
1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:1594  | https://doi.org/10.1038/s41598-021-81026-9

www.nature.com/scientificreports

Comprehensive computational 
target fishing approach to identify 
Xanthorrhizol putative targets
Muhammad Shahid1, Ahmad Azfaralariff1, Douglas Law1, Ahmed Abdulkareem Najm1, 
Siti Aisyah Sanusi1, Seng Joe Lim1,2, Yew Hoong Cheah3 & Shazrul Fazry1,2,4*

Xanthorrhizol (XNT), is a bioactive compound found in Curcuma xanthorrhiza Roxb. This study 
aimed to determine the potential targets of the XNT via computational target fishing method. This 
compound obeyed Lipinski’s and Veber’s rules where it has a molecular weight (MW) of 218.37  gmol-1, 
TPSA of 20.23, rotatable bonds (RBN) of 4, hydrogen acceptor and donor ability is 1 respectively. 
Besides, it also has half-life (HL) values 3.5 h, drug-likeness (DL) value of 0.07, oral bioavailability 
(OB) of 32.10, and blood–brain barrier permeability (BBB) value of 1.64 indicating its potential 
as therapeutic drug. Further, 20 potential targets were screened out through PharmMapper and 
DRAR-CPI servers. Co-expression results derived from GeneMANIA revealed that these targets made 
connection with a total of 40 genes and have 744 different links. Four genes which were RXRA, RBP4, 
HSD11B1 and AKR1C1 showed remarkable co-expression and predominantly involved in steroid 
metabolic process. Furthermore, among these 20 genes, 13 highly expressed genes associated with 
xenobiotics by cytochrome P450, chemical carcinogenesis and steroid metabolic pathways were 
identified through gene ontology (GO) and KEGG pathway analysis. In conclusion, XNT is targeting 
multiple proteins and pathways which may be exploited to shape a network that exerts systematic 
pharmacological effects.

Abbreviations
ADME  Absorption, distribution, metabolism, excretion
ADR  Adverse drug reaction
BBB  Blood brain barrier
BP  Biological processes
CC  Cellular components
CPI  Chemical-protein interaction
DL  Drug-likeness
DAVID  Database for annotation, visualization and integrated discovery
DS  Discovery studio
FDR  False discovery rate
FASA  Fractional negative accessible surface area
GO  Gene ontology
GeneMANIA  Multiple Association Network Integration Algorithm
HL  Half-life
KEGG  Kyoto encyclopedia of genes and genomes
MW  Molecular weight
MF  Molecular functions
MCODE  Molecular complex detection
OB  Oral bioavailability
OMIM  Online mendelian inheritance in man
PPI  Protein–protein interaction
RBN  Rotatable bond number
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STRING  Search tool for the retrieval of interacting genes/proteins
TPSA  Topological polar surface area
TCMSP  Traditional Chinese medicine systems pharmacology
UniProtKB  �e universal protein resource knowledgebase
XNT  Xanthorrhizol

For centuries, plant bioactive compounds have been widely used for treating a broad spectrum of diseases 
including  cancer1. Globally, around 80 percent of the population from developed and developing countries are 
broadly consumed plant derived drugs2. Compounds derived from natural products are considered as promising 
alternative therapeutic agents due to their potential healing  e�ects2. Xanthorrhizol (XNT) (Fig. 1), is a naturally 
occurring bioactive compound found in Curcuma xanthorrhiza Roxb, commonly known as Java turmeric3. 
Although, its common name describe its origin from Indonesia, it also widely distributed in Southeast Asia espe-
cially in Malaysia, �ailand, Sri Lanka and  Philippines4. XNT has been reported to be used as hepatoprotective, 
nephroprotective, antihyperglycemic, antimicrobial, antiplatelets, anti-estrogenic e�ects and anti-in�ammatory4. 
At present most studies are more focus on their putative e�ects as antioxidant and anticancer  agent5–8. Due to 
this it has become an interesting pharmacological compound to be explored further. As the advancement in 
bioinformatics �eld, network pharmacology has improved signi�cantly for drug discovery and their design 
 processes9. �ere are various computational target �shing methods such as molecular similarity searching, data 
mining and machine learning, analysis of bioactivity spectra, protein structure-based and the reverse/inverse 
docking  methods10–13. Reverse docking is broadly used powerful tool in which a small molecule (drug) is used to 
predict the potential binding sites against various macromolecular (proteins) targets. �e target �shing approach 
can facilitate the quick identi�cation of new drug targets, the prediction of the adverse e�ects, bioactivity and 
the mode of action of a  compound11. Despite these advantages, in some cases false positive and false negative 
results can also expected due to good similarity of inactive compounds with active molecules and limited iden-
ti�cation of speci�c targets of all active compounds  respectively12,14. Upon developing a novel computational 
method for target �shing, validation of results with existing one is a fundamental  issue12,15. �ough, in modern 
drug development, target identi�cation/�shing technology is an emerging approach that has been broadly  used12.

In this study, reverse docking method was used in drug target �shing to predict potential targets of XNT. �e 
prediction was con�rmed through DRAR-CPI server. Various computational target prediction and visualization 
tools such as DAVID, GeneMANIA, Network analyst, Enrichr and molecular docking were used to identify the 
underlying targets of XNT. To the best of our knowledge, to date, no comprehensive computational target �shing 
approach has been used in identifying pharmacological potential of XNT. �e aim of this study was to predict 
the potential target of the XNT via computational target �shing method.

Results and discussion
Evaluation of XNT ADME-related properties. For drug development and their clinical succession, 
ADME (Absorption, Distribution, Metabolism, Excretion) properties of a drug are crucial factors that lead to 
their approval or  rejection16. �e ADME-related properties of Xanthorrhizol (XNT) were retrieved from the 
TCMSP and SWISS-ADME  servers17,18. �e TCMSP server contains about all the registered Chinese herbs (499) 
data with their 29,384 ingredients. It also provides ADME-related information like; molecular weight (MW), 
human oral bioavailability (OB), Caco-2 permeability (Caco-2), blood–brain barrier (BBB) permeability, drug-
likeness (DL), fractional negative accessible surface area (FASA), Topological polar surface area (TPSA), and 
rotatable bond number (RBN) were presented in Table 1. �e results from TCMPS and SWISS-ADME of XNT 
exhibited that it obeyed the Lipinski’s “rule of �ve” which states that a molecule should have MW between 
180- 500; APLog value (a partition coe�cient between water and octanal used to determine hydrophobicity 
of a molecule) should be less than or equal to �ve; and hydrogen acceptor and donor value should be less than 
ten and �ve  respectively19,20. It also followed the Veber’s rule which explains that a molecule should have TPSA 
value (a physiochemical properties represents polarity of a molecule) less than 140 and rotatable bonds in a mol-
ecule should be less than 10 where it is considered as good predictor for good oral  bioavailability21. Moreover, 
other drug screening criteria, the drug half-life (HL) value is considered as fast-elimination group if HL value 
is less than four hours (Table 1)22. �e DL value represents a qualitative concept used in drug design to estimate 
on how “drug-like” a prospective compound is, which helps to optimize pharmacokinetic and pharmaceutical 
 properties17. Remarkably, the Drug likeliness (DL) value of XNT was calculated to be 0.07. �e OB value indicat-
ing the percentage of orally intake dose of a drug to reach systemic circulation which should be greater than 30%. 
While for BBB value, it is considered as strong penetrating if the value is greater than 0.329.

Computational target fishing. Two independent approaches were used to predict chemical-protein 
interaction namely PharmMapper and DRAR-CPI23,24. PharmMapper is an online reverse docking server that 
quest the chemical-protein targets via pharmacophore mapping approach, while DRAR-CPI is an online server 
that predicts the adverse drug reaction (ADR) and drug repositioning potential through the chemical-protein 
interaction (CPI). �e PharmMapper and DRAR-CPI produced 249 and 394 match targets respectively by using 
Z̕-score values (Supplementary Table S1). Generally, in PharmMapper, the large positive value of Z̕-score is con-
sidered as signi�cant value while in DRAR-CPI server, the Z ̕-score value less than 1 is considered as favorable 
 targets24,25. �e 20 common targets were screened out from each tool based on the maximum rank of Z ̕-score 
values (Table 2). �e OMIM database was explored to identify targets associated human genetic diseases. In 
Table 2 we summarized all the relevant data of 20 targets included their Z̕-Score, gene name, gene and protein 
IDs, UniProtKB IDs, OMIM diseases and their inheritance  pattern26,27.
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Gene co-expression analysis. To predict co-expression of the genes, GeneMANIA web interface was 
 used28. �e results of the analysis using GeneMANIA show that these 20 targets have a strong correlation with 
the other 20 genes. A total of 744 di�erent links have been predicted to build a network that connects these 40 
genes (Fig. 2a). �e constructed network exhibited the 69.44% similar co-expression characteristics and 10.05% 
shared the same protein domains. In addition to co-expression and protein domain characteristics, Fig. 2a dis-
played the other outputs such as colocalization (2.13%), pathways (9.94%), and physical interactions (8.44%) of 
the twenty targets. �e GeneMANIA network also depicted the molecular functions of the top ranked targets 
that �ltered on their FDR score (False Discovery Rate). FDR (≤ 0.00005, Supplementary Table S2) is employed in 
multiple-comparison testing to screen out di�erential gene expression by adjusting the raw p-value to eliminate 
false positive rate in data  prediction29–32. In GeneMania, the GO categories were reported on FDR corrected 
hypergeometric test for enrichment. �e network illustrated that these genes are involve in steroid metabolic 
process, direct ligand regulated sequence-speci�c DNA binding transcription activity, DNA-templated tran-
scription initiation process, transcription initiation from RNA polymerase II promoter, fatty acid metabolic 
process and vitamin binding process (Fig. 2a).

�rough cytoscape tool, a network of eight highly co-expressed genes was constructed based on their more 
connected nodes as showed in Fig. 2b. Among the eight highly co-expressed genes network, four genes which 
were RXRA, RBP4, HSD11B1 and AKR1C1 showed remarkable co-expression and predominantly involved in 

Figure 1.  Structure of Xanthorrhizol (XNT).

Table 1.  Pharmacological and molecular properties of XNT.

MW ALogP H-donor H-accept OB (%) Caco-2 BBB DL FASA TPSA RBN HL

218.37 5.07 1 1 32.10 1.72 1.64 0.07 0.32 20.23 4 3.50
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steroid metabolic process. �ese results suggested that XNT might be proved as potent compound that exerts 
its potential on the steroid metabolic process candidates.

KEGG, GO and network analysis. In this study, for Gene Ontology and pathway analyses, DAVID ver-
sion 6.8 was used to assimilate biological data such as cell phenotypes, molecular pathways and regulatory net-
works, which assist in prediction and interpretation of drug and their target  bioactivities12,33,34. DAVID is an 
online freely accessible tool that provides a comprehensive biological information of large list of genes, especially 
gene functions and  pathways34. In addition, to validate the results of DAVID, two more tools namely Network 
Analyst and Enrichr were  employed35,36. Both these tools (Network Analyst and Enrichr) were also web-based 
complex met-analysis and visualization tools broadly used for gene expression, functional analysis and tran-
scriptional factor  analysis35,36.

In total, 13 KEGG pathways were enriched with the twenty targets of XNT. Figure 3a showed top ten signi�-
cantly enriched KEGG pathways. A drug-target-pathway network was constructed by cytoscape that illustrated 
10 genes remarkably associated with the top ten KEGG pathways. Interestingly, most of the candidates from the 
network were involved in three predominant pathways which were metabolism of cytochrome P450, chemical 
carcinogenesis and steroid hormone biosynthesis pathways (Fig. 3b). �e KEGG enrichment analysis highlighted 
the targets and pathways where XNT exert its potential e�ectively. �e cytochrome P450 is a family of enzymatic 
proteins that play remarkable role in the detoxi�cation of xenobiotics, metabolism of carcinogens, steroids and 
retinol metabolic  pathways37,38. �e previous studies have remarkably been shown that XNT is a potent anti-
carcinogenic agent that suppress carcinogenesis via incorporating in apoptotic pathways, anti-in�ammatory, 
anti-oxidant properties and by cell cycle arrest  pathways3,5. �e growth inhibitory e�ect of XNT has also been 
elaborated by several studies which were on colon, tongue and esophageal  cancer4,39,40. In addition, it also showed 
the ability as an antiproliferative and inhibitor when tested on human hepatoma and breast cancer  cells5,6,41. A 
recent study documented the tumor suppressive role of XNT on the prostrate carcinoma cells which revealed 
that XNT exerts its antiproliferatory impact by inducing G1 cycle  arrest42. However, the precise mechanism of 
in�uence on cell cycle regulation of XNT and underlying molecular targets still remain to be discovered. We have 
also run similar analysis using WikiPathways algorithm and obtained similar result con�dence, comparable to 
KEGG analysis (Supplementary Table S3).

Furthermore, GO analysis is a useful tool to discover the biological process, cellular component and molecu-
lar functions of the  genes43. In total, 420 biological processes (BP), 78 molecular functions (MF) and 45 cel-
lular components (CC) of the twenty selected genes were identi�ed (Supplementary Table S4). Based on the 
P-value less than 0.05, 159 BP were �ltered from the 420 BP. �e functional enrichment analysis of the top ten 
BP demonstrated that most of the targets were correlated with the regulation of steroid metabolic processes, 

Table 2.  Top twenty targets of Xanthorrhizol predicted by PharmMapper and DRAR-CPI serv. AD; autosomal 
dominant, AR; autosomal recessive, XLD; X-linked dominant.

S. no. Z̕-score Protein ID Gene ID UniProtKB ID Name Disease OMIM ID Inheritance

1 2.45274 2FKY KIF11 P52732 Kinesin-like protein KIF11 Microcephaly 152,950 AD

2 2.28075 1IE8 VDR P11473 Vitamin D3 receptor
Rickets Type IIA/ Hypo-calcemic Vita-
min D-Resistant Rickets

277,440 AR

3 2.0563 19GS GSTP1 P09211 Glutathione S-transferase P NONE – –

4 1.93786 3F0R HDAC8 Q9BY41 Histone deacetylase 8 Cornelia de Lange syndrome 5 300,882 XLD

5 1.92099 3CZR HSD11B1 P28845
Corticosteroid 11-beta-dehydrogenase 
isozyme 1

Cortisone Reductase De�ciency (CRD) 604,931 AR

6 1.88483 1OIZ TTPA P49638 Alpha-tocopherol transfer protein Ataxia with isolated vitamin E de�ciency 277,460 AR

7 1.84913 1O6U SEC14L2 O76054 SEC14-like protein 2 NONE – –

8 1.70783 2J14 PPARD Q03181
Peroxisome proliferator-activated recep-
tor delta

NONE – –

9 1.67823 1ZUC PGR P06401 Progesterone receptor Progesterone resistance 264,080 AR

10 1.61551 1PQ2 CYP2C8 P10632 Cytochrome P450 2C8 Drug metabolism, altered 618,018 -

11 1.47594 1RBP RBP4 P02753 Retinol-binding protein 4
Retinol-binding protein de�ciency- 
causes night vision problems

180,250 AR/AD

12 1.4032 1MRQ AKR1C1 Q04828
Aldo–keto reductase family 1 member 
C1

NONE – –

13 1.37433 1MA0 ADH5 P11766 Alcohol dehydrogenase class-3 NONE – –

14 1.19947 1UPW NR1H2 P55055 Oxysterols receptor LXR-beta NONE – –

15 1.17909 1G3M SULT1E1 P49888 Estrogen sulfotransferase NONE – –

16 1.17632 1L8J PROCR Q9UNN8 Endothelial protein C receptor NONE – –

17 1.06743 1OV4 SULT2A1 Q06520 Bile salt sulfotransferase NONE – –

18 1.04296 1OIQ CDK2 P24941 Cyclin-dependent kinase 2 NONE – –

19 1.02842 1CG6 MTAP Q13126
S-methyl-5-thioadenosine phosphory-
lase

Diaphyseal medullary stenosis with 
malignant �brous histiocytoma

112,250 AD

20 0.919061 1FBY RXRA P19793 Retinoic acid receptor RXR-alpha NONE – –
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Figure 2.  (a) Network of co-expression of 20 common targets of XNT constructed with GeneMANIA. �e 
gene are linked to each other by the functional associated networks. Black nodes: gene targets, color nodes 
represent top expressed genes and their molecular functions �ltered on their FDR score, colored lines: represent 
di�erent interactions. (b) �e 8 highly co-expressed targets from the GeneMANIA network identi�ed via 
cytoscape.

Figure 3.  (a) Bar plot of KEGG analysis showed top ten enriched pathways. (b) Drug-target-pathway network 
constructed by cytoscape illustrated top ten pathways and their associated genes.
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transcription regulation via RNA polymerase II promoter, DNA-templated transcription initiation, lipid transport 
and response processes and so on, as showed in Fig. 4a. In addition, a drug-target-biological process network 
was also constructed by cytoscape which illustrated that 11 genes were predominantly enriched with the top ten 
BP (Fig. 4b). Subsequently, of the total 78 molecular functions, 37 �ltered based on the P-value (< 0.05). �e top 
ten functionally enriched MF are presented in Fig. 5a. Among the top ten molecular functions, two MF such as 
RNA polymerase II transcription factor activity and steroid hormone receptor activity were highly expressed by 
our 20 target genes (Fig. 5a). Similarly, the cellular component widely distributed in cytosol, intra and extracel-
lular organelle parts, and nucleoplasm (Fig. 5b).

By comparing the top ten biological processes and pathways enrichment data, seven genes found to be 
common which were RXRA, PPARD, SULT2A1, HSD11B1, AKR1C1, SULT1E1, and CYP2C8. �ese genes 
were mostly involved in steroid metabolic process, metabolism of xenobiotic by cytochrome P450, chemical 
carcinogenesis/cancer pathways and retinol metabolism. �e previous studies have also been revealed the XNT 

Figure 4.  (a) Bar graph of top ten enriched biological processes (b) Drug-target-biological process network 
constructed by cytoscape highlighted top ten BP and their linked genes.

Figure 5.  Networks of top ten enriched molecular functions (a) and cellular components (b) constructed 
by Network Analyst. In both networks, nodes are color shaded according to their enrichment score 
(red > orange > yellow).
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role in the detoxi�cation of xenobiotics by cytochrome P450 and anti-carcinogenic potential but a little work on 
the incorporation of XNT in steroid metabolic processes. �ere is still no study been performed which revealed 
the role of XNT in retinol metabolism. In addition to previously reported functions of XNT, this computational 
approach uncover and highlighted the targets and pathways where XNT exerts its potential e�ectively.

PPI network and docking study. �e constructed PPI network re�ected the direct (physical) and indirect 
(functional) association of the XNT targets (Fig. 6a). �e cytoHubba plugin of cytoscape was used to identify 
hub genes from the PPI network. Ten hub genes were identi�ed by cytoHubba which included; RXRA, CYP1A1, 
CYP3A4, CYP2C8, CREBBP, NCOA1, NCOR2 CDK2, SULT2A1 and PGR (Fig. 6b). �e darker color, represent 
the more important it was; therefore, it suggested that these are the top targets of XNT that plays signi�cant 
role in biological processes. Similarly, MCODE plugin was run to determine the modules of PPI network. Two 
modules were found, one module consisted of 5 candidates (PGR, VDR, CDK2, CYP3A4 and NCOA1) and 
the second module contained 3 i.e. RXRA, NCOA2 and CREBBP (Fig. 6c).

�e docking results demonstrated the normal binding of ligand with their target proteins, thus, con�rmed 
the interaction that predicted by both PharmMapper and DRAR-CPI servers. Figure 7 showed docking results 
i.e. interaction visualization and ligand binding sites of the selected proteins (protein IDs; P24941and P06401).

�e previous research data extensively explored the XNT therapeutic potential and demonstrated its way of 
action as hepatoprotective, nephroprotective, antihyperglycemic, antimicrobial, antiplatelet, anti-in�ammatory, 
antioxidant and anticancer  agent44–49. It is believed that XNT regulates mitogen-activated protein kinase (MAPK) 
and nuclear factor kappa B (NF-kB) and act as antimicrobial agent. �e anti-in�ammatory action of XNT via 
down-regulate the activity of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), and by 
inhibition of cytokine interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α)45. Several in vivo studies have 
been revealed XNT can reduce the insulin, glucose, free fatty acid, and triglyceride levels indicating its antihyper-
glycemic  e�ects47. XNT exhibits antioxidant e�ects through the regulation of cytochrome p450 enzyme system. 
Recent studies extensively explored the anticancer potential of XNT against oral cancer, esophageal cancer, skin 
cancer, breast cancer, colon cancer, liver cancer, ovarian cancer and lung  cancer4,8,49,50.

Consistent with the previous data, results of the present study also revealed that XNT is incorporated in ster-
oid metabolic process, metabolism of xenobiotic by cytochrome P450, chemical carcinogenesis/cancer pathways 
and a newly predicted retinol metabolism pathway. Besides previously reported candidates (i.e. MAPK, NF-kB 
IL-6 TNF-α) that regulated by XNT, this study also indicated that XNT have some more targets prominently are 
RXRA, PPARD, SULT2A1, HSD11B1, AKR1C1, SULT1E1, and CYP2C8. Although, XNT has multiple applica-
tion but more in vivo experimental work, pharmacological response via pharmacodynamic approaches, drug 
concentration at the site of action, and clinical studies are still to be required in order to establish XNT as a 
standard drug.

Figure 6.  (a) PPI network constructed with STRING (�e bold line represents direct interaction while the thin 
line represents indirect interaction), (b) Network of hub genes, and (c) two modules predicted by cytoHubba 
and MCODE plugins of cytoscape.
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Methods
Evaluation of XNT ADME-related properties. �e ADME (Absorption, Distribution, Metabolism, 
Excretion) properties were identi�ed by using the Traditional Chinese Medicine Systems Pharmacology Data-
base and Analysis Platform (TCMSP) server (http://www.tcmsp w.com/tcmsp .php) and SWISSADME web tool 
(http://www.swiss adme.ch/)17,18. In this study, the ADME properties of XNT were identi�ed by using TCMSP 
server and con�rmed through SWISSADME web tool. �e chemical structure of XNT was drawn by an online 
chemistry tool, Chem-Space (https ://chem-space .com/) (Fig. 1).

Computational target fishing. Two computational tools were used for target �shing namely Pharm-
Mapper (http://www.lilab -ecust .cn/pharm mappe r/) and DRAR-CPI (https ://cpi.bio-x.cn/drar/)23,24. Before con-
ducting, computational target �shing, the molecular �le (SDF) of XNT was downloaded from PubChem drug 
databank (PubChem CID: 93,135) (https ://pubch em.ncbi.nlm.nih.gov/)51. �e SDF �le was uploaded to the 
PharmMapper server and all targets option (v2010, 7302) were selected while leaving all other parameter set as 
 default25. Similarly, the �le was also uploaded to DRAR-CPI server and all options were set as default. �e over-
lapping potentially interacting protein targets were chosen base of their maximum rank of Z̕-score from both 
servers for further investigation for instance Online Mendelian Inheritance in Man (OMIM; https ://omim.org/) 
was used for human genetic disorders prediction, GeneMANIA for co-expression of the genes, DAVID, Network 

Figure 7.  Docking results of XNT with (a) Cyclin-dependent kinase 2 (P24941), and (b) Progesterone receptor 
(P06401) selected proteins. Also showed their interacted amino acid residue types and numbers.

http://www.tcmspw.com/tcmsp.php
http://www.swissadme.ch/
https://chem-space.com/
http://www.lilab-ecust.cn/pharmmapper/
https://cpi.bio-x.cn/drar/
https://pubchem.ncbi.nlm.nih.gov/
https://omim.org/
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Analyst and Enrichr for GO and KEGG enrichment analysis, STRING for Hub targets and cluster network pre-
diction, PyRx and Discovery studio so�ware’s for molecular docking of XNT and target proteins.

Gene co-expression analysis. For gene functional analysis, especially to check the co-expression of 
genes, GeneMANIA (https ://genem ania.org/) web tool was  used28. Currently, it supports nine organisms and 
depicts seven di�erent unique categories i.e. co-expression, co-localization, attribute, genetic interaction, path-
way, physical interaction and shared protein  domains28. Firstly, the list of twenty targets with their protein IDs 
was searched on UniProtKB (https ://www.unipr ot.org/unipr ot/) database to retrieve their gene  IDs27. �en, the 
prepared list of 20 genes was submitted on the GeneMANIA a�er selecting Homo sapiens from nine avail-
able organisms. Moreover, to identify highly co-expressed genes from the constructed GeneMANIA network, 
cytoscape version 3.7.2 (https ://cytos cape.org/) was  utilized52.

GO function, KEGG and network analysis. Gene ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway of 20 selected targets were analyzed with DAVID (�e Database for Annotation, 
Visualization and integrated Discovery) version 6.8 (https ://david .ncifc rf.gov/)34,53. �e list was submitted on the 
DAVID server and set background option as Homo sapiens. In addition, to validate DAVID outcomes two more 
biological tools namely Network analyst (https ://www.netwo rkana lyst.ca/) and Enrichr (https ://amp.pharm 
.mssm.edu/Enric hr/) were  used35,36. In order to identify the complex relationship between compound, targets, 
pathways and biological processes, cytoscape so�ware was used to construct and analyze three-layer networks.

Protein–protein interaction (PPI) and molecular docking study. A protein–protein interaction 
(PPI) network of the twenty selected targets of XNT was directly constructed via cytoscape integrated STRING 
database (https ://strin g-db.org/) with cuto� score 0.4 and maximum additional interaction of  552,54,55. Subse-
quently, on the established PPI network, CytoHubba and MCODE (the Molecular Complex Detection) plugins 
of cystoscope were applied. �e cytoHubba plugin constructed the network based on the  highest degree of 
neighborhood algorithm from the PPI network. �e values for MCODE analysis were set as degree cuto� score; 
2, node cuto� score; 0.2, K-core value; 2 and maximum depth; 100.

Furthermore, to validate the ligand–protein interaction which was exhibited by PharmMapper and DRAR-
CPI server, molecular docking study was performed. �e ligand (XNT) SDF �le was acquired from PubChem 
(CID: 93,135) and PDB �les of two randomly selected proteins from the MCODE predicted results were retrieved 
from Protein Data Bank (https ://www.rcsb.org)56. �e ligand and protein �les were prepared through BIOVIA 
Discovery Studio Visualizer version 20.1.0 so�ware and Autodock Vina docking was executed by using PyRx 
biological so�ware v 0.8 (https ://pyrx.sourc eforg e.io/)57,58. �e visualization of docking results was performed 
by Discovery Studio Visualizer.

Conclusion
�e computational target �shing is an emerging approach which assist in drug discovery, design, biomarkers 
detection, and to investigate the drug-disease relationship. In the present study, the ADME properties of XNT 
was evaluated by TCMSP and SWISSADME, and potential targets identi�ed by both PharmMapper and DRAR-
CPI were projected for further evaluation. �e results showed that XNT may be a good drug candidate, and 20 
potential interacting targets were identi�ed, of which 13 were highly associated with various pharmacological 
activities. In addition, GO and pathway analysis was performed and drug-target association networks were con-
structed. �ese results demonstrated that XNT has multiple targets and therapeutic potential to regulate crucial 
biological pathways predominantly metabolism of xenobiotics by cytochrome P450, chemical carcinogenesis and 
steroid metabolic pathway. �e present study provided the comprehensive in silico-based information of XNT 
possible pharmacological e�ects that can be used in further experimental research studies to validate their e�ect.
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