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Abstract: Recent developments in smartphones have increased the processing capabilities 
and equipped these devices with a number of built-in multimodal sensors, including 
accelerometers, gyroscopes, GPS interfaces, Wi-Fi access, and proximity sensors. Despite 
the fact that numerous studies have investigated the development of user-context aware 
applications using smartphones, these applications are currently only able to recognize 
simple contexts using a single type of sensor. Therefore, in this work, we introduce a 
comprehensive approach for context aware applications that utilizes the multimodal 
sensors in smartphones. The proposed system is not only able to recognize different kinds 
of contexts with high accuracy, but it is also able to optimize the power consumption since 
power-hungry sensors can be activated or deactivated at appropriate times. Additionally, 
the system is able to recognize activities wherever the smartphone is on a human’s body, 
even when the user is using the phone to make a phone call, manipulate applications, play 
games, or listen to music. Furthermore, we also present a novel feature selection algorithm 
for the accelerometer classification module. The proposed feature selection algorithm helps 
select good features and eliminates bad features, thereby improving the overall accuracy of 
the accelerometer classifier. Experimental results show that the proposed system can 
classify eight activities with an accuracy of 92.43%. 

Keywords: context aware; smartphone; context recognition; accelerometer classification; 
audio classification; multimodal sensors 
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1. Introduction 

Context recognition is a highly active research area due to its large number of potential applications 
such as in healthcare, virtual reality, security, surveillance, and advanced user interface systems. As a 
result, it has caught the attention of researchers from industry, academia, security agencies, consumer 
agencies, and even the general populace. Several years ago, such context aware systems were mostly 
based on complicated wearable sensors, which are not even commercially available nowadays. However, 
the recent, rapid development of the smartphone industry has enabled implementation of context aware 
applications using the large number of sensors already integrated within smartphones [1,2]. 

Nevertheless, substantial progress has only been made for recognition of simple user contexts using 
a single type of sensor, such as the accelerometer [3], GPS [4], or audio tool [5]. Although some 
recognition of user contexts may be possible with particular sensors, such an approach is not able to 
support a comprehensive and realistic context aware device. For example, to merely recognize 
ambulatory contexts like walking or jogging, the accelerometer or gyroscope achieves a reasonable 
accuracy [6,7]. Likewise, to classify acoustic contexts, such as in a bus, subway, or meeting place, the 
audio data can be utilized [8]. The GPS has also been used as a single source to classify different 
contexts [4,9,10]. Yet, a comprehensive recognition system should make use of all those sensors in 
order to be capable of recognizing a higher number of mixed contexts including ambulatory, 
transportation, and acoustic. Furthermore, the use of multiple sensors can improve the power 
consumption since some sensors can then be activated only when necessary. For example, a system 
that recognizes transportation by inferring the user’s GPS route [11] can stop collecting GPS data if an 
accelerometer classifier detects that the user is walking.  

Motivated by the lack of a comprehensive approach in smartphone-based context recognition 
research, we propose a multimodal context recognizer utilizing several kinds of sensors in a 
smartphone. We also consider that the activity recognition must be performed regardless of what the 
user is doing with his or her smartphone, such as making a phone call, using applications, playing 
games, or listening to music. Thus, we propose a position-free recognition system that recognizes a 
human’s activities wherever the smartphone is attached on the body. It provides high degree of 
freedom to users, as well as ample practical relevance.  

Besides the classification aspect, the proposed system pursues the optimal combination of sensors in 
order to reduce the power consumption, which is a vital issue for any smartphone application [12]. The 
system utilizes the accelerometer to detect transition points from ambulatory activities to transportation 
activities and vice versa. The audio classifier is only activated if there is a further need to classify 
transportation activities, such as using a bus or subway. By using the above approach, we can save 
power on smartphone devices.  

Finally, the proposed system combines and validates the output of the two classifiers using extra 
information from the GPS and Wi-Fi functions to produce the final result. By following this approach, 
the system is able to classify both ambulatory as well as transportation contexts, while still achieving 
low power consumption. The overall architecture of the proposed solution is presented in Figure 1. 
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Figure 1. Overall architecture of the proposed system—Context Recognizer. 

 

As described in Figure 1, for the overall architecture, we used Gaussian Mixture Model (GMM) for 
the acceleration data classification and Hidden Markov Model (HMM) for the audio classification.
Before modeling and classifying acceleration data, a prior process including feature extraction  
and selection generates bunch of features to be used for a classification. In order to use multiple 
dimensions of features, mixture model which is suitable for representing multiple distributions of 
collected data is chosen. Other classification techniques such as Gaussian Process are more appropriate 
for considering small number of variables or features. For the audio classification, we used HMM 
algorithm for training and testing audio data because the module needs to be classify only two
activities—bus and subway—and requires running on a smartphone in real-time. There are other audio 
classification algorithms such as Conditional Random Field and Support Vector Machine, but our 
approach using HMM is lighter than other algorithms and it fits in classifying similar audio data both 
collected from bus and subway. 

2. Related Works 

The high availability of smartphones with built-in sensors (accelerometer, gyroscope, GPS, 
Wi-Fi, etc.) is highly advantageous to the research area of context recognition. In [3,6,7], a smartphone 
accelerometer was used to recognize user movement contexts such as walking and running; in [5,8], 
the author utilized audio data to classify acoustic environments. The authors of [4,9,11] showed that 
GPS can be used to recognize transportation routines. However, we must note that those works merely 
exploited a particular sensor instead of combining the strength of multiple sensors. To the best of our 
knowledge, [2] is one of the first works to combine accelerometer and audio classification; the author 
demonstrated that the combination of audio helps improve the accuracy of recognizing user activities. 

In [13], the authors designed and implemented both an audio classifier and accelerometer classifier 
using audio and accelerometer sensors. The modules are similar to our work but the approaches to 
recognize contexts are different. In their system, each classifier can recognize only one specific  
context—the accelerometer classifier recognizes human behaviors such as sitting, standing, walking 
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and running, on the other hand, the audio classifier’s purpose is to determine whether a person is in a 
conversation or not—but our proposed system utilizes both classifiers and other sensors together for 
classifying contexts as described in Figure 1.  

More recently, [11] is the most similar to our work in that the author classified the mobile 
acceleration in order to detect whether a user was riding a transit vehicle, after which his system 
activated the GPS recorder and matched the GPS route to identify different types of transportation. 
Unfortunately, route matching may necessitate the collection of a long duration of data, meaning that 
the system cannot respond in real-time. Moreover, an extensive collection of GPS data can deplete the 
phone battery. Accordingly, in our work, we propose the use of audio to differentiate between various 
types of transportation since only a few seconds of audio recording is necessary for this purpose. 
Consequently, using audio not only reduces the system response time, but also improves the battery 
power consumption. 

For accelerometer classification methods, there are a large number of proposed solutions [14] with 
assorted feature extraction techniques and classification algorithms. In [3], which is one of the most 
cited papers in the area of accelerometer-based activity recognition, the author proposed using 
frequency domain features in combination with a decision tree classifier; this approach yielded good 
results and has since been supported by other published works [7,14]. However, in other papers, such 
as [6,15], the authors noted that there are other accelerometer features that may produce even better 
results. While the field has not reached a final agreement on the topic of feature extraction for 
accelerometer signals, we have selected a hybrid approach by proposing our own feature selection 
algorithms [16]. Therefore, instead of using predefined features obtained via a particular type of 
feature extraction technique, we have utilized several potential approaches, after which our feature 
selection algorithm will be executed to select the best features from the whole set.  

In the research area of feature selection, the numerous proposed solutions can be generally 
categorized into three main directions: wrapper [17,18], filter [19] and embedded [20]. The 
performance of the wrapper and embedded directions depends strongly on the classifier used in the 
selection process. In addition, repeatedly training and evaluating the classifier in order to select 
features results in a very high execution cost. The filter method, on the other hand, utilizes a simple 
classifier-independent measurement to judge the quality of the features, thereby allowing it to work 
with different classifiers and requiring less time to execute the selection process. Nevertheless, recently 
published works regarding filter-based feature selection methods, such as [21,22] still cannot 
completely overcome the notorious challenge of balancing the relevance and the redundancy. In this 
work, we propose a filter feature selection method to overcome that limitation, as well as to improve 
the classification accuracy. 

In audio classification research, the authors in [5] highlighted that audio recordings were a rich 
source of information that could be used to recognize contexts. In their work, they employed the  
well-known audio feature, Mel Frequency Cepstral Coefficients (MFCCs), in combination with the 
hidden Markov model (HMM) classification algorithm. However, it should be noted that the audio in 
their work was recorded with an external microphone, which often has a higher quality than a mobile 
phone’s built-in microphone, and was processed offline. Recently, the author of [8] proposed a 
scalable sound sensing system, which was implemented on an iPhone and was shown to work well in 
realistic environments. 
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3. The Proposed System 

As can be seen from Figure 2, our system starts by recording three seconds of accelerometer data 
and then classifying those data into two categories: 

 Ambulatory activities—Walking, Jogging or Still 
 Transportation 

Figure 2. Flow chart of the proposed system. 

 

For classifying ambulatory activities and transportation, we first utilize acceleration data from 
accelerometer. If collected data has regular pattern such as walking, jogging and still, the system 
classify it as an ambulatory activity, but if it shows an irregular pattern, the output is regarded as 
transportation. If the output is ‘ambulatory activities’, the system determines whether the user is 
walking or jogging at a reasonable speed based on the speed information from the GPS interface. If the 
speed is reasonable or if a GPS signal is not available, the system outputs the final recognized context. 
Occasionally, a running bus may be misrecognized as “walking” or “jogging,” and in such a case, the 
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speed validator will redirect the next processing step to the ‘transportation’ branch. In the 
‘transportation’ branch, the system first determines whether a transition point occurred (i.e., the 
previous recognized context was not ‘transportation’). Then, if a transition point did occur, the audio 
recorder will activate to record another three seconds of audio data. The system will then classify these 
three seconds of sound into three categories: 

 Bus 
 Subway 
 Others (all other sound that is not a bus or a subway) 

The result of the audio classifier can be further validated using a Wi-Fi pattern. More specifically, 
subway systems possess only a small number of well-known Wi-Fi services, and private wireless 
networks are nearly non-existent inside subways. In contrast, buses run on streets where private 
wireless networks from the passing buildings are abundant and often appear in the user range only to 
disappear a short time later. Consequently, these different Wi-Fi patterns can be used to validate the 
result of the audio classifier and avoid ambiguity in recognizing a bus and a subway. 

Further validation can be done through the use of GPS readings, if available. For example, we 
prerecorded the locations of all the subway stations in Seoul, which totaled around 100 stations. Hence, 
if a user approaches a subway, his latest location should be near a station (i.e., within a radius of  
200 m). In short, the proposed system makes use of several sensors, including the accelerometer, audio 
tool, GPS, and Wi-Fi, and is able to recognize at least five different contexts: 

 User is walking 
 User is jogging 
 User is riding a bus 
 User is riding a subway 
 Other contexts (the context that is not one of the above four target contexts) 

The system mainly employs the accelerometer and audio recordings to classify the contexts. It uses 
extra information from the GPS and Wi-Fi systems to validate the results of the classification modules. 

3.1. Accelerometer Classification 

Feature Extraction: In our system, instead of using a single method, we utilize several kinds of 
well-known feature extraction techniques to construct a high number of features; then we select the 
best features using our own feature selection algorithms. We consider the following features:  

- Time domain features: standard deviation, mean crossing rate, Pearson correlation coefficients 
- Frequency domain features [3] 
- Linear Predictive Coding (LPC) features [15] 

Feature Selection: Since we have a large number of features, using all of them may not increase 
the accuracy due to the problem known as ‘the curse of dimensionality’. Consequently, it is necessary 
to select the best features from the extracted ones in order to construct a good feature set. Our proposed 
method [16] measures the quality of a feature based on two criteria: the relevancy of the feature (or the 
classification power) and the redundancy of the feature (or the similarity between two selected 
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features). These two criteria are computed from the mutual information of the feature as described in 
Equations (1) and (3): 

 (1) 

where X is a feature variable, C is a class variable, and ΩC is the state space of C. Note that I(C;X) is 
the mutual information between C and X, which can be calculated by: 

 (2) 

where ΩX is the state space of the variable X; p(c, x), p(c), and p(x) are, respectively, the joint and 
marginal probability distributions:  

 (3) 

Algorithm 1. Feature Quantization. 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 

Input: 
 
  
Output: 

M – Total number of features 
X(1..M) – Training data  
Δ – The quantization error 
N – Number of quantization levels 
Y(1..M) – Quantized data 

Quantization 
N = 2; 
while 1 do 

MaxError = −1e+16; 
for m = 1 to M do 

Upper = max(X(m)); 
Lower = min(X(m)); 
Step = (Upper – Lower) / N; 
Partition = [Lower : Step : Upper]; 
CodeBook = [Lower – Step, Lower : Step : Upper]; 
[Y(m), QError] = Quantiz(X(m), Partition, CodeBook); 
if QError > MaxError then 

MaxError = QError; 
end if 

end for 
if MaxError < Δ then 

break; 
end if 
N = N + 1; 

end while 
end Quantization 
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Algorithm 2. Greedy Forward Searching for Feature Selection. 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 

Input: 
 
  
 
 
Output: 

M – Total number of features 
N – Total number of data samples 
K – Number of features to be selected 
X – Training data matrix (M × N) 
C – Class labels (1 × N) 
S – The index vector of the selected features (1 × K) 

Forward 
S = Φ;  
for m = 1 to M do 

Xm = Xm − μ(Xm); 

Xm = Xm / σ(Xm); 
end for 
X = Quantiz(X); 
for k = 1 to K do 

BestScore = −1e+16; 
BestIndex = 0; 
for i = 1 to M do 

if Xi not in S then 
f = 0; c = 0; 
for Xj in S do 

c = c + 1; f = f + Red(Xi, Xj); 
end for 
f = Rel(Xi) – f/c; 
if (f > BestScore) then 

BestScore = f; 
BestIndex = i; 

end if  
end if 

end for 
S = {S, BestIndex}; 

end for  
end Forward 

In the above Equations (1) and (3), the mutual information can be computed by summing over the 
state space of the variable; therefore, the variables should be discretized before such a calculation can 
be performed. The discretization algorithm is illustrated in Algorithm 1. Once the relevance and the 
redundancy have been computed, we can utilize the well-known searching mechanism called ‘greedy 
forwarding’ to gradually extend the selection of features. The whole selection process is illustrated in 
Algorithm 2. 

Gaussian Mixture Classifier: After extracting and selecting features, let us assume that XC is a 
training data matrix (N × K) for class C, where each row is a training sample, and each column is a 
feature value. We utilize a Gaussian mixture model (GMM) to determine the parametric probability 
density function of each class, denoted by p(XC|λC), where λC is the parameter set that includes the 
mixing weights and individual Gaussian mean vectors and covariance matrices: 
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 (4)

where N is a Gaussian distribution and is given by: 

 (5)

The mixing weights must satisfy the following condition: 

 (6)

During the training phase, the parameters  are determined to maximize the training 
data likelihood . In the inference phase, given all the class parameter sets λC1, λC2, … , λCm

and an input vector x, the class label is determined by:

 (7)

3.2. Audio Classification 

For the audio classification module, we combine MFCCs [5] at frame level with the conventional 
classification method using the hidden Markov model. Figure 3 illustrates the audio classification module. 

Figure 3. System architecture of the audio classification module. 

 

3.2.1. MFCC Feature Extraction 

Before the computation of MFCCs, a pre-emphasis filter is applied to the input audio signal x(n),
which eliminates the high frequencies: 

 (8)

Next, the filtered signal is divided into shorter frames and multiplied with a Hamming window 
function such that: 
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 (9) 

(10) 

where N is the length of a window.  
The feature extraction component then transforms the signal frames into the frequency domain 

using a discrete Fourier transform (DFT): 

 (11) 

(12) 

where R and I are the real and imaginary parts of the Fourier transform respectively. The magnitude 
spectrum, P(n), is then multiplied with Mel filter bands as follows: 

 (13) 

 (14) 

 (15) 

 (16) 

The MFCCs are finally extracted by applying a discrete cosine transform to PMel(m): 

 (17) 

where M is the number of Mel filters and MFCC(k) is the kth coefficient. 

3.2.2. Hidden Markov Model 

A hidden Markov model (HMM) is a parametric model that determines the characteristics of data 
sequences. A HMM parameter set is defined as follows: 

 (18) 

where  is a 1 × N vector containing the prior probability distribution of N states, A is a N × N 
transition probability matrix, and B is a set of N observation density functions. In our case, we directly 
modeled the continuous input where B was defined as: 
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 (19) 

where i = 1,2,…,N indicates the state index, M is the number of Gaussian components,  is the 
mixing weight of the mth Gaussian component, and  is a Gaussian density function with 
mean  and covariance matrix . 

In the training phase of the HMM, given the input sequence X = x1, x2, … xT, the model parameters 
are updated to maximize the training likelihood . More details about the training algorithm can 
be found in [23]. After the training phase, each audio class has a corresponding HMM defined  
by the parameter sets . In the inference phase, given an input sequence  
X = x1, x2, … xT, the likelihood of X given a HMM can be computed by: 

 (20) 

where ht (t = 1, 2, …, T) is a hidden state value at time t and . The likelihood is 
calculated by using a forward or backward algorithm as described in [23]. Ultimately, the final class 
label is decided by: 

 (21) 

4. Experimental Results 

To evaluate our system, we first conducted experiments with the accelerometer and audio 
classification independently. As described in the previous sections, the proposed system classifies 
activities into four contexts first, and if the system identifies a ‘transportation’ mode, it starts to collect 
audio data to determine whether this transportation is via bus or subway. Next, we evaluated an 
integrated system that combined the accelerometer and audio classifiers. For the evaluation and testing, 
we collected over 10,000 data samples from 10 volunteer graduate students during a month-long 
period at various locations. Also for achieving position-free approach, we allowed volunteers to hold a 
smartphone at anywhere on their body such as attach it on waist, put it in trousers’ pocket or just hold 
it by hands. After collecting sensor data from all volunteers, we categorized them into each activity 
types based on activity label. Then we constructed activity model of each activity labels—walking, 
jogging, still, bus (run, jam, stop) and subway (run, stop)—by GMM-based modeling and 
classification module in the accelerometer classifier. As noted in section 3, the proposed system 
utilizes sensor data which is collected previous 3 seconds for real-time processing. It means the system 
does not use previous contexts for recognition processing. The approaches described above enable 
position-free recognition. We used only the sensors on Android HTC Desire smartphones, Samsung 
Galaxy S smartphones, and Samsung Galaxy S II smartphones for collecting and recognizing activities. 

4.1. Accelerometer Classification 

In order to validate the accelerometer classification module, we collected acceleration data in four 
contexts: walking, jogging, transportation (bus and subway), and still, which are available in [24]. As 
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noted in Section 3.1, we evaluated an assortment of features, including frequency, time, and LPC 
features. To combine the strength of different feature extraction methods, we employed our novel 
feature selection algorithm to select the best candidate from a large set of features extracted by the 
existing method. Table 1 and Figure 4 show the 10-fold cross validation test results for different 
features. Table 2 shows which features were selected from the features generated by the existing 
feature extraction methods using our proposed feature selection algorithm.  

Table 1. Accelerometer classification accuracy with different features. 

 Frequency 
Features 

Time  
Features 

LPC  
Features 

Our Selected 
Features 

Fold1 87.16 87.07 89.75 90.71 
Fold2 87.23 86.41 89.89 90.13 
Fold3 86.55 88.26 89.24 91.01 
Fold4 86.49 87.89 89.30 89.82 
Fold5 86.93 87.97 88.03 89.97 
Fold6 88.18 88.70 87.98 90.78 
Fold7 87.08 88.78 88.27 89.68 
Fold8 86.19 89.09 90.04 90.41 
Fold9 86.41 86.48 89.00 89.90 

Fold10 86.47 89.24 89.83 90.34 
Average 86.87 87.99 89.13 90.27 

Figure 4. Accelerometer classification accuracy comparison based on Table 1. 
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Table 2. Selected features from extracted by existing feature extraction methods. 

 Features Selected (X = yes, O = no) 

Frequency Features 

Over spectral energy X 
Spectral sub-band 1 energy X 
Spectral sub-band 2 energy X 
Spectral sub-band 3 energy O 
Spectral sub-band 4 energy O 
Spectral sub-band 5 energy O 
Spectral sub-band 6 energy O 
Spectral sub-band 7 energy O 
Spectral sub-band 8 energy O 

Linear Predictive 
Coding (LPC) Features 

LPC coefficient 1 X 
LPC coefficient 2 X 
LPC coefficient 3 O 
LPC coefficient 4 O 
LPC coefficient 5 O 
LPC coefficient 6 X 

LPC estimation error X 

Time Domain Features 

Mean value O 
Standard deviation value X 

Mean crossing rate X 
XY correlation X 
YZ correlation O 
ZX correlation O 

4.2. Audio Classification 

The dataset we used to evaluate the audio classification was collected and provided by the School of 
Computing Sciences, University of East Anglia, UK, and is available in [25]. This dataset contained 
WAV formed audio files (sampling rates: 8 kHz, 8 bit, mono) taken using a Samsung YP55H MP3 
recorder in 2004. It had twelve different audio files, but we used seven different contexts: Building 
Site, Bus, Car (city), Supermarket, Office, Presentation and Street (traffic). Table 3 shows the 
confusion matrix of the classification measured using a k-fold (k = 10) cross-validation rule. 

Table 3. Accuracy table of audio classification confusion matrix (Ma, L. [26] Dataset). 

 Building 
Site 

Bus 
Car 

(City) 
Supermarket Office Presentation 

Street 
(Traffic) 

Total 

Building Site 100% - - - - - - 100% 
Bus - 100% - - - - - 100% 
Car - 4% 95% 1% - - - 100% 

Supermarket - - - 100% - - - 100% 
Office - - - - 100% - - 100% 

Presentation - - - - - 99% 1% 100% 
Street - - - 1% 1% 10% 88% 100% 
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The average accuracy of our proposed audio classification system was about 97.43%. In addition, 
we collected our own audio dataset for three contexts—bus, subway, and other (anything except bus 
and subway)—using various Android smartphones, which is available in [24]. Using a k-fold (k = 10) 
cross-validation rule, we obtained the accuracy shown in Table 4.  

Table 4. Accuracy table of audio classification using our dataset [24]. 

 Bus Car Other 
Bus 89.34% 5.60% 10.66% 
Car 4.25% 91.20% 4.55% 

Other 4% 4% 92% 

These results present a reasonably high accuracy level, suggesting that audio is an important data 
source for our context-aware system. 

4.3. Performance Evaluation of the Integrated System 

After validating the individual classification module, accelerometer and audio classifiers were 
combined into one integrated system, with extra information acquired from the GPS and Wi-Fi 
schemes, as described in Section 3. The integrated system was tested on the field with realistic and 
real-time sensory data. More specifically, a user launched the system via a smartphone, and as this user 
moved—e.g., riding a bus or subway—an observer recorded all of the truth labels by hand while the 
system wrote the recognized labels to a log file. After the test, the recognized labels were compared with 
the hand-recorded truth tables. The dataset we collected and used for the validation is available in [24]. As 
described in Table 5 we collected and tested eight different recognizable activities. Three of them are 
ambulatory activities and the rest of them are transportation activities. Especially riding a bus has 
another situation ‘Jam’ which might be occurred when a bus is stopped by traffic signal or bad traffic 
condition. Table 5 shows a confusion matrix of different contexts. We collected over a thousand 
activities for each context. Figure 5 is a comparison graph of the true positive with the false negative of 
each activity, which highlights the accuracy of the recognized labels. 

Table 5. Evaluation of the integrated system with realistic and real-time data. 

 Ambulatory Activities Bus Subway Total 
Samples Walk Jogging Still Run Jam Stop Run Stop 

Walk 1109 36 48 - - - - - 1193 
Jogging 25 767 42 - - - - - 834 

Still - - 1915 - - - 20 60 1995 
Bus(run) 65 86 - 2000 - - - - 2151 
Bus(jam) - - 52 - 782 - - 35 869 
Bus(stop) - - 16 - - 279 - 19 314 

Subway(run) - - 24 - 49 - 2341 - 2414 
Subway(stop) - - 18 - 11 7 - 314 350 
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Figure 5. Classification accuracy of the integrated system based on Table 5. 

 

5. Discussion 

The results of the audio classification shows that, by selecting the good features from different 
feature sets, we can significantly improve the classification accuracy. To validate the significance of 
the difference between the achievements (when comparing the recognition results of our selected 
feature set with those of the other feature sets), we used the paired t-test to calculate the p-values, 
which were always smaller than 0.05 (note that a p-value < 0.05 indicates that the achievements are 
significantly different from a statistical point of view).  

Our experiments clearly show that each individual classifier performed reasonably well, with an 
average accuracy around 90%. Furthermore, using our proposed feature selection method with the 
accelerometer classifier was more accurate than using some specific kind of features (p-value < 0.05). 
By combining the two classifiers with other sensor information, our integrated system successfully 
recognized different contexts, including not only ambulatory contexts like walking and jogging, but 
also transportation contexts like the bus and subway. Although the category is still limited by a small 
number of contexts, we have demonstrated that our multimodal sensor approach has the potential to 
recognize different kind of contexts. The proposed algorithm for context recognition is mainly focus 
on how to acquire better classification result by combining accelerometer and audio sensor data. 
Therefore the accuracy of proposed classification algorithm is presented in Figure 5.  

In order to test and evaluate the proposed system in the real-world environment, we implemented 
the system on an Android smartphone as an application. In Figure 6, (a) indicates the initial state of the 
context recognizer—i.e., ‘Still’—with a red line, (b) shows that the user is walking with the 
smartphone in his hand, and (c) shows that the application recognized his activity as ‘Walking’ with a 
green line. When the user started jogging with the smartphone in his pocket, as denoted by (d), the 
proposed system detected his activity as ‘jogging’ and displayed the movement with a blue line, shown 
by (e). Subsequently, (f) and (g) show that the user is riding a bus, which is recognized and displayed 
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by the system with a yellow line. The user is riding a subway in (h), which can be recognized even the 
subway is stopped in (i). A full version of the demonstration movie recorded in real world setting is 
available on YouTube in [27]. 

Figure 6. Demonstration of the integrated system via testing in a real-world environment. 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

6. Conclusions and Future Work 

In this work, we have proposed a multimodal approach by utilizing the set of embedded sensors on 
smartphones in order to recognize different user contexts, such as walking, jogging, riding on a bus, or 
taking a subway. Overall, we demonstrated that the proposed approach was able to recognize eight 
contexts, including ambulatory activities and other particular contexts while on a bus or subway. 
Additionally, it was able to recognize these activities regardless of what the user was doing with his or 
her smartphone, such as making a phone call, using applications, playing games, or listening to music. 
Accordingly, we designed and implemented the proposed system, which enabled position-free 
recognition and was able to recognize activities wherever the smartphone was attached to the body. 
We also presented a novel algorithm to improve the feature selection phase of the accelerometer 
classifier, which was shown to increase the recognition accuracy.  

Performance evaluations of the accelerometer and audio data classification schemes showed that the 
proposed algorithm and system performed better than existing approaches. We tested the proposed 
system by implementing a smartphone application running on an Android OS. These evaluations also 
showed that the system works well in real-world environments with the accuracy of 92.43%.  

Nevertheless, our current system is still limited to a small number of contexts. Further research 
efforts are necessary to extend the target context category. In addition, the current system is not able to 
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provide detailed information about the recognized contexts, such as bus number, subway line number, 
or street name while walking. These challenges motivate future research that seeks to utilize other 
kinds of sensory data to construct a more comprehensive context-aware system. 
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