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Abstract

Background: Proper cell models for breast cancer primary tumors have long been the focal point in the cancer’s

research. The genomic comparison between cell lines and tumors can investigate the similarity and dissimilarity

and help to select right cell model to mimic tumor tissues to properly evaluate the drug reaction in vitro. In this

paper, a comprehensive comparison in copy number variation (CNV), mutation, mRNA expression and protein

expression between 68 breast cancer cell lines and 1375 primary breast tumors is conducted and presented.

Results: Using whole genome expression arrays, strong correlations were observed between cells and tumors.

PAM50 gene expression differentiated them into four major breast cancer subtypes: Luminal A and B, HER2amp,

and Basal-like in both cells and tumors partially. Genomic CNVs patterns were observed between tumors and cells

across chromosomes in general. High C > T and C > G trans-version rates were observed in both cells and tumors,

while the cells had slightly higher somatic mutation rates than tumors. Clustering analysis on protein expression data

can reasonably recover the breast cancer subtypes in cell lines and tumors. Although the drug-targeted proteins ER/PR

and interesting mTOR/GSK3/TS2/PDK1/ER_P118 cluster had shown the consistent patterns between cells and tumor,

low protein-based correlations were observed between cells and tumors. The expression consistency of mRNA verse

protein between cell line and tumors reaches 0.7076. These important drug targets in breast cancer, ESR1, PGR, HER2,

EGFR and AR have a high similarity in mRNA and protein variation in both tumors and cell lines. GATA3 and RP56KB1

are two promising drug targets for breast cancer. A total score developed from the four correlations among four

molecular profiles suggests that cell lines, BT483, T47D and MDAMB453 have the highest similarity with tumors.

Conclusions: The integrated data from across these multiple platforms demonstrates the existence of the similarity

and dissimilarity of molecular features between breast cancer tumors and cell lines. The cell lines only mirror some but

not all of the molecular properties of primary tumors. The study results add more evidence in selecting cell line models

for breast cancer research.

Keywords: Heterogeneous, Breast cancer, DNA mutation, mRNA expression, Copy number alteration, Reverse-phase

protein array, Molecular portraits, Cell lines

* Correspondence: lijcheng@iupui.edu
1Center for Computational Biology and Bioinformatics, School of Medicine,

Indiana University, Indianapolis, IN 46202, USA
2Department of Medical and Molecular Genetics, School of Medicine, Indiana

University, Indianapolis, IN 46202, USA

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

The Author(s) BMC Genomics 2016, 17(Suppl 7):525

DOI 10.1186/s12864-016-2911-z

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-016-2911-z&domain=pdf
mailto:lijcheng@iupui.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
According to a recent World Health Organization report,

breast cancer is the second most common type of cancer.

Each year there are about 2300 new cases of breast cancer

in men and 230,000 new cases in women in the U.S. [1].

While age and gender are two primary demographic risk

factors in breast cancer, about 5–10 % of breast cancer

risk is attributed to hereditary gene mutations in BRCA1,

BRCA2 and TP53 [2]. Breast cancer is a complex disease.

Its heterogeneous nature has been classified by its mo-

lecular characteristics. The protein expression status of

estrogen receptor alpha (ER), progesterone receptor (PR),

human epidermal growth factor receptor-2 (HER2) decide

the group of breast cancers. It can be subtyped as Luminal

A (ER+/PR+, HER2+), Luminal B (ER+/PR+, HER2-),

HER2amp (HER2 positive) and Basal-like/triple negative

(ER-,PR-, HER2-) [3, 4]. The Basal-like patients are corre-

lated with biologically aggressive disease and often have a

poor prognosis [3]. In Luminal A and Luminal B subtypes,

ER was identified as the therapeutic target, and its tar-

geted hormone therapies (such as tamoxifen and letrazole)

have been well established. In HER2 amplification group,

trasuszumab is the candidate drug. However, basal-like

triple negative tumors still do not have recognizable ther-

apies. The target identification and its subtype classifica-

tion is an important aspect for therapy development in

breast cancer [5, 6].

Cell lines, originated from human tumors, have historic-

ally acted as the primary experimental model to investi-

gate the cancer biology and molecular pharmacology.

Parallel massive drug screening on these cancer cells

characterize the diverse cancer cell reactions to drugs by

genomic features. As a salient example, the Cancer Cell

Line Encyclopedia (CCLE) project conducts a detailed

genetic characterization of a large panel of 997 human

cancer cell lines in DNA copy number, mRNA expression

and mutation [7]. Together with the drug screening data,

CCLE becomes a powerful resource for the drug and

target discovery researches.

Breast cancer is heterogeneous in nature. Cell lines study

is only an interpretation from a context of artifacts intro-

duced by selection and establishment in vitro, and there

exists large differences between cancer cell lines and tissue

samples especially in its molecular genome [8, 9]. Selecting

the right cells model to mimic tumor tissues helps to evalu-

ate proper drug reactions in tumors in vitro [10, 11]. Gene-

expression profiling has become an important tool to

characterize both the similarity and dissimilarity between

cell lines and tumors. A recent work by Ross DT [12] dem-

onstrated the distinctive gene expression signature in breast

cancer tissue: basal, luminal epithelial cell signature, as well

as mesenchymal/stromal. Lacroix M [13] valuated some

widely used breast cancer cell lines as breast tumor models

by a comparative genetic expression features. Besides gene

expression, CNV has gradually been recognized as import-

ant due to features in predicting cancer progression and

recurrence. Jessica Kao et al. [14] compared the gene ex-

pression profiles and CNVs of breast cancer cells and

tumor tissues to define relevant cell line models. Both

Fridlyand et al. [10] and Richard M. et al. [15] conducted

similar analyses, in which the similarity was further investi-

gated within the breast cancer subtypes. Nevertheless, these

researches provide important information for understand-

ing a molecular mechanism from only one aspect of the

breast cancer genome, such as mRNA or DNA or protein,

but not both. No one has yet attempted to investigate the

correlation between cell lines and tumor tissues from all

CNV, mutation, gene expression and protein expression

between and within breast cancer subtypes systematically.

The Cancer Genome Atlas (TCGA) [15] aims to dis-

cover major cancer-causing genomic alterations. It publicly

provides 1098 breast tumor samples with mRNA expres-

sion profiling, DNA exome parallel sequencing, CNV, and

protein expression. Because of this valuable data, a number

of important breast cancer genes and pathways were de-

tected systematically during the past 3 years [16–18].

However, systematic comparisons between TCGA breast

tumor samples and breast cell line data, such as Cancer

Cell Line Encyclopedia (CCLE), have not yet been con-

ducted. The primary innovation of this comparison is that,

for the first time, four layers of genomic data: CNV, muta-

tion, mRNA expression and protein expression, were in-

vestigated to seek the similarity or dissimilarity between

breast cancer cells and tumors. Secondly, because of better

sensitivity and broader dynamic range of sequencing tech-

nology comparing to the array platforms, genomic data

was better captured in TCGA and CCLE by the platform

data comparison. In this paper, a comprehensive compari-

son in CNV, mutation, mRNA expression and protein

expression between CCLE breast cancer cell lines and

TCGA primary breast tumors is presented separately. At

the end, a total score that integrates four genomic features

will be defined to investigate the overall similarity between

breast cancer cell lines and its tumor tissues.

Results

Sixty-eight breast cancer cell lines were extracted from

CCLE [7] and literature [19]. One thousand seven hundred

five breast cancer tumor samples were obtained from

TCGA and Gene Expression Omnibus (GEO). All of the

datasets are listed in Table 1. Different subsets of samples

were assayed on four different level platforms, including

Affymetrix HU133 and Agilent G4502A_07_3 for mRNA

expression microarrays irrespectively, Affymetrix 6.0 single

nucleotide polymorphism (SNP) arrays for copy number

variation, whole-exome sequencing in TCGA and hybrid

capture sequencing 1651 genes in CCLE for mutation ana-

lysis. Reverse-phase protein lysate microarrays (RPPAs) are
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used to test basal phosphorylation and protein abundance

in TCGA tumors and cell lines. Please note that not all

samples were characterized on each platform. Different

subsets of tumors and cell lines were analyzed in each plat-

form (Additional file 1: Tables S1 and S2). Each one of the

four platform data analyses focused on the overlapping

genes between tumors and cell lines, and the overall simi-

larity analysis by using all four platforms was conducted

afterward. Figure 1 describes the overall analysis process

between cell lines and tumors in breast cancer.

Gene expression profiles comparison between breast cancer

cell lines and tumors

PAM50 (Prediction Analysis for Microarrays) [20] is

one of the most common genetic tests for breast cancer

subtyping. The PAM50 was designed as a RT-qPCR 50-

gene expression signature. It has been acknowledged as

a prognostic gene signature assay by an authoritative

organization, National Comprehensive Cancer Network

(NCCN) (http://www.nccn.org/), in year 2015. Due to

this, many breast tumor and cell line samples lacked of

ER, PR, and HER2 status for breast cancer treatment

classifications. As for the missing information of HER2

status, it has 182 in 1096 TCGA tumors and 15 in 68

CCLE cell lines. These samples are classified as sub-

types of Luminal A, Luminal B, HER2amp, and Basal-

like using the PAM50 signature. On the other hand, the

RT-qPCR and mRNA-based PAM50 ER/PR/HER2 clas-

sification results are compared. Figure 2 displays the

PAM50 gene expression signature predicted subtypes of

Fig. 1 The whole analysis process between cell lines and tumors in breast cancer using 4 genomic profiles. Sixty eight cell lines and 1375 tumors

are compared in gene expression, copy number variation (CNV), mutation and protein across 10 aspects. A score that integrated four genomic

features was used to evaluate the overall similarity of tumors and cell lines

Table 1 Four molecular profiles datasets for tumor and cell

lines comparison in breast cancer

Data types Sources Platforms Samples
size

Copy number
variation

TCGA;CCLE Affymatrix SNP 6.0 1033; 59

Mutation
(Exome Sequencing)

TCGA;CCLE Illumina GAIIx 967; 51

Gene expression TCGA; GEO;
CCLE

AgilentG4502A_07_3
(TCGA); Affymatrix
HU133 Plus 2.0
(GEO; CCLE)

530; 279; 58

Protein TCGA; CCLE RPPA 197; 38
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Fig. 2 Gene expression PAM50-breast cancer subtype classifications of cell lines and primary tumors for ER, PR, Her2 status. a The PAM50 subtype

classification of 530 invasive breast cancer samples in TCGA, which uses AgilentG4502A_07_3 Array platform. b The PAM50 subtype classification

of 56 breast cancer cell lines, which uses Affymetrix Human Genome U133 Plus 2.0 Array platform
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cell lines and tumors in breast cancer, and the observed

ER, PR, HER2 status. Eight hundred seventy five TCGA

samples have information of ER/PR/HER2 status in

1096 tumors, while 53 cell lines in 68 CCLE samples

have those. Figure 2a shows the PAM50 subtypes of

530 invasive breast cancer patients in TCGA using

AgilentG4502A_07_3 array platform. Comparing to the

standard ER, PR, and HER2 status for classification of

breast carcinoma by using immunohistochemistry stain-

ing (Table 2), 341 tumors with PAM50 classification are in

concordance with the standard classification in 514 tu-

mors, where the normal-like patients (other) are excluded.

The concordance rate is 66.3 %. Figure 2b shows the

breast cancer subtype classification of 56 breast cancer cell

lines in CCLE using 50 genes PAM analysis. Gene expres-

sion profile in CCLE was conducted in Affymetrix Hu133

Plus2.0 Array platform. Thirty-four cell lines with known

classification are in concordance with PAM50 classifica-

tion, and the concordance rate is 60.71 % (34/56). Some

cell lines without ER/PR/HER2 status, such as KPL1,

ZR751, HS742T, HS60T, HS281T, HS343T, HS274, re-

ceived ER/PR/HER2 imputation from the PAM50 predic-

tion. In the follow-up data analysis, we kept the known

classification and imputed PAM50 for both cell lines and

tumor samples. Additional file 1: Tables S1 and S2 list the

classification results for cell lines and tumors based on

PAM50 gene expression. Interestingly, we observed that

the gene expression pattern of PAM50 between cell lines

and tumors are similarity, but some genes in cell lines are

not as highly expressed as in tumors, such as gene FOXA1

and ESR1.

In order to compare the similarity of the whole gen-

ome expression profiles between primary breast cancer

tumors and breast cancer cells (i.e. CCLE samples), the

breast cancer tumors in Gene Expression Omnibus

(GEO) GSE41998 (279 tumors) were selected because

they shared the same Affymetrics gene expression plat-

form (Additional file 1: Table S3). Figure 3 shows the

correlation distributions of whole genome expression be-

tween breast cancer cell lines and primary tumors. The

56 box plots of the correlations illustrate the similarity

between 56 cell lines and 279 tumors. The correlation

coefficient is around 0.6–0.8 between cell lines and

tumors. These results show that cell lines keep a high

similarity to tumors in whole gene expression profile in

breast cancer even though in different subtypes.

Copy number variations comparison between CCLE breast

cancer cell lines and TCGA breast cancer tumors

CNVs are compared between CCLE breast cancer cell lines

and TCGA breast cancer primary tumors in various breast

cancer subtypes. Figure 4 displays copy number distribution

for both tumors and cell lines across 24 chromosomes. In

Fig. 4a, chromosome 1 and 8 have the highest copy number

amplification frequencies while chromosomes 13 and 16

have the most copy number deletion regions in both cell

lines and tumor tissues. Figure 4b displays the significant

genomic alterations in breast cancer tumors and cell lines.

MYC, PVT1, RAD21 and TRPS1 are top four copy num-

ber amplified genes, while MAP2K4, ANKRD11, APRT,

CSMD1 and ZFPM1 are top five genes with copy number

deletions. Some important cancer genes, such as PIK3CA,

BRCA1, BRCA2, and ERBB2, show a mixture of amplifica-

tions and deletions.

The CNVs between cell lines and tumor samples of breast

cancer are compared in sample segmentation mean and

density calculation of copy number Fraction Genome Al-

tered (FGA). Its calculation is presented in the method sec-

tion. Figure 5a demonstrates that cell lines have more copy

number deletions than tumors. In particular, HCC1599,

MDA-MB-361, MDA-MB-157, and UACC893 are the top 4

CNV deletions cell lines. In Fig. 5b, it is evident that the fre-

quency of copy number alteration are significantly higher in

cell lines than in tumors. The mean cell line FGA is wider

than that of tumor FGA. In order to evaluate the similarity

between tumors and cell lines, the Pearson correlations for

the top 10 % CNV in 2094 genes are calculated between 59

cell lines and 1049 tumors. Fig. 5c shows the CNV-based

correlation coefficient distribution between cell lines and

tumors in different breast cancer subtypes. We observe that

cell lines HCC2218, MDA-MB-175-VII, ZR-75-30, BT-483,

HCC1569 and MDA-MB-453 are more similar to tumors in

CNV than the other cancer cells. Their correlation coeffi-

cients are larger than 0.55 (p < 10−18). On the other hand,

HMEL, Hs 578 T, Hs 274.T, Hs 606.T, Hs 281.T, Hs 739.T,

CAL-51, Hs 343.T and Hs 742.T had negative correlation

coefficients with tumors samples (p < 10−2).

Table 2 Molecular classification of breast carcinoma

Classification Immunoprofile Other characteristics

Luminal A ER+/PR+/HER2-; ER+/PR-/HER2-; ER-/PR+/HER2-, Low tumor grade, Low expression of proliferation marker Ki67

Luminal B ER+/PR+/HER2+; ER+/PR-/HER2+; ER-/PR+/HER2+ High tumor grade, High expression of proliferation marker Ki67

HER2-enrichment ER-/PR-/HER2+; ER-/PR-/HER2+; ER-/PR-/HER2+ High tumor grade, High expression of proliferation marker Ki67

Basal-Like ER-/PR-/HER2- High tumor grade, High expression of proliferation marker Ki67
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Mutation analysis in cell lines and tumors

CCLE sequenced only 1347 cancer genes in breast cancer,

while TCGA has whole exome sequencing. Our comparative

analysis is only based on those 1347 overlapping genes and

their somatic mutations. In CCLE, in order to remove back-

ground germline mutation, mutations reported in the 1000

Genome Project and dbSNP were filtered out using ANNO-

VAR tool, including the gene-based single nucleotide vari-

ants (SNVs) and insertions/deletions [21].

Figure 6 shows the comparisons of somatic mutations

between cell lines and tumors across four aspects: somatic

mutation frequency, somatic mutation density, average

mutation sites distribution per million bases (Mb) in four

subtypes, as well as mutation correlation variation between

cell lines and tumors. Figure 6a illustrates the mutation

frequency per Mb in TCGA and CCLE vs CNV fraction

genome alteration. A subset of cell lines with hyper-

mutated genes is revealed, such as MDAMB361, BT474,

MDAMB453 and HCC1569. These cells of breast cancer

show moderately higher mutation frequency than the tu-

mors. Figure 6b shows the somatic mutation density. The

median somatic mutational frequency for tumors in

TCGA is around 13, while cell lines in CCLE is around 25.

Figure 6c shows the somatic mutation distribution among

four subtypes of breast cancer in TCGA and CCLE, where

y-axis is the mutation rate per million bases and x-axis is

mutation gene numbers. The wider the line is, the more

the gene mutation number of samples is. It suggests that

the gene mutation number in Luminal B subtype from

TCGA is the largest. At the same time, its mutation rate is

also higher than the other subtypes. Tumor and cell lines

with Luminal A subtype have the lowest mutation num-

bers and mutation rate. Her2 subtype group in cell lines

has a larger mutation number than the other subtypes.

Figure 6d shows the 1347 somatic mutation genes-based

correlation coefficient distributions between cell lines and

tumors in different breast cancer subtypes. These genes

were firstly denoted as 0 or 1 to illustrate non-mutation or

mutation. The correlation is distributed in the range of

[-0.1, 0.43]; Additional file 2: Table S7 shows the detail

correlation coefficient between cell lines and tumors in

four levels for gene expression, mutation, copy number

variation and protein irrespectively. The top four cell lines

that have the highest mutational correlation with tumors

are: UACC893, JIMT1, EFM19 and HCC1954. The highest

consistency coefficient is 0.4258.

Thirty-one genes, reported in recent TCGA nature and

science papers [16–18, 22–28], were selected as important

driver mutation genes in the breast cancer. These genes

were further investigated across 51 breast cancer cell lines.

Figure 7 shows a landscape of these functional driver

mutations in these cell lines of breast cancer. According to

the mutation per megabyte base calculation, HCC1569,

MDAMB361, and BT474 are hyper-mutated cell lines,

while HS 281 T, HS 343 T, and ZR 751 are lowly mutated

cell lines. The popular cell lines MCF7 and MDAMB231

have median mutation rates. The top mutated genes in

breast cancer tumors are TP53 (31 %) and PIK3CA (33 %).

TP53 has copy number deletion in almost all cell lines,

and has mixed somatic mutation. CNV has a dominant

role in PIK3CA across 19 cell lines with mixed somatic

mutations. Genome integrity pathway genes, ATM, BAP1,

BRCA2, TTN and TP53, almost all have strong gene copy

number amplification in cell lines mixed with somatic mu-

tation, except for TTN. Similar data has been observed in

genes MAP2K4 and MAP3K1 on MAPK signaling path-

way. Genes PRKCA, PTGS2 and ZNF217 have many copy

number deletions. The important drug biomarkers BRAF

and ERBB2 (HER2) are relatively conservative, which do

not have much somatic mutations.

A comparison of mutation spectra across four subtypes

(Fig. 8) reveals that the mutation transition rates of cell

Fig. 3 Whole genome expression correlation analysis between 56 breast cancer cell lines and 279 primary tumors. The x-axis indicates 56 cell

lines, and y-axis is the correlation coefficient between tumors and cells. The cell line subtypes are denoted in different colors
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lines and tumors are similar within different subtypes. On

the other hand, it can be observed that breast cancer con-

tains larger C > T and C >G trans-versions in subtypes

HER2amp and Luminal B. HER2amp has the highest C >T

trans-version rate. Luminal A has the highest A >C trans-

version. Figure 8b shows the correlation of six mutation

categories in tumors and cell lines. It suggests that C >T

and C >G trans-version possess the highest concordance

between tumors and cell lines. Basal-Like subtypes between

cells and tumor tissue are consistent in A >T and C >G

a

b

Fig. 4 The CNV comparison between 1049 TCGA breast cancer samples and 59 CCLE breast cancer cell lines. a DNA copy number profiles

across the whole chromosomes (right) and copy number amplification and deletion in highly mutated breast cancer driver genes. The red color

indicates amplification, while the blue color indicates deletion. The top panel is TCGA, and the bottom panel is CCLE. b is the CNV frequency

comparison for highly mutated genes between TCGA breast cancer samples and CCLE breast cancer cell lines
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transition, while only A >G trans-version showed the

correlation between tumors and cell lines in subtypes of

Luminal B.

Comparison analysis of proteins phosphorylation

expression between cell lines and tumors in breast cancer

Quantitative expression of 50 cancer-related proteins,

phosphorylated-proteins by RPPA, were measured on 197

breast tumors and 38 cell lines. Pearson Correlation ana-

lysis and unsupervised hierarchical clustering analyses

were conducted between cell lines and tumors (Fig. 9).

The correlations in Fig. 9a suggest that all four cell line

subtypes possess different correlation distributions with

tumor samples. Luminal B cells have the highest corre-

lations, while basal cells have the lowest correlations

and also show the largest variations. Figure 9d illus-

trated hierarchy distance among cell lines. It suggests

that the same subtype cell lines usually are closely clus-

tered. Protein expressions for ER and PR have high

concordance, and they are reversely correlated with

Fig. 5 CNV similarity analysis between cell line and tumors in breast cancer. a is the average segmentation length comparison between cell lines

and tumors samples, here the segmentation length is measured according to log2(CN/2)). Positive number means amplification, and negative

number means deletion; b shows the density distribution of copy number variation in breast tumors and cell lines; c shows CNV-based similarity

between cell line and tumors in breast cancer according to Pearson correlation coefficient using the top 10 % genes (2094 genes)
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Coveolin.1 in all subtypes, especially in the Basal-Like

subtype. A similar variation phenomena was observed

in several other groups’ of proteins in different sub-

types: (EGFA, CCNB1), (4EBP1, MEK1), (mTOR,

GSK3), and (GATA3, p70s6kp389, AKT). Correlations

between cell lines and tumors are further illustrated in

Fig. 9c. The correlation ranges from −0.61 to 0.84.

Some cell lines, T47D, BT483, and AU565, are the top

three cell lines that have closer correlations to tumors

in protein level, while the most popular breast cancer

cell line, MCF7, is somewhere in the middle. The exact

correlations between cell lines and tumors are presented

in Additional file 1: Table S6 based on 50 phosphor-

proteins.

Figure 10 shows the hierarchical distance between cell

lines and tumors based on the 50 phosphorylated-

proteins. The cell lines and tumors are assembled to-

gether by these proteins. It clearly classifies these breast

cancer samples into four distinctive subtypes. Interest-

ingly, the Basal-like cell lines MDAMB436, SUM139PT

Fig. 6 DNA sequencing-based mutation comparison between CCLE 51 cell lines and TCGA 977 tumors. a The scatter plot of fraction genome altered and

mutation per million bases for TCGA samples and CCLE samples; b The mutation densities in breast tumors and cell lines; c Mutation-based subtypes

similarity of cell line and tumors in breast cancer; d Mutation correlation coefficient distributions between cell lines and tumors
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and HCC2185 are similar to protein features of Luminal

A subtypes in tumors. Another discovery is that the

Basal-like cell line MDAMB453 is close to Luminal B tu-

mors. All details of the result is referred to in Additional

file 2: Table S7, protein RPPA correlation coefficient be-

tween cell lines and tumors.

Correlation analysis of gene expression verse

phosphorylated protein expression between cell lines and

tumors in breast cancer

The correlations of the gene mRNA versus its phosphory-

lated protein was calculated in cell lines and tumors irre-

spectively. The average correlation coefficient (Fig. 11) of

38 genes’ mRNA with their 50 phosphorylated proteins

concentration ranges from −0.3 to 0.9 both in cell lines

and tumors. Nearly 60% of the genes had a positive correl-

ation between mRNA and protein. ESR1 has the highest

correlation coefficient r−0.89 in 173 TCGA tumors, and r

= 0.68 in 29 CCLE cell lines of breast cancer between

mRNA and protein. Drug-target genes, such as PGR,

HER2, EGFR and AR, all have high correlation (r > 0.5, p

< 0.01) between mRNA and protein both in TCGA tu-

mors and cell lines. Two important oncogenes, GATA3

and RP56KB1, both have high mRNA- protein correlation.

The correlation for GATA3 is 0.79 in cell lines and 0.81 in

tumors, while the correlation for RP56KB1 is 0.92 in cell

Germline mutation

Somatic mutation

CNV- No Change

CNV- Deletion

CNV- Amplification

CNV- Grid

Cell line subtypes

Luminal A
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Fig. 7 The landscape of functional driver mutations in cell lines of breast cancer. Upper rows show the gene mutation frequency and mutation rate per

million bases (Mb) in 967 tumors. Left column shows the popularity of breast cancer cell lines denoted by the publication citation number in Pubmed

and mutated rate per Mb in cell lines. Point mutations (germline mutation and somatic mutation) and copy number variation (CNV amplification is

segment-mean > 0.3, CNV deletion is segment-mean < -0.3) are shaped into the horizontal bar and vertical bar with different color, respectively
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lines and 0.78 in tumors. The small figure in Fig. 11a

shows the linear correlation of the gene-protein be-

tween cell lines and tumors, which the linear correl-

ation coefficient is 0.7076 (p < 0.01). This strong

signal indicates the consistency of gene expression

and protein expression in both cell line and tumor.

The potential discrepancy could be due to the stabil-

ity of mRNA, the degradation of protein, the time

dependent and site dependent nature of protein phos-

phorylation, and etc. The interesting result in the

Fig. 11b illustrates the gene expression amount are ir-

relevant to the correlation of mRNA-protein. As a

matter of fact, the highest expressed gene RP56 has a

negative correlation with mRNA-protein correlations

in both cell lines and tumors.

What kinds of cell lines are close to tumors?

Gene expression profiles and proteins phosphorylation

expressions of tumors and cell lines were compared to

further corroborate our observations made on the CNV

and mutation data. The correlations of four different

molecular profiles of all cell line and tumor pairs were

calculated (Fig. 12a). These four correlations differ

greatly from each other. Gene expression-based correl-

ation had the largest correlation, CNV correlation was

the next highest, mutation and protein expression corre-

lations were low. These four correlations were combined

into a total score as formula (2). Figure 12b shows the

ranked cell lines by their average total correlations with

the tumors. BT483, T47D, MDAMB453 are the true top

3 cell lines in breast cancer research.

Fig. 8 Mutation spectra and contexts across 4 subtypes of breast cancer. a Mutation spectrum of six transition (Ti) and transversion (Tv) categories for

each subtypes of breast cancer (Luminal A = LA, Luminal B = LB, HER2amp = HER2 and Basal-Like = BaL). b Hierarchically clustered mutation context

(defined by the proportion of A, T, C and G nucleotides within + -2 bp of variant site) for six mutation categories. Colour denotes degree of correlation:

red (r = 1), yellow (r =0.5), green (r = 0), blue (r = -1)
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their correlation coefficient. d RPPA-based cell lines hierarchy clusters in breast cancer. Rows are proteins while columns are cell line samples
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Discussion

Breast cancer is a highly complex disease. The subsets of

breast tumors show diverse patterns of gene expression,

CNV, mutation, and protein expression. A considerable

amount of knowledge on breast carcinomas have been

derived from in vivo and in vitro studies performed on

breast cancer cell lines. Whether breast cancer cells are

representative of the tumors remains debatable. In this

study, the comparisons between cell lines and primary tu-

mors from molecular profiles: gene expression, CNV,

Luminal B Her2amp Basal-likeLuminal A

Basal-like

HER2amp

Luminal A

Luminal B

Subtype Data

Cell Line

TCGA

row min row max

relative

Fig. 10 50 protein RPPA-based hierarchical clustering between 197 tumors and 38 cell lines. Rows are different proteins and columns are tumors

and cell lines samples. Two color bars represent subtypes of breast cancer and data types irrespectively

Fig. 11 The comparison between 38 genes mRNA expression and their phosphorylated proteins expression in tumors and cell lines. a The

correlation comparison of mRNA verse phosphorylated protein in cell lines and tumors. b The 38 gene expression average in 29 cell lines
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mutation, and protein expression, show that the cell lines

are similar to some but not all of the primary tumors.

Among them, gene expressions have the highest while the

mutation-based correlation was the lowest.

a) In gene expression-based clustering analysis, cell lines

possess similar clustering as with tumors using

PAM50. At the same time, cell lines show stable

genomic and expression patterns, as well as high

correlation, with tumors in whole gene expression

profile.

b) From the mutation comparison between cell lines

and tumors, some common features were found: the

chromosome 1 and 8 regions show high frequency

copy number amplification, and chromosome 13 and

16 display high frequency deletions. Some significant

cancer-related genomic alterations: MYC, PVT1,

RAD21, TRPS1, CDH1, RB1, PIK3CA, MAP2K4,

and ANKRD11, are identified in both breast cancer

tumors and cell lines. The results were verified

partially in reference [10].

In the single point mutation comparison, the six trans-

version distribution modes of mutation spectrum

demonstrates the similarity between tumors and cell lines

in four breast cancer subtypes. High frequent C > T and

C >G transitions are observed in both tumors and cell

lines, while few A > T happens; Basal-like tumors and cells

show the high concordance. These results were confirmed

by Philip J. et al. [22]. They suggested that the underlying

mutation mechanism is related to transcription-coupled

nucleotide excision repair (NER). NER removes bulky

DNA adducts that distort the DNA double helix and intro-

duces a strand bias for mutation. However, little is known

about the trans-version processes of mutation.

In analyzing the cancer landmark genes, gene PIK3CA

and TP53 in cell lines are the top 2 mutated genes that

tumors have [26]. In addition, Luminal A subtype in cell

lines possess hyper mutations in three genes GATA3,

PIK3CA, and MAP3KI. HER2 subtype cell lines have

72 % and 39 % mutation rates for TP53 and PIK3CA,

respectively. In the recent report [26], similar results in

tumors were reported, in which Luminal A is dominated

with a high PIK3CA mutation frequency and Luminal B

had high PIK3CA and TP53 mutation frequency. HER2

cell lines have a high PIK3CA and TP53 mutations

frequency in company with HER2 amplification [26]. In

addition, important drug biomarkers, such as BRAF,
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b Whole score between cell lines and tumors according to 4 different molecular dataset’s correlation
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ERBB2 (HER2), KRAS, have very low somatic mutation.

All these evidences suggest that the cancer cell lines have

very similar CNVs and gene mutations patterns as tumors.

On the other hand, cell lines have more genetic aberrations

than primary tumors. Amplification, deletion and mutation

are more frequent in the cell lines than in the tumors. This is

consistent with a similar study in ovarian cancer [8]. One po-

tential interpretation is that cell lines may have transformed

numerous passages over the period of cell culture time or get

contaminated with stromal cells [10]. Another interpretation

could be that the cell line is derived predominantly from

early-stage tumors or pleural effusions [10].

c) In protein expression-based comparison, breast can-

cer subtype proteins ER, PR and HER2 have a high

consistence in cell lines and in tumors. RPPA can

identify breast cancer subtypes clearly and accurately

not only in cell lines but also in tumors according to

these protein statuses. RPPA is a sensitive and accur-

ate technology to evaluate protein expression and

activities. It helps the target identification, validation,

and drug discovery [29, 30]. Some cell lines, T47D,

BT483, and AU565, have much closer protein ex-

pression than the popular MCF7 cell does. On the

other hand, protein expression correlation between

cell lines and tumors in breast cancer vary greatly

ranging from −0.1 to 0.4, it is also true in the same

subtype cell lines and the variation is particularly

high investigated in the basal-like subtype. The

results were supported by Sorger et al. [31], who

investigated the immediate-early signaling that

regulates the AKT (AKT1/2/3) and ERK (MAPK1/3)

pathways in different breast cancer cell types. They

found that cell lines have diverse to ligand sensitivity

and signaling biochemistry. In addition, they found

that the basal-like cells have the largest variations in

responding to growth factors while HER2amp cell

lines have the least variations [31]. Basal-like breast

cancer is a highly heterogeneous group without

proper drug targets yet. Brian D. et al. investigated

the subtypes for basal-like breast cancer and preclin-

ical models for targeted therapy selection [5]. Ac-

cording to BRCA1, AR, PIK3CA and PTEN

mutations, drugs are selected in cell lines to predict

preclinical TNBC targeted therapies.

d) There are many complicated post-transcriptional

mechanisms in turning mRNAs into proteins.

According to correlation analyses between gene

expression and phosphorylated protein expression

in both cell lines and tumors, significant results

are found that important drug targets in breast

cancer, such as ESR1, PGR, HER2, EGFR and AR

show high correlated mRNA and protein levels.

High mRNA-protein correlation. Two oncogenes

GATA3 and RP56KB1 with high consistency

correlation between mRNA and protein expression

become a promising potential drug targets. On

the other hand, the gene expression variation at

the mRNA level is not necessarily consistent with

its protein level, such as genes TP53, KDR,

DECAM1, which has been well documented in

the literature [32, 33]. Most interestingly, the

mRNA-protein correlation patterns comparing cell

lines with primary tumors show a great deal of

consistency among 38 investigated genes. How-

ever, the gene expression amount is irrelevant to

the translation processing from mRNA to protein

directly.

e) In the whole score overall comparison, cell lines and

tumors show high gene expression-based correlations,

but the correlations in mutation and protein expression

level are low. The possible reason is that mutation data

is discrete, and mutation rate is low.

According to PubMed search builder (http://www.pub-

med.org) in year 2015, the number of citations for all

breast cancer cell lines at CCLE is sorted (see Fig. 7).

The most commonly studied cell lines are MCF-7,

MDA-MB-231, MDA-MB-468 and SK-BR-3. They each

have more than 600 PubMed citations. However, the

correlation between these cell lines and tumors lies in

the middle according to a total score of four molecular

profile analyses. On the other hand, less popular cell

lines, such as BT483, T47D, MDAMB453, are in the top

3 for representing breast tumors.

f ) Breast cancer subtypes in tumors and cell lines. The

breast cancer cell line classification provides a cell

modeling system to primary tumors. Our study

addresses the classification results for cell lines and

tumors based on PAM50 (Additional file 1: Table S1

and S2). Although some classification results are not

consistent with the known classification in cell lines

and tumors, the whole subtype’s concordance

reaches more than 60 %. Any cell line’s usage as a

tumor’s model depends upon its subtype’s

speculation. A hypothesis based on gene expression

will lead to different cell selection versus another

hypothesis based on mutation.

Conclusion

In this paper, a comprehensive comparison in CNV, muta-

tion, mRNA expression and protein expression between

CCLE breast cancer cell lines and TCGA primary breast

tumors is conducted and presented. The following are our

primary conclusion. (1) PAM50 gene expression differen-

tiated four major breast cancer subtypes, such as Luminal

A and B, HER2amp, and Basal-like, in both cells and
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tumors. Using whole genome expression arrays, strong

correlations are observed between cells and tumors. (2)

Consistent CNV patterns are observed between tumors

and cells across the chromosome. High C > T and C >G

trans-version rates are observed in both cell lines and tu-

mors, while cells have slightly higher somatic mutation

rates than tumors. (3) Although the ER/PR/HER2 show

the consistent patterns between cells and tumors, the

other proteins in the RPPA platforms do not. Clustering

analysis on protein expression data can reasonably recover

the breast cancer subtypes in both cells and tumors. How-

ever, low correlations were observed between cells and tu-

mors in phosphorylated proteins. (4) Nearly 50 % gene

expressions are not consistent with their protein levels

both in tumors and cell lines. The high and low of gene

expression is irrelevant to the translation processing from

mRNA to protein directly. Nevertheless, important drug

targets in breast cancer, such as ESR1, PGR, HER2, EGFR

and AR possess highly correlated in mRNA-protein ex-

pression both in tumors and cell lines. (5) A total similarity

score developed from the four correlations among four

molecular profiles suggests that cell lines, BT483, T47D

and MDAMB453 have the highest similarity with tumors.

Methods
Data collection

Four levels of molecular profiles: mRNA gene expression,

CNV, mutation, and protein expression, were retrieved

from TCGA, CCLE and GEO (Table 1). The study cohort

of breast cancer consists of 1375 patients and 68 cell lines.

Tumors data and annotations were downloaded from

TCGA data portal (https://gdc-portal.nci.nih.gov/) with

tumor matched selections and level 3 data. DNA exome

sequencing data was available from 967 tumors. mRNA

expression by AgilentG4502A_07_3 platform test was

collected for 530 samples, while copy number alteration

was detected using Affymetrix 6.0 single nucleotide poly-

morphism array (SNP- array) in 1033 tumors, and protein

expression by RPPA in 197 tumors was obtained. The

total number of breast cancer cell lines in CCLE was 59

[7, 13]. DNA copy number data (59 cell lines), mutation

data (51 cell lines), mRNA expression data (56 cell lines)

and their annotations originate from CCLE websites

(http://www.broadinstitute.org/ccle). According to refer-

ence [26], 38 cell lines of RPPA data was downloaded. ER,

PR, and HER2 genes statuses in cell lines are found from

references [5, 10, 34–36]. To compare the mRNA expres-

sion values between cell lines and tumors of breast cancer,

the same platform datasets in tissue were downloaded

from the GEO data set (GSE41998). It consisted of 279

tumor samples [37] with the entity histopathology infor-

mation. Table 3 shows all of the cell lines samples annota-

tion and classification information which used in this

paper. Additional file 1: Tables S1–S3 lists all samples

annotation of cell lines and patients in this paper.

Samples are classified as different subtypes

Breast cancer classification, in clinic, is measured according

to these features: histological type, tumor grade, lymph

node status and markers, such as oestrogen receptor (ER),

progesterone receptor (PR) and human epidermal growth

factor receptor 2 (HER2) [4, 6]. Breast cancer could be clas-

sified into at least four subtypes known as Luminal A, Lu-

minal B, HER2-enriched and Basal-like (triple negative,TN),

according to molecular characteristics which are summa-

rized in Table 2.

PAM50 (Prediction Analysis for Microarrays) test is a risk

model to identify the intrinsic subtypes in recent 5 years ac-

cording to 50 gene expressions, including gene ESR1(ERα),

PGR(PR) and ERBB2(HER2) [4]. This technique is based

on Nano-string counter technology [38, 39]. PAM50 ana-

lysis was performed in R following the instructions therein

[40]. Here, a threshold of 4.0 was chosen based on the false

discovery rate, resulted in the 50-gene classifier. For the

sake of missing data imputation, the status of ER, PR,

HER2 and the PAM50 subtype calls were regarded as the

subtype’s classification reference of breast cancer in this

paper. If the sample status of ER, PR, and HER2 is known,

samples classification of breast carcinoma is referenced

to Table 2. Otherwise its subtype is assigned by mRNA

gene expression-based PAM50 prediction, Additional

file 1: Tables S1 and S2 provide all the classification

information.

Data processing

mRNA expression analysis and clustering between cell lines

and tumors

All raw files of microarray mRNA expression, in the form

of ‘CEL’ files, were downloaded from GEO GSE36133 and

GSE41998. These raw data were normalized by the Affyme-

trix Microarray Suite 5.0 (MAS5.0) algorithm in accordance

with background adjustments, scaling, and aggregation to

remove non-biological elements of the signal. Common

22,267 probe sets, corresponding to 14,970 genes, are used

comparison analysis for cell line and tumors. All samples in

cell lines and tumors are divided into four subtypes group

based on ER, PR, HER2 status: luminal A, luminal B,

HER2-enrichment and Basal-like as the description before

had shown in Additional file 1: Tables S1 and S2. Mean

correlation value was obtained for each cell line and tumor

in R platform by Pearson correlation analysis. Hierarchy

clustering is analyzed between cell lines and tumors of

breast cancer in GENE-E software.

DNA copy number data analysis

A total copy number of changes of TCGA 1033 tumors

and CCLE 59 cell lines was detected using Affymetrix
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Table 3 Cell lines annotation of breast carcinoma

Cell line name Gender Hist subtype1 Source ER PR Her2 PAM50 mRNA Our classification

AU565 F ATCC - - + Her2amp Her2amp

BT-20 F ductal_carcinoma ATCC - - - Basal-like Basal-like

BT-474 F ductal_carcinoma ATCC + + + Luminal B Luminal B

BT-483 F ductal_carcinoma ATCC + + - Luminal A Luminal A

BT-549 F ductal_carcinoma ATCC - - - Basal-like Basal-like

CAL-120 F DSMZ - - - Basal-like Basal-like

CAL-148 F ductal_carcinoma DSMZ - - - Luminal B Basal-like

CAL-51 F DSMZ - - - Basal-like Basal-like

CAL-85-1 F DSMZ - - - Basal-like Basal-like

CAMA-1 F ATCC + - - Luminal B Luminal A

DU4475 F ATCC - - - Basal-like Basal-like

EFM-19 F ductal_carcinoma DSMZ + + - Luminal B Luminal A

EFM-192A F DSMZ + - + Her2amp Luminal B

EVSA-T F DSMZ + - + NON Luminal B

HCC1143 F ductal_carcinoma ATCC - - - Basal-like Basal-like

HCC1187 F ductal_carcinoma ATCC - - - Basal-like Basal-like

HCC1395 F ductal_carcinoma ATCC - - - Basal-like Basal-like

HCC1419 F ductal_carcinoma ATCC - - + Her2amp Her2amp

HCC1428 F ATCC + + - Luminal B Luminal A

HCC1500 F ductal_carcinoma ATCC - - - Luminal A Basal-like

HCC1569 F metaplastic_carcinoma ATCC - - + Basal-like Her2amp

HCC1599 F ductal_carcinoma ATCC - - - Basal-like Basal-like

HCC1806 F ductal_carcinoma ATCC - - - Basal-like Basal-like

HCC1937 F ductal_carcinoma ATCC - - - Basal-like Basal-like

HCC1954 F ductal_carcinoma ATCC - - + Her2amp Her2amp

HCC202 F ductal_carcinoma ATCC - - + Her2amp Her2amp

HCC2157 F ductal_carcinoma ATCC - - - Basal-like Basal-like

HCC2218 F ductal_carcinoma ATCC - - + Luminal A Her2amp

HCC38 F ductal_carcinoma ATCC - - - Basal-like Basal-like

HCC70 F ductal_carcinoma ATCC - - - Basal-like Basal-like

HDQ-P1 F ductal_carcinoma DSMZ - - - Basal-like Basal-like

HMC-1-8 F HSRRB NON Luminal A

Hs 274.T F ATCC Basal-like Luminal B

Hs 281.T F ATCC Basal-like Her2amp

Hs 343.T F ATCC Basal-like Her2amp

Hs 578 T F ductal_carcinoma ATCC - - - Basal-like Basal-like

Hs 606.T F ATCC Luminal A Luminal B

Hs 739.T F ATCC Basal-like Basal-like

Hs 742.T F ATCC Luminal A Luminal A

JIMT-1 F ductal_carcinoma DSMZ - - Basal-like Her2amp

KPL-1 F ductal_carcinoma DSMZ Luminal A Basal-like

MCF7 F ATCC + + - Luminal A Luminal A

MDA-MB-134-VI F ductal_carcinoma ATCC + - Luminal A Luminal A

MDA-MB-157 F ductal_carcinoma ATCC - - - Basal-like Basal-like
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6.0 single nucleotide polymorphism array (SNP 6.0

array) across 28,918 genes. Copy number was measured

by a probe corresponding to a segment. They were then

inferred and normalized based upon specific linear cali-

bration curves. The circular binary segmentation (CBS)

algorithm was used to normalize the segmentations

(generally, log2(CN/2)) for further analysis. These seg-

mentations were used to identify focal amplification/de-

letions and arm-level gains.

Fraction genome altered calculation CNVs correspond

to relatively large regions of the genome that have been de-

leted and inserted. To quantitate the extent of the genomic

instability in each sample, we calculated the Fraction of Gen-

ome Altered (FGA, the fraction of genome lost and gained)

as formula (1). The equation represents that sum lengths of

all segments (L(i)) whose copy number (CN) segment is

above the set threshold (T) and divide by sum of lengths of

all segments (L(i)) [8]. Hence, the length of a segment having

value equal to or greater than a set threshold are added and

are divided by the sum of length of all segments.

FGA ¼
X

CNij j>T

L ið Þ=
X

L ið Þ ð1Þ

Here, the threshold T is set to 0.2 for tumor samples

and 0.3 for CCLE cell line samples. The threshold values

are based on the average distribution density after sam-

ples CNV analysis. Cell lines always keep a copy number

hyper-mutation degree than tumors’.

Copy number correlation calculation With the help of

Bioconductor package called ‘CNTools’ [41], these seg-

ments are mapped to corresponding gene region across

28,918 genes for both TCGA data and CCLE data, seg-

ments file is converted into gene files,then is used for next

step correlation analysis. In order to reduce data contam-

ination, only select the top 10 % CNV in 2094 genes seg-

ments mean for cross-Pearson’s-correlations calculation

between 58 cell lines and 1049 tumors.

DNA exome mutation analysis

The mutation data was obtained directly from DNA se-

quence mutation annotation format (.maf) files where

Table 3 Cell lines annotation of breast carcinoma (Continued)

MDA-MB-175-VII F ductal_carcinoma ATCC + - Luminal B Luminal A

MDA-MB-231 F ATCC - - Basal-like Basal-like

MDA-MB-361 F ATCC + + + Luminal B Luminal B

MDA-MB-415 F ATCC + - - Luminal B Luminal A

MDA-MB-436 F ATCC - - - Basal-like Basal-like

MDA-MB-453 F ATCC - - - Luminal B Her2amp

MDA-MB-468 F ATCC - - - Basal-like Basal-like

SK-BR-3 F ATCC - - + Her2amp Her2amp

T-47D F ductal_carcinoma ATCC + + - Luminal B Luminal A

UACC-812 F ductal_carcinoma ATCC + - + Her2amp Luminal B

UACC-893 F ductal_carcinoma ATCC - - + Her2amp Her2amp

YMB-1 F HSRRB + - - Luminal B Luminal A

ZR-75-1 F ductal_carcinoma ATCC Luminal A Her2amp

ZR-75-30 F ductal_carcinoma ATCC + + - Her2amp Luminal A

HCC2185 - - - NON Basal-like

HMEL NON Basal-like

HCC3153 - - - NON Basal-like

ZR75B + - - NON Luminal A

600MPE + - - NON Luminal A

SUM1315MO2 - - NON Basal-like

SUM149PT - - - NON Basal-like

SUM159PT - - - NON Basal-like

SUM225CWN - - + NON Her2amp

LY2 + - - NON Luminal A
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Illumina GA platform is used to test. In TCGA, 997 breast

invasive cancer Level 2 somatic data is bulk downloaded

and hybrid capture 1650 genes in CCLE 59 samples are

obtained. According to software ANNOVAR gene-based

annotation [21], gene mutation function is reported accord-

ing to the 1000 Genomes Project and dbSNP database,

somatic and germline mutation are identified in CCLE.

Mutations are limited to somatic mutations and functional

mutations. Hence intronic, silent and other mutations were

ignored and only exonic mutations were considered.

Mutation frequency calculation Gene mutational fre-

quency can be described as a ratio of total number of gene

mutations in samples to total number of samples. Actually,

it is the measure of gene mutations probability in the breast

cancer population.

Mutation rate calculation The mutation number of

bases for TCGA are detected from the bed files. The bed

file contains a number of bases covered for each chromo-

some, in form of start and end location. Subtracting end

from start gives number of bases covered by the reads. All

bases obtained for each sample are summed together to ob-

tain a whole number of bases covered, it is the given sample

mutations rate per million bases (Mb). Bed files derive from

‘Wig’ format file. ‘Wig’ provides the number of reads for

each region. In case of CCLE, the file can be downloaded

from CCLE data portal. To TCGA, it is available from Syn-

apse websites, a research-sharing platform (https://www.sy-

napse.org/#!Synapse:syn1695394). Hence samples or gene

mutations rates can be calculated through summing up all

bases where read covered as mutations per Mb.

Mutation allele spectrum calculation The patterns of

six trans-version distributions were searched in the se-

quence annotation files from CCLE and TCGA irrespec-

tively by R programming. Then, the mutation allele mode

was obtained in each of the subtypes of breast tumors and

cell lines. The correlation was calculated as mutation allele

spectrum in each subtype between cell lines and tumors by

Pearson-correlation method.

Proteins phosphorylation expression analysis and clustering

All basal phosphorylation and protein abundance data were

obtained by RPPA technology from reference [19] and

TCGA. There are 70 phosphoproteins across 38 cell lines

of breast cancer that were generated by RPPA technology

and pre-processed by the Gordon Mills lab at MD Ander-

son. Seventy phospho-proteins in 197 patient’s tumor of

breast cancer were collected from TCGA in its Level 3

dataset. The common 50 protein expressions across 38

breast cancer cell lines and 197 TCGA tumors were used

as comparison analysis between cell lines and tumors. The

Pearson correlation method and hierarchy clustering was

used to analyze and compare the similarity and non-

similarity between cell lines and tumors in breast cancer.

The result about how cell lines are close to its correspond-

ing tumors are shown in Additional file 1: Table S6 based

on 50 phosphor-proteins. In mRNA and its 50-protein

phosphorylation comparison for cell lines and tumors, a

gene has multiple isoforms while a protein phosphorylation

has multi-sites. All forms of mRNA and its phosphorylation

protein are compared with Pearson correlation, 38 genes’

average correlation coefficient was calculated and com-

pared between cell lines and tumors in Fig. 11.

The cell line suitability score with breast tumors

The extent to which the breast cancer cell lines match

genetic characteristics shared by the TCGA tumors was

assessed using a whole score by formula (2). The score

can catch a cell line’s whole similarity by four molecular

profiles feature to tumors in breast cancer.

Score ¼ Aþ Bþ Cþ D ð2Þ

Where A is the gene expression similarity between cell lines

and tumors by Pearson-correlation; B is the correlation

with CNV segment mean of breast tumors; C is the correl-

ation of genes mutation variation with breast tumors; D is

the protein expression-based correlation with tumors in

breast cancer. The score serves to identify a better or

poorer cell lines model of breast cancer in entity molecular

level and rank the graduate.

Software tools

All data arranging was operated on Ubuntu Linux operat-

ing system by shell scripting programming. R and

MATLAB was used to perform statistical analysis and

plotting graphs [42]. Integrative Genomics Viewer (IGV)

tools help to visualize large integrated data sets in a single

frame and also supports zooming in to a particular

chromosome or a certain region of the chromosome, and

thus IGV (version 2.3) was used to create copy number

profile plots [43]. GENE-E is a matrix visualization and

analysis platform designed to support visual data explor-

ation. Hierarchy clustering analysis used by GENE-E soft-

ware on website www.broadinstitute.org/cancer/software/

GENE-E/.

Additional files

Additional file 1: Table S1. The list of TCGA tumor samples used on

each platform with associated subtype calls from each technology platforms,

and clinical data. Table S2. The list of cell lines samples used on each

platform with associated subtype calls from each technology platforms, and

its annotation data. Table S3. The list of tumors samples from GEO used on

gene expression comparison with associated ER, PR, HER2 status. Table S4.

Mutation rate per Mb in cell lines and tumors in breast cancer. (Common

genes). Table S5. Top 10 % genes of copy number variation in cell lines and
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tumors. Table S6. The comparison of phosphorylation protein vs gene

expression in cell lines and tumors. (XLSX 2941 kb)

Additional file 2: Table S7. Correlation coefficient r across 4 genomics

level comparison in breast cancer. (XLSX 1527 kb)
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