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ABSTRACT

Mucosal human papillomaviruses (HPVs) are etio-

logical agents of oral, anal and genital cancer.

Properties of high- and low-risk HPV types cannot

be reduced to discrete molecular traits. The E2

protein regulates viral replication and transcription

through a finely tuned interaction with four sites at

the upstream regulatory region of the genome. A

computational study of the E2–DNA interaction in all

73 types within the alpha papillomavirus genus,

including all known mucosal types, indicates that E2

proteins have similar DNA discrimination properties.

Differences in E2–DNA interaction among HPV types

lie mostly in the target DNA sequence, as opposed

to the amino acid sequence of the conserved DNA-

binding alpha helix of E2. Sequence logos of natural

and in vitro selected sites show an asymmetric

pattern of conservation arising from indirect read-

out, and reveal evolutionary pressure for a putative

methylation site. Based on DNA sequences only,

we could predict differences in binding energies

with a standard deviation of 0.64 kcal/mol. These

energies cluster into six discrete affinity hierarchies

and uncovered a fifth E2-binding site in the genome

of six HPV types. Finally, certain distances between

sites, affinity hierarchies and their eventual changes

upon methylation, are statistically associated with

high-risk types.

INTRODUCTION

Human papillomaviruses (HPVs) are widespread patho-
gens that infect epithelia (1,2). There are over a hundred

HPV types, of which roughly half can infect mucosal
tissues and the other half produce common skin warts.
All mucosal HPV types belong to the alpha papilloma-
virus genus, together with twelve cutaneous HPV types
and two simian papillomaviruses (3,4). Mucosal HPV
types are the etiological agents of cervical cancer, the
second most common cancer in women with more than
200 000 deaths per year worldwide, and are also a
causative agent of vaginal, anal, penile, and head and
neck cancer (1,5). Mucosal HPV types differ widely in
their oncogenic potential, with 19 types classified as ‘high-
risk’ (types 16, 18, 26, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58,
59, 66, 68a, 73, 82, 82subtype) and 13 as ‘low-risk’ (types
6, 6a, 6b, 11, 40, 42, 43, 44, 54, 61, 70, 72 and 81)
according to epidemiological evidence (2). Two prophy-
lactic vaccines against types 6, 11, 16 and 18 have recently
become available (6). However, they are unlikely to be
introduced in the short term in developing countries,
which account for 80% of the deaths due to cervical
cancer (6). Moreover, it is not clear whether they protect
against infection with all high-risk types and cannot cure
the millions of people that are already infected. Therefore,
there is still a need for understanding the oncogenicity of
papillomaviruses in more detail.

HPVs are small viruses with an 8 kb double-stranded
DNA genome that typically codes for only eight proteins
(7). The E2 protein is a multifunctional polypeptide that
plays a crucial role in HPV replication (8), regulation of
transcription from the early promoter (7,8), and genome
segregation (8). It is a multidomain protein formed by two
globular domains linked by a flexible ‘hinge’ region (8).
The C-terminal domain (E2C) functions as a dimerization
(9,10) and DNA-binding domain (8,11) (Figure 1A).
Several groups have studied the binding to DNA of E2
proteins from alpha HPV types 6, 11, 16, 18, 33 and
51 (8,12–29). All of these domains bind a pseudopalin-
dromic target site with the consensus sequence

The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors

*To whom correspondence should be addressed. Tel: +54 11 5238 7500 ext. 3209; Fax: +54 11 5238 7501; Email: gpratgay@leloir.org.ar

� 2007 The Author(s)

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/n
a
r/a

rtic
le

/3
6
/3

/7
5
6
/1

3
7
7
8
3
2
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



aACCg(A/T)4cGGTt, where capital letters indicate
strongly required bases, small letters weakly required
bases and (A/T)4 a four-base long spacer often rich in
A or T (8). The bases in the spacer do not make direct
contact with the protein but contribute to the free energy
of binding by indirect readout (8,12,16–19,30–36). The
E2–DNA interaction is an important model system for
the study of such effects in protein–DNA complexes
(8,12,16–19,30–36). Strong binding to sequences not
matching the consensus has also been described (27).
E2 binds DNA as a homodimer (Figure 1A), with a helix
of each monomer contacting two consecutive major
grooves of its target site (8,19). The protein side chains
contribute in an additive manner to the free energy of
binding (22,23).
The E2 protein binds to four conserved sites (E2-BS) in

the upstream regulatory region (URR) of the alpha
papillomavirus genome (7), numbered according to their
distance to the early promoter (Figure 2A). The function
of each site in alpha HPV types 6, 11, 16, 18 and 31 has
been studied by site mutation and deletion in replication
and transcription assays. Binding of E2 to E2-BS1,
E2-BS2 and E2-BS3 recruits the E1 protein to the origin
of replication. E2-BS2 is the most important site for this
function, followed by E2-BS1 and E2-BS3 (27,37–42).
Binding of E2 to E2-BS4 induces transcription from the
early promoter (43–45), leading to production of early
viral proteins, including E2 itself and the oncogenic
proteins E6 and E7. Unregulated transcription from the
early promoter, usually due to disruption of the E2 gene
upon integration of viral DNA into the host genome, leads
to the accumulation of excessive amounts of E6 and E7
and is associated with cancer. Binding of E2 to E2-BS1,
E2-BS2 and E2-BS3 represses transcription from the early
promoter through displacement of Sp1 and TBP from
their binding sites (Figure 2A), keeping the levels of E6
and E7 under control. E2-BS1 is the most important site
for this function, followed by E2-BS2 and E2-BS3
(27,41,43–48).
The E2–DNA interaction can be regulated by methyla-

tion of CG dinucleotides within the target site. This
covalent modification is known to reduce the binding
affinity of E2 for its binding sites (14) and the transcrip-
tional activity of the protein (49). In vivo methylation can
also modify the accessibility of papillomavirus DNA
through chromatin remodeling (50). E2-BSs of types 16
and 18 are targeted by the host methylation machinery in
a degree that changes with the differentiation state of the
cell, the integrity of the viral genome and the progression
of disease (49,51–55). It is not known whether methylation
is a defense mechanism of the host, an integral part of the
life cycle of the virus or a disease-related event (49,51–55).
Binding of E2 to its four target sites is hierarchical

(7,17,20,44). The expression of E2 is finely regulated
during the HPV life cycle (56,57), leading to changes in
site occupancy that control transcription of early proteins
and replication (7,17,20,44). Since cellular factors that
compete with E2 for binding to the viral DNA have very
low relative affinities (58) and binding of E2 to adjacent
sites takes place with low cooperativity (58), the hierarchy
of binding can in principle be described using only the

Figure 1. Conserved features of the E2–DNA interaction. (A) Complex
of the c-terminal domain of the HPV18 E2 protein with the idealized
target DNA sequence CAACCGAATTCGGTTG. The two four-base
half-sites in direct contact with the protein are shown in red, the four-base
linker in silver and the two flanking bases in gold. The protein helices that
contact the DNA directly in green. (B) Sequence logo (63,68) of the
recognition helix for alpha papillomaviruses. Protein residues contribut-
ing more than 0.8 kcal/mol to the binding energy of HPV16 E2 (23) are
indicated with asterisks. (C) Correlation between the free energies of
binding of E2 proteins from HPV type 11 and 16 to four E2-BSs (open
triangle) (16,19,20) and of E2 proteins from HPV types 18 and 16 to
another set of four E2-BSs (filled square) (16,19,20). The correlation
R-values are 0.87 (16/11 pair, dashed line) and 0.91 (16/18 pair,
continuous line). The sequences of the DNA-binding helix of the three
proteins are also shown, with the side chains contributing more than
0.8 kcal/mol to the binding energy of HPV16 E2 (23) in bold.
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affinity of E2 for the E2-BSs. The hierarchy of sites is not
conserved between high- and low-risk HPV types and
could be related to the development of cancer (17,20).
Many studies have compared proteins from prototypi-

cal high- and low-risk types looking for biochemical
properties associated with the progression of disease. In
the case of the E2 protein, these properties include changes
in the nuclear localization signals (59), the mechanism of
DNA binding (25,28), the hierarchy of sites (17,20), and
tighter binding to DNA (60) and to p53 (61). To date, all
the work on the interaction of E2 with its target DNA has
focused on domains from a handful of HPV types. While
it is important to elucidate how the most prevalent and
oncogenic types function, a complete understanding of
papillomaviruses and their role on disease should include

all known types and integrate the full range of epidemio-
logical and biochemical data (62). The study of the
E2–DNA interaction in all HPV types would be a difficult
experimental task. Here, we present a computational
study on the E2–DNA interaction in all 73 known alpha
papillomavirus types. We improved the description of the
binding specificity of E2 using sequence logos (63) and
revealed a strong selection for a methylation site within
E2-binding sites. We showed that the affinity of E2 for its
target DNA can be accurately predicted from an align-
ment of natural sites and used this result to infer the
affinity hierarchy of sites for all types. Finally, we were
able to identify molecular features of the interaction that
are significantly over- and underrepresented in high-, low-
risk and cutaneous HPV types.

Figure 2. E2-binding sites in alpha papillomaviruses. (A) Schematic view of the upstream regulatory region of a prototypical alpha HPV genome.
Shown are the flanking ORFs, L1 and E6, the start of the early promoter and its TATA box, the four binding sites for the E2 protein, the binding
sites for the viral protein E1 and the host protein Sp1 and the silencer, enhancer and nuclear matrix attachment regions. (B) Sequence logos of the
four E2-binding sites. Sites are shown in the 50–30 direction. (C) Histograms of the number of bases between E2-binding sites.
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MATERIALS AND METHODS

Database of E2-binding sites

All alfa papillomavirus genomes were obtained from the
International Committee on Taxonomy of Viruses data
Base (64) (taxonomy ID: 151340, see Table S1 for
accession codes). Genomes with more than one entry
were tested for redundancy with BLAST 2 Sequences (65).
In most cases, the starting point for numbering of the
genome falls inside the URR, which splits the upstream
regulatory region into two stretches at the beginning and
end of the given sequence. We aligned all genomes using
ClustalW (66) and extracted the two partial URR
sequences taking the E6 and L1 genes as reference. We
then joined the two stretches to obtain a complete URR,
which was degapped and realigned. Finally, the
E2-binding sites were extracted and aligned manually.
We used the alignment editors BioEdit v7.0.8 (Tom Hall,
Ibis Biosciences) and Jalview v2.2.1 (67) for sequence
manipulation.

Sequence logos

Sequence logos were generated with WebLogo (63,68) and
the aligned DNA or protein sequences. The height of the
stack of letters at a position i is calculated as:

Rsequence ið Þ ¼ log2 sð Þ þ
X

f b,ið Þ log2 f b, ið Þð Þ �
s� 1

2 � ln 2ð Þ � n

1

where s is the number of symbols (4 for DNA and 20 for
proteins) and f(b,i) are the fractions of each base or amino
acid at position i. The third term is a small sample
correction, where n is the number of sequences in the
alignment. The maximum value of Rsequence is 2 for DNA
and 4.32 for proteins, and the minimum is zero in both
cases. The height of each letter within a stack is
proportional to its abundance:

Height b, ið Þ ¼ f b, ið Þ � Rsequence ið Þ 2

Two Sample Logo (69) was used for comparing the in vivo
logo with the in vitro logo. The software takes as input
a sample alignment and a background alignment and
identifies positions that are enriched or depleted in a
given base. We generated an alignment of in vitro selected
sites using the reported base frequencies (27) and used
it as a sequence background. We used the alignment
in vivo sites as sample. We used the binomial test and a
P-value cutoff of 0.05 to identify differences between the
alignments.

Computational prediction of binding free energies

We have used the theory of Berg and von Hippel (70–72)
and the alignment of natural E2-BSs to predict the binding
energy of E2 to E2-BSs, relative to the binding energy of
the consensus E2-BS. All calculations were carried out
using in-house perl scripts and ProFit (Quantumsoft,
Zurich). We used the direct sequences of E2-BS1 and
E2-BS2 and the reverse complementary sequences of
E2-BS3 and E2-BS4 in order to align all sites in the

same orientation (see Results section). The theory assumes
that the only selection pressure at natural binding sites is
to have a binding energy above a threshold dictated by the
amount of free protein in the cell and the required binding
levels. Positions 4,5 of the E2-BS were excluded from our
calculation because of the selection pressure for a
methylation site at these bases (Figure 3A). Doing the
calculation with the reported base frequencies from
in vitro selection (27) does not change the results
significantly (data not shown), confirming that selection
for binding is the main evolutionary pressure at natural
E2-BSs. A second assumption of the theory is that base
pairs evolve independently. We used the Enologos soft-
ware (73) to check that correlations between base-pair
frequencies in natural E2-BSs are very weak or do not
exist at all (data not shown).
The expected statistical noise in the correlation between

experimental and calculated relative free energies of
binding is around 1 kcal/mol (70–72). Thus, we chose
experimental datasets that span at least 2 kcal/mol in
order to be able to observe a correlation. Each experi-
mental dataset was measured under different solvent
conditions (16,18–20,27). Since such changes influence
the sequence discrimination capacity of the E2 protein
(12), we made a separate correlation for each dataset.
We also used the Berg–von Hippel theory to look for

unreported E2-BSs in the URR of alpha papillomaviruses.
We calculated the relative binding energy of all possible
sites of 14 bases using the base frequencies from the
alignment of natural E2-BSs. In some cases, the base
present in the putative binding site was absent from the
corresponding position in the alignment of natural sites.
Although the contribution of such a base to the binding
energy cannot be calculated in a straightforward manner,
it can be assumed to be highly detrimental to binding.
Thus, we postulated that sites with bases not present in
natural sites were not E2-BSs. We considered a sequence
to be an E2-BSs if its predicted relative binding energy was
lower than 4 kcal/mol, that is, a KD up to 830-fold worse
than the consensus sequence. This setup detects 95% of
the known E2-BSs.

Clustering of predicted binding energies

We have used the k-means algorithm (74) to cluster alpha
papillomavirus types according to the predicted binding
energies of natural E2-BSs. Virus types are defined as i
points in a 4D space using the four predicted binding
energies. The algorithm uses as input the number of
clusters, j. First, it defines a centroid in the 4D space for
each cluster. Next, clusters are defined by associating each
point to the nearest centroid. Then, j new centroids are
calculated as the centers of mass of the clusters.
The association of each point and calculation of new
centroids are repeated until the centroids do not move.
This algorithm minimizes the sum of the square distances
J between the i data points xi and the j centroids cj:

J ¼
X

i

X

j

xi � cj
�

�

�

�

2
3
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This procedure will converge to a minimum that depends
significantly on the initial randomly selected cluster
centers. In order to reach the global minimum, we run
the procedure 1000 times until convergence and kept the
solution with the lowest J. We run the algorithm using the
software R (The R project for statistical computing,
http://www.r-project.org/).

Association studies

We tested the association between virus type genotypes
and phenotypes using the hypergeometric test (75). We
have a total population of 72 virus types, of which a
number x� 72 has a certain epidemiological property. We
draw from this population y� 72 types having a molecular
property, and z� (x, y) of them have the epidemiological
property of interest. We used the hypergeometric function
to calculate the probability of having z successes at
drawing without replacement of y objects from a total
population of 72, given that the success population is x. In
the case of a positive association, the P-value is defined as
the sum of the probabilities of having z or more successes.
Conversely, for a negative association, the P-value is

defined as the sum of the probabilities of having z or less
successes. A positive or negative association is reported if
the P-value is smaller than the chosen 0.05 cutoff. All
calculations were done using the hypergeometric function
implemented in MS Excel.

RESULTS

Low protein variability in the E2–DNA interaction

We have examined the conservation of the E2–DNA
interaction across alpha HPV types. Figure 1A shows the
complex of the E2 protein from HPV18 with its target
DNA (19). HPV6 and HPV16 E2 proteins form similar 1:1
complexes with modest changes in the quaternary
structure of the protein (8,22,28). The structures of the
isolated E2 proteins from HPV16 and HPV31 are also
conserved (8,24,32,76). The E2 recognition helix is the
main determinant of DNA binding (Figure 1A), (23). The
sequence logo (63) in Figure 1B shows the conservation of
residues in the recognition helix in alpha HPV types, in a
conservation scale that goes from 0 to 4.3 bits for proteins
(see Methods section). This region of the protein is highly
conserved, as indicated by the tall letter stacks that
approach the maximum conservation value (63). The eight
E2 residues that contribute more than 0.8 kcal/mol to the
binding energy of HPV16 E2 (23) are indicated with
an asterisk in Figure 1B. Four of them (N294, K297,
C298 and R302) are invariable in all 73 alpha papilloma-
viruses, and two (R300 and Y301) are more than 94%
conserved.

The absolute binding energy of E2 to DNA is conserved
across alpha HPV types. Remarkably, the dissociation
constants of E2 proteins from the types 6, 11, 16 and 18
from the ACCGAAAACGGT site, measured by different
laboratories and with different solvent conditions and
flanking nucleotides, vary only from 1.7 to 17 nanomolar
(12.0 to 10.6 kcal/mol in free energy of binding) (17–20).
We have also compared the sequence discrimination
ability of E2 proteins from HPV types 11, 16 and 18
(Figure 1C), that is, if the relative binding energies of
different E2-BSs are the same for different E2 proteins. We
have correlated the binding energies of E2 proteins from
HPV11 and HPV16 to a set of E2-BSs (triangles and
dashed line) (16,19,20) and of E2 proteins from HPV18
and HPV16 to a different set of E2-BSs (squares and
continuous line) (16,19,20) (Figure 1C). The correlation
R-values for the 16/11 and 16/18 datasets are 0.87 and
0.91, clearly showing that the three domains discriminate
between different DNA sites in a similar manner. The 11,
16 and 18 types are phylogenetically distant, belonging to
different alpha papillomavirus species (4). The overall
sequence identities for the DNA-binding domains of the
E2 proteins are 54% for the 16/11 pair and 61% for the
16/18 pair. Regarding the side chains that contribute more
than 0.8 kcal/mol to the binding energy of HPV16 E2 (23),
six of them are conserved in the three proteins and the
other two vary (Figure 1C). Overall, these results strongly
suggest that the sequence discrimination ability of E2
proteins is determined to a great extent by the side chains
of residues N294, K297, C298, R302, R300 and Y301,

Figure 3. Influence of CG methylation in the evolution of E2-binding
sites. (A) Top: Sequence logo for all four biological E2-binding sites.
Middle: Sequence logo from in vitro binding selection experiments with
HPV51 E2 (27). Bottom: Two sample logo, taking the biological logo
as sample and the in vitro logo as background. Displayed bases are
enriched in the biological sites compared with the sequences selected
in vitro. (B) Presence of putative methylation sites (CG dinucleotides) in
positions 4,5 and 10,11 for each of the four in vivo E2-binding sites.
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which are highly conserved in alpha papillomaviruses
(Figure 1B).

We conclude that, to a first approximation, the
differences in the E2–DNA interaction across alpha
HPV types are due to a great extent to changes in the
DNA part of the complex and not to the E2 protein. From
now on, we will focus our analysis in the variability of
the E2-binding sites in the HPV genome. Since the
function of each E2-binding site is also conserved across
types 6, 11, 16, 18 and 31 (27,37–48), we hypothesize
that phenotypical differences between types due to the
E2–DNA interaction will be due to differences between
their E2-binding sites.

Conservation and asymmetry of the four E2-binding sites

In this study, we have considered the E2-binding sites of
73 alpha papillomavirus types: HPV 2, 2a, 2isoC2, 3, 6,
6a, 6b, 7, 10, 11, 13, 13b, 16, 18, 26, 27, 27b, 28, 29, 30, 31,
32, 33, 34, 35, 35H, 39, 40, 42, 43, 44, 45, 51, 52, 53, 54, 55,
56, 57, 57b, 58, 59, 61, 62cand, 66, 67, 68a, 69, 70, 71, 72,
73, 74subtype, 77, 81, 82, 82subtype, 83, 84, 85cand,
86cand, 87cand, 89cand, 90cand, 91, 94, 94korean,
97, 97iso624, 102 and 106, PCPV1 and RHPV1 (see
Supplementary Table S1). We have extracted all sites
from the genomes and aligned them (see Methods
section). All four sites were present in all genomes
analyzed, with the exception of E2-BS2 in type
94korean. We have chosen to display the variability in
E2-binding sites using sequence logos for clarity (63,68).
Logos represent an alignment of DNA sites as a row of
letter stacks. The height of a stack is proportional to the
information content at that position of the alignment,
which can be taken as a measure of conservation. For
DNA, it takes values between 0 and 2 bits (see Methods
section). The heights of the letters within a stack are
proportional to the abundance of each base. On the other
hand, consensus sequences are limited to only one base
per position and thus display less information than
sequence logos (63).

The logos for the four E2-binding sites are displayed in
Figure 2B. E2-BS1, E2-BS2 and E2-BS4 are much more
conserved than E2-BS3. The logos of all sites comply with
the established consensus sequence aACCg(A/T)4cGGTt.
Both bases in the two palindromic half-sites making direct
contacts with the protein (direct readout) (23) and in the
four-base linker [indirect readout (16)] are significantly
conserved. To date, it is believed that all bases in the linker
bear similar importance. In spite of this, there is a clear
conservation gradient from the most conserved position 6
to the least conserved position 9 in E2-BS1, E2-BS2 and
from 9 to 6 in E2-BS4 (Figure 2B). E2-BSs are generally
asymmetric, with only 11 (4%) being full palindromes.
Due to this lack of symmetry, the direct and inverse
orientations of a site are not equivalent (70, 77–83).
E2-BS1 and E2-BS2 have a consensus linker sequence
AAA(A/T) in the 50–30 direction, while E2-BS3 and
E2-BS4 meet that consensus only when the reverse
complementary sequences are considered (Figure 2B).
Interestingly, the E2-BSs seem to be oriented in different
directions in the HPV genome. The results in Figure 2B

indicate that E2-binding sites differ in their levels of
conservation and their orientation, in agreement with their
different physiological roles.

Distances between E2-binding sites

The relative positions of the E2-binding sites in the alpha
HPV genomes could influence the cooperativity of
protein–DNA binding (58). We examined the conserva-
tion of the relative positions of the E2-binding sites in the
alpha HPV genomes (Figure 2C). The number of bases
between E2-BS1 and E2-BS2 is very conserved, ranging
only from 0 to 3 and being in most cases 1 or 2.
The distance between sites 2 and 3 is more variable, being
in most cases between 60 and 70 bases. Intriguingly, the
distance is 95 bases for 6 types, all of them cutaneous.
Finally, approximately 275 to 400 bases separate
E2-binding sites 3 and 4, without a preferred value. We
did not observe any correlation between the different
distances (data not shown). In conclusion, distances
between E2-BSs 1, 2 and 3 are evolutionarily restricted
in alpha papillomaviruses.

Evolutionary pressure for a CpGmethylation site within the
E2-binding site

The main evolutionary pressure at many DNA-binding
sites is to maintain the binding energy above a certain
threshold (70–72). We have investigated whether this is the
case for the alpha papillomavirus E2-binding sites by
comparing the naturally occurring sites with a set of sites
selected in vitro with affinity as the only constraint (27).
The top sequence logo in Figure 3A corresponds to all
naturally occurring E2-binding sites, using the reverse
complement sequences of E2-BS3 and E2-BS4 in the
alignment (see above). The middle logo in Figure 3A
corresponds to a set of sites resulting from in vitro
amplification and selection for affinity to HPV51 E2 (27).
The consensus in vitro site AACACAAATCGGTT
binds strongly to both HPV51 and HPV16 E2 domains
(27), suggesting that the results of the experiment can
be extrapolated to other alpha E2 proteins. There is a
qualitative agreement between in vivo and in vitro
selection in most positions of the site. However, the
most frequent bases differ at positions 4 and 5. We can
better visualize this difference using a two sample
logo (Figure 3A, bottom) (69). This logo displays the
bases that are overrepresented in the in vivo selected sites
relative to the in vitro selected sites. The main difference
between the two sets of sites is the presence of a CG
dinucleotide at positions 4,5 in the naturally occurring
sites. Thus, there seems to be evolutionary pressure for
conservation of a methylation site at positions 4,5 in the
E2-binding site.
Since each E2-BS has different effects on papillomavirus

replication, genome maintenance and transcription, we
looked for putative methylation sites at positions 4,5 of all
four E2-BSs. The CG dinucleotide is present in nearly all
E2-BS1, E2-BS2 and E2-BS4 and a majority of E2-BS3
(Figure 3B). A second CG dinucleotide is present at
positions 10,11 of the E2-binding site in both the in vivo
and in vitro logos (Figure 3A). This indicates that the
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second CG site is present in vivo due to affinity constraints,
although simultaneous evolution for a methylation site
cannot be excluded. The putative methylation site at
positions 10,11 is as conserved as the positions 4 and 5 in
E2-BS4 and E2-BS3 and less conserved in E2-BS1 and
E2-BS2 (Figure 3B). Overall, our results suggest that the
four E2-BSs would differ in their ability to be regulated by
methylation.

Computational prediction of the affinity of E2 proteins
for E2-binding sites

We have shown that binding affinity is the main
evolutionary pressure at 12 of the 14 positions of the E2
target DNA, while at the two remaining positions the
main evolutionary pressure is for the presence of a
methylation site and not for binding (Figure 3A). We
have chosen to study the evolution of these twelve
positions in terms of binding affinity and in a global
manner, rather than analyzing each position separately
with sequence logos. In this way, the results can be related
to the affinity hierarchy of the four binding sites and its
role in regulating viral replication and transcription.
We have quantified the evolutionary pressure for

binding at individual sites using the statistical mechanical
theory from Berg and von Hippel (70–72) (see Methods
section). Briefly, the theory assumes that (i) the DNA
target sites of a protein have been selected by evolution to
maintain binding affinity above a certain threshold and

(ii) the bases of the binding site make independent,
additive contributions to the free energy of binding. Given
these two postulates, there is a simple relationship between
the frequency of occurrence of two bases (i and j) at
a given position in the repertoire of natural sites and
the difference in their contributions to the free energy of
binding:

��Gbinding basei ! basej
� �

¼ R � T� � ln
f baseið Þ

f basej
� �

 !

4

Where R is the universal gas constant [1.987 cal/(molK)].
T� is a pseudotemperature term related to the tolerance of
the protein–DNA interaction to mutations and unrelated
to physical temperature (70–72). The exact value of T�

determines the slope of the correlations in Figure 4 but not
their R-value. In our calculations, T� was arbitrarily set to
298K (70–72). The difference in affinity between two sites
can be calculated by summing the differences in affinity
over all positions of the site:

��Gbinding sitei ! sitej
� �

¼
X

positions

��Gbinding basei ! basej
� �

5

This theory has been successfully applied to the quanti-
tative prediction of relative binding constants for several
protein–DNA interactions (70–72).

Figure 4. Correlation between observed and predicted free energies of binding for E2–DNA complexes for E2 proteins. (A) HPV type 16, data from
Ref. (18). (B) HPV type 16, data from Ref. (16). (C) HPV type 11, data from Ref. (20). (D) HPV type 18, data from Ref. (19). (E) HPV type 51, data
from Ref. (27). Units are kcal/mol in all cases. The binding energy of the consensus target sequence was arbitrarily set to zero. All other sequences
have positive predicted values of iiGbinding, indicative of a reduced predicted binding affinity. The total number of points is 38, the standard
deviation between observed and predicted values is 0.64 kcal/mol or 2.9-fold in KD.
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We have tested whether the Berg–von Hippel theory
holds for the interaction between E2 and its target DNA.
We extracted five sets of free energies of binding between
E2 proteins from HPV types 11, 16, 18 and 51 and four to
fifteen target sites from the literature (16,18–20,27). We
have calculated the binding energy of all sites relative to
the binding energy of the consensus sequence using the
alignment of all natural E2-BSs (see Methods section).
The binding energy of the consensus sequence was
arbitrarily set to zero. All other sequences have positive
predicted values of ��Gbinding, indicative of a reduced
predicted relative binding affinity. Positions 4,5 did not
evolve according to affinity constraints (see above) and
were excluded from the calculation. The correlation
between experimental and calculated relative binding
energies for five experimental datasets and four different
E2 proteins is shown in Figure 4. The correlation R-values
range from 0.74 to 0.96. The average standard deviation
between observed and predicted values is 0.64 kcal/mol
for 38 points, or 2.9-fold in KD. The performance of our
sequence-based method is close to the standard deviation
of 0.57 kcal/mol (16 points) obtained for the HPV16
E2 protein using structure-based modeling (16). The
remarkable agreement between experiment and theory
implies that E2-binding sites in the papillomavirus
genome evolve as postulated in the theory from Berg
and von Hippel. Furthermore, the success in predicting
relative binding energies for four different E2 proteins
using a model built from the binding sites of all alpha
papillomaviruses supports our approximation that E2
proteins have similar DNA discrimination properties. We
therefore propose that the theory can be used to predict
the relative binding affinity of E2 proteins for any
variation of an E2-binding site.

Six prototypical affinity hierarchies in alpha
papillomaviruses

Similarly, we have used the Berg–von Hippel theory to
calculate the affinity of E2 for all binding sites in alpha
papillomaviruses relative to the affinity for the consensus
sequence (see Methods section). E2-BS4 is the site
with the tighter binding, only 0.61� 0.53 kcal/mol
(average � standard deviation) worse than consensus. It
is followed by E2-BS2 (0.91� 0.69 kcal/mol), E2-BS1
(1.56� 1.47 kcal/mol) and E2-BS3 (1.94� 1.60 kcal/mol).
This hierarchy is in qualitative agreement with the
conservation levels in the logo for each site (Figure 2B).

A manual inspection of all affinity hierarchies revealed
the existence of several groups of very similar types. We
have clustered all virus types into hierarchy groups using
the k-means algorithm (see Methods section). In this
procedure, each virus type is represented by its four
predicted relative binding free energies. The types are
grouped by minimizing the sum of all differences between
the predicted energies and the group averages. Clustering
into less than six groups led to types with different
hierarchies being grouped together, indicating that five or
less groups were not enough to describe the data
adequately (data not shown). Clustering into more than
six groups led to two or more very similar groups,

indicating that types in these groups belong to the same
group (data not shown). The differences between the
predicted relative binding free energies of the clusters are
well above the 0.64 kcal/mol standard deviation of the
prediction (Figure 5), supporting the clustering procedure.
The distribution of the predicted changes in the free
energy of binding upon substitution of a single base of
the E2-BS show a continuous and broad distribu-
tion (Supplementary Figure 1). Thus, our model has the
potential to generate a continuum of affinity hierarchies.
We conclude that the discrete affinity hierarchies predicted
for the known E2 sites is not an artifact of our model but a
feature of alpha papillomavirus biology.
The outcome of clustering into six groups is shown in

Figure 5. Thirty-three of the 72 types belong to the first
group, in which E2-BS1, E2-BS2 and E2-BS4 have an
affinity close to that of the consensus sequence and
binding to E2-BS3 is clearly weaker (Figure 5A; high-risk
types 16, 35, 52, 53, 56, 66 and 73; low-risk types 6b, 40,
42, 43 and 44; cutaneous types 2, 2a, 2isoC2, 27 and 27b;
and types 13, 13b, 30, 34, 35H, 55, 57, 57b, 67, 71,
74subtype, 90cand, 91, 106, PCPV1 and RHPV1). For the
second largest group, all E2-BSs have a predicted relative
binding energy very close to that of the consensus
sequence (20 types, Figure 5B; high-risk types 18, 26, 33,
39, 45, 51, 58, 59, 68a, 82 and 82subtype; low-risk types 6,
6a, 11 and 54; cutaneous type 7; and types 32, 85cand, 97
and 97iso624). In the third largest group, E2-BS2 and
E2-BS4 have a good predicted relative binding energy and
E2-BS1 and E2-BS3 have less affinity for E2 (9 types,
Figure 5C; cutaneous types 3, 10, 28, 29 and 94; and types
84, 86cand, 87cand and 89cand). Four types belong to a
fourth group, in which E2-BS2 and E2-BS4 are predicted
to be good binders, E2-BS1 to bind E2 weakly and E2-BS3
to have only marginal affinity for the protein (Figure 5D;
low-risk types 61, 72 and 81; and type 62cand). In the
three types in the fifth group, all sites but E2-BS2 have a
good predicted relative binding affinity (Figure 5E; high-
risk type 31; low-risk type 70; and type 69). Finally, the
three types in the sixth group, E2-BS2 and E2-BS4 are
predicted to be good binders, E2-BS3 to bind E2 weakly
and E2-BS1 to have only marginal affinity for the protein
(Figure 5F; cutaneous type 77; and types 83 and 102).
Our results agree with the current knowledge on the role

of each site. In all hierarchies, the affinity of E2-BS4 is as
least as good as for other sites (Figure 5), ensuring that the
early genes of the virus are transcribed (43–45). E2-BS1,
E2-BS2 or both have also a good affinity in all hierarchies
(Figure 5), guaranteeing viral replication and the repres-
sion of oncogene transcription (27,37–48). E2-BS3, that
has a secondary role in both transcription and replication,
has a lower predicted affinity than the other three sites in
the most abundant hierarchy (Figure 5A).

A fifth E2-binding site in the alpha papillomavirus upstream
regulatory region

It is generally accepted that alpha papillomaviruses have
four E2-BSs in the upstream regulatory region of their
genome, while beta papillomaviruses may have five (84)
and bovine papillomavirus type 1 has eleven (85). On the
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other hand, E2-BS2 is absent from type 94korean (see
above). This prompted us to look for unreported E2-BSs
in the URR of alpha papillomaviruses. We have used the
Berg–von Hippel algorithm to predict the binding of all
possible 14-base sites in the URRs of all alpha papilloma-
viruses (see Methods section). Known E2-BSs of 95% have
predicted binding energies up to 4 kcal/mol worse than the
binding energy of the consensus sequence. If we use this
number as a cutoff, we predict six novel E2-BSs, in types
30, 44, 54, 61, 90 and 102 (Table 1), with predicted binding
energies ranging from 0.29 to 3.40 kcal/mol. The novel
E2-BS for HPV type 44 is known to bind the E2 proteins
from types 6, 16 and 18 with affinities ranging from 1.4 to
18 nM (17–19), with a binding energy 0.2 kcal/mol worse
than the consensus sequence (19). This agreement with
experimental data suggests that E2 binds the new predicted
sites with significant affinity. The position of the six sites is
fairly conserved: five of them are <30 bases 30 of E2-BS4,
and the other is <100 bases 50 of it. We tentatively name
these new sites as E2-BS5.

Possible association between molecular properties of the
E2–DNA interaction and epidemiology of alpha
papillomaviruses

The alpha papillomavirus genus includes all mucosal types
as well as 12 cutaneous types (2, 2a, 2isoc2, 3, 7, 10, 27, 27b,
28, 29, 77 and 94). Mucosal alpha papillomavirus types are

commonly classified as high-risk (types 16, 18, 26, 31, 33,
35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68a, 73, 82, 82subtype)
or low-risk (types 6, 6a, 6b, 11, 40, 42, 43, 44, 54, 61, 70, 72
and 81) according to the ratio of the odds of cervical cancer
in patients infected with a certain type and in HPV-negative
patients (2). We have tested whether the epidemiological
behavior of mucosal high-risk, mucosal low-risk and
cutaneous types is phenomenologically associated with

Figure 5. Six classes of relative binding affinity hierarchies for the E2–DNA interaction. For each group of types, we represent the average relative
predicted affinity and standard deviation for each site (thick black line, points) and the values for each type (high-risk types in red, low-risk types in
green, cutaneous types in blue and other types in grey). The types were grouped using the k-means algorithm (see Methods section). The binding
energy of the consensus target sequence was arbitrarily set to zero. All other sequences have positive predicted values of ��Gbinding, indicative of a
reduced predicted binding affinity. (A) High-risk types 16, 35, 52, 53, 56, 66 and 73; low-risk types 6b, 40, 42, 43 and 44; cutaneous types 2, 2a,
2isoC2, 27 and 27b; and types 13, 13b, 30, 34, 35H, 55, 57, 57b, 67, 71, 74subtype, 90cand, 91, 106, PCPV1 and RHPV1. (B) High-risk types 18, 26,
33, 39, 45, 51, 58, 59, 68a, 82 and 82subtype; low-risk types 6, 6a, 11 and 54; cutaneous type 7; and types 32, 85cand, 97 and 97iso624. (C) Cutaneous
types 3, 10, 28, 29 and 94; and types 84, 86cand, 87cand and 89cand. (D) Low-risk types 61, 72 and 81; and type 62cand. (E) High-risk type 31;
low-risk type 70; and type 69. (F) Cutaneous type 77; and types 83 and 102.

Table 1. Newly identified E2-binding sites

HPV type Sequencea Distance to site 4b ��Gbinding

(Predicted)c

(kcal/mol)

30 AACCAAAAAGGGTG 93 3.11
44 AACCGAAAACGGTT �15 0.29
54 AACCGAAACCGTTT Overlapping

site 4
2.48

61 GACCGAAACCGGTC �19 1.52
90 GACCGAAACCGGGA �2 3.40
102 GACCGAAACCGGTC �25 1.52

aIn the orientation with the best predicted energy. The sites from types
30, 44, 61, 90 and 102 are in the 30–50 direction, the site from type 54 is
in the 50–30 direction.
bDistance is negative if site 5 is closer to the early promoter than site
4 and positive otherwise.
cRelative to the consensus sequence.
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the molecular properties of the E2–DNA interaction using
the hypergeometric test (see Methods section). For
example, the distance between E2-BS1 and E2-BS2 is 2 in
43 of 72 types, and in 10 of the 19 high-risk types. We use
the hypergeometric probability distribution to calculate the
probability of picking 10 or more high-risk types by
choosing 43 types at random (75). If this probability is
lower than the chosen significance level (0.05), we can
conclude that the phenotype ‘high-risk’ is associated with a
distance of two bases between E2-BS1 and E2-BS2.

The results for the association between phenotypes and
molecular properties are shown in Table 2. High-risk types
are associated with the affinity hierarchy of E2-BSs in
Figure 5B, low-risk types with the affinity hierarchy in
Figure 5D and cutaneous types with the affinity hierarchy
in Figure 5C. Since a majority E2-BSs has two putative
methylation sites at positions 4,5 and 10,11 (Figure 3),
we have looked for the association of epidemiological
behavior with the absence of methylation sites (‘Methyl-
ation defects’). High-risk types are positively associated
with a missing methylation site in positions 10,11 of
E2-BS2 and positions 4,5 of E2-BS3 and negatively
associated with a missing methylation site in positions
10,11 of E2-BS1 and E2-BS3. Cutaneous types are
positively associated with a missing methylation site in
positions 10,11 of E2-BS1 and E2-BS3 and negatively
associated with a missing methylation site in positions 4,5
of E2-BS3. With respect to the number of bases between
sites, high-risk types are positively associated with the
presence of two bases between E2-BS1 and E2-BS2 and

negatively associated with the presence of a single base.
The opposite is true for cutaneous types. This group of
types is also positively associated with a distance of 95
bases between E2-BS2 and E2-BS3 (Table 2 and Figure 2).
We did not observe a statistically significant association at
the 0.05 level between epidemiological behavior and the
presence of a E2-BS5 or the distance between sites 3 and 4
(data not shown). Altogether, we have been able to
associate high-risk types with seven different molecular
properties, low-risk types for only one molecular property
and cutaneous types with seven molecular properties.

DISCUSSION

The modulated interaction of the C-terminal domain of
the alpha papillomavirus E2 protein with its four target
sites is crucial for the regulation of viral replication and
transcription from the early promoter. We have shown
that the sequence of E2-BSs varies significantly, leading to
differences in predicted relative binding affinity (Figure 5),
orientation and asymmetry (Figure 2) and putative
methylation sites (Figure 3) across types. In this section,
we will discuss the variability in connection to the
evolution and biology of alpha papillomaviruses.
E2 and its target DNA form a complex with a highly

dynamic, water-mediated interface (8,23) in which the
energetic contributions of protein residues are additive
(23). In agreement with this, we were able to describe the
evolution of the DNA site using a model that postulates

Table 2. Association of molecular and epidemiological properties in alpha papillomaviruses

Molecular property High risk (19) Low risk (13) Cutaneous (12)

n P-value n P-value n P-value

Affinity hierarchy
 (33) 

7 >0.05 5 >0.05 5 >0.05

 (20) 
11 1.2� 10�3 (+) 4 >0.05 1 >0.05

 (9) 
0 >0.05 0 >0.05 5 4.9� 10�3 (+)

 (4) 
0 >0.05 3 1.7� 10�2 (+) 0 >0.05

 (3) 
1 >0.05 1 >0.05 0 >0.05

 (3) 
0 >0.05 0 >0.05 1 >0.05

Methylation defect Site 1 Position 4 (1) 1 >0.05 0 >0.05 0 >0.05
Position 10 (22) 0 3.6� 10�3 (�) 3 >0.05 7 2.9� 10�2 (+)

Site 2 Position 4 (0) 0 >0.05 0 >0.05 0 >0.05
Position 10 (8) 7 2.3� 10�4 (+) 0 >0.05 0 >0.05

Site 3 Position 4 (23) 14 1.4� 10�5 (+) 2 >0.05 0 6.0� 10�3 (�)
Position 10 (26) 1 6.4� 10�4 (�) 2 >0.05 12 6.3� 10�7 (+)

Site 4 Position 4 (0) 0 >0.05 0 >0.05 0 >0.05
Position 10 (1) 0 >0.05 0 >0.05 1 >0.05

Distance between sites d12=0 (4) 1 >0.05 1 >0.05 0 >0.05
d12=1 (43) 5 7.2� 10�4 (�) 10 >0.05 12 1.0� 10�3 (+)
d12=2 (21) 10 1.1� 10�2 (+) 2 >0.05 0 1.0� 10�2 (�)
d12=3 (4) 3 >0.05 0 >0.05 0 >0.05
d23=95 (6) 0 >0.05 0 >0.05 6 5.9� 10�6 (+)

Epidemiologial properties are shown as columns and molecular properties as rows, with the number of types between brackets. For a given
combination of properties, we indicate the observed number of types and the probability that the observation occurs by chance. Plus and minus signs
indicate which combinations of molecular and epidemiological properties occur together more or less often than at random, respectively.
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additive contributions of the DNA bases to binding
(Figure 4) (70–72). We propose that the flexible protein–
DNA interface allows the DNA to evolve much faster
than the protein and into four well-differentiated binding
sites (Figures 1 and 2). The four bases within the E2-BS
spacer responsible for indirect readout are significantly
conserved (Figures 2 and 3), suggesting that their energetic
contribution to binding plays a role in papillomavirus
evolution. The conservation gradient within the spacer
(Figures 2 and 3) contradicts the general belief that the
four bases make approximately equal contributions to
binding (8,12,16–19,30–36) and shows that indirect read-
out can give rise to complex patterns of conservation.
Due to the asymmetric conservation gradient within the

E2-BS spacer, most naturally occurring E2-BSs are not
perfect palindromes. In principle, this is in contrast with
the homodimeric nature of the E2 protein. However,
natural DNA-binding sites of homodimeric transcription
factors are sometimes asymmetric (70,77–83,86) and can
have higher affinity than symmetric sites (81,83).
Asymmetric target sites may bend in an asymmetric
manner upon protein binding and/or lead to asymmetric
changes in the structure of the protein (77–80), as reviewed
in Ref. (87). This, in turn, can regulate the DNA structure
in the vicinity of the target site and/or the binding of other
proteins (70,77,78,86). The asymmetric E2-BSs are
oriented in a conserved manner that varies from site to
site (Figure 2). The replication function of an engineered
E2-BS2 was shown to depend on its orientation (27). We
propose that the orientation of naturally occurring E2-BSs
induces asymmetric DNA bending and/or changes in the
structure of E2 and plays a functional role by regulating
the binding of other proteins or domains to E2 and/or to
nearby DNA target sites, such as the HPV helicase E1
(37,38,40).
E2-BS1 and E2-BS2 are nearly side-by-side in the

papillomavirus genome (Figure 2). These two sites are
flanked by a TATA box and an Sp1-binding site at very
conserved distances (Dellarole,M., unpublished data). All
four sites are involved in the regulation of transcription of
early viral proteins (27,41,43–48), suggesting that they act
as a functional unit in alpha papillomaviruses. Cooperative
effects have indeed been observed for binding of HPV16 E2
to E2-BS1 and E2-BS2 (58) and may also be present in the
binding of Sp1 and TBP. Insertion of a base correlates with
high risk in a virus type (Table 2), suggesting that the exact
distances within this functional unit have functional
significance. The distance between E2-BS2 and E2-BS3 is
also restricted in 66 out of 72 types (Figure 2), suggesting
that they form another functional unit involved in
replication, together with the binding site for the E1
protein (27,37–42). The variability of the position of
E2-BS4 may be linked to the diversity of binding sites for
cellular proteins in the enhancer region (62).
CG dinucleotides are underrepresented in the HPV

genome (55), suggesting that the virus has eliminated
disadvantageous methylation sites. However, there is
evolutionary pressure in favor of at least one methylation
site within the E2-BS (Figure 3A). This pressure varies
among E2-BSs (Figure 3B), suggesting that it is related to
the function of each site. Interestingly, the alpha

papillomavirus URR has binding sites for human
proteins involved in local DNA demethylation close to
an E2-BS (58,88–92), such as the glucocorticoid receptor,
Sp1 and NF-kB. Furthermore, the HPV E2 protein can act
as a cofactor of the glucocorticoid receptor (93).
We deduce that papillomaviruses have integrated methyla-
tion of E2-BSs by the host cell in their life cycle, turning
a potential mechanism of defense into an additional layer
of regulation. This regulation may take place through
changes in the affinity hierarchy of E2-BSs upon methyla-
tion (14). Remarkably, these changes may be different in
high-risk and cutaneous types due do missing methylation
sites (Figure 3 and Table 2).

The DNA-binding sites for the E2 protein in the 72
alpha papillomavirus types may in principle have a
continuum of many different affinity hierarchies.
Nevertheless, the predicted free energies of binding can
be clustered in only six prototypical relative affinity
hierarchies, well differentiated from each other
(Figure 5). The three most common hierarchies include
86% of the types. This unexpected simplicity implies that
only a small number of well-defined affinity hierarchies
render a functional virus. This poses two challenges to our
understanding of alpha papillomaviruses. First, how the
balanced regulatory roles of the four E2-BSs in transcrip-
tion of the early proteins and replication along the life
cycle of the virus determine the observed affinity
hierarchies. Second, the mechanism by which these
hierarchies are related to the development of cancer.

The alpha papillomavirus genus includes not only all
genital HPV types, but also 12 cutaneous types (4,94).
About one half of the types in the cutaneous beta
papillomavirus genus have a fifth binding site for E2 in
the vicinity of E2-BS4 (77) (Dellarole,M., unpublished
data). This is reminiscent of the novel E2-BS5 we have
identified in six alpha papillomavirus types (Table 1).
However, these types are phylogenetically unrelated (4,94)
and none of them causes cutaneous warts. A closer
examination of the E2-BSs in beta papillomaviruses
reveals that their function (95), relative positions (96)
and consensus sequences (DellaroleM., unpublished data)
are significantly different to both genital and cutaneous
alfa papillomaviruses. We speculate that cutaneous alpha
papillomaviruses may have developed their own strategy
to persistently infect non-mucosal epithelia. Both the
binding of cellular transcription factors (62) and the
characteristics of the E2-BSs associated with cutaneous
alpha papillomavirus types (Table 2: affinity hierarchy in
Figure 5C; methylation defect at position 10 of E2-BS1
and E2-BS3; lack of methylation defect at position 4 of
E2-BS3; distance of one base and not of two bases
between E2-BS1 and E2-BS2; distance of 95 bases between
E2-BS2 and E2-BS3) may be part of this strategy.

Genital papillomavirus types are usually labeled as
‘high-risk’ or ‘low-risk’ according to the odds ratio of
developing cervical cancer (2). However, the odds ratios
for the different types do not cluster at a high value for
high-risk types and a value of one for low-risk types. If the
uncertainty in the odds ratio is taken into account, they
cover a continuum of values that go from 1 to �400 (1,2).
This suggests that the risk phenotype associated with a
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type comes from the sum of a large number of small
genotypic contributions (‘grains of sand’ model) and not
from a small number of highly decisive genetic features
(‘few switches’ model). In conformity with the ‘grains of
sand’ model, we have found that high-risk types are
weakly associated with seven different molecular proper-
ties of the E2-BSs (Table 2: affinity hierarchy in Figure 5B;
methylation defects at position 10 of E2-BS2 and position
4 of E2-BS3; lack of methylation defects at position 10 of
E2-BS1 and E2-BS3; distance of two bases and not of one
base between E2-BS1 and E2-BS2). Conversely, low-risk
types are weakly associated with only one molecular
property (Table 2: affinity hierarchy in Figure 5D) and
thus do not differ much from the alpha papillomavirus
background in terms of the E2–DNA interaction. We
hypothesize that genital papillomaviruses are low-risk
types by default and that E2-BS genotypes are only able to
increase the risk and not to decrease it. In agreement with
this, coinfection with a low-risk type does not decrease the
odds ratio of a high-risk type (1,2).

The HPV E2 protein regulates the transcription of the
HPV E6 and E7 oncogenes through its interaction with
DNA. In agreement with this, we were able to associate
some properties of its DNA target sites to high-risk types.
Our results confirm previous hypothesis about the
importance of the hierarchy of affinities of the E2-BSs
(17,20) and binding site methylation (49,51–55) and
extrapolate them from a handful of types to the full
alpha papillomavirus genus. Additionally, we can now
add the distance between E2-BS1 and E2-BS2 to the list of
genotypes linked to the development of disease
(25,28,59–61). It will be of interest to analyze the interplay
of these properties of E2 with the molecular properties of
the E6 and E7 oncogenes known to be associated with
cancer. The results from this work may also help us
understand the epidemiological behavior of molecular
variants of HPV (97).
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