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Abstract

Background: Cutaneous melanoma is the deadliest skin cancer, with an increasing incidence and mortality rate.

Currently, staging of patients with primary melanoma is performed using histological biomarkers such as tumor

thickness and ulceration. As disruption of the epigenomic landscape is recognized as a widespread feature inherent

in tumor development and progression, we aimed to identify novel biomarkers providing additional clinical

information over current factors using unbiased genome-wide DNA methylation analyses.

Methods: We performed a comprehensive DNA methylation analysis during all progression stages of melanoma

using Infinium HumanMethylation450 BeadChips on a discovery cohort of benign nevi (n = 14) and malignant

melanoma from both primary (n = 33) and metastatic (n = 28) sites, integrating the DNA methylome with gene

expression data. We validated the discovered biomarkers in three independent validation cohorts by

pyrosequencing and immunohistochemistry.

Results: We identified and validated biomarkers for, and pathways involved in, melanoma development (e.g.,

HOXA9 DNA methylation) and tumor progression (e.g., TBC1D16 DNA methylation). In addition, we determined a

prognostic signature with potential clinical applicability and validated PON3 DNA methylation and OVOL1 protein

expression as biomarkers with prognostic information independent of tumor thickness and ulceration.

Conclusions: Our data underscores the importance of epigenomic regulation in triggering metastatic

dissemination through the inactivation of central cancer-related pathways. Inactivation of cell-adhesion and

differentiation unleashes dissemination, and subsequent activation of inflammatory and immune system programs

impairs anti-tumoral defense pathways. Moreover, we identify several markers of tumor development and

progression previously unrelated to melanoma, and determined a prognostic signature with potential clinical utility.
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Background
Disruption of the epigenomic landscape is recognized as

a widespread feature inherent in tumor development

and progression [1, 2]. In particular, aberrant patterns of

histone modifications and DNA methylation have been

extensively studied because of their relevance in altering

the chromatin structure and thereby also gene transcrip-

tion. Specifically, research on DNA methylation changes

in neoplasia has generated a multitude of biomarkers for

diagnosis, prognosis, and response to treatment with ap-

plication in the clinical management of several types of

cancer [3].

DNA methylation changes in cancer include a wave of

global DNA hypomethylation along with loci-specific

hypermethylation predominantly affecting CpG islands

in gene regulatory regions. Downstream transcriptional

alterations have been described at all stages of tumor

progression, affecting virtually all signaling pathways and

unleashing a profound transformation of the cellular

phenotype.

Cutaneous melanoma is the most life-threatening form

of skin cancer, and its incidence and mortality keeps on

rising, with the highest increase among men aged older

than 55 years and women of all ages [4]. Nonetheless,

clinical staging of patients with primary tumors relies

entirely on classical histological biomarkers such as

tumor thickness and ulceration [5]. This particular neo-

plasm exhibits a phenotypic plasticity that accounts for

the high degree of intrinsic and acquired resistance to

antineoplastic, targeted therapies, and immunotherapies

[6–10]. Large-scale studies of transcriptomic alterations,

along with the development of new molecular tools and

in vivo models, have helped elucidate molecular cues

contributing to metastasis, allowing a better understand-

ing of melanoma biology and setting the basis for new

treatment strategies [7, 11–14]. On the epigenomic side,

several studies have reported DNA methylation changes

in melanoma associated with inactivation of candidate

tumor suppressor genes (e.g., MAPK13) or abnormal re-

expression of oncogenes during tumor progression (e.g.,

TBC1D16), when examining pre-selected promoter re-

gions for the presence of DNA methylation, or by

genome-wide based approaches [15–23]. Importantly,

however, the vast majority of these studies are limited to

melanoma metastases and lack primary melanomas,

making it problematic to identify early events during

melanoma development and progression. In addition,

the absence of primary tumors makes it impossible to

determine DNA methylation biomarkers associated with

prognosis of the patient.

Here, we present a comprehensive analysis of DNA

methylation patterns during all progression stages of cu-

taneous melanoma. By using Infinium HumanMethyla-

tion450 BeadChips (Illumina) [24] and integrating the

DNA methylome of benign nevi (n = 14) and malig-

nant melanoma from both primary (n = 33) and meta-

static (n = 28) sites with gene expression data, we

identify, as well as validate in independent patient co-

horts, biomarkers for melanoma development (e.g.,

HOXA9 DNA methylation), tumor progression (e.g.,

TBC1D16 DNA methylation), and patient prognosis

(e.g., PON3 DNA methylation and OVOL1 protein

expression).

Methods

Patients in the discovery and validation cohorts

Fresh-frozen samples and clinical data used as the dis-

covery cohort (n = 75) were collected at KU Leuven

(Table 1). Validation cohort I, consisting of 19 primary

melanomas and 23 metastases, was analyzed to validate

selected biomarkers along melanoma progression. Valid-

ation cohort II, consisting of primary melanomas with

clinical follow-up data provided by Lund University

(Sweden), was used for the validation of the prognostic

signature (Additional file 1: Table S1). A previously-

constructed tissue microarray (TMA) consisting of

formalin-fixed, paraffin-embedded (FFPE) primary mela-

nomas of 179 patients with clinical follow-up data from

the St. Vincent’s University Hospital (Dublin, Ireland)

was used to evaluate the prognostic value of protein bio-

markers (validation cohort III) [25].

Genome-wide DNA methylation analysis

Whole-genome DNA methylation was analyzed in the

14 normal nevi, 33 primary melanomas, and 28 melan-

oma metastases samples using the Illumina Infinium

HumanMethylation450Beadchips. DNA was extracted

from tissues by the phenol:chloroform method (only le-

sions with at least 75% of tumor cells were used). All

DNA samples were assessed for integrity, quantity and

purity by electrophoresis in a 1.3% agarose gel, Pico-

Green quantification, and NanoDrop measurement. All

samples were randomly distributed into 96-well plates.

Bisulfite conversion of 500 ng of genomic DNA was per-

formed using an EZ DNA methylation kit (Zymo Research)

following the manufacturer’s instructions. Bisulfite con-

verted DNA (200 ng) was used for hybridization on the

HumanMethylation450 BeadChip (Illumina). Briefly, sam-

ples were whole-genome amplified followed by enzymatic

end-point fragmentation, precipitation, and resuspension.

The resuspended samples were hybridized onto the

beadchip for 16 h at 48 °C and washed. Single nucleotide

extension with labeled dideoxy-nucleotides was performed

and repeated rounds of staining were carried out with

a combination of labeled antibodies differentiating

between biotin and dinitrophenyl. Dinitrophenyl and

biotin staining, hybridization, target removal, exten-

sion, bisulfite conversion G/T mismatch, and negative
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and non-polymorphic control probe intensities were

inspected as recommended by Illumina.

Data analysis

Infinium 450 K DNA methylation data

Raw fluorescence intensity values were normalized using

the minfi package in R using “preprocessIllumina” with

background correction (GSE86355). Normalized inten-

sities were then used to calculate DNA methylation

levels (beta values). Likewise, data points with statisti-

cally low power (as reported by detection values of P >

0.01) were designated as NA and excluded from the ana-

lysis. Genotyping probes present on the chip, as well as

DNA methylation probes overlapping with known

Table 1 Characteristics of the patients included in the discovery

cohort

Characteristics No. of patients %

All clinical samples

Type

Benign 14 18.6

Primary 33 44.0

Metastatic 28 37.3

Nevi

Sex

Male 9 64.2

Female 5 35.7

Mean age (range), years 20.6 (1–74)

≤50 12 85.7

≥50 2 14.3

Location

Head and neck 3 21.4

Trunk 8 57.1

Upper limbs 2 14.3

Lower limbs 1 7.1

Primary melanoma

Sex

Male 17 51.5

Female 16 48.5

Mean age (range), years 62.1 (34–84)

≤50 10 30.3

≥50 23 69.7

Breslow thickness, mm

0.01–1.0 5 15.2

1.01–2.0 8 24.2

2.01–4.0 10 30.3

>4.0 10 30.3

Clark level

I–III 3 9.1

IV–V 30 90.9

Ulceration

Absent 19 57.6

Present 14 42.4

Histological subtype

Superficial spreading
malignant melanoma

33 100.0

Location

Head and neck 5 15.6

Trunk 11 34.4

Upper limb 2 6.3

Lower limb 14 43.8

Table 1 Characteristics of the patients included in the discovery

cohort (Continued)

Event recurrence

Yes 14 43.8

No 18 56.3

Died of melanoma

Yes 10 31.3

No 22 68.8

Metastatic melanoma

Sex

Male 9 37.5

Female 15 62.5

Mean age (range), years 60.8 (31–89)

≤50 8 33.3

≥50 16 66.7

Breslow thickness, mm

0.01–1.0 0 0

1.01–2.0 6 31.6

2.01–4.0 9 47.4

>4.0 4 21.1

Clark level

I–III 2 9.5

IV–V 19 90.5

Ulceration

Absent 8 47.1

Present 9 52.9

Histological subtype

Superficial spreading
malignant melanoma

28 100.0

Location

Head and neck 2 10.5

Trunk 4 21.0

Upper limb 0 0

Lower limb 13 68.4

Wouters et al. BMC Medicine  (2017) 15:101 Page 3 of 16



single-nucleotide polymorphisms (SNPs), were also re-

moved. Probes were considered to be in a promoter

CpG island if they were located within a CpG island

(UCSC database) and less than 2000 bp away from a

transcription start site.

A first set of 4882 differentially methylated probes be-

tween benign nevi (n = 14), primary tumor (n = 33), and

metastasis (n = 28) samples was found employing an

ANOVA test. Probes were selected on the basis of show-

ing a difference in methylation of ≥ 0.33 in at least two

groups with a confidence of 0.99. Clustering in Fig. 1a

was performed using the Ward method.

Epigenomic changes specific to melanomagenesis and

tumor progression were detected; indeed, benign nevi,

primary tumors, and metastases were separated into

groups and the median of DNA methylation was com-

puted for each probe within each group. Firstly, differ-

ences between group methylation medians (DGMB)

were calculated keeping only probes with large changes

(DGMB ≥ 0.25). Then, a probe-wise Mann–Whitney test

was applied to further refine selected hits keeping only

the statistically significant DNA methylation changes.

Raw P values were adjusted for multiple testing using

the Benjamini–Hochberg method with adjusted P values

< 0.05 considered as significant. Hit lists from “benign

nevi vs. primary melanoma” and “benign nevi vs. meta-

static melanoma” comparisons were crossed to find

probes that show consistent changes of DNA methylation

Fig. 1 Description of DNA methylation dynamics across melanoma progression. a Two-dimensional clustering analysis was performed on all samples

(n = 75). Probes are in rows; samples (green, nevi; yellow, primary melanomas; blue, metastases) in columns. Note that both gains and losses of DNA

methylation changes occur across stages. b Distribution of tumor-specific DNA methylation changes in all genomic compartments: promoter, body,

3'UTR, and gene-body, and in varying CpG content and neighborhood context classified in island, shore, shelf, and open-sea. c Distribution

of metastasis-specific DNA methylation changes in all genomic compartments: promoter, body, 3'UTR, and gene-body and in varying CpG

content and neighborhood context classified in island, shore, shelf, and open-sea. d DAVID functional annotation of the most significant

biological process categories within the hyper- (right panel) and hypomethylated (left panel) genes showing a negative correlation between DNA

methylation and gene expression values (primary primary tumors, meta metastases; P < 0.01)
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between benign samples and tumor samples (early phase

changes). Clustering of benign nevi and primary tumors

(Fig. 3a left panel) was produced using the Ward method

with the beta values of the DM ANOVA set (4822).

When comparing primary melanomas from patients

with long (>48 months) and short survival (<48 months),

the 734 differentially methylated probes were obtained

by performing a non-parametric Wilcoxon–Mann–

Whitney test, selecting the probes with a mean differ-

ence of ≥ 0.2 and with a corrected P value of < 0.01

(Fig. 3a right panel).

Re-analysis of public melanoma gene expression datasets

Melanoma gene expression datasets, together with raw

chip data, were downloaded from the GEO database

(GSE7553, GSE8401, GSE12391) [13, 26, 27]. Quality

check on experiments that used Affymetrix one-channel

chips were carried out with the Bioconductor package

“affyQCReport”. Chips were RMA-normalized using the

“affy” package and the list of differential gene expression

was calculated using the package “limma”. Raw P values

were adjusted for multiple testing according to the

Benjamini–Hochberg method. Probes showing at least

twofold change in gene expression with a q value smaller

than 0.05 were considered significant. Dataset published

by Scatolini et al. [13] used dual-color chips from Agi-

lent combined with dye swap experiment design. Bio-

conductor package “limma” was used to import and

normalize chips. Positive and negative control probe in-

tensities were visualized and inspected in both channels.

In addition, dye-swap chip pairs were plotted against

each other and checked visually. Differential gene ex-

pression analysis was carried out using the “limma”

package. Raw P values were adjusted according to the

Benjamini–Hochberg method. Probes with at least two-

fold change in gene expression and a q value smaller

than 0.05 were considered significant.

Gene ontology and gene interaction network analysis

Gene ontology analyses were performed using the web-

based Database for Annotation, Visualization and Inte-

grated Discovery (DAVID, version 6.7; david.ncifcrf.gov)

[28]. Gene Set Enrichment Analysis (GSEA, version

2.04) was used to identify overrepresentation of gene

sets from the online database available at the GSEA

website (www.broadinstitute.org/gsea/) [29].

Pyrosequencing

DNA methylation in clinical samples of the validation

cohorts was studied by pyrosequencing, which was per-

formed on bisulfite-treated DNA extracted from FFPE

samples. Pyrosequencing reactions and quantification of

DNA methylation were performed in a PyroMark Q96

System version 2.0.6 (QIAGEN) including appropriate

controls. Specific primers were designed using the

MethylExpress® program (Applied Biosystems) for bisul-

fite sequencing and PyroMark Assay Design Software

(QIAGEN-version 2.0.01.15) for pyrosequencing to

examine the methylation status of particular CG sites

covering the promoter regions of the candidate genes

(see Additional file 1: Table S2 for primer sequences).

Immunohistochemistry (IHC)

First, primary antibodies were validated according to a

previously established protocol (Additional file 2: Figures

S1–S5) [30]. Briefly, antibodies obtained for each marker

were checked for their specificity to the target protein

by Western blotting on positive and negative control cell

lines. Next, automated immunohistochemistry (IHC)

using FFPE pellets of identical control cell lines was op-

timized to ensure specificity and to maximize differenti-

ation between positive and negative controls (i.e., the

dynamic range). Finally, IHC on whole tissue FFPE

sections for the target marker and appropriate tech-

nical controls (no primary antibody and IgG from

serum) were reviewed by an experienced pathologist

(see Additional file 2: Figures S6, S7 for additional

examples of IHC on nevi, primary melanomas, and

metastases).

TMA sections were deparaffinized in xylene and rehy-

drated in descending gradient alcohols before heat-

induced antigen retrieval in a Pre-Treatment Module

(DAKO) according to the manufacturer’s instructions in

citrate buffer (pH 6) or in EDTA-Tris buffer (pH 9) at

95 °C for 15 min (see Additional file 1: Table S3 for

staining conditions for each primary antibody). Subse-

quently, immunohistochemistry was performed in a

DAKO Autostainer Link 48 using an alkaline

phosphatase-based EnVision G|2 System/AP Rabbit/

Mouse visualization kit and Permanent Red substrate

(both DAKO), resulting in a pink/red immunoreactivity.

Control cell lines and conditions (see previous para-

graph) were processed identically alongside the TMA.

Automated scoring

The Aperio ScanScope XT slide scanner (Aperio Tech-

nologies) system was used to acquire whole-slide high-

resolution digitized images of tissue sections with a 20×

objective. Digital images were managed using Spectrum

software (Aperio Technologies). The IHC-Mark image

analysis software (OncoMark Ltd., Dublin, Ireland), pre-

viously validated [31, 32], was used to quantify the ex-

pression of individual markers, combining the

percentage of cells stained and the intensity of the stain-

ing (H Score; see Additional file 2: Figure S8 for over-

view of image analysis output). Unless otherwise stated,

the median H Score was used as a cutoff point to define

subgroups of high or low expressing melanomas with
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respect to immunohistochemical markers. Melanoma-

specific and progression-free survival were calculated as

the interval between diagnosis of the primary tumor and

melanoma-specific death or progression of the disease,

respectively. Kaplan–Meier analysis and the Log-Rank

statistic were generated using Graphpad Prism Version

5.02. Multivariate Cox regression analysis was performed

using Statistica Version 7.

Results
Exploration of global methylation profiles within the

discovery cohort

Genome-scale DNA methylation profiling was performed

on primary (n = 33) and metastatic (n = 28) melanomas,

including three paired cases, along with benign nevi (n =

14) from healthy individuals, using a previously validated

DNA methylation array. The cohort consisted of melano-

mas with a balanced distribution among Breslow thick-

ness, ulceration and sex, and were accompanied by

detailed clinical annotation (summarized in Table 1). Im-

portantly, to minimize intrinsic variability, only pri-

mary tumors and metastases from the most

frequently occurring melanoma subtype (superficial

spreading malignant melanoma; SSMM) were selected.

To explore global DNA methylation profiles, cluster-

ing was performed, indicating that DNA methylation

patterns clearly differentiated benign nevi from malig-

nant melanomas into separate branches, with the ex-

ception of three primary melanomas (Fig. 1a). Two of

these were thin, early-stage melanomas associated

with an adjacent benign nevus (Breslow thickness <

1 mm), and the third was an in situ melanoma. The

two other sample clusters were enriched in primary

and metastatic samples, respectively, underscoring the

power of DNA methylation profiles to characterize

different progression stages of the disease.

Identification of genes altered during melanoma

development and progression

We next carried out a differential DNA methylation ana-

lysis to identify genes altered in melanoma development

and progression. Benign nevi, primary tumors, and metas-

tases were separated into groups and the median of DNA

methylation was computed for every probe within each

group. DGMB were calculated keeping only probes with

large changes (DGMB ≥ 0.25), and probe-wise Mann–

Whitney tests were applied to recognize statistically sig-

nificant DNA methylation changes (Benjamini–Hochberg

adjusted P < 0.05). Using these criteria, we identified 5808

probes (1533 genes) that were significantly hypermethy-

lated in melanoma samples (primary tumors and metasta-

ses) versus benign nevi and that preferentially targeted

CpG islands (primary tumors vs. nevi: 68.9% of all hyper-

methylated CpGs; metastases vs. nevi: 54.2%), and 4151

probes significantly hypomethylated (1722 genes) with no

significant association with CpG islands (primary tumors

vs. nevi: 25.8% of all hypomethylated CpGs; metastases vs.

nevi: 8.4%) (two-tailed Fischer’s exact test; P < 0.0001) but

occurring mostly in isolated CpGs in the genome (so-

called ‘open sea’ CpGs; Fig. 1b and Additional file 1: Tables

S4–S9 with gene lists). DNA hypermethylation affected

457 genes (77.7% of all hypermethylated genes during

melanoma development and tumor progression) during

melanoma development (i.e., when comparing benign nevi

and primary tumors). In addition, hypermethylation

prevalently affected promoter regions of genes (TSS1500,

TSS200, 5UTR, 1stExon), thereby identifying 255 unique

genes (55.8%) undergoing promoter hypermethylation

during melanoma development (Fig. 1c, left panels). In

terms of tumor progression (i.e., from primary tumors to

metastases), we identified 131 differentially hypermethy-

lated genes (22.3% of all hypermethylated genes during

melanoma development and tumor progression), of which

86 (65.7%) exhibited hypermethylation at the gene pro-

moter (Fig. 1c, left panels). There was little overlap be-

tween hypermethylated genes in primary tumors versus

nevi and in metastases versus primary tumors (37 com-

mon genes), indicating that there are DNA methylation

changes specific to melanoma development on the one

hand and metastasis-specific DNA methylation changes

linked to melanoma progression on the other. Regarding

gene hypomethylation, most of the changes associated

with melanoma development occurred outside gene pro-

moters and mainly affected gene bodies, as has been pre-

viously observed in other cancer types (Fig. 1c, right

panels) [33–35]. In contrast to DNA hypermethylation,

loss of DNA methylation occurred at higher frequency

during tumor progression (383 genes) than in melanoma

development (63 genes), yet always affecting the same

genomic compartments, i.e., open sea CpGs and gene

bodies (Fig. 1c, right panels).

Functional implication of DNA methylation changes in

melanoma

To identify those DNA methylation changes associated

with changes in gene expression, we performed an inte-

grative analysis with gene expression profiles from

benign nevi and primary and metastatic melanomas

[13, 26, 27] from the GEO database (GSE7553, GSE8401,

GSE12391; see Additional file 1: Tables S10–S17 for gene

expression results). When comparing nevi with primary

tumors and metastases, and primary tumors with metasta-

ses, we were able to examine the expression of 918 out of

the 3323 unique differentially methylated genes (1536

genes hypermethylated; 1787 hypomethylated; Additional

file 1: Tables S4–S9). A significant negative correlation be-

tween DNA methylation and gene expression levels was

observed for 207 (22.5%) of the 918 genes at least in one
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of the databases analyzed. Of these, 130 genes were signifi-

cantly hypermethylated and downregulated (62.8%), while

77 genes (37.2%) were similarly hypomethylated and up-

regulated, highlighting the importance of DNA methyla-

tion in modulating gene expression patterns (Additional

file 1: Tables S18). To investigate the categories of genes

exhibiting altered DNA methylation, we performed a DA-

VID functional annotation analysis [28]. Importantly,

functional classification of the hypermethylated/downreg-

ulated genes revealed a significant involvement of several

melanoma- and metastasis-related pathways, including

cell/tissue polarity (GO:0009952; GO:0003002;

GO:0007389) and cell-cell adhesion (GO:0005916;

GO:0014704; GO:0007155; GO:0022610; GO:0005911;

Fig. 1d, left panel and Additional file 1: Table S19),

whereas hypomethylation-associated overexpression was

enriched in GO terms involving immune system and in-

flammatory processes (P < 0.01) (GO:0006955;

GO:0006952; GO:0006954; GO:0002684; GO:0045321;

GO:0002253; Fig. 1d, right panel and Additional file 1:

Table S20). We next used GSEA [29] to investigate which

well-defined sets of genes showed significant overlap with

these differentially methylated and expressed genes,

and hence which sets of genes might be affected by the

aberrant DNA methylation (Additional file 1: Table S21

and S22; FDR q < 0.05). Importantly, the top gene set

that was found enriched in the hypermethylated/down-

regulated genes was JAEGER_METASTASIS_DN (30/

130 genes or 23.1%), a collection of genes with down-

regulated expression in melanoma metastases com-

pared to the primary tumor [36]. The next two most

enriched gene sets in the hypermethylated/downregu-

lated genes were both polycomb repressor complex 2

(PRC2) targets in human embryonic stem cells [37],

corroborating previous research [38]. In addition,

hypermethylated/downregulated genes typically affected

genes that are downregulated in melanoma patients

with a reported distant metastasis within 4 years [11]

and for hypermethylated genes in lung cancer [39]. The

top gene set that was found enriched in the differen-

tially hypomethylated genes, on the other hand, was

SCHUETZ_BREAST_CANCER_DUCTAL_INVASIVE_UP

(13/76 genes or 17.1%), a collection of genes with up-

regulated expression in invasive breast cancer com-

pared to non-invasive tumors [40]. In addition,

differentially hypomethylated genes were enriched for

genes that have upregulated expression in high versus

low risk uveal melanomas [41].

DNA methylation biomarkers associated with progression

of melanoma

We next searched for genes whose alteration in DNA

methylation could be linked to melanoma progression in

our sample cohort. Selected candidate genes exhibited

(1) large differences in DNA methylation between

primary melanomas and metastases (DGMB ≥ 0.25;

Additional file 1: Tables S6 and S9), and (2) were sup-

ported by gene expression or DNA methylation data

available within publicly available databases. Technical

validation was performed aiming to compare the results

provided by the original array-based epigenomic profil-

ing and pyrosequencing. Correlation analyses showed

the reliability of the screening platform used, and con-

firmed the suitability of pyrosequencing for validation

purposes. Correlation indices between array data and

pyrosequencing for the evaluated hypermethylated

candidates were as follows: EPHX3 (r = 0.81; P <

0.0001), GJB2 (r = 0.71; P < 0.0001), HOXA9 (r = 0.79;

P < 0.0001), MEOX2 (r = 0.70; P < 0.0001), RBP1 (r =

0.84; P < 0.0001), TFAP2B (r = 0.68; P < 0.0001), and

TWIST1 (r = 0.70; P < 0.0001); and for the hypomethy-

lated genes AKT3 (r = 0.74; P < 0.0001), SERPINE2 (r =

0.72; P < 0.0001), and TBC1D16 (r = 0.72; P < 0.0001;

Additional file 2: Figure S9). All of them reached stat-

istical significance in the discovery sample set (Fig. 2a).

We then conducted a validation phase by pyrose-

quencing of candidate epigenomically modified genes

in an independent cohort of 19 primary tumors and

23 metastases (validation cohort I). DNA methylation

changes linked to melanoma progression on the exam-

ined candidates retained significance in the independ-

ent validation cohort (Fig. 2b; EPHX3 was not tested

in this validation cohort).

DNA methylation profiles identify two groups with

differential melanoma-specific survival outcomes

We next investigated whether DNA methylation could

be used to predict the prognosis of patients with melan-

oma. We observed that the beta values of the selected

4822 probes were able to differentiate benign nevi from

primary melanomas by hierarchical clustering. Among

the latter, two groups of primary tumors were distin-

guished that clustered together according to Breslow

thickness and patient survival (Fig. 3a, left panel). One

group had a mean Breslow thickness of 1.96 mm and

median distant metastasis-free survival of 31 months,

whereas the other had significantly higher thickness and

shorter survival (6.30 mm, P = 0.0039; 11 months, P =

0.0460) (no significant differences were observed for ul-

ceration, tumor-infiltrating lymphocytes or mitotic rate;

however, all primary melanomas with brisk infiltrate

were clustered in group B). Given that Breslow thickness

is the strongest prognostic factor in melanoma, we

investigated whether the most significant, differentially

methylated CpG sites could classify patients with

different survival. Two DNA methylation signatures

associated with 4-year survival were clearly identifiable

in this respect (Fig. 3a, right panel). More than 734
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probes showing significant differences in median DNA

methylation values higher than 20% (P < 0.01) were iden-

tified when comparing the DNA methylation profiles of

long survivors (>48 months) versus patients dying within

this period (<48 months). The prognostic power of the

markers was evaluated in an independent validation co-

hort containing primary melanomas (n = 85) with a bal-

anced distribution among Breslow thickness (Additional

file 1: Table S1; validation cohort II). Each of the con-

ventional prognostic biomarkers (except age) had signifi-

cant prognostic information on overall survival in this

validation cohort (Additional file 1: Table S23). Differen-

tially methylated genes included three non-melanoma

related genes (MEOX2, OLIG3, PON3), but previously

associated with DNA methylation and cancer prognosis in

other pathologies [42–44]. The DNA methylation levels of

the three candidates were validated by pyrosequencing in

validation cohort II and survival analyses confirmed their

power as indicators of overall and progression-free sur-

vival (P < 0.05; Fig. 3b and Additional file 2: Figure S10A,

respectively). Importantly, for PON3 DNA methylation,

survival prediction was independent of the two most

frequently used prognostic markers, i.e., tumor thickness

according to Breslow and ulceration (P < 0.05; Fig. 3c and

Additional file 2: Figure S10B); in addition, PON3 DNA

methylation survival prediction for progression-free

survival, but not overall survival, was independent of the

presence of tumor-infiltrating lymphocytes. DNA

a

b

Fig. 2 Identification of DNA methylation markers in the progression of malignant melanoma. Box-plots represent pyrosequencing results in (a)

the discovery cohort and (b) the independent validation cohort I, consisting of 19 primary melanomas and 23 metastases. The selected candidates

display large differences in DNA methylation between primary melanomas and metastases (DGMB≥ 0.25), and were supported by gene expression or

DNA methylation data available within publicly available databases (Additional file 1: Tables S18; primary primary tumors, meta metastases;

Student’s t-test: *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001).

Wouters et al. BMC Medicine  (2017) 15:101 Page 8 of 16



methylation of MEOX2 and OLIG3 did not retain signifi-

cance in multivariate analysis. Moreover, DNA methyla-

tion of PON3 was predictive for overall survival in The

Cancer Genome Atlas cohort of 223 patients with

melanoma [45] (Additional file 2: Figure S11). Altogether,

these data constitute DNA methylation of MEOX2,

OLIG3, and PON3 as prognostic indicators potentially

useful in the clinic.

Fig. 3 DNA methylation biomarkers with prognostic value. a Two groups of primary melanomas were observed in the discovery cohort when

comparing primary melanomas and benign nevi, with significantly different Breslow thickness and distant metastasis-free survival (left panel); 734

probes displayed significant differences in median DNA methylation values higher than 20% when comparing the DNA methylation profiles of

long survivors (>48 months) versus patients dying within this period (<48 months; right panel; primary primary tumor). Note that the vast majority

correspond to gain-of-methylation events. b Kaplan–Meier survival curves for pyrosequencing results of three selected markers (PON3, OLIG3, and

MEOX2) in validation cohort II (Additional file 1: Table S1) corroborating their prognostic power on overall survival (and progression-free survival,

see Additional file 2: Figure S10; UM unmethylated; M methylated; Log-Rank test: P < 0.05). c Kaplan–Meier survival curves for PON3 pyrosequencing

results in validation cohort II grouped according Breslow thickness and ulceration status (left and middle panel, respectively; HB high Breslow, LB low

Breslow, NU no ulceration, U ulceration; Log-Rank test: P < 0.05). Multivariate analysis for PON3 establishes its value for survival prediction independent

of these two prognostic markers (right panel; Cox regression analysis)
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Validation of prognostic value of protein expression of

differentially-methylated genes

Next, we aimed to explore the possibility that the ex-

pression levels of the differentially methylated genes,

linked to melanoma progression and/or prognosis,

would provide prognostic information at the protein

level in an independent melanoma patient cohort via

IHC (validation cohort III). Candidate markers were se-

lected applying the following criteria: (1) methylation of

the promoter regions, (2) genes where initial methylation

levels of nevi were low (or high), (3) consecutive increase

(or decrease) of methylation during the subsequent

stages of melanoma progression, and (4) availability of a

high-quality antibody. Five candidate markers were se-

lected, i.e., AKT3, EPHX3, OLIG3, OVOL1, and

TFAP2B. Antibodies were validated for specificity ac-

cording to a rigorous protocol [30]. In order to evaluate

the prognostic value of these five markers, we performed

IHC on a previously-constructed TMA consisting of

archival paraffin patient samples from the St. Vincent’s

University Hospital (see Additional file 2: Figure S12 for

representative examples of IHC stained TMA cores with

low and high expression; validation cohort III; Dublin,

Ireland) [25]. Each of the conventional prognostic bio-

markers had significant prognostic information on

melanoma-specific survival in this TMA cohort (Add-

itional file 1: Table S24). Image analysis software (IHC-

Mark; OncoMark Ltd., Dublin, Ireland) was used to

quantify the TMA stainings, combining the percentage

of melanoma cells stained and the intensity of the stain-

ing (H Score). Consistent with DNA methylation data,

patients with high OVOL1 expression (H Score > median

H Score) in the primary tumor had significantly better

prognosis than those with low expression (H Score < me-

dian H Score), displaying both extended melanoma-

specific and progression-free survival (Fig. 4a, b). In

addition, patients with very high AKT3 expression (H

Score > third quartile H Score) in the primary tumor

presented significantly worse melanoma-specific and

progression-free survival than the other patients (low to

moderate expression; Fig. 4a, b). Finally, patients with

very low TFAP2B expression (H Score < first quartile H

Score) did not have significantly different melanoma-

specific survival but presented significantly shorter

progression-free survival (Fig. 4a, b). EPHX3 and OLIG3

protein expression did not show any significant prognostic

value in terms of survival (Additional file 2: Figure S13A,

B). Importantly, multivariate Cox regression analysis vali-

dated the power of OVOL1 as an indicator of melanoma-

specific survival, independent of tumor thickness

a

b

Fig. 4 Epigenomically-regulated protein biomarkers with prognostic value. Kaplan–Meier survival curves for immunohistochemical (IHC) results of

three (out of five) selected markers with differential DNA methylation (OVOL1, AKT3, and TFAP2B; results for the other two markers can be found

in Additional file 2: Figure S13A, B) in the independent validation tissue microarray cohort III. The selected candidates display methylation of the

promoter regions, low (or high) initial methylation levels of nevi, and a consecutive increase (or decrease) of methylation during the subsequent

stages of melanoma progression. Primary antibodies were validated prior to performing IHC (Additional file 2: Figures S1–S5). Image analysis

software (IHC-Mark) was used to obtain H Scores for each biomarker, combining the percentage of melanoma cells stained and the intensity of

the staining. Kaplan–Meier curves together with the Log-Rank confirm the prognostic power of the protein markers on (a) melanoma-specific

and (b) progression-free survival (P < 0.05). Multivariate Cox regression analysis manifests the value of OVOL1 protein expression in predicting

melanoma-specific survival, independent of Breslow thickness (right panel in a and b). For OVOL1, the median H Score was used as a cutoff point

to define subgroups of high or low expressing melanomas with respect to immunohistochemical markers; for AKT3 and TFAP2B, the third and

first quartile, respectively, was used (results for AKT3 and TFAP2B with the median H Score as cutoff can be found in Additional file 2: Figure S13)
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according Breslow and age (P < 0.05; Fig. 4a, b; expression

of AKT3 and TFAP2B did not retain significance in multi-

variate analysis). Ulceration did not retain significant

prognostic value when assessed via multivariate analysis,

presumably because of less standardized scoring criteria

for ulceration at the time of tissue collection (from 1994

to 2007), whereas standardized scoring criteria for ulcer-

ation were only described in Europe in 2003 [46].

Altogether, these data constitute AKT3, OVOL1, and

TFAP2B protein expression as prognostic indicators po-

tentially useful in the clinic.

Discussion
To enable the discovery of novel biomarkers and the

development of more efficient therapies for melan-

oma, our understanding of the molecular features

underlying its aggressive phenotype, and how these

traits are regulated by constant modifications of its

transcriptome, need to be enhanced. In this study, we

aimed to profile, in an unbiased manner, DNA methy-

lation changes occurring along the evolution of mel-

anoma development and progression. Moreover, DNA

methylation biomarkers represent a valuable tool for

the clinical management of several cancer types [3].

Despite several DNA methylation changes identified

in melanoma [21–23, 47], there is a lack of unbiased

comprehensive analysis of clinical specimens that de-

scribes the molecular pathways targeted by epige-

nomic changes, and provide biomarkers that can be

readily used as markers for the diagnosis and evalu-

ation of melanoma aggressiveness. To overcome this,

our study represents the most comprehensive epige-

nomic profiling assessment of well-annotated human

melanomas. In more detail, we (1) performed

genome-wide DNA methylation profiling of clinical

specimens covering various stages of development

and progression of SSMM; (2) integrated the observed

changes with gene expression data, in order to gain

insights of potential functional relevance; (3) proved

the robustness of our findings through extensive val-

idation in multiple independent cohorts; and (4) fi-

nally translated our results to potentially valuable

protein biomarkers.

The present study illustrates the DNA methylation

dynamics during melanoma development and progres-

sion. Aberrant DNA hypermethylation occurs pre-

dominantly in CpG island-associated promoters in

melanoma cells, as compared with benign nevi. This

has been described for several tumor types, and rep-

resents a common hallmark of neoplastic transform-

ation. DNA hypomethylation, by contrast, was more

frequently found at later stages of progression and

predominantly associated with gene bodies, although

some loci-specific changes were observed. A previous

study suggested that DNA methylation alterations in

melanoma could be partly attributable to the dramatic

loss of 5-hydroxymethylcytosine observed during ma-

lignant progression, caused by mutation of the TET2

enzyme coding gene [48]. Altogether, a large number

of DNA methylation changes were identified in rela-

tion to different stages of the disease. We were able

to confirm several hypermethylated genes (see Add-

itional file 1: Tables S4–S6 for gene lists) reported in

previous studies, including transcription factor AP2

(TFAP2) genes [49], which play essential roles in the

development of the epidermis and migratory cells of

the neural crest, HLA-class I members [50], SOCS-1

and -2, and members of the tumor necrosis factor re-

ceptor superfamily (TNFRSF) TNFRSF10C and

TNFRSF10D [18], as well as MAPK13 and PLEKHG6

[21], and HOX family genes such as HOXD9 [22].

We did not detect DNA methylation differences in

any of the MAGE genes, but observed frequent hypo-

methylation in TBCD1D16 [47] and in several mem-

bers of the SERPINB gene cluster also involved in

tumorigenesis (see Additional file 1: Tables S7–S9 for

gene lists) [51].

By crossing our dataset with available gene expres-

sion databases, we gained insight into the potential

functional relevance of DNA methylation in altering

the phenotype of melanoma cells. Promoter hyperme-

thylation of genes involved in cell adhesion, such as

ANXA9, CLDN5, GJA1, GJB2, or LAMA3, was

enriched as determined by gene ontology and GSEA

analysis (Additional file 1: Tables S19 and S21), in

line with previous reports (see Additional file 1: Table

S18 for gene list) [52, 53]. The deregulation of cell

adhesion has been recognized in other neoplasms as

a characteristic event facilitating escape of the pri-

mary niche, and has been confirmed in our study by

comparison with available methylation and expression

databases. Loss of terminal differentiation traits, as

observed by inactivation of ESR1, PTPRS, or the me-

tastasis suppressor gene GATA3, may reflect the in-

trinsic capacity of melanoma cells to gain plasticity,

and to progressively acquire changes that trigger

metastatic dissemination [54, 55]. In line with this,

GSEA indicated considerable and significant overlap

between genes with downregulated expression in mel-

anoma metastases compared to the primary tumor

[36] and our set of differentially hypermethylated

genes, and between genes with upregulated expression

in invasive breast cancer compared to non-invasive

tumors [40] and our differentially hypomethylated

genes. The regulation of gene expression patterns by DNA

methylation changes at different stages seems to reflect the

phenotype switch concept that emerged from transcrip-

tomic studies of melanomas [56–58]. Moreover, a series of
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studies have observed a stem-cell phenotype increasing

during melanoma progression, which was strongly sus-

tained by a tumor-promoting microenvironment [59–62].

Pathways activated by DNA hypomethylation were mostly

linked to inflammation and innate or adaptive immunity

processes (Additional file 1: Tables S20 and S22). Of note,

although the effect of tumor-associated immune and

stromal cells was minimized (by only including le-

sions with at least 75% of tumor cells; see Methods),

some of the observed changes in DNA methylation

are likely to originate from both tumor cells and nor-

mal cells. It has been hypothesized that expression of

these immune and inflammatory factors in advanced

melanomas interacts with the tumor microenviron-

ment and creates a milieu supportive of tumor pro-

gression [63]. Specifically, overexpression of TLR4 and

CCR7 in advanced melanomas as a result of loss of

promoter DNA methylation fosters tumor progression

by hijacking immune responses (see Additional file 1:

Table S18 for gene list) [64, 65]. Further, DNA repair

processes are also empowered by hypomethylation of

PARP1 (Additional file 1: Tables S8 and S18), a

chromatin-associated enzyme involved in base-

excision repair [66, 67]. In agreement with our data,

upregulation of DNA repair pathways concomitant

with a loss of cell-cell adhesion has also been re-

ported in vertical-growth phase and metastatic mela-

nomas in relation to regulation of NF-kappaB

signaling and inhibition of apoptosis [13, 67–69].

Overall, our data support a central role for DNA

methylation in modulating the transcriptome of

melanoma cells, thereby changing their phenotype

to promote tumor progression. At initial steps,

prominent epigenomic inactivation induces loss of

cell-cell contacts and truncates differentiation pro-

grams, increasing plasticity of tumor cells to acquire

invasive capacities. In this line, epigenomic regula-

tion underlies previous observations reporting

downregulation of cell adhesion molecules in the

most aggressive vertical-growth phase melanomas

[13, 70]. Subsequently, as melanoma gains depth

and invades the dermis, a transcriptional switch oc-

curs through modulation of DNA methylation pat-

terns leading to the epigenome displayed in the

metastatic sites. DNA hypomethylation seems to be

predominant at this point, and reactivation of im-

mune and inflammation processes is evident. Upreg-

ulation of inflammation and immune response

pathways in tumor cells seem to co-opt to turn the

microenvironment into a tumor-promoting milieu

[71, 72], and has been associated with shortened

relapse-free survival [73].

Within the large panel of genes that were identified

to be transcriptionally altered during melanoma

progression, we selected a series of markers (AKT3,

EPHX3, GJB2, HOXA9, MEOX2, PON3, RBP1, SER-

PINE2, TBC1D16, TFAP2B, and TWIST1) for further

validation. The robustness of our findings was con-

firmed following pyrosequencing of the genes in an

independent patient cohort, pointing at these alter-

ations as widespread attributes of melanoma progres-

sion and worth further characterization. In support of

this, one of the members of our gene signature,

TBC1D16, has recently been shown to be involved in

the metastatic cascade of melanoma [47].

A melanoma survival signature could also be in-

ferred from this integrative study. Through a super-

vised correlation of the DNA methylation profiles

with clinical parameters, we were able to refine a

DNA methylation panel predictive of melanoma-

specific survival. In line with this, significant overlap

was observed, by GSEA, between our differentially

hypermethylated genes and downregulated genes in

melanoma patients with a reported distant metastasis

within 4 years [11], and our differentially hypomethy-

lated genes and upregulated genes in high versus low

risk uveal melanomas [41]. Nowadays, prognosis for

patients with clinically localized primary cutaneous

melanoma relies mostly on histological parameters as

tumor thickness, ulceration, and mitotic rate in the

invasive component. Here, we identified, and validated

in an independent validation cohort, three genes

(MEOX2, OLIG3, and PON3) for which the degree of

DNA methylation can predict the prognosis of melan-

oma patients. Importantly, PON3 DNA methylation

was independent of classical prognostic parameters

and could, therefore, be of added value when imple-

mented in the pathological staging procedure. In

addition, we validated by IHC the prognostic usefulness of

protein biomarkers (AKT3, OVOL1, and TFAP2B) that

were discovered by our DNA methylation analyses,

thereby verifying DNA methylomics as a valid screening

tool to identify potential protein biomarkers. Furthermore,

in the current era of “liquid biopsies”, the observed

changes in methylation might be targets for the study of

cell-free DNA in the serum of melanoma patients. Once

these findings are corroborated, it could be of great utility

for its clinical implementation to improve the manage-

ment of melanoma patients.

Conclusions

Our results underline the prominence of epigenomic

gene regulation in eliciting metastatic spreading

through the inactivation of central cancer-related

pathways. Additionally, we found a panel of markers

of tumor development and progression previously un-

related with melanoma, and established a prognostic

signature with potential clinical utility.
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Additional file 1: Table S1. Characteristics of patients included in

validation cohort II. Table S2. Primers for pyrosequencing. Table S3.

Conditions for immunohistochemical stainings. Table S4. Genes with

differential hypermethylation in primary tumors compared to nevi. Table S5.

Genes with differential hypermethylation in metastases compared to nevi.

Table S6. Genes with differential hypermethylation in metastases compared

to primary tumors. Table S7. Genes with differential hypomethylation in

primary tumors compared to nevi. Table S8. Genes with differential

hypomethylation in metastases compared to nevi. Table S9. Genes with

differential hypomethylation in metastases compared to primary tumors.

Table S10. Differential gene expression results of the comparison between

nevi and radial growth phase primary melanoma (GSE12391, 0.05 and fold

change > 2). Positive logFC means higher expression in radial growth phase

primary melanoma. Table S11. Differential gene expression results of the

comparison between nevi and vertical growth phase primary melanoma

(GSE12391, 0.05 and fold change > 2). Positive logFC means higher

expression in vertical growth phase primary melanoma. Table S12.

Differential gene expression results of the comparison between nevi and

metastases (GSE12391, 0.05 and fold change > 2). Positive logFC means

higher expression in nevi. Table S13. Differential gene expression results of

the comparison between metastases and radial growth phase primary

melanoma (GSE12391, 0.05 and fold change > 2). Positive logFC means

higher expression in metastases. Table S14. Differential gene expression

results of the comparison between metastases and vertical growth phase

primary melanoma (GSE12391, 0.05 and fold change > 2). Positive logFC

means higher expression in metastases. Table S15. Differential gene

expression results of the comparison between primary melanomas and

metastases (GSE7753, 0.05 and fold change > 2). Positive logFC means higher

expression in metastases. Table S16. Differential gene expression results

of the comparison between primary tumors and metastases

(GSE8401, 0.05 and fold change > 2). Positive logFC means higher

expression in metastases. Table S17. Gene lists of differentially

methylated and expressed genes. Table S18. Gene list of

hypermethylated/downregulated and hypomethylated/upregulated

genes. Table S19. DAVID functional annotation analysis of

differentially hypermethylated and expressed genes. Table S20.

DAVID functional annotation analysis of differentially hypomethylated

and expressed genes. Table S21. Gene Set Enrichment Analysis of

differentially hypermethylated and expressed genes. Table S22. Gene

Set Enrichment Analysis of differentially hypomethylated and expressed

genes. Table S23. Results for univariate analyses of conventional prognostic

biomarkers in validation cohort II. Table S24. Results for univariate analyses of

conventional prognostic biomarkers in validation cohort III. (XLS 10860 kb)

Additional file 2: Figures S1–S5. Validation of primary antibodies

against AKT3, EPHX3, OLIG3, OVOL1, and TFAP2B, respectively, according

a previously established protocol (Gillian O’Hurley, Molecular Oncology,

2014). First, antibodies obtained for each marker were checked for their

specificity to the target protein by western blot on positive and negative

control cell lines. Next, automated immunohistochemistry (IHC) using

formalin-fixed, paraffin-embedded (FFPE) pellets of identical control cell

lines was optimized to ensure specificity and to maximize differentiation

between positive and negative controls (i.e., the dynamic range). Finally,

IHC on whole tissue FFPE sections for the target marker and appropriate

technical controls (no primary antibody and IgG from serum) were

reviewed by an experienced pathologist. Figure S6, S7. Representative

examples of IHC on nevi, primary melanomas and metastases. Figure S8.

(A) Examples of original tissue microarray (TMA) core and mark-up image

for varying, indicated H Scores as output from IHC-Mark image analysis

software. (B) Overview graphs indicating the density plots of IHC-Mark

image analysis H Score for each protein marker. Figure S9. Correlation

plots and indices of the technical validation comparing the original array-

based epigenomic profiling and pyrosequencing. Figure S10. (A)

Kaplan–Meier survival curves for pyrosequencing results of three selected

markers (PON3, OLIG3, and MEOX2) in validation cohort II (Additional file 1:

Table S1) corroborating their prognostic power on progression-free survival

(and overall survival, see Fig. 3; UM, unmethylated; M, methylated; Log-Rank

test: P < 0.05). (B) Kaplan–Meier survival curves for PON3 pyrosequencing

results grouped according Breslow thickness and ulceration status (left and

middle panel, respectively; HB, high Breslow; LB, low Breslow; NU, no

ulceration; U, ulceration; No, no tumor-infiltrating lymphocytes (TILs)

present; TILs, TILs present; Log-Rank test: P < 0.05). Multivariate analysis for

PON3 establishes its value for survival prediction independent of these two

prognostic markers (right panel; Cox regression analysis). Figure S11.

Kaplan–Meier survival curve for the DNA methylation of PON3 as a predictor

for 2-year overall survival in The Cancer Genome Atlas cohort of 223 patients

with melanoma (UM, unmethylated; M, methylated; Log-Rank test: P < 0.05).

Figure S12. Representative examples of immunohistochemically stained

TMA cores with low and high expression for each biomarker. Figure S13.

Kaplan–Meier survival curves for IHC results of four (out of five) selected

markers with differential DNA methylation (AKT3, EPHX3, OLIG3, and

TFAP2B; results for the other two markers can be found in Fig. 4a, b)

in the independent validation tissue microarray cohort III. The selected

candidates display methylation of the promoter regions, low (or high) initial

methylation levels of nevi, a consecutive increase (or decrease) of

methylation during the subsequent stages of melanoma progression.

Primary antibodies were validated prior to performing IHC (Additional

file 2: Figures S1–S5). Image analysis software (IHC-Mark) was used to

obtain H Scores for each biomarker, combining the percentage of

melanoma cells stained and the intensity of the staining. Kaplan–

Meier curves display the analysis of their prognostic power on (A)

melanoma-specific and (B) progression-free survival (P < 0.05). For all

markers, the median H Score was used as a cutoff point to define

subgroups high or low expressing melanomas. (PDF 67139 kb)
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