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Abstract

RNA-Seq is an effective method to study the transcriptome, but specialized methods are required 

to identify 5’ ends of transcripts. Several published strategies exist for this specific purpose, but 

their relative merits have not been systematically analyzed. Here, we directly compare the 

performance of six such methods – testing five with cellular RNA as well as a novel spike-in RNA 

assay that helps address interpretation challenges that arise from uncertainties in annotation or 

RNA processing. Using a single human RNA sample, we constructed and sequenced 18 libraries 

with these methods and one standard, control RNA-Seq library. We find that the CAGE method 

performed best for mRNA and that most of its unannotated peaks are supported by evidence from 

other genomic methods. We then applied CAGE to eight brain-related samples and revealed 

sample-specific transcription start site (TSS) usage as well as a transcriptome-wide shift in TSS 

usage between fetal and adult brain.
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INTRODUCTION

Precise promoter annotation is central to addressing many questions in biology, including 

condition and tissue specific gene regulation, differential 5’ untranslated region usage, and 

the impact of genetic variation in non-coding regions on gene expression. In particular, as 

Genome Wide Association Studies and sequencing studies identify thousands of loci 

associated with human diseases in non-coding regions, the challenge is to relate genetic 

variants to their mechanism of action1, 2. A critical step for understanding the functional 

impact of such genetic polymorphisms is correctly identifying transcription start sites 

(TSSs). For example, a single nucleotide polymorphism in a regulatory region was shown to 

create a new TSS that interferes with normal activation of downstream alpha-like globin 

genes, thereby causing thalassemia3. Additionally, identifying multiple TSSs for a gene and 

understanding their usage in the relevant tissues can help design follow up experiments. 

Further, in many cases differential TSS usage is important for gene function and in human 

disease4, such as TP73, where transcription from one promoter leads to a protein acting as a 

tumor suppressor and the other a protein acting as an oncogene5 and NRXN1 in which 

mutations found in neurodevelopmental disorder patients have differing symptoms that may 

reflect the disruption of the alpha and beta promoters6.

While transcriptome analysis by RNA-Seq is a powerful approach for gene expression 

measurements, novel transcript discovery, and splice-isoform determination7, it is still often 

difficult to reliably identify more than one TSS per gene in a given transcript isoform. 

Empirical determination of the correct TSS in a given sample is particularly important in 

complex transcriptomes, such as human, where 54% of genes are currently annotated as 

having multiple TSSs8. Several methods have been proposed for the identification of the 5’ 

end of transcripts, including CAGE9, RAMPAGE10, 11, STRT12, NanoCAGE13, 14, Oligo 

Capping (also known as TSS-Seq)15, 16, and GRO-cap17 (also known as 5’ GRO-Seq18) 

(Fig. 1), but their relative merits have not yet been systematically compared19. Even for a 

widely accepted method such as CAGE, there are many reads aligning to 3’ rather than 5’ 

ends of transcripts20, so that further investigation could be beneficial.

Here, we compare six 5’ RNA-Seq methods using a comprehensive set of metrics. Starting 

from total RNA from one human cell line, we constructed a set of libraries for five of the 

methods, as well as a control library with standard RNA-Seq, and deeply sequenced them. 

We identify the CAGE method as performing best for mRNA and show that most of its 

unannotated TSS peaks also have corroborative evidence to support their being bona fide 

TSSs. For enhancer RNAs (eRNAs), we find GRO-cap identifies many more transcripts than 

the other methods. We then used CAGE to generate TSS data for eight brain-related 

samples, identifying many examples of differential promoter usage, and showing evidence 

for a novel, genome-wide trend of differential TSS usage, where downstream TSSs are 

preferentially used in adult brain and upstream TSSs are used in fetal brain and in vitro 

differentiated neurons. Our evaluation strategy, results, and brain TSS catalog can serve as 

resources for the community.
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RESULTS

A comparison of 5’ RNA-Seq methods

We tested five methods for preparing RNA-Seq libraries that identify the 5’ end of 

transcripts (Fig. 1). We attempted to optimize each method to facilitate efficient library 

construction and sequencing of indexed libraries on an Illumina sequencing platform 

(Online Methods). To make a comprehensive comparison, we tested each method by using 

RNA from the human cell line, K-562, to construct and sequence 18 libraries 

(Supplementary Table 1). The methods vary in their input RNA requirements, with STRT, 

which was developed as an ultra-low input method, requiring the least RNA and Oligo 

Capping requiring the most (Online Methods). We varied the RNA input by method 

specifications, but aimed to use the lowest recommended amount, recognizing that RNA 

quantity can be limiting in practice. To assess whether the lower RNA input amount for 

STRT compared to the other methods affected its performance, we constructed and 

sequenced an additional set of eight STRT libraries with input amounts ranging from 10 ng 

to 10 μg (Supplementary Table 1). In addition, we compared published data for K-562 

prepared with GRO-cap17. We constructed one control library using standard RNA-Seq with 

ribosomal RNA (rRNA) depletion by the RNase H method19, 21 to understand the value of 

using one of these more specialized RNA-Seq methods.

We first assessed performance of each method by standard RNA-Seq metrics 

(Supplementary Table 1). CAGE and NanoCAGE-XL produced fewer reads per library 

because of limited quantities of library DNA for CAGE and poor sequencing yield for 

NanoCAGE-XL. All methods showed acceptable levels of reads aligning to rRNA (<20% of 

reads) and excellent strand specificity (>99% correct strand reads) with the exception of 

GRO-cap (90% correct strand reads). GRO-cap also had a much higher fraction of reads 

aligning to introns (20%) and intergenic regions (47%) than the other 5’ end RNA-Seq 

methods.

For an initial assessment of specificity for 5’ ends, we examined coverage of reads from 5’ 

to 3’ (Fig. 2a,b). When considering only reads that aligned to exonic regions, we observed 

GRO-Cap performed best, followed by CAGE and RAMPAGE and NanoCAGE-XL 

performed worst (Fig. 2a). Analyzing reads aligning to the entire gene including introns, we 

observed that RAMPAGE and CAGE performed best followed by GRO-cap (Fig. 2b) – 

likely reflecting the high fraction of GRO-cap reads aligning to introns (Supplementary 

Table 1). This global analysis is congruent with our observations for representative highly-

expressed genes (Supplementary Fig. 1). Overall, even the best performing method, CAGE, 

has a sizeable fraction of reads (24% of reads for the average gene) mapping to regions not 

close to transcript 5’ ends (farther away than 10% of the length of the transcript) by this 

measure (Fig. 2a).

Assessment of 5’-end specificity with synthetic spike-in RNAs

We next explored why many reads were not aligned at the annotated 5’ end of transcripts 

(Fig. 2a). Such non-5’ end reads could reflect either technical limitations, incomplete 

annotation, or biological explanations like RNA re-capping22. To focus on technical 
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performance, we developed a spike-in RNA assay using ERCC transcripts23 (Online 

Methods).

The methods showed similar relative performance based on 5’ end coverage of these 

artificial transcripts (Fig. 2c and Supplementary Table 2) as with cellular RNA (Fig. 2a), 

with CAGE and RAMPAGE performing best. STRT performance did not improve with 

increased input amounts (Supplementary Table 2). The 5’ end specificity differs among the 

spike-in transcripts – indicating that there is some variability in method performance for 

different transcripts.

We also assessed how accurately these methods quantitated the relative fraction of each 

ERCC spike-in transcript. This is important for quantifying differences in TSS usage across 

samples. For each transcript, we compared the relative input amount to the fraction of reads 

aligned (Supplementary Table 3). We assessed the uniformity of read coverage using the 

mean quantitation error (Supplementary Table 4). The CAGE libraries had the lowest error 

(1.1%) and performed better than RAMPAGE (2.0%).

TSS peak calling to help assess 5’ specificity

To better compare the 5’ specificity of methods for cellular transcripts, we used 

computational peak calling to identify TSS locations. We reasoned that this would 

distinguish noisy background reads spread across the length of a gene from peaks of reads 

aligning to specific locations in that gene. Furthermore, many studies seek to identify TSS 

peaks and associate them with other genomic and biological information. To enable 

equivalent comparisons across methods, we randomly sampled 20 million aligned reads for 

each method, with two exceptions. First, NanoCAGE-XL did not have sufficient reads 

(Supplementary Table 1), so that we used all its aligned reads. Second, we did not have 

enough reads from any single CAGE library, and pooled replicate libraries for subsequent 

analysis. We called peaks from aligned reads using Paraclu24, with parameters optimized for 

best sensitivity and precision for each library (Online Methods). We also incorporated two 

additional filtering steps to ensure that our peak calling results accurately represented lab 

method performance (Supplementary Note 1, Supplementary Fig. 2-4).

CAGE performs best in TSS peak-based comparison

We evaluated each of the six methods for their ability to identify TSSs relative to known 

annotation. We used the UCSC transcriptome annotation8, which does not rely on data 

gathered with 5’ end RNA-Seq methods, and as such should not be biased towards any of 

the methods a priori. For precision, CAGE, STRT, and NanoCAGE-XL performed best (Fig. 

3a), while for sensitivity GRO-cap was the best method followed by CAGE and RAMPAGE 

(Fig. 3a). Combining both considerations, CAGE performed best followed by RAMPAGE, 

GRO-cap, STRT, NanoCAGE-XL, and Oligo Capping (Fig. 3a,b). STRT performance did 

not improve with increased input amounts (Supplementary Fig. 5). The same rankings were 

obtained when using the Gencode annotation25 (Supplementary Fig. 6). In addition, we 

analyzed published datasets in which two of these methods were tested on the same cell line 

or tissue in different laboratories. In three cases, we were able to compare CAGE and 

another method – CAGE26-28 performed best compared with RAMPAGE10, STRT29, and 
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Oligo capping15 (Supplementary Fig. 7).We also compared the performance to 5’ ends 

identified from standard RNA-Seq (Online Methods). Standard RNA-Seq had more peaks – 

leading to both more true and false positives – and a ROC curve that suggests a similar false 

positive to true positive ratio compared to NanoCAGE-XL, which identified the fewest 

peaks, but worse than all the other 5’ end methods, except Oligo capping (Fig. 3b).

For each method, we also assessed TSSs at single base resolution (Supplementary Note 2, 

Supplementary Fig. 8), reproducibility and gene expression quantification accuracy 

(Supplementary Note 3, Supplementary Figs. 9,10, Supplementary Tables 2-4).

Evidence supporting unannotated TSS peaks

Given that CAGE performed best, we explored its performance further using evidence from 

other sources. DNase-seq and H3K4me3 ChIP-Seq data can be used to further understand 

which false positives (based on prior annotation) may actually be true positives. DNase-

Seq30 identifies genomic regions with open chromatin such as promoters, and H3K4me3 is 

associated with TSS regions of active promoters31. While such corroborative data cannot 

provide a definitive conclusion about which individual peaks are true positives, it adds 

valuable information about the confidence in each peak.

Indeed, when considering both epigenetic data, Gencode annotations and the consensus 

peaks identified by the other 5’ end RNA-Seq methods, the vast majority of CAGE peaks 

have additional support (Fig. 4). First, ~55% of false positive and ~42% of intergenic peaks 

for CAGE have support from Gencode annotation and/or the consensus peaks identified by 

the other 5’ end RNA-Seq methods (Fig. 4a). (We omitted NanoCAGE-XL from this 

consensus because it detected so few peaks (Fig. 3a,b).) Next, with corroborative evidence 

from DNase-Seq or H3K4me3 ChIP-Seq28, the great majority of the remaining unannotated 

peaks have some evidence that they may be actual TSSs (Fig. 4a,b). Corroborative evidence 

for other methods was also analyzed (Supplementary Note 4, Supplementary Fig. 11)

Although TSSs are associated with promoters, they can also be found at the start of eRNAs 

and would be classified as “intergenic” in the annotation we used32, 33. For Paraclu-called 

peaks found in intergenic regions (Supplementary Fig. 11), we explored their locations 

relative to enhancer regions in the genome. Using three different approaches based on 

histone modifications and open chromatin to identify enhancer regions (Online Methods), 

we observed that GRO-cap had ~5,000 peaks in such regions compared to much fewer such 

peaks for the other methods (Supplementary Table 5). The percentage of intergenic peaks 

that were in enhancer regions showed the same trend as for peaks in annotated genes (Fig. 3) 

with most methods performing well, except for Oligo capping (Supplementary Table 5). 

Because eRNAs are expressed at lower levels than mRNAs and are expressed as divergent, 

non-overlapping transcript pairs, we took a second approach based on a previous study33 

(Online Methods) to identifying peaks in such regions. We obtained similar results in that 

GRO-cap had the most TSSs in enhancer regions (Supplementary Table 6).

When considering whether CAGE data are sufficient to identify TSSs in a given sample, it is 

worth knowing whether collecting corroborative data such as DNase-Seq or H3K4me3 

ChIP-Seq can improve the quantity or confidence of the identified TSSs. Figure 4c shows 
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how TSS prediction can be refined using such corroborative data together with CAGE data. 

More CAGE peaks would be filtered out by requiring DNase-Seq than H3K4me3 ChIP-Seq 

evidence (Fig. 4c). For standard RNA-Seq without CAGE data, the corroborative evidence is 

even more important in identifying “true positive” 5’ ends, based on annotation, with 

DNase-Seq evidence again having a bigger impact than H3K4me3 ChIP-Seq 

(Supplementary Fig. 12).

Differential TSS usage in brain-related samples

Having identified CAGE as best, we applied it to a set of eight brain-related samples to 

explore differential TSS usage. We selected cell type populations derived from post-mortem 

brain (neurons, astrocytes, endothelial, and smooth muscle), post-mortem fetal and adult 

frontal lobe samples, 26 day old in vitro neurons produced with an NGN1 and NGN2 over-

expression differentiation protocol34, and 60 day old in vitro brain organoids35. For each 

sample, we sequenced CAGE libraries, sampled 13 million aligned reads, called peaks using 

ParaClu, and applied CapFilter (Online Methods). We intentionally focused on differences in 

TSS usage rather than expression levels (Online Methods) to explore the specific 

information added by CAGE compared to standard RNA-Seq. Also, we wanted to identify 

the most significant differences in TSS usage and this can be difficult to discern for genes 

with low expression in a given sample. To identify TSS peaks differentially used between 

pairs of samples, for each gene we compared the fraction of reads in a TSS peak between 

samples. This method identified 2,312 TSS peaks in 1,015 genes that were significantly 

different (FDR < 0.05, Fisher’s exact test) between at least one pair of these eight samples 

(Supplementary Table 7). Unsupervised hierarchical clustering of the differentially used 

TSSs showed relationships among these samples, such as the in vitro models of neuron 

development being most closely related to the fetal frontal lobe sample (Fig. 5a). For 

comparison purposes, we also performed unsupervised hierarchical clustering using gene 

expression levels rather than TSS usage (Supplementary Fig. 13) and observed the resulting 

clustering of samples is similar to that in Fig. 5a.

Focusing on differences in TSS usage between fetal and adult samples, our analysis 

highlighted three brain disease-associated genes with differential TSS expression (Fig. 5b). 

For ANK3, which has been associated with bipolar disorder and schizophrenia36, the T2 

(exon 1e37) TSS was more frequently used than the T3 (exon1b37) TSS in all samples, 

except the adult frontal lobe, consistent with published findings37. For GPR56, the T4 

(e1m38) TSS, which has been shown to be the highest expressed TSS in fetal human brain 

and required for normal human embryonic cerebral cortical development38, was used more 

frequently in the fetal frontal lobe, in vitro neurons, and brain organoids, but not in the adult 

frontal lobe, in which T3 was used more often. For RTN4 (also known as NOGO), we 

observed that the T3 (P2, NOGO-C39) TSS, which was shown to be overexpressed in 

schizophrenia, was used more frequently in the adult frontal lobe, similar to published 

studies39, but not in the other samples. For all three genes, TSS usage in adult frontal lobe 

was more similar to brain organoids than in vitro neurons (Fig. 5b), as might be expected 

given the more advanced development of the organoids35.

Adiconis et al. Page 6

Nat Methods. Author manuscript; available in PMC 2018 December 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



More globally, in vitro neurons, brain organoids, and fetal frontal lobe used an upstream 

(more 5’) TSS rather than a downstream (more 3’) TSS significantly more often (Bonferroni 

adjusted P value < 0.05) than adult frontal lobe (Fig. 6a,b). For this comparison, we 

computed a scaled average peak position for all genes and datasets, which were compared 

between samples using a Paired-Wilcoxon signed-rank test (Online Methods). TSS usage 

was most significantly different between in vitro neurons and adult frontal lobe (Bonferroni 

adjusted P value = 0.0002) with significant differences also observed between fetal and adult 

frontal lobe (Bonferroni adjusted P value = 0.0013) and between brain organoids and adult 

frontal lobe (Bonferroni adjusted P value = 0.023, Fig. 6b). We observed this trend also 

using FANTOM5 CAGE data from similar samples27 (Fig. 6b). Moreover, the number of 

TSS per gene was significantly higher (Bonferroni adjusted P value = 2.1*10−32) in the adult 

fetal lobe than the in vitro neuron or organoid samples from this study as well as in the adult 

FANTOM5 brain samples compared to the fetal FANTOM5 brain samples (Fig. 6c).

DISCUSSION

We compared six methods for 5’ RNA-Seq by a comprehensive set of quality measures. 

CAGE performed best overall (Figs. 2 and 3), though other methods might be deployed 

when less RNA is available. GRO-cap should be considered for identification of eRNA TSSs 

(Supplementary Tables 5 and 6) but performed worse for mRNA TSSs due a higher rate of 

false positives (Fig. 3), particularly in genomic regions annotated as introns (Supplementary 

Table 1). While many peaks identified by GRO-cap could be “real” based on corroborative 

evidence (Supplementary Fig. 11), it is difficult to judge. Furthermore, GRO-cap is limited 

to fresh samples and relies on the TAP enzyme, which is no longer commercially available. 

The methods also vary in the associated time and cost of materials and kits (Supplementary 

Table 8). The per-sample cost is lowest for STRT and highest for Oligo capping. The amount 

of time and number of steps per library for each method is lowest for STRT and 

NanoCAGE-XL and highest for CAGE.

We aimed to test a fully representative set of the existing methods for 5’ RNA-Seq, but 

excluded some from our comparisons (Supplementary Note 5).

A key question was which methods were best for annotating TSSs in a sample without 

previous annotation. Beyond finding that CAGE performed best, we explored how DNase-

Seq and H3K4me3 ChIP-Seq could refine these assignments (Fig. 4). We found that DNase-

Seq and H3K4me3 are insufficient without CAGE to reliably identify TSSs. Moreover, 

DNase-Seq, but not H3K4me3, does provide additional specificity beyond CAGE. Of 

course, it is not possible to know with full certainty whether any given TSS identified by 

these methods is correct. For standard RNA-Seq, DNase-Seq and, to a lesser extent, 

H3K4me3, are more valuable in identifying true TSSs based on the annotation, though there 

are still more false positives with standard RNA-Seq than CAGE even with the corroborative 

data (Supplementary Fig. 12). ATAC-Seq40 could be substituted for DNase-Seq as the 

former is simpler with lower input requirements.

Finally, we addressed the question of TSS usage, which is critical for studying disease 

related genetic variation in non-coding regions, focusing on its relevance to assessing the 
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faithfulness of disease models. Human pluripotent stem cells (hPSCs) offer an excellent tool 

to model human disorders in the lab41, 42, and are particularly relevant for brain-related 

disorders for which other models are limited43, 44. We compared TSS usage in vitro neurons 

and brain organoids derived from hPSCs with post-mortem brain samples (Figs. 5 and 6) as 

it is important to understand how faithfully these models represent actual brain tissue at a 

transcriptional level. Our results provide a resource for future studies and add to the existing 

literature in this field27, 45. Brain organoids were more similar than in vitro neurons to adult 

post-mortem brain samples by our TSS usage measures (Figs. 5a and 6b) – suggesting that 

the former might be a better model by these criteria. Some of the observed differences are 

likely explained by post-mortem brain having cell types not found in these in vitro models 

and potentially changes in RNA abundance due to death-associated cellular responses to 

hypoxia and other factors46.

With the brain-related samples, we observed a genome-wide trend that relative TSS usage 

significantly varied with respect to upstream or downstream position within each gene (Fig. 

6). Because the size of this effect seems to reflect the overall relatedness of the samples (Fig. 

5a) and we identified this pattern in an unrelated CAGE dataset (Fig. 6b), we believe there 

may be a biological explanation underpinning this result though understanding its basis is 

beyond the scope of this study. To our knowledge, this phenomenon has not been observed 

previously, but studies of the 3’ ends of transcripts have shown that upstream 

polyadenylation sites are preferentially used in proliferating cells47, while the opposite has 

been reported in mammalian brain48. Also, a recent paper showed unannotated TSSs were 

detected upstream of annotated, silenced promoters that may be relevant to aberrant gene 

expression in cancer due to hypomethylation of these upstream TSSs49.

ONLINE METHODS

RNA samples.

We used the same batch of K-562 total RNA (Thermo Fisher Scientific) in experiments 

directly comparing the lab methods. For the CAGE, RAMPAGE, and STRT methods, we 

used a second batch of K-562 RNA (Thermo Fisher Scientific) for comparison to assess 

method reproducibility. Both batches were high quality RNA, with RNA Integrity Number 

(RIN) scores of 8.6 and 8.8 as measured with a BioAnalyzer (Agilent).

For the brain-related samples, we used total RNA from each of eight human samples. From 

ScienCell Research Laboratories, we used brain vascular smooth muscle cell RNA (#1105), 

brain microvascular endothelial cell RNA (#1005), neuron early passage monolayer culture 

from fetal brain RNA (#1525), and astrocytes cultured for 6 days from a fetal donor RNA 

(#1805). From Biochain, we used fetal frontal lobe RNA (#R1244051-50) and adult frontal 

lobe RNA (#R1234051-50).

We differentiated HUES66 embryonic stem cells, which was created by the Harvard Stem 

Cell Institute, into neurons by overexpressing NGN1 and NGN234, harvested the cells after 

26 days, and isolated total RNA using the Quick-RNA MiniPrep kit (Zymo Research).
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We prepared four brain organoids from a single batch at day 60 of differentiation from H9 

embryonic stem cells as previously described50. We isolated total RNA using 1 ml Trizol 

(Thermo Fisher Scientific) according to the manufacturer’s instructions and isopropanol 

precipitated with 1 μl GlycoBlue Coprecipitant (Thermo Fisher Scientific). We removed the 

GlycoBlue, which inhibited the CAGE process, by mixing with 30 μmol LiCl (Sigma) in a 

total 12 μl and incubating at −20°C for 20 minutes following by centrifugation at 4°C at 

maximum speed (17,000 × g). We removed the supernatant, rinsed the pellet with 70% 

ethanol, and re-suspended the pellet in 8.22 μl H2O. We repeated this process one more time 

until there was no visible GlycoBlue. RIN scores for these 8 samples were 6.8 to 9.7 as 

measured by BioAnalyzer.

All biospecimens were collected with informed consent. The generation of hES cells used in 

this study was approved by the institutional review boards (IRBs) of the providing 

institutions. Use of all de-identified biospecimens for sequencing at the Broad Institute was 

further approved reviewed by the Broad’s Office of Research Subject Protection (ORSP), 

which determined that the research did not involve human subjects according to U.S. federal 

regulations (45CFR46.102f). This study complied with all relevant ethical regulations.

RNA spike-in controls.

We obtained 32 individual ERCC spike-in controls23 (gift from Jennifer McDaniel and Marc 

Salit, NIST). We added a m7G cap structure to the 5’ end of RNA molecules using the 

Vaccinia Capping System (New England BioLabs) following the manufacturer’s protocol. 

We made a pooled capped ERCC spike-in mix with an average concentration of 36 pg/μl for 

each transcript. In addition, we prepared a second pooled, capped ERCC spike-in mix with 

only eight of the transcripts with an average concentration of 138 pg/μl for each transcript. 

We also made a third pooled original (uncapped) ERCC spike-in mix for all 32 transcripts 

with average concentration of 60 pg/μl for each transcript.

CAGE libraries.

For K-562 samples, we prepared libraries following a published protocol9 using 10 μg total 

RNA for three replicates (“Main-1, 4, and 6”) from the same batch of RNA. In a second 

experiment, we prepared a library with a single replicate (“Repeat”) from 5 μg of a different 

batch of K-562 RNA. For the brain-related samples, we prepared CAGE libraries from eight 

total RNAs from sources described above, using between 5 to 10 μg each based on 

availability.

For the Main-1, Main-4, and brain-related samples, we added pooled capped ERCC spike-in 

RNA to each sample in a ratio of 0.128 μl per μg sample input. For the Main-6 sample, we 

added 1.28 μl pooled, uncapped ERCC spike-in RNA. For the other replicate (Repeat), we 

added 1.0 μl pooled capped ERCC spike-in mix containing only eight transcripts.

RAMPAGE libraries.

We prepared the libraries following the published protocol11 using 5 μg K-562 total RNA 

plus 0.64 μl pooled capped ERCC spike-in RNA with the following modifications. (1) We 

used a universal template switching oligo 5’-
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TAGTCGAACTGAAGGTCTCCAGCArGrGrG-3’ instead of the barcoded ones. (2) We 

used a random 15mer oligo with modified tag sequence for RT to allow index read later on 

in sequencing 5′-TAGTCGAACGAAGGTCTCCCGTGTGCTCTTCCGATCT(N)15. (3) In 

the final PCR, we used an 8-base barcoded reverse primer to add index for each individual 

library, 5′-CAAGCAGAAGACGGCATACGAGATxrefXXGTGACTGGAGT-3’. (4) We 

used a different custom sequencing primer (Supplementary Table 9). We also made a 

replicate with a different batch of K-562 RNA with 1.0 μl pooled capped ERCC spike-in 

mix containing only eight transcripts.

STRT libraries.

We synthesized cDNA from 10 ng K-562 total RNA plus 0.64 μl 1/500× dilution of pooled 

original, uncapped ERCC spike-in RNA following a published protocol12, combined with 

reverse transcription-PCR conditions based on SMART-Seq251 and the following 

modifications. (1) We used a 5’ biotin blocked dT oligo that contains a SalI restriction site 

(shown as underlined), 5′-/5Biosg/CTACACGACGCTCTTCCGATCTGTCGACT(30)VN–

3’. (2) We used a 5’ template switching oligo (TSO) containing an Illumina adaptor 

sequence, 5′-CUACACGACGCUCUUCCGAUCUNNNNNGGG – noting all bases are 

RNA. We made this switch because this oligo is compatible with HiSeq2500, MiSeq, and 

NextSeq sequencers (lllumina), while the original one12 requires a custom sequencing 

primer with an annealing temperature that is only suitable for the HiSeq2000. (3) We used a 

PCR primer with sequence compatible to dT oligo and 5’ TSO, 5′-

CTACACGACGCTCTTCCGATCT-3′, for cDNA amplification. We then eliminated the 

polyA/T end of the double stranded cDNA by mixing with 1x CutSmart buffer, 10 units of 

SalI (New England BioLabs) and heating at 37⁰C for 60 minutes. We purified this product 

by using 0.7x volume AMPureXP SPRI beads (Beckman Coulter Genomics) following 

vendor protocol. We made the sequencing library with a modified NexteraXT (Illumina) 

protocol52 with the following modifications in addition. (1) We used 0.125 ng cDNA in ½ 

volume of a standard NexteraXT reaction. (2) We used the modified Nextera Index 1 primer, 

5′-CAAGCAGAAGACGGCATACGAGATxrefXXGTCTCGTGGGCTCGGAGA*T*G-3′ 
with phosphorothioate bonds (denoted by *) and inverted end bases for protection; the 8 “X” 

bases indicate in-line index sequences that enable pooling samples. In the same experiment, 

we also prepared a library with the same quantities of capped ERCC spike-in RNA and 

K-562 RNA. We also made a replicate with a different batch of K-562 RNA.

In addition, we constructed STRT libraries using a similar protocol as above with 10 ng, 100 

ng, 1 μg, 5 μg and 10 μg K-562 total RNA from the same batch as above together with the 

same proportion of uncapped ERCC spike-in RNA. We made the following modifications to 

accommodate the higher inputs. (1) For the 5 μg and 10 μg inputs, we used 4 times as much 

the volume for the RT reaction. (2) We used 10 μl each of the 10 times diluted first strand 

cDNA from the 1 μg RNA input, 12.5 times diluted ones from the 5 and 10 μg RNA inputs, 

into the 50 μl of cDNA PCR amplification reaction. (3) We used a 50 μl reaction volume that 

contained 40 units of SalI to remove the polyA/T end of the double-stranded cDNAs 

generated in all the higher input RNA libraries.
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Oligo Capping libraries.

We prepared the library following published protocols16, 53, using 40 μg K-562 total RNA 

plus 5.12 μl pooled capped ERCC spike-in RNA with the following modifications. (1) We 

used 0.5 μl glycogen (Roche) as the carrier instead of ethachinmate in the ethanol 

precipitation step. (2) We used KAPA HotStart Ready Mix (KAPA Biosystems) instead of 

GeneAmp PCR kits (PerkinElmer) for PCR amplification. (3) We selected 250 to 600 bp 

instead of 150 to 250 bp PCR products for sequencing.

NanoCAGE-XL libraries.

We prepared a library using 7.5 μg K-562 total RNA plus 0.96 μl pooled capped ERCC 

spike-in RNA following the published protocol14 with the following modifications. (1) We 

used a TSO containing 6-base barcode (marked as xref) followed by 6-base spacer, 5′-

TAGTCGAACTGAAGGTCTCCAGCAxrefGCTATArGrGrG. (2) We used a modified 

custom sequencing primer (Supplementary Table 9).

Standard RNA-Seq library.

We prepared a library using 1 μg K-562 total RNA plus 2 μl of 1:100 diluted ERCC spike-in 

mix 1 (Ambion) using the TruSeq RNA-Seq kit (Illumina) with the following modifications. 

(1) The rRNA was depleted using the RNase H method19 instead of using oligo (dT) 

selection. (2) We eluted the rRNA depleted RNA from the SPRI beads using EPF buffer 

from the TruSeq kit and heated at 70°C for 10 minutes. (3) We used a different set of 

barcoding indices rather than those in the TruSeq kit for the ligation and final PCR steps.

Sequencing

Libraries were sequenced with either HiSeq2500, MiSeq, or NextSeq machines (Illumina), 

as detailed in Supplementary Table 9. We used paired-end sequencing for some 5’ end 

libraries to aid with understanding method performance, but this is not generally required 

with the possible exception of RAMPAGE. The NanoCAGE-XL library was sequenced with 

a second unrelated library and spiking in 30% PhiX library and loading at a reduced 

concentration (7 pM) to overcome monotemplate issues with libraries prepared with this 

method.

Additional 5’ RNA-Seq datasets

For datasets previously generated by other groups, we downloaded the relevant fastq files 

(Supplementary Table 10) and used them in our method comparisons. For the STRT data29, 

we picked 100 random mouse hippocampus cells from the single cell dataset and combined 

them together into one fastq file before processing.

Read processing and alignment

For 5’ end RNA-Seq, we processed reads by trimming an appropriate number of bases 

depending on the lab method used (Supplementary Table 1). We aligned reads to either the 

human genome (Gencode v19) or mouse genome (mm10) with STAR54 (version 2.4.2a) 

using two-pass mode, and the softclip option to trim reads and otherwise default parameters. 

We only used read 1, which was derived from the 5’ end of the transcript, for these analyses, 
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except when we tested the use of read 2 with the RAMPAGE peak calling pipeline (see 

below). We generated basic alignment and performance metrics, using 

CollectAlignmentSummaryMetrics and CollectRnaSeqMetrics in Picard Tools (https://

github.com/broadinstitute/picard). We analyzed the reads for both these metrics and peak 

calling analyses, but used BAM files generated by STAR with the hardclip option for the 

former because Picard did not recognize bases as trimmed with the softclip option.

For 5’ vs 3’ end coverage, we sampled 20 million reads from each bam file, except 

NanoCAGE-XL, for which we used all reads. We performed two types of analyses – one 

using the entire gene including intronic regions and the other using only the exonic regions. 

In both cases, we used only the position of the most 5’ end of the read (“read start”). For the 

analysis of the entire gene, we only used genes greater than 500 bp in length and with 

Transcripts Per Million (TPM) > 1 as estimated with RSEM. We divided each gene into 100 

equal sized bins, and totaled the percent of read starts on the same strand as the gene in each 

bin on a per gene basis using bedtools55 intersect and post-processing in R. We averaged 

these percentages over all genes, and plotted the results with ggplot56. For analysis using 

only the exonic regions, we used a similar approach, except for genes with more than one 

transcript, we selected the one with the highest TPM for each gene and limited our analysis 

to transcripts with greater than 500 bp in length and TPM > 1.

For ERCC spike-in analysis, we used the same trimmed reads, except as noted in 

Supplementary Table 1. We aligned to a version of all 92 of the ERCC spike-in RNA 

sequences that includes all sequences at the 5’ ends (Supplementary Table 11) using BWA57 

and a custom Picard module to parse the aligned BAM file to calculate the coverage at each 

base of the ERCC spike-in reference sequences.

For standard RNA-Seq data, we aligned untrimmed reads with Tophat58 (version v1.4.1) 

using default parameters except mate-inner-dist set to 300 and mate-std-diff set to 500, 

followed by Cufflinks59 (v2.2.1) using the default settings.

Peak calling

To identify TSSs, we used the Paraclu24 peak caller, applied to randomly sampled reads as 

follows. To compare between methods, we randomly sampled 20 million reads from aligned 

K-562-derived BAM files using a custom shell script, with the exception of NanoCAGE-XL, 

for which we used all 6,407,741 reads. For other parts of the analysis (reproducibility, 

MCF-7, mouse hippocampus, human brain-related data, FANTOM5 data) we sampled to 

different numbers of reads, as detailed below. We sampled only reads from each BAM file 

that passed platform / vendor quality checks and were flagged as being a primary alignment. 

For 5’ end methods, 20 million reads are only from read 1, but for standard RNA-Seq, they 

are from both reads 1 and 2.

Post-processing of ParaClu peaks

We annotated peaks called by ParaClu with several scores to indicate the confidence for 

increased read density in that region, which were used to remove low-confidence peaks. The 

ParaClu caller adopts a hierarchical approach to peak calling and calls peaks within peaks24. 

For the purpose of assessing TSS discovery accuracy, we were less concerned with internal 

Adiconis et al. Page 12

Nat Methods. Author manuscript; available in PMC 2018 December 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/broadinstitute/picard
https://github.com/broadinstitute/picard


peak structure, and therefore merged all overlapping peak regions using the bedtools55 

‘merge’ function. We set the scores for the aggregate peak to the maximum ParaClu score 

over the set of peaks to be merged. All peak regions wider than 300bp or narrower than 3bp 

were removed.

To indicate the confidence level for a given peak, ParaClu provides three metrics, D – the 

‘density rise’, a measure of the fold change between maximum and minimum read density, 

and an indicator of signal strength., P – the minimum number of positions within the peak 

covered by reads, and S– the total number of reads mapping to the region within the peak. 

Low-confidence peaks could then be removed by setting threshold values Dmin, Pmin and 

Smin for these three values, respectively, and removing peaks that do not pass all three 

cutoffs. To identify optimal values for these parameters, we tested all combinations of 

(integer) values for Dmin in [0,10], Pmin in [0,20], and Smin in [0,180], and assessed peak-

calling performance using the F1 score (see below). To ensure that each 5’ RNA-Seq method 

was analyzed optimally, we repeated this procedure to identify the best parameters for each 

method, and at the different read depths required for all the comparisons in this study: 20 

million for 5’ end RNA-Seq lab method comparisons, 7 million for CAGE reproducibility, 5 

million for RAMPAGE and STRT reproducibility, and 13 million for brain-related samples, 

MCF-7, and mouse hippocampus samples. The final filtering parameters used for each 

dataset are found in Supplementary Table 12.

We assessed the reproducibility of TSS discovery by using bedtools55 ‘intersect’ to compute 

the pairwise overlap between ParaClu peaks called using BAM files generated from four 

CAGE replicates. We also compared overlaps for pairs of replicates for RAMPAGE and 

STRT.

Peak calling from standard RNA-Seq data

To identify TSS using full-length RNA-seq reads, we merged aligned reads from two 

replicates using samtools60 and sampled 20 million reads as described above. With 

expressed transcripts identified using Cufflinks59, we annotated the region within 100 bp of 

the 5’ end of each identified transcript as a TSS peak.

Tag cluster identification

To identify TSSs in enhancer regions and understand narrow vs broad peaks, we used an 

alternative peak calling method27 that aims to find tag clusters (TCs). For each read, we 

defined the starting location of that read as the start of a TSS and then merged all such TSS 

starts within 20 bp on the same strand to get TCs. We discarded TCs with less than 3 reads 

supporting them or longer than 300 bp. We used CapFilter (see ‘additional filtering steps’ 

below) for methods that add an extra G (CAGE, RAMPAGE, NanoCAGE-XL and STRT). 

We defined broad peaks as TC’s > 10 bp in width and narrow peaks as those ≤ 10bp.

Peak calling for enhancers

To identify putative eRNAs in K-562 datasets, we adapted a previously published 

approach33. In particular, we took all intergenic TCs and discarded TCs that overlapped 

another TC on the opposite strand. We paired reverse and forward stranded TCs, where the 
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reverse stranded TC occurred within < 400 bp of the forward stranded TC, and merged 

overlapping pairs together avoiding overlap between the reverse and forward stranded TC in 

each pair. We then filtered out all merged pairs where either the reverse or forward TC had 

much higher coverage than the other. More specifically, we only kept merged pairs with:

−.8 <
Number Reads Reverse TC−Number Reads Forward TC

Number Reads Reverse TC+Number Reads Forward TC
< .8

We used the middle point of each of these merged pairs as the center of the putative 

enhancer, and extended by 200 bp on either side to generate the putative enhancer. We 

compared these putative enhancers to public H3K27ac ChIP-Seq (peaks downloaded from: 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHistone/

wgEncodeBroadHistoneK562H3k27acStdPk.broadPeak.gz), DNase-seq (see Corroborative 

data), and enhancer region datasets (ENCFF687ZGE) from ENCODE28 and the DENdb 

database61 (http://www.cbrc.kaust.edu.sa/dendb/) using the bedtools55 intersect function 

with default parameters. Similarly, we compared the intergenic peaks identified with 

ParaClu to each of the above datasets using the same approach to test if the peaks overlapped 

with eRNA.

Identification of TSS initiator sequences

For identifying the dinucleotide sequences at the start of TSSs (“−1” and “+1”, where +1 is 

the position of the first transcribed base in a transcript and −1 is the position directly before 

it in the genome), we used a modification of previously published approaches62, 63. In 

particular, we took all TCs within 100 bp of an annotated gene and with at least 10 reads 

mapping to them, and located the position in each TC with the largest number of reads 

starting there. We used this location as the putative start site (the +1 location) for the TC. 

Note that for methods that add an extra G (CAGE, RAMPAGE, NanoCAGE-XL and STRT), 

we shifted the putative start site over by one base pair in the 3’ direction. We used bedtools55 

to extract the +1 and −1 base for each putative TSS from the human genome and created 

logos using the ggseqlogo package in R64.

Additional filtering steps

We evaluated three specialized filtering programs: CapFilter14, strand invasion65, and the 

RAMPAGE10 second read filter (downloaded from http://megraw.cgrb.oregonstate.edu/

software/CapFilter, https://academic.oup.com/nar/article/41/3/e44/2902349/Suppression-of-

artifacts-and-barcode-bias-in-high#supplementary-data, http://labshare.cshl.edu/shares/

gingeraslab/www-data/dobin/ENCODEpipelines/ENCODE_longRNApipeline_GIT/DAC/

rampagePeakCaller.py). For CapFilter and strand invasion, we slightly modified the code to 

allow applications beyond NanoCAGE-XL – the lab method for which they were originally 

developed. We applied CapFilter to CAGE, RAMPAGE, NanoCAGE-XL, and STRT. In 

each case, we began by calling peaks as above and then applied CapFilter to the resulting 

peaks. This led to a smaller set of final peaks. We tested CapFilter with various settings of 

the thresholding parameter (which corresponds to the percentage of G’s in the first position), 

and found that a threshold of 20% seemed to be optimal for all experimental methods 

(Supplementary Fig. 2).
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We applied the strand invasion filter65 to the NanoCAGE-XL and STRT data. This filter 

removes potentially artefactual reads that are the result of strand invasion, where the PCR 

primer primes at sequences in the cDNA similar to the template-switching oligonucleotide 

(TSO) rather than in the TSO. By checking for matches between the TSO and the sequence 

upstream of read 1, such events can be identified and filtered out. Using all the NanoCAGE-

XL aligned reads and 20 million sampled STRT aligned reads from the BAM files, we 

applied the strand invasion filter, varying the maximum allowed edit distance between the 

TSO and the upstream sequence, before calling peaks with ParaClu. We tested varying this 

parameter between 0 and 7, both with and without CapFilter. We found that this filter did not 

improve on CapFilter when used in combination with CapFilter (Supplementary Fig. 3a) and 

did not include strand invasion in our main analysis.

We compared the RAMPAGE peak caller10 with and without second read filtering to the 

Paraclu results. Because the RAMPAGE filter did not improve performance CapFilter 

(Supplementary Fig. 3b), we did not include it in our main analysis.

Accuracy assessment

In order to estimate the accuracy of each method, we looked at the number of peaks that 

overlapped known TSSs based on the UCSC annotation (see Corroborative data). True 

positive (TP) peaks were defined as those that overlapped at least one annotated TSS, and 

false positive (FP) peaks as those that did not overlap any TSSs. Intergenic peaks did not 

overlap any genes according to the UCSC annotation. False negative (FN) peaks were 

defined as all annotated TSSs, which were (1) within any gene expressed with TPM >1 

(quantified using RSEM66 (v.1.2.7) from 5’ RNA-Seq data), (2) overlapped by at least one 

DNase-Seq peak (see Corroborative data), and (3) did not overlap any of the peaks called by 

ParaClu. We calculated the ROC curve for each method based on the peak scores output by 

Paraclu. We calculated sensitivity, precision, and F1 score according to these formulas.

Precision =
TP

TP + FP

Sensitivity =
TP

TP + FN

F1 = 2
Sensitivity∗Precision

Sensitivity+Precision

In all cases, a 100bp tolerance was considered an overlap, implemented using bedtools 

‘window’.

For mouse-derived data, we modified the expression estimation pipeline, so that instead of 

using RSEM with its standard settings to quantify expression when defining false negatives, 

we first mapped the reads to the mm10 UCSC transcriptome using STAR and then applied 

RSEM to the resulting bam file. In order to produce a bam file that RSEM could use, STAR 

Adiconis et al. Page 15

Nat Methods. Author manuscript; available in PMC 2018 December 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



was run with the options: --quantMode TranscriptomeSAM, --alignIntronMax 1, --

alignIntronMin 2, --scoreDelOpen −10000, and --scoreInsOpen −10000.

Corroborative data

H3K4me3 peaks were originally generated from ChIP-Seq as part of the ENCODE 

Consortium28. We downloaded peaks from: http://hgdownload.cse.ucsc.edu/goldenPath/

hg19/encodeDCC/wgEncodeBroadHistone/

wgEncodeBroadHistoneK562H3k4me3StdPk.broadPeak.gz.

The associated GEO Accession number is GSM733680. We obtained bam files for K-562 

DNase-1 hypersensitivity peaks (DNase-seq) from the SRA database (SRR231254 and 

SRR231189), called peaks with Macs267 with the --nomodel option and default settings, and 

selected only peaks found in both replicates, by computing the intersection of the two 

replicates using bedtools55 ‘intersect’. For the other DNase-seq datasets, we downloaded bed 

files containing peaks from the ENCODE portal68 (ENCFF408UYX for MCF-7; 

ENCFF630GRU for mouse brain).

TSS annotations

Annotated transcription start sites (TSS) were downloaded from the UCSC table browser, 

accessible at: https://genome.ucsc.edu/cgi-bin/hgTables and Gencode25 annotated transcripts 

were downloaded from ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_19/

gencode.v19.annotation.gtf.gz and converted to a bed file containing TSS only by extracting 

the 5’ end of all transcripts in the .gtf file using a custom shell script.

Coverage of peaks in brain-related samples

We sampled 13 million aligned reads from each brain-related dataset and called peaks with 

Paraclu and applied CapFilter as above. We combined the resulting peaks from all the 

samples into one file and merged with bedtools55. This ensures that slight differences in 

peak calls between samples (due to inherent randomness in the data) do not affect 

downstream analysis. We removed all peaks that did not overlap at least one annotated TSS 

within a tolerance of 100 bp. We used the bedtools coverage command to find the number of 

reads covering each peak – resulting in a matrix with one column for each sample and one 

row for each (merged) peak. We also used bedtools to annotate each peak to include the 

name of the gene in which it was located.

Coverage of peaks in FANTOM5 data

We downloaded FANTOM527 BAM files from fantom.gsc.riken.jp/5. In total we 

downloaded 12 samples: iPS day 18 of differentiation to neurons69, adult frontal cortex, 

adult and fetal occipital cortex, adult and fetal parietal cortex, and adult and fetal temporal 

cortex (Supplementary Table 10).

We processed the iPS and adult frontal cortex data through the same pipeline as our brain-

related data, to generate a matrix with one column for each sample and one row for each 

(merged) peak. We used a similar pipeline for the remaining six samples, except instead of 

sampling 20 million reads, we sampled 6 million reads for the parietal cortex sample and 10 
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million reads for the remaining four samples because there were fewer reads for these 

samples. In addition, we were unable to apply CapFilter to the FANTOM5 reads because 

they were already trimmed.

Differential TSS usage

To control for differences in overall gene expression, we computed the relative usage for 

each TSS i in gene j as R
i j

= 100
r
i j

∑i = 1

k
j

r
i j

, where rij is the number of reads within TSS peak 

i in gene j and kj is the number of TSSs in gene j. To identify differential usage, we 

considered all gene/ sample pairs with > 100 reads, and compared the relative usage 

(rounded to the nearest integer) for the set of TSSs in a given gene between each pair of 

samples using Fisher’s exact test implemented using the R function fisher.test in the stats 

package with default parameters, including alternative=“two.sided.” More specifically, the 

test was performed on the 2 by kj table with one row per sample and one column per TSS, 

where the table entries are taken to be the corresponding Rij values (we use Rij values 

instead of raw counts to help correct for number of reads per gene, resulting in a more 

conservative test statistic). We then took the minimum P value across all comparisons, 

Bonferroni corrected for the multiple comparisons per gene, was reported as the P value for 

differential usage across the samples within a gene. Note that we only compared genes with 

at least 100 reads mapped to them in the samples of interest. We corrected Fisher P values 

for multiple hypothesis testing using the Benjamini-Hochberg FDR correction, implemented 

using the R function p.adjust.

Testing upstream vs. downstream bias in TSS usage

To test if there was an upstream vs. downstream bias in TSS usage between different brain 

samples, we used the peak by sample matrix generated above. For each gene and each 

sample, we calculated an average normalized peak score. More formally, for a given gene, if 

that gene had k peaks 1, 2, …, k (ordered from most to least upstream), and had nij reads 

covering the j-th peak in the i-th gene, the score for that gene was equal to:

score
i

=
1
k

∑
j = 1

k

j ∗ n
i j

The larger this score, the more that downstream peaks are used.

We used a Wilcoxon signed-rank test (one-sided) to compare the average normalized peak 

scores for genes between samples. We correct for multiple testing with Bonferroni 

correction (a total of 20 tests were made—12 from our brain-related data, 8 from the 

FANTOM5 data).

Expression analysis

To compare estimated gene expression values between samples (Supplementary Fig. 10), we 

extracted TPM values from the RSEM results for each 5’ method, as well as from standard 
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RNA-Seq. We log normalized these data before calculating the Pearson correlation 

coefficient, r.

The coloring in each comparison is based on a normalized density. For each pair of samples, 

this was calculated by removing all genes with TPM = 0 in either sample, and using a 2-D 

Gaussian kernel-based density estimate, using the kde2d function in the R MASS package70. 

The density values were normalized to be between 0 and 1, to allow for a shared scale—this 

enables us to see the relative density around each gene.

Statistics

To compare TSS usage for a given gene between different conditions, we used a Fisher’s 

exact test (see ‘Differential TSS usage’ for more details). For this test n = 2 (one sample for 

each condition). In order to test for difference in number of TSS used and 5’ biases between 

conditions we used a one-sided Wilcoxon signed-rank test (see ‘Testing upstream vs. 

downstream bias in TSS usage’ for more details), with 95% confidence intervals estimated 

using a Gaussian approximation. Again, this test uses n = 2 (one sample for each condition). 

Multiple hypothesis testing was performed for all statistical tests using either Bonferroni or 

Benjamini-Hochberg FDR correction. All other statistics included in the paper are 

descriptive in nature.

Life Sciences Reporting Summary

Further information on experimental design is available in the Life Sciences Reporting 

Summary.

Code availability

Custom computer code used to generate results that are reported in this study and central to 

its main claims is freely available at https://github.com/seanken/FivePrime.

Data availability

Sequence data for K-562 libraries are available at Gene Expression Omnibus GSE103486.

Sequence data for human brain-related samples are available at dbGaP under accession code 

phs001463.v1.p1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Methods for 5’ end RNA-Seq.

Salient details for five protocols tested in this paper. Additional properties of these protocols 

can be found in Supplementary Table 8.
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Figure 2. Read performance metrics for 5’ end methods.

(a,b) Normalized coverage by position for endogenous transcripts. For each library, shown is 

the average relative coverage (y-axis) at each relative position along the transcripts’ (a) or 

genes’ (b) length (x-axis). Intronic regions are included in (b), but not in (a). Inset in (b) 

shows 5% closest to the 5’ end of genes. (c) 5’ end coverage for spike-ins. For each library, a 

violin plot shows the % of reads with alignment including position 10 from the 5’ end of 

each of the 32 spike-in transcripts (y-axis). Median is shown as a black line. For libraries 

with replicates, data are shown for the “Main” library (Main-1 for CAGE; Online Methods). 

STRT data presented are for un-capped spike-in RNA, which performed better than capped 

spike-in RNA. Sample size for each method: n = 1 library per method.
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Figure 3. TSS peak performance metrics.

(a) Sensitivity, precision, and F1 score (the harmonic mean for sensitivity and precision) – 

shown for each 5’ end method based on the UCSC annotation (b) ROC curves for each lab 

method and standard RNA-Seq with inset showing highest confidence region. Sample size 

for each method: n = 1 library per method, except CAGE is a combination of 3 libraries.
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Figure 4. TSS discovery for unannotated CAGE peaks.

(a,b) Corroborative data for TSS peaks from CAGE. Shown is the proportion (a) and 

number (b) of peaks (y axis) with support from each corroborative data source (color 

legend) for peaks initially defined as ‘true positive’, ‘false positive’ and ‘intergenic’ based 

on the UCSC annotation. (a) Peaks were assigned to only one category of support based on 

their corroboration by Gencode annotation, consensus of four best 5’ end methods, DNase-

Seq, or H3K4me3 ChIP-Seq data in this order (e.g., a peak corroborated by Gencode is not 

listed in the other categories even if it has additional support.) (b) Peaks were assigned to as 

many corroborative categories as evidence supported. (c) TSS prediction with CAGE, 

DNase-Seq and H3K4me3 ChIP-Seq data. Numbers of peaks shown here in overlapping 

categories correspond to CAGE peaks for all overlaps involving CAGE peaks and DNase-

Seq peaks in the overlap with only H3K4me3 ChIP-Seq peaks. For each subset of CAGE 

peaks, we also show the % true positives (TPs) out of all the CAGE peaks in that category. 

Areas not to scale.
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Figure 5. Differential TSS usage in brain-related samples.

(a) Most variable TSSs across brain-related samples. Shown are the top 100 most 

significantly differentially used TSSs across the samples (p < 0.001, Fisher’s exact test) 

ordered by their variance. Sample size for each method: n = 1 library per sample. (b) 

Specific examples of differential TSS usage. For each gene, shown are the alternative 

transcripts and TSSs (Ti, bottom) and the scaled values of TSS usage (reads in a peak / all 

reads in peaks for a given sample) in each sample for each of the alternative TSSs.
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Figure 6. Adult brain samples preferentially use more downstream TSSs.

(a) Adult frontal lobe used downstream TSSs more often than fetal frontal lobe, brain 

organoids, and in vitro neurons. Numbering of TSS position within a gene starts from the 5’ 

end. Box and whisker plot shows the relative TSS usage (y-axis) for all TSS, black bar 

indicates median value, box edges correspond to the 25th and 75th percentiles, while 

whiskers indicate a further 1.5*IQR where IQR is the interquartile range. Outliers outside 

this range are shown as dots. (b) Comparisons of sample pairs showing “younger” samples 

have more frequent upstream TSS usage in both this study and FANTOM 5. The x-axis is a 
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scaled, normalized difference of the average peak position in each dataset for all genes 

(Online Methods), with error bars representing 95% confidence intervals. (c) Comparisons 

of sample pairs showing “younger” samples use, on average, fewer TSS per gene in both this 

study and FANTOM 5. The x-axis is the average difference of the number of peaks active 

(defined as overlapping at least one read) in each dataset for all genes (Online Methods), 

with error bars representing 95% confidence intervals. For (b) and (c), the P values were 

calculated using a Wilcoxon signed-rank test (Online Methods) and an asterisk indicates a 

Bonferroni-corrected P value less than 0.05. The P values can be found in the source data 

spreadsheet file for this figure. For all panels, sample size for each method: n = 1 library per 

sample, except iPS FANTOM5 combines data for 2 replicate libraries.
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