of the dependent variables cancel. This is unsatisfactory 

since both lighting geometry and illuminant colour will change from image to 

image. 

Lin an Lee[LL97] proposed that this problem (cancellation failure) could be 

solved using normalized colour distribution manifolds. In their method images 

are normalized for lighting geometry and the variation due to illuminant colour 

is modelled explicitly. They show that the lighting geometry normalized distri- 

bution of colours in a scene viewed under all illuminant colours occupies a con- 

tinuous manifold in distribution space. In later work by Berwick and Lee[BL98] 

this manifold is represented implicitly. Here a pair of lighting geometry nor- 

malized image colour distributions are defined to be the same if they can be 

'matched' by a shift in illuminant colour; this matching effectively reconstructs 

the manifold 'on the fly'. Unfortunately both these solutions incur a substantial 

computational overhead. A high dimensional manifold is, at the best of times, 

unwieldy and implies costly indexing (i.e. to discover if a distribution belongs to 

a given manifold). Similarly the distribution matching solution, which operates 

by exhaustive distribution correlation, is very expensive. 

In this paper we develop a new comprehensive normalization which can nor- 

malize away variation due to illuminant colour and  lighting geometry together 

at the same time. Our approach is simplicity itself. We take an input image and 

normalize for lighting geometry using Equation (1). We then normalize for illu- 

minant colour using Equation (2). We then iterate on this theme, successively 

normalizing away lighting geometry and light colour until each normalization 

step is idempotent. 
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We prove two very important results. First, that this process always con- 

verges. Second, that the convergent image is unique: the same scene viewed 

under any lighting geometry and under any illuminant colour has the same com- 
prehensively normalized image. We also found that convergence is very rapid, 

typically taking just 4 or 5 iterations. 

To illustrate the power of the comprehensive normalization procedure we gen- 

erated synthetic images of a yellow/grey wedge viewed under white, blue and 

orange coloured lights which were placed at angles of 45 ~ (close to the surface 

normal for grey), 90 ~ (halfway between both surfaces) and 135 ~ (close to the nor- 

mal of yellow). The image capture conditions are illustrated at the top of Figure 1 

(a blue light at 80 ~ is shown). The 9 generated synthetic images are shown at the 

bottom of the figure together with corresponding normalized images. Lighting 

geometry normalization (Equation (1)) suffices to remove variation due to light- 

ing position but not illuminant colour. Conversely, illuminant colour normalized 

images (Equation 2) are independent of light colour but depend on lighting po- 

sition. Only the comprehensive normalization suffices to remove variation due to 

lighting geometry and illuminant colour. 

Examples of the comprehensive normalization acting on real images are 

shown in Figure 2. The top two images are of the same object viewed under 

a pair of lighting geometries and illuminant colours. Notice how different the 
images appear. After comprehensive normalization the images, shown under- 

neath, are almost the same. This experiments is repeated on a second image 
pair with similar results 1. 

As a yet more rigorous test of comprehensive normalization we carried out 

several object recognition experiments using real images. We adopted the recog- 

nition paradigm suggested by Swain and Ballard[SB9l] (which is widely used 

e.g. [SO95], [NB93] and [LL97]) where objects are represented by image colour 

distributions (or in the case of our experiments by the distribution of colours 

in comprehensively normalized images). Recognition proceeds by distribution 
comparison: query distributions are compared to object distributions stored in 

a database and the closest match identifies the query. 

For the image databases of Swain (66 database objects, 31 queries), Chatter- 
jee (13 database, 26 queries), Brewster and Lee (8 objects and 9 queries) and a 

composite set 87 objects and 67 queries, comprehensive normalization facilitated 

almost perfect recognition. For the composite database all but 6 of the objects 

are correctly identified and those that are not are identified in second place. This 

performance is quite startling in its own right (it is a large database compiled by 
a variety of research groups). Moreover, recognition performance surpasses, by 

far, that supported by the lighting geometry or illuminant colour normalizations 

applied individually. 

In section 2 of this paper we discuss colour image formation and derive 

the normalizations shown above in equations (1) and (2). The comprehensive 

normalization is presented in section 3 together with proofs of uniqueness and 

1 All four input images shown in Figure 2 were taken by Berwick and Lee[BL98] 
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Fig. 1. A yellow/grey wedge, shown top of figure, is imaged under 3 lighting geometries 
and 3 light colours. The resulting 9 images comprise the 3 x 3 grid of images shown 
top left above. When illuminant colour is held fixed, lighting geometry normalization 
suffices (first 3 images in the last row). For fixed lighting geometry, illuminant colour 

normalization suffices (top 3 images in the last column). The comprehensive normal- 
ization removes the effects of both illuminant colour and lighting geometry (the single 
image shown bottom right) 
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Fig. 2. A peanut container is imaged under two different lighting geometries and illu- 
minant colours (top of figure). After comprehensive normalization the images appear 
the same (2nd pair of images). A pair of 'split-pea' images (third row) are compre- 
hensively normalized (bottom pair of images). Notice how effectively comprehensive 
normalization removes dependence illuminant colour and lighting geometry 
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convergence. In section 4 the object recognition experiments are described and 

results presented. The paper finishes with some conclusions in section 5. 

2 Colour Image Formation 

The light reflected from a surface depends on the spectral properties of the sur- 

face reflectance and of the illumination incident on the surface. In the case of 

Lambertian surfaces (the only ones we consider here), this light is simply the 

product of the spectral power distribution of the light source with the percent 

spectral reflectance of the surface. Assuming a single point source light, illu- 

mination, surface reflection and sensor function, combine together in forming a 

sensor response: 

p$,E = e~.n z ~ S z()t)E()t)F(A)dA (5) 

where A is wavelength, p is a 3-vector of sensor responses (rgb pixel value), __.F 

is the 3-vector of response functions (red-, green and blue- sensitive), E is the 

illumination striking surface reflectance S x at location x. Integration is over the 

visible spectrum w. Here, and throughout this paper, underscoring denotes vector 

quantities. The light reflected at x, is proportional to E(X)S  x ()~) and is projected 

onto $ on the sensor array. The precise power of the reflected light is governed 

by the dot-product term eZ.n z. Here, n x is the unit vector corresponding to the 

surface normal at x and _.e z is in the direction of the light source. The length 

of _e z models the power of the incident light at x. Note that  this implies that  

the function E()  0 is actually constant across the scene. Substituting qz,E for 

S~()~)E()~)F()0 allows us to simplify (5): 

= ( 6 )  

It is now understood that  qz,E is that  part of a scene that  does not vary with 

lighting geometry (but does change with illuminant colour). Equation (6), which 

deals only with point-source lights is easily generalized to more complex lighting 

geometries. Suppose the light incident at x is a combination of m point source 

lights with lighting direction vectors equal to _e z,i (i = 1, 2 , . . .  ,m). In this case 
the camera response is equal to: 

m 

- -  - -  e x i n x p~,E = qz,E ~-~_ , .  (7) 

i : 1  

Of course, all the lighting vectors can be combined into a single effective direction 

vector (and this takes us back to Equation (6)): 

m 

e z = ~-'~eZ,i =~ p~,E = qz,EeZ ~z (Ta) 

i=1  
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Equation (7) conveys the intuitive idea that  the camera response to m light 

equals the sum of the responses to each individual light. Simple though (7) is, it 

suffices to model extended light sources such as fluorescent lights[Pet93]. 

Since we now understand the dependency between camera response and light- 

ing geometry, it is a scalar relationship dependent on e x.n x, it is a straightforward 

mat ter  to normalize it away: 

p$,E qz,E ez.n x qZ 
- - - = - ( 8 )  
3 ~ E ~Z.n z 3 q~,E 3 x,E 

)-~4=1Pi' ~ i=1 )"]i=1 qi 

r .q b When p$,E = (r, g, b) then the normalization returns: (.+~+b, r+g+b' r+~+-~)" 

It is useful to view the dynamics of this normalization in terms of a complete 

image. Let us place the N image rgb pixels in rows of an N x 3 image matrix 

Z. It is clear that  (8) scales the rows of 27 to sum to one. The function R 0 

row-normalizes an image matrix according to (8): 

(8a) R(Zh,  = 3 

Here, and henceforth, a double subscript i,j indexes the i j th  element of a matrix. 

Let us now consider the effect of illuminant colour on the rgbs recorded by 

a camera. Here we hold lighting geometry, the vectors i f ,  fixed. To simplify 

matters still further camera sensors are delta functions: F(A) = 5(A - Ai) 

(i = 1,2, 3). Under E(A) the camera response is equal to: 

p~,E = g-Z._n x f~ Sx(A)E(A)5()~ - )q)dA = e_X.nXSX(Ai)E(Ai) (9) 

and under E1 (A): 

p$,E1 = eZ.n z f~  Sz(~)EI( ,~) I~( ,~_  ~i)d ~ = ~Z.n~ S ~ ( ~ i ) E l  (~i) i ( l o )  

Combining (9) and (10) together we see that: 

p~,E1 _ Et(Xi) p~,E (11) 
E(Ai) 

Equation (11) informs us that,  as the colour of the light changes, the values 

recorded in each colour channel scale by a multiplicative factor (one factor per 

colour channel). If _R, _G and B denote the N values recorded in an image (for 

each of the red, green and blue colour channels) then under a change in light 

colour the captured image becomes a_R, j3_G and vB (where a,  /~ and 7 are 

scalars). It is a simple matter to remove dependence on illumination colour: 
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a N / 3  __R N/3  _R 

aEiNl-~ - E N=IRi 

/~ N/3 G N_~_G 
/3 N 

E,=I  g ' E ~=, ~/ 

= E T = B ,  

(12) 

In terms of the N x 3 image matrix Z, the normalization acts to scale each 

column to sum to N/3. This N/3 tally is far from arbitrary, but rather ensures 

that  the total sum of all pixels post- column normalization is N which is the 

same as the total image sum calculated post row normalization. Thus, in prin- 

ciple, an image can be in both row- and column-normal form (and the goal 

of comprehensive normalization, discussed in the next section, is feasible). The 

function C 0 column normalizes Z according to (12a): 

g/3 Zij (12a) 
C(Ih , j  = N 

E k : ~  z~,j 

It is prudent to remind the reader that  in order to arrive at the simple normal- 

ization presented in (12) delta function sensitivities were selected for our camera. 

While such a selection is not generally applicable, studies[FF96,FDF94b,FDF94a] 

have shown that  most camera sensors behave, or can be made to behave, like 
delta functions. 

3 The Comprehensive Normalization 

The c o m p r e h e n s i v e  n o r m a l i z a t i o n  procedure is defined below: 

1. Z0 = Z Initialization 

2. ~i+1 ---- C ( R ( f - . i ) )  Iteration s tep  

3.27i+1 = 27i Termination condition 

(13) 

The comprehensive procedure iteratively performs row and column normaliza- 

tions until the termination condition is met. In practice the process will terminate 

when a normalization step induces a change less than a criterion amount. 

Obviously this iterative procedure is useful if and only if we can show con- 

vergence and uniqueness. The procedure is said to converge, if for all images 

termination is guaranteed. If the convergent image is always the same (for any 
fixed scene) then uniqueness follows. 

As a step towards proving uniqueness it is useful to examine the effects of 

lighting geometry and illuminant colour using the tools of matrix algebra. From 

the discussion in section 2, we know that  viewing the same scene under a different 
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lighting geometry results in an image where pixels, that  is rows of Z, are scaled. 

This idea can be expressed as an N x N diagonal matrix D r premultiplying Z: 

"D"I (14) 

Similarly, a change in illuminant colour results in a scaling of individual 

colour channels; that  is, a scaling of the columns of I .  This may be written as 

I post multiplied by a 3 x 3 matr ix g)c: 

/:D c (15) 

Equations (14) and (15) taken together inform us that  the same scene viewed 

under a pair of lighting geometries and illuminant colours induces the image 

matrices: Z and D r I D  c. 

By definition, each iteration of the comprehensive normalization procedure 

scales the rows and then the columns of Z by pre- and post-multiplying with 

the appropriate diagonal matrix. The operations of successive normalizations 

can be cascaded together and so we find that  an image and its comprehensively 

normalized counterpart  are related: 

comprehensive(Z) = Dr*ZD c* (16) 

where comprehensive() is a function implementing the iterative procedure shown 

in (13) and the symbol �9 conveys the idea of a sequence of diagonal matrices. 

T h e o r e m  1. If  C1 = comprehensive(Z) and C2 = comprehensive(DrZDc) then 
C I = C 2 (proof of uniqueness). 

Proo]. Let us assume that  C i # C 2. By (16), C 1 = D[ID~ and C 2 = D~D~/:DcD~ 

for some diagonal matrices T)[, 7)3, D~ and D~. It follows that: 

C 2 = D~c iD  b (17) 

where Z) a = D~:Dr[/)~] - i  and D b = [D~]-ig)eg)~. By the assumption that  

C i # C 2, D a and D b are not equal to identity (or scaled identity) matrices. 

Clearly, for any D a a n d / 9  b satisfying (17) so do kD a and ~Z) b so, without loss 

of generality we assume that  Db, i > 1. We also assume that  Db,i > Db,2 > Db,3 

(since if this is not the case it can be made true by interchanging the columns 

of Ci). Since C 2 is comprehensively normalized we can express the components 

o f / ) a  in terms of D b and C i. In particular the ith diagonal term of D a is, and 

must be, the reciprocal of the sum of the i th  row of CiDb: 

1 
7)9. = (18) 

z,* '~b C 1 b i + Dab acffa 
i,i i,1 "{- D2,2Ci,2 

From which it follows that: 

/?b ci 
A~i. 1,1 i,1 (19) ----" b 1 b 1 b 1 

"~I,ICi,1 -t'- "D2,2Ci, 2 "t'- "~3,3Ci,3 
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Since have assumed that  Dtb,1 > Db,2 > Db,3, it follows that  

~)b p1 ~Db p l  
1,1~/,1 1,1"~i,1 (20) 

Db C 1 Db C1 Db C1 < b 1 Db C1 Db C1 1,1 i,1 H- 1,1 i,2 "~ 1,1 i,3 ~)1,1Ci,1 -1- 2,2 i,2 "4- 3,3 i,3 

which implies that  

~1 b 1 
i,1 ~)1,1Ci,1 1 C2 (21) 

c l  ~1 C1 < b 1 b 1 b 1 ~ ~i,1 < i,1 
i,1 "4- i,2 -}- i,3 D1,1~i ,  1 "4-D2,2~i, 2 Jr-~D3,3~i, 3 

Equation (21) informs us that  every element in the first column of C 1 is strictly 

less than the corresponding element in in C 2. However, this cannot be the case 

since both C1 and C2 are comprehensively normalized which implies that  the sum 

of their respected first columns must be the same (and this cannot be the case 

if the inequality in (21) holds). 

We have a contradiction and so, C 1 = C 2 and uniqueness is proven. [] 

T h e o r e m  2. The comprehensive normalization procedure always converges. 

Proo I. Our proof follows directly from S i n k h o r n ' s  thoerem[Sin64] which we 

invoke here as a Lemma. 

Lemma. Let /3 denote an arbitrary n • n all positive matrix. Sinkhorn showed 

that  the process where the rows of /3  are iteratively scaled to sum to n /3  and 

then the columns are scaled to sum to n /3  (in an analogous process to (13)) is 

guaranteed to converge 2. 

First, note that  images, under any imaging conditions, are all positive. Now, 

let mat r ix /3  be a 3N x 3N where the N x 3 image matrix I is copied N times 

in the horizontal and 3 times in the vertical direction: 

/ 3 =  Z Z .  (22) 

Z Z .  

Suppose that  D r and D c are diagonal matrices such that  the rows of Drl3 

sum to N and the columns of /3D c sum to N (note N = 3N/3).  From the block 

structure of /3 ,  it follows that  Dr..,,, = D i + k N , i + k U r  (i = 1, 2 , . . . ,  N)  (k = 2, 3). 

Similarly because columns sum to N,  7~i,i = DiC+kN,i+kN (i = 1, 2, 3) and k = 

(2 , . . . ,  N).  Setting D ~ = Dr.~,, (i = 1, 2 , . . .  , N)  and D b = Di,ic (i = 1,2, 3), we 

can write 7)r/3 and /3D c as: 

r . . . D~ 1 r Z D "  

vrz  = i v o z v o z  voz I , ~3De= IZDbZDb ZDbI (23) 
LD z D~ L z v b  zv J 

Each row in D a I  sums to ~N * N = 1 and each column in I D  b sums to 

~N * N = N/3 .  That  is each Z in/3 is normalized according to the functions R 0 

2 In fact we could choose any positive number here; n/3 will work well for our purposes. 
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and C 0 and so after sufficient iterations, Sinkhorn's iterative process converges 

to :  

comprehensive(:[) comprehensive(E) ... comprehensive(Z) ] 
Sinkhorn(B) = comprehensive(Z) comprehensive(Z) comprehensive(:[) | 

comprehensive(Z) comprehensive(E) comprehensive(E)] 
(24) 

Clearly, Sinkhorn's theorem implies the convergence of the comprehensive nor- 
malization procedure and our proof is complete. [] 

Experimentally, we found that the comprehensive normalization converges 

very rapidly: 4 or 5 iterations generally suffices. 

4 O b j e c t  R e c o g n i t i o n  E x p e r i m e n t s  

We carried out image indexing experiments for the Swain and Ballard[SB91], 

Simon Fraser[Cha95,GFF95], Berwick and Lee[BL98] image sets and a set of all 
images combined. Swain and Bailard's image set comprises 66 database and 31 

query images. All images are taken under a fixed colour light source and there 

are only small changes in lighting geometry. Because there are, effectively, no 

confounding factors in Swain's images, we expect good indexing performance 

for lighting geometry, illuminant colour and comprehensive normalizations. The 

Simon Fraser dataset comprises a small database of 13 object images and 26 

query images. Query images contain the same objects but viewed under large 

changes in lighting geometry and illuminant colour. In Lee and Berwick's image 

set there are 8 object images and 9 query images. Again queries images are 

captured under different conditions (viewing geometry and light colour change). 

The composite set comprises 87 database images and 67 queries. 

To test the efficacy of each normalization we proceed as follows. For all im- 

ages, database and query, we separately carried out lighting geometry, illuminant 

colour and comprehensive normalizations. At a second stage colour histograms, 

representing the colour distributions, of the variously normalized images are con- 
structed. This involves histogramming only the (g, b) tuples in the normalized 

images. The pi• value r is discarded because r + g + b = 1 after lighting ge- 

ometry and comprehensive normalizations, and so is a dependent variable. After 

illuminant colour normalization on average r + g + b -- 1. A 16 x 16 partion of 

(G, B) colour space (which have values between 0 and 1) define the bins for the 
colour histograms. If Hi and Q denotes the histograms for the ith database and 

query images then the similarity of the ith image to the query image is defined 
as: 

liHi -QKil (25) 

where tO.ill denotes the L1 (or city-block distance) between the colour distribu- 

tions. This distance is equal to the sum of absolute differences of corresponding 
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histogram bins. Reassuringly, if Hi = Q then IIHi -QII1 = 0; closeness corre- 

sponds to small distances. 

For each query colour distribution, we calculate the distance to all distribu- 

tions in the database.  These distances are sorted into ascending order and the 

rank of the correct answer is recorded (ideally the image ranked in first place 

should contain the same object  as the query image). Tables 1, 2 and 3 summa-  

rize indexing performance for all three normalizations operating on all four da ta  

sets. Two performance measures are shown: the % of queries tha t  were correctly 

matched (% in 1st place) and the rank of the worst case match.  

Image Set % correct worst ranking 

Swain's 96.7 2nd out of 66 
Simon Fraser 42.3 13th out of 13 
Lee and Berwick 33.33 6th out of 8 

Composite 58.2 86th out of 87 

Table  1. Indexing performance of lighting geometry normalization 

Image Set % correct worst ranking 

Swain's 87.1 5th out of 66 
Simon Fraser 80.8 6th out of 13 
Lee and Berwick 67.7 4th out of 9 

Composite 79.1 16th out of 87 

Table  2. Indexing performance of illuminant normalization 

Image Set % correct worst ranking 

Swain's 80.6 2nd out of 66 
Simon Fraser 100 1st out of 13 

Lee and Berwick 100 1st out of 9 
Composite 93.1 2nd out of 87 

Table  3. Indexing performance of comprehensive normalization 

A cursory look at the matching performance for Swaln's images appears  to 

suggest that  lighting geometry normalization works best and the comprehen- 

sive normalization worst. This is, in fact, not the case: all three normalizations 

work very well. Notice tha t  only the comprehensive normalization and light- 

ing geometry normalizations place the correct answers in the top two ranks 
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and this is an admirable level of performance given such a large database. 

For the Simon Fraser Database the comprehensive normalization procedure is 

vastly superior, 100% recognition is supported compared with 42.3% and 80.8~0 
for lighting geometry and illuminant colour normalizations. The latter normal- 

izations also perform very poorly in terms of the worst case rankings which 

are 13th and 6th respectively. This is quite unacceptable given the very small 

size (just 13 objects) of the Simon Fraser database. It is worth noting that 

no other colour distribution comparison method has come close to delivering 
100% recognition on this dataset[FCF96] (these methods include, colour-angular 

indexing[FCF96], affine-invariants of colour histograms[HS94] and Colour con- 

stant colour indexing[FF95]). The same recognition story is repeated for the 

Berwick and Lee database. Comprehensive normalization supports 100% recog- 

nition and the other normalization perform very poorly. 

Perhaps the recognition results for the composite data set are the most in- 

teresting. Over 93% (of 67) queries are correctly identified using comprehensive 

normalization and the worst case match is in second place. Such recognition 

performance is quite startling. The database is large comprising 87 objects and 

these were compiled by three different research groups. Also the means of recog- 

nition is a simple colour distribution comparison which is bound to fail when 

images, or objects, have the same mixture of colours. Indeed, most of the, 2nd 

place matches that are recorded have colour distributions which are similar to 

the overall best match. For example an image of 'Campbell's chicken soup' is 

confused with an image of 'Campbell's special chicken soup'. Both images are 

predominantly red and white (as we expect with Campbell's soup). 

In comparison the lighting geometry and illuminant colour normalizations, 

used individually, perform very poorly. The former succeeds just 58% of the time 

and the worst case ranking is an incredibly poor 86th (out of 87). Illuminant 

colour normalization performs better, a recognition rate of 79% but again the 

worst case match is unacceptable: 16th placed out of 87. 

5 C o n c l u s i o n  

The colours recorded in an image depend on both the lighting geometry and the 

colour of the illuminant. Unless these confounding factors can be discounted, 

colours cannot be meaningfully compared across images (and so object recogni- 

tion by colour distribution comparison cannot work). In this paper we developed 

a new comprehensive normalization procedure which can remove dependency 
due to lighting geometry and illuminant colour and so can facilitate cross-image 

colour comparison. 

Our approach is simplicity itself. We simply invoke normalization procedures 

which discount either lighting geometry or illuminant colour and apply them 

together and iteratively. We prove that this iterative process always converges 
to a unique comprehensively normalized image. 

The power of our comprehensive normalization procedure was illustrated 

in a set the object recognition experiments. For four image databases: Swain's 
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database,  the Simon Fraser database,  Sang Wok Lee's database,  and a composite 

set (with almost 100 objects), recognition by colour distribution comparison, 

post-comprehensive normalization was found to be near perfect. Important ly ,  

performance great ly surpassed tha t  achievable using the lighting geometry  or 

illuminant colour normalizations individually. 
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