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Abstract

Strand-specific, massively-parallel cDNA sequencing (RNA-Seq) is a powerful tool for novel 

transcript discovery, genome annotation, and expression profiling. Despite multiple published 

methods for strand-specific RNA-Seq, no consensus exists as to how to choose between them. 

Here, we developed a comprehensive computational pipeline to compare library quality metrics 

from any RNA-Seq method. Using the well-annotated Saccharomyces cerevisiae transcriptome as 

a benchmark, we compared seven library construction protocols, including both published and our 

own novel methods. We found marked differences in strand-specificity, library complexity, 

evenness and continuity of coverage, agreement with known annotations, and accuracy for 

expression profiling. Weighing each method’s performance and ease, we identify the dUTP 

second strand marking and the Illumina RNA ligation methods as the leading protocols, with the 

former benefitting from the current availability of paired-end sequencing. Our analysis provides a 
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comprehensive benchmark, and our computational pipeline is applicable for assessment of future 

protocols in other organisms.

INTRODUCTION

Recent advances in massively-parallel cDNA sequencing (RNA-Seq) have opened the way 

for comprehensive analysis of any transcriptome1. In principle, RNA-Seq allows us to study 

all expressed transcripts, with three key goals: first, annotating the structures of all 

transcribed genes including their 5’ and 3’ ends and all splice junctions2–4; second, 

quantifying the level of expression of each transcript5,6; and third, measuring the level of 

alternative splicing7–11.

Standard libraries for RNA-Seq do not preserve information about which strand was 

originally transcribed. Synthesis of randomly primed double-stranded cDNA followed by 

addition of adaptors for next-generation sequencing leads to the loss of information about 

which strand was present in the original mRNA template. In some cases, strand information 

can be inferred by subsequent computational analyses, using, for example, open reading 

frame (ORF) information in protein coding genes, biases in coverage between 5’ and 3’ 

ends4, or splice site orientation in eukaryotic genomes4,10,11.

Nevertheless, direct information on the originating strand can substantially enhance the 

value of an RNA-Seq experiment. For example, such information would help to accurately 

identify antisense transcripts, with potential regulatory roles12, determine the transcribed 

strand of other non-coding RNAs, demarcate the exact boundaries of adjacent genes 

transcribed on opposite strands, and resolve the correct expression levels of coding or non-

coding overlapping transcripts. These tasks are particularly challenging in small microbial 

genomes, prokaryotic and eukaryotic, where genes are densely coded, with overlapping 

UTRs (untranslated regions) or ORFs, and where splice site information is limited or non-

existent.

A host of methods has been recently developed for strand-specific RNA-Seq (Fig. 1), that 

fall into two main classes. One class relies on attaching different adaptors in a known 

orientation relative to the 5’ and 3’ ends of the RNA transcript (Fig. 1a). These protocols 

generate a cDNA library flanked by two distinct adaptor sequences, marking the 5’ end and 

the 3’ end of the original mRNA respectively. A second class of methods relies on marking 

one strand by chemical modification, either on the RNA itself by bisulfite treatment (Fig. 

1b) or during second-strand cDNA synthesis followed by degradation of the unmarked 

strand (Fig. 1b). Both modification methods essentially follow the standard protocol for 

RNA-Seq with the exception of these marking steps.

While standard RNA-Seq largely relies on one protocol, the great diversity of published 

protocols for strand-specific RNA-Seq poses several challenges. First, when conducting an 

experiment, researchers are challenged to identify a suitable protocol. Furthermore, if 

protocols vary considerably in their performance, the chosen method can dramatically affect 

the conclusions drawn from an experiment, confounding interpretation and comparison 
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across studies. There is therefore a substantial need for a systematic evaluation of the 

performance of different protocols for strand-specific RNA-Seq.

Here, we present a comprehensive comparison of seven protocols for strand-specific RNA-

Seq. Using S. cerevisiae polyA+ RNA, we built a compendium of libraries using these 

protocols (Fig. 1) and Illumina sequenced each of them to deep coverage. We developed a 

computational pipeline to assess each library’s quality according to library complexity, 

strand specificity, evenness and continuity of coverage, agreement with known genome 

annotation, and quantitative accuracy for expression profiling, in addition to considering the 

ease of laboratory and computational manipulations. We identify the dUTP and Illumina 

RNA ligation methods as the leading protocols, with the dUTP library providing the added 

benefit of the ability to conduct paired-end sequencing.

RESULTS

A comparative compendium of strand-specific RNA-Seq

We evaluated a compendium of 13 stand-specific libraries. We constructed 11 libraries 

based on seven strand-specific RNA-Seq methods (Fig. 1), including two variations for four 

of the methods . In addition to data from our own libraries, we also compiled comparable 

data for two published published libraries, a dUTP library13, and a library based on an 

eighth method from the differential adaptor class14 (Supplementary Fig. 1). Finally, we 

prepared a standard, non-strand-specific cDNA library to use as a control in these 

comparisons.

We explored two different variations for four of the seven methods to improve our libraries 

(Online Methods). These variations were the addition of Actinomycin D to the NNSR 

library protocol, two published variations of the bisulfite library protocol (“H” and “S” 

Online Methods15,16), different size selection methods for the Illumina RNA ligation 

libraries, and different reverse transcription primers for the dUTP libraries. We present 

results only for the “S” bisulfite library, because no substantial differences between the two 

libraries were observed in our analyses.

We used each method to prepare a cDNA library for Illumina sequencing from S. cerevisiae 

polyA+ RNA. We chose S. cerevisiae since this eukaryotic model organism has an 

exceptionally well-annotated genome, facilitating quality evaluations. We used paired-end 

Illumina sequencing for each library (Online Methods), except for the RNA ligation and 

Illumina RNA ligation libraries, which we sequenced only from the 3’ end of each cDNA 

because of the RNA adaptors used in these protocols. These approaches could be modified 

in the future to accommodate paired-end sequencing by changing the RNA adaptor and PCR 

primer sequences.

An analysis framework for assessing RNA-Seq libraries

To compare the quality of the different libraries, we defined six assessment criteria (Fig. 2) 

implemented in a computational pipeline (Online Methods). These were library complexity, 

defined as the number of unique reads (Fig. 2a), strand specificity, defined as the number of 

reads mapping to known transcribed regions at the expected strand (Fig. 2b), Evenness (Fig. 
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2c) and continuity of coverage at annotated transcripts(Fig. 2d), performance at 5’ and 3’ 

ends, defined as agreement with known end annotation (Fig. 2d), and performance in 

expression profiling, defined by sensitivity, linearity and dynamic range. With the exception 

of strand specificity, we compared each criterion to the control library. We focus on only 

one variation per method unless there are substantial differences in performance between 

variations. The full evaluation results are provided in the Supplementary Material 

(Supplementary Tables 1–2 and Supplementary Figs. 2–4).

Equal sampling of reads enables direct library comparisons

We mapped each library’s reads to the S. cerevisiae genome using Arachne17. For paired-

end libraries, we mapped unique pairs with opposite orientations and an appropriate 

separation; for single-end libraries we identified unique mappings for individual reads17 

(Online Methods).

The libraries displayed a broad range of yields, measured by the total number of reads, and 

the number of reads or paired reads mapping to a unique location (Supplementary Table 1). 

In this initial comparison, the dUTP library had the highest fraction of paired-end mapped 

reads (% Paired, Supplementary Table 1). The Illumina RNA ligation – SPRI library, which 

was prepared using Solid Phase Reversible Immobilization (SPRI)-based size selection, had 

a smaller percentage of unique reads than the Illumina RNA ligation library, which was 

prepared using gel-based size selection (35% vs. 59%, Supplementary Table 1). This was 

likely due to the difficulty in physically removing cDNAs shorter than 76 bp with the SPRI 

method resulting in the ends of sequencing reads containing an Illumina adaptor sequence 

that could not align to the yeast genome. Indeed, when these reads were trimmed to 51 

bases, the percentage of aligning reads improved dramatically (data not shown). In the text 

and figures below, we report results only for the Illumina RNA ligation library, which was 

prepared using gel-based size selection.

Some of this variation in performance may reflect variation in sequencing yields between 

sequencing runs and lanes (Supplementary Table 1), unrelated to the library protocol. Since 

many of our measures are sensitive to read quantity and length, we used sampling to obtain 

the same number of reads from each library (Online Methods). Unless specifically noted, all 

subsequent comparisons were conducted with 2.5 million sampled reads from each library. 

The SMART library had only 930,686 reads, because of repeated poor yields, but with the 

exception of complexity, we obtain overall similar results when using the SMART reads ‘as 

is’ (without any compensatory calculations for there being fewer than 2.5 million reads) or 

when randomly re-sampling the same reads more than once to reach 2.5 million (data not 

shown). To compare libraries with different read lengths (51 or 76 bases in our libraries, 36 

bases in published data), we sampled the first 36 bases of every read.

Complexity of single- and paired-end libraries

We next assessed the complexity of each library, defined as the number of distinct (unique) 

read start positions (Fig. 2a). A high complexity library, with many different start positions, 

is preferable as it does not suffer from “jackpot” effects in fragment amplification or a 

strong bias in selection of fragment ends. Using single-end mapping (Fig. 3a and 
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Supplementary Table 2), the best complexity was obtained by the control library (42% 

unique) followed closely by the 3’ split adaptor method (42% unique), SMART (41% 

unique), and the published dUTP method (40% unique).

Single-read complexity calculations may over-estimate the number of redundant cDNAs in a 

library. For paired-end libraries, we also estimated complexity as unique pairs of start and 

end positions (Fig. 3b), since cDNAs that share the same start site for one read can be 

distinguished based on a different start site for the other read in the pair. Comparing paired-

end libraries by this measure, we found that the control and dUTP libraries performed best, 

with 88% and 84% unique paired-reads, respectively. This demonstrates that paired-end 

sequencing substantially improves estimates of library complexity relative to estimates using 

only single reads.

Strand-specificity across libraries

We measured the strand-specificity of each library by comparing the mapped reads to the 

expected transcribed strand based on the known S. cerevisiae annotation (Online Methods). 

Consistent with recent studies18, we conservatively assumed that most of the S. cerevisiae 

genes do not have transcription from the antisense strand, and used the fraction of reads 

mapped to the opposite (antisense) strand of known transcripts as a measure for strand 

specificity (Fig. 2b, Supplementary Table 2 and Methods).

Four of the protocols – RNA ligation, Illumina RNA ligation, dUTP, and NNSR (with 

Actinomycin D) – performed best, whereas the SMART approach was the least strand-

specific method, by a wide margin (Fig. 4a and Supplementary Fig. 5). Only 0.47–0.63% of 

the reads mapped to the antisense strand in the four best performers. Notably, addition of 

Actinomycin D dramatically improved the strand specificity of the NNSR method 

(Supplementary Table 2). Actinomycin D treatment cannot be used to improve the strand-

specificity of SMART since it inhibits both second-strand synthesis and template 

switching19 (X.A and J.Z.L., data not shown).

Evenness and continuity of annotated transcript coverage

Using RNA-Seq for effective transcriptome annotation – which includes transcript 

assembly3,4, separating neighboring genes correctly, and identifying full-length transcripts 

with correct 5’ and 3’ ends – requires even, continuous, and complete coverage along each 

transcript’s length. .

To measure evenness of coverage for each library, we calculated the average of the 

coefficient of variation (CV) of gene coverage for the top 50% expressed genes (Fig. 2c, 

Fig.4a, Supplementary Fig. 5 and Supplementary Table 2). The most even coverage was 

found for the 3’ split adaptor method14 (average CV 0.54), closely followed by the dUTP 

approach (average CV 0.64 in the original dataset13, and 0.76 in our hands).

We defined two measures of continuity of coverage. First, we counted the number of 

segments into which each known transcript is broken, where we define a break as a stretch 

of at least five bases without read coverage (Fig. 2d, Fig. 5a and Supplementary Table 2). 

We then averaged this measure across all genes, weighting by the relative expression of each 
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gene (low expressed genes are expected to be less covered and more segmented). The best 

performing methods by this measure were the 3’ split adaptor method14 (2.29 segments/

gene), the dUTP libraries (2.41 and 2.48 segments/gene, with published data13 and in our 

hands, respectively), and the Illumina RNA ligation libraries (2.61 segments/gene).

Second, we calculated the fraction of bases without coverage in each transcript (Fig. 2d, Fig. 

5b–e and Supplementary Fig. 2) and examined the distribution of this fraction at different 

expression levels, as defined by pooling data across libraries, Online Methods). As expected, 

in all libraries, the fraction of uncovered bases decreased as expression level increased (Fig. 

5b–e and Supplementary Fig. 2). However, both the rate of decrease and the coverage per 

transcript at higher expression levels were variable between better performing libraries (Fig. 

5c,d) and poorly performing ones (Fig. 5e). To systematically assess this difference, we 

compared the Lowess fits of each of the distributions (Fig. 5b and Supplementary Fig. 2). 

We found that the dUTP (both in our hands, Fig. 5c, and in the published data13) and 3’ 

split adaptor (Fig. 5d) methods performed best.

Coverage at 5’ and 3’ ends

Coverage at 5’ and 3’ ends is crucial for correctly identifying full-length transcripts. To 

estimate this, we computed for each library the average coverage at each percentile of length 

from the annotated 5’ end to the annotated 3’ end of known transcripts 18 (Fig. 2d and Fig. 

4b), as well as the number of genes with complete coverage of their 5’ and 3’ ends (Fig. 4c). 

For paired-end libraries, we computed 5’ and 3’ end coverage based on both read pairs, thus 

estimating coverage of each end based on the relevant read.

We found substantial variation in the average coverage along a gene’s length, with specific 

biases in 5’ and 3’ coverage (Fig. 4b,c, Supplementary Fig. 3 and Supplementary Table 2). 

The NNSR library showed more coverage at the 5’ ends of transcripts, whereas the 

remaining libraries had modestly increased coverage of the 3’ ends (Fig. 4b and 

Supplementary Fig. 3). Consistent with its evenness and continuity, the 3’ split adaptor 

method had the best coverage of both 5’ and 3’ ends (75% and 77% of genes covered 

completely, respectively), followed by the dUTP method (62% and 73%) (Fig. 4c and 

Supplementary Table 2). Surprisingly, the addition of oligo dT primers for reverse 

transcription for the dUTP method, both in our results and in the published data13, did not 

increase the coverage at the 3’ ends (Supplementary Table 2), although more lenient read 

mapping may assist with this task in reads that contain portions of the polyA tail.

Performance for digital expression profiling

We compared the performance of each library in digital expression profiling relative to 

reference expression measurements estimated from three ‘standard’ sources: the control 

(non strand-specific) library; a pooled estimate generated from the sampled reads of nine of 

the strand-specific libraries (Online Methods); and expression profiles measured by 

competitive hybridization of a mid-log RNA sample vs. genomic DNA using Agilent arrays 

(Online Methods). We calculated the expression level of each gene as its length-normalized 

read coverage, and normalized all values for the total number of reads.
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We used several standard quality measures20 to estimate each library’s performance. These 

included the Pearson correlation coefficient of expression levels across all genes (Fig. 6a 

and Supplementary Table 2); the root mean squared error (RMSE) of the expression 

measurements in each library using the reference measurement as the expected level (Fig. 6b 

and Supplementary Table 2); and scatter, Q-Q, and MA21 plots (Online Methods, Fig. 6c,d 

and Supplementary Fig. 4) that help compare differences in expression levels across the 

dynamic range.

We found that the dUTP library had the best correlation and lowest RMSE relative to all 

three references (Fig. 6b and Supplementary Table 2). The only exception was that the 

Illumina RNA ligation method had a slightly better (0.95 vs. 0.94) correlation to the pooled 

library (Supplementary Table 2). Furthermore, visual inspection of the scatter, Q-Q, and MA 

plots showed an excellent linear relation between the dUTP library and the control library 

across a broad range of values, with weaker performance only for genes with very low 

expression (Fig. 6c). The Illumina RNA ligation protocol also performed reasonably well 

based on the correlation and RMSE measures, but with noticeably broader scatter across the 

expression range (Supplementary Fig. 4). The lowest performing methods were the 

SMART, NNSR and 3’ split adaptor libraries (Fig. 6d and Supplementary Fig. 4), by all 

measures.

DISCUSSION

The evaluated RNA-Seq protocols broadly represent existing approaches (for a summary of 

their relative merits see, Supplementary Table 3), and we excluded some protocols due to 

well-known technical limitations, incomplete method development, or high similarity to 

tested methods. These excluded protocols comprise single-stranded cDNA library 

synthesis22 (due to chimeric cDNAs created); deep sequencing of ribosome-protected 

mRNA fragments14 (because cDNA lengths are too short and the original method involves 

a complex procedure for RNA preparation; we have included published data from the non-

protected library designated as the 3’ split adaptor method; Supplementary Fig. 1); Helicos 

single-molecule digital gene expression23 and Direct RNA Sequencing24 (coverage heavily 

biased to the 5’ or 3’ ends of transcripts, respectively; the latter is currently still under 

development); ligation of adaptor to 5’ end and C-tailing at 3’ end of RNA25 and the 

double-random priming method26 (similar to NNSR). We did not include FRT-seq27 and 

SOLiD™ Whole Transcriptome Analysis Kit28 because they are similar to the two RNA 

ligation methods we tested and it would be difficult to distinguish differences due to library 

construction methods from those due to the different sequencing methods.

In addition to the formal criteria evaluated by our pipeline, there is substantial variation in 

the experimental complexity of different protocols (Supplementary Table 4). The original 

RNA ligation method is the most labor intensive and requires substantial amounts of starting 

material. The NNSR protocol is the simplest. It is unclear how well the original RNA 

ligation method can be adapted to larger-sized fragments (of greater than 152 bp) needed for 

paired-end sequencing with 76 base reads, since it requires the adaptor ligated RNA to be 

separated on a gel from unligated RNA, an increasing challenge as the length of the RNA 

increases.
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The libraries also vary in the facility of computational analysis, in particular at early 

processing steps. The bisulfite method is the most computationally challenging, since reads 

must be aligned to two reference ‘genomes’ that have all the C bases converted to T bases 

on one of the two strands. This alignment is complicated both by the imperfect efficiency of 

the bisulfite treatment and by inherent sequencing errors.

Our analysis allowed us to assess the tradeoff between different protocol modifications. For 

example, we found that Actinomycin D improved the strand-specificity of the NNSR 

protocol (Supplementary Table 2), but had the opposite effect on CV, 5’ and 3’ end 

coverage, and correlation of expression levels (Supplementary Table 2). For the Illumina 

RNA ligation libraries, it is preferable to use gel size selection rather than SPRI, because 

removing the shorter cDNAs increased the fraction of reads aligning to the yeast genome. If 

read length is reduced below 76 bases, this may be less of an issue, but such a choice would 

also impact other sequencing outputs. Notably, SPRI is amenable to liquid handling 

automation, and can increase the throughput and convenience of any of the other methods, 

except for RNA ligation. Although these modifications impacted library quality for the 

NNSR and Illumina RNA ligation methods, most of the variations tested did not alter the 

performance characteristics of the libraries (Supplementary Table 2 and Supplementary 

Figs. 2–4) – an indication of the reproducibility of the methods. We did not directly evaluate 

the experimental features, such as PCR conditions or adaptor sequences, that contributed to 

each method’s success (or lack thereof), since these may be complex. We note, however, 

that the amount of starting material does not correlate with library complexity 

(Supplementary Tables 2 and 4).

The dUTP protocol provides the most compelling overall balance across criteria, followed 

closely by the Illumina RNA ligation protocol (Supplementary Note 1). Currently, the dUTP 

protocol is compatible with paired-end sequencing, whereas the present Illumina RNA 

ligation protocol is not. Paired-end sequencing increases the number of mappable reads 

(unique as pairs), and – in higher eukaryotes – provides substantial power in transcriptome 

reconstruction10,11. The 3’ split adaptor method14 excelled in measures critical for genome 

annotation, but is less well-suited for expression profiling. Finally, our compendium and 

analysis pipeline, which will be available online (www.broadinstitute.org/regev/

rnaseqmethods) and as a GenePattern module (http://www.broadinstitute.org/cancer/

software/genepattern/), provide important resources including a general benchmarking 

dataset and tools for testing the quality of future libraries.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Methods for strand-specific RNA-Seq

Salient details for seven protocols for strand-specific RNA-Seq, differential adaptor methods 

(a) and differential marking methods (b). mRNA is shown in grey, and cDNA in black. For 

differential adaptor methods, 5’ adaptors are shown in blue, and 3’ adaptors in red.
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Figure 2. Key criteria for evaluation of strand-specific RNAseq libraries

Four categories of quality assessment. Double stranded genome (black parallel lines), with 

Gene ORF orientation (thick blue arrow) and UTRs (thin blue line), along with mapped 

reads (short black arrows – reads mapped to sense strand; red – reads mapped to antisense 

strand). (a) Complexity. (b) Strand Specificity. (c) Evenness of coverage. (d) Comparison to 

known transcript structure‥
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Figure 3. Complexity of single- and paired-end libraries

Bar graphs comparing library complexity by the fraction of unique reads mapping out of the 

total number of mapped reads, when considering only single-mapped reads (a, all libraries) 

or uniquely mapped pairs (b, only paired-end libraries). Libraries are ordered as in Figure 1. 

Full data for all library variations are presented in Supplementary Table 2.

Levin et al. Page 13

Nat Methods. Author manuscript; available in PMC 2011 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Strand specificity and evenness of transcript coverage

(a) Strand specificity (% antisense) and evenness of coverage (average coefficient of 

variation (CV)). The average CV of the control (non strand-specific library) is shown by an 

orange line. Libraries are sorted as in Figure 1. Full data for all library variations are 

presented in Supplementary Table 2. (b) Relative gene coverage at each percentile of a 

gene’s length, averaged across all genes in each library. The 5’ end is on the left. Full data 

for all library variations are presented in Supplementary Fig. 3. (c) 5’ and 3’ end coverage. 

Shown is the percentage of genes with 5’ and 3’ coverage (left and right bars, respectively; 
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Online Methods) in each library. Full data for all library variations are presented in 

Supplementary Table 2.
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Figure 5. Continuity of transcript coverage

(a) Average number of segments (separated by at least five bases of zero coverage) 

weighted by the average expression of each gene, in each library. Full data for all library 

variations are presented in Supplementary Table 2. (b–e) Fraction of bases not covered by 

reads for each gene (blue dot) in the genome, plotted against the fraction of total reads for 

that gene in the pooled library, for the dUTP method (c), the 3’ split adaptor method (d) and 

the SMART method (e). In each case, a Lowess fit is shown as a red curve, with fits from all 

libraries shown in (b). Full data for all library variations are presented in Supplementary Fig. 

2.
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Figure 6. Digital expression profiling using strand-specific RNA-Seq

(a, b) Pearson correlation coefficient (a) and RMSE (b) for each library when compared to a 

pooled reference (left bars), the control library (middle bars) and Agilent microarrays (right 

bars). Full data for all library variations are presented in Supplementary Table 2. (c, d) 

Scatter (left panel), Q-Q (middle panel) and MA (right panel) plots for the best performing 

(dUTP, c) and worst performing (NNSR, d) libraries, in comparison to the control library. 

The scatter plots show the fraction of total reads for each gene (blue dot) in the control 

library against a strand specific library. The Q-Q plot shows the level at each quantile (rank) 
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of expression in the control library against the strand-specific library. A slope = 1 line is 

shown for reference (red crosses). The MA plot shows for each gene (dot) the difference in 

expression levels between the control and strand-specific libraries (Y axis) compared to their 

mean expression level (X axis). Red dashed lines – two fold difference in expression. Full 

data for all library variations are presented in Supplementary Fig. 4.
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