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Comprehensive Drowsiness Level Detection
Model Combining Multimodal Information

Mika Sunagawa , Shin-ichi Shikii, Wataru Nakai, Makoto Mochizuki, Koichi Kusukame, and Hiroki Kitajima

Abstract—This paper presents a drowsiness detection
model that is capable of sensing the entire range of stages of
drowsiness, from weak to strong. The key assumption under-
lying our approach is that the sitting posture-related index
can indicate weak drowsiness that drivers themselves do not
notice. We first determined the sensitivity of the posture index
and conventional indices for the stages of drowsiness. Then,
we designeda drowsiness detectionmodel combining several
indices sensitive to weak drowsiness and to strong drowsi-
ness, to cover all drowsiness stages. Subsequently, the model
was trained and evaluated on a dataset comprised of data
collected from approximately 50 drivers in simulated driving
experiments. The results indicated that posture information
improved the accuracy of weak drowsiness detection, and our proposed model using the driver’s blink and posture
information covered all stages of drowsiness (F1-score 53.6%, root mean square error 0.620). Future applications of
this model include not only warning systems for dangerously drowsy drivers but also systems which can take action
before their drivers become drowsy. Since measuring the information requires no restrictive equipment such as on-body
electrodes, the model presented here based on blink and posture information can be used in several practical applications.

Index Terms— Driver fatigue, driving performance, drowsiness detection, multi-modal sensing, slight drowsiness.

I. INTRODUCTION

D
RIVER drowsiness can cause serious accidents. Accord-
ing to the National Highway Traffic Safety Administra-

tion, between 2011 and 2015 approximately 30,000 accidents
per year have been due to drowsy driving resulting in approx-
imately 800 fatalities [1]. As indicated by the European New
Car Assessment Programme’s 2020 assessments of automotive
safety, which considers driver-state monitoring systems as
a factor in assigning safety ratings, driving safety support
systems require further improvement to prevent accidents
caused by this type of human error [2].

To date, numerous driver drowsiness detection systems
have been proposed [3]–[5]. These systems are comprised of
three main components: a drowsiness evaluation scale, direct
measurement indices, and a classification method. To esti-
mate a driver’s state, the classification method is applied to
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the directly measured indices and the driver’s rating on the
evaluation scale is established.

Drowsiness evaluation scales are defined in several ways
[6]–[8]. The Karolinska Sleepiness Scale (KSS) [6] is one
of the most widely used scales [9], [10]. It is a subjective
evaluation, in which drivers report their perceived arousal on
a scale from one to nine. Wierwille and Ellsworth [7] and
Kitajima et al. [8] have also proposed alternative evaluation
scales. Kitajima et al. defined drowsiness as an interval scale
consisting of five levels, with “1” for not drowsy, “5” for
extremely drowsy, and evenly spaced levels of “2,” “3,” and
“4” between “1” and “5” (hereinafter termed “the drowsiness
level”). Table I shows the corresponding features of these
levels. The drowsiness level is also widely used, because the
level determined by trained observers based on the driver’s
facial expressions shows a high correlation with the driver’s
self-reported drowsiness level and can thus be used as a
substitute for subjective reports [11], [12].

Directly measured indices are typically classified into three
groups: driving information, driver behavioral information and
physiological information. Driving information includes lane
departures and steering wheel movement [13]–[15]. Behav-
ioral information is one or more visible signals that can be
measured using a camera or other unobtrusive equipment, and
includes information such as eye state, facial features and head
movement [16]–[18]. Physiological information, such as heart
rate variability and electroencephalography signals, is usually
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TABLE I

DROWSINESS LEVELS AND FEATURES [8]

measured by direct contact with the subject [19]–[21]. Notably,
especially in recent years, active development has focused
on practical-use oriented systems with non-intrusive mea-
sures [22]–[25].

Machine learning methods, such as neural networks and
support vector machines, have been used to classify drowsiness
state based on measured indices [25]–[28]. There are two ways
to train machine learning models: personalized, in which the
training dataset includes the target user’s data, or otherwise.
Due to large individual differences in measured indices, per-
sonalized models can detect drowsiness more accurately [29],
[30]. However, personalization raises the question of how to
obtain training data in real-life scenarios. In order to avoid this
problem and train a model to be adaptable to various drivers
based only on datasets collected and labeled in advance, the
model must be adjusted using subject-wise cross-validation,
which evaluates the model training and evaluation data on a
subject by subject basis [28].

Past studies have targeted the detection of severe drowsiness
that noticeably degrades driving performance, indicated by
features such as beginning to stray out of one’s lane, greater
variation in steering wheel movements, and erratic driving
speed [12], [15], [31]. One reason for this focus on severe
drowsiness is because a good index to detect weak drowsiness
in various drivers has not yet been found. However, effective
accident prevention requires the detection of slight drowsiness
that occurs before driving performance degrades, to avoid
progression to severe drowsiness.

This study aimed to detect both severe and slight drowsiness
without personalization. To detect slight drowsiness, we intro-
duced the posture-related index. As posture is maintained by
the central nervous system [32], the effects of drowsiness
on the nervous system are expected to appear in postural
change. However, body posture has only rarely been evaluated
in slight drowsiness detection. Therefore, we first investigated
the sensitivity of directly measured indices, including a sitting
posture-related index, for drowsiness. Then, we proposed a
drowsiness detection model that combines multiple comple-
mentary information sources—specifically, indices sensitive to
weak drowsiness and others to strong drowsiness—to capture
all drowsiness levels. We evaluated our proposed model using
a driving simulator dataset without personalization to assess

Fig. 1. Experimental environment of the driving simulator.

the adaptability of the model to various drivers. Achieving
detection of all drowsiness stages, especially slight drowsiness,
enables proactive assistance that keeps drivers from falling
into a dangerous state by encouraging rest or providing an
alertness-inducing stimulus.

The remainder of this paper is organized as follows.
Section II describes our data collection procedure. Section III
presents our assumptions on the sensitivity of indices for the
drowsiness stages and a model that is capable of detecting
all drowsiness levels based on these sensitivities. Section IV
details the results of the model evaluation and Section V
analyzes the evaluation results. Finally, Section VI states our
conclusions.

II. DROWSINESS DATA COLLECTION

The dataset was comprised of data collected from N =

49 participants (average age: 38.8 ± 5.7; 26 males and
23 females), all possessing regular driver’s licenses. The
participants were asked to get adequate sleep to feel rested
the night before the experiment. They were not informed of
the purpose of the experiment in advance, and they partici-
pated without any preconceptions of the expected results. The
experiment was conducted with the approval of the in-house
Ethics Review Committee and with the informed consent of
the participants.

Fig. 1 shows the virtual road environment established for
the driving simulator experiment, which was presented on a
display in front of the subject. The course was a monotonous
highway circuit that included curves. Before the main trial,
the subject practiced driving for approximately 10 minutes to
familiarize themselves with the experimental environment and
to become relaxed. Subsequently, the subject drove along the
circuit for approximately one hour between 14:00-16:00 in an
air-conditioned room with temperature control set to 24 ◦C.
The subject was instructed to follow a vehicle that was shown



SUNAGAWA et al.: COMPREHENSIVE DROWSINESS LEVEL DETECTION MODEL COMBINING MULTIMODAL INFORMATION 3711

to be travelling at a constant speed. The subject was also
instructed to not fall asleep as would be expected during
regular driving.

While the subject was driving, the subject’s face was
recorded with a camera operating at 60 fps. The driving simu-
lator recorded the movements of the pedals and steering wheel
at 10 Hz. The subject’s electrocardiogram and respiration were
measured at 200 Hz (BIOPAC Systems, Inc., MP150 with BN-
RSPEC). The seat pressure distribution was measured at 5 Hz
(Sumitomo Riko Co., Ltd., SR Soft Vision SVZB4545L).

The drowsiness level is the ground truth in this paper.
Subjective evaluations such as KSS are not suitable to mon-
itor slight drowsiness because obtaining the KSS requires
the driver to self-report, and consequently has an arousing
effect. The drowsiness level, which is an external evaluation,
can monitor fine variations in drowsiness without disturb-
ing drivers. To obtain the drowsiness levels, two trained
raters evaluated the facial expressions of drivers. In advance,
the raters had been lectured on drowsiness level by a psychol-
ogist and trained to evaluate the drowsiness level based on
facial expressions with a rating-training dataset. It was con-
firmed that the raters’ evaluations showed high concordance
(weighted Cohen’s kappa [33] was over 0.9). After the driving
experiment, these trained raters determined the drowsiness
level of each subject every five seconds using the captured
video of each subject’s face. The values assigned by raters
were averaged over three-minute intervals, which is the time
window for signal processing to calculate drowsiness indices
using acquired data, and the value thus obtained was specified
as the true value of the drowsiness level.

Here, we show the correspondence between the drowsiness
level and the KSS, to enable the findings in this paper based
on drowsiness level to be applied to studies based on the
KSS. Before and after the driving experiment, each subject
was asked to self-report the KSS and the drowsiness level;
the KSS report was based on the Japanese version [10]. The
correlation of self-reported drowsiness levels and evaluated
drowsiness levels, rated at the nearest timepoint, was 0.74.
Fig. 2 shows the correspondence between the KSS values and
the self-reported drowsiness levels, indicating the correspon-
dence frequencies before and after driving by blue circles and
red circles, respectively. The high correspondence between
KSS 7 and drowsiness level 3 is consistent with previous
results on driving performance that show steep degradation
starting at KSS 7 [34], [35] and drowsiness level 3 [11], [12].

III. MODEL CONSTRUCTION

This section describes the drowsiness indices and our pro-
posed drowsiness detection model. First, we introduce indices
used in the drowsiness detection model and describe their
characteristics, including our assumptions on postural features.
We next present the proposed drowsiness detection model
based on these characteristics. Finally, we describe our model
training and evaluation method.

A. Drowsiness Indices

Adding to commonly used drowsiness indices, we intro-
duced a posture index. Posture control involves the central

Fig. 2. Frequencies for all pairs (Drivers’ self-reported drowsiness levels,
KSS value). Blue circles show the frequency of drowsiness level and KSS
before driving the circuit; red circles show the frequency after driving.

Fig. 3. An example of presumed changes in posture with drowsiness
progression. The right figure highlights the changes from “Not Drowsy”
to “Drowsy.”

nervous system [32] and thus posture change can reflect
changes in the activity of nervous system. For instance, when
people get drowsy, the body loses muscle engagement and
posture is loosened little by little without individuals noticing,
as illustrated in Fig. 3. Conversely, posture also has influence
on sleepiness [36]. Although we do not discuss here which
comes first, we assumed that the drivers’ posture change—
related to the change of nervous activity—has correlation to
weak drowsiness of which they are not aware. Therefore,
to detect weak drowsiness, we used a sitting posture-related
index that represents such gradual changes in posture, adding
to conventional drowsiness indices. Table II shows the cate-
gories of drowsiness indices and the primary measurements for
each one. Notably, the overall drowsiness index includes the
following four sub-indices: 1) vehicular, 2) blink, 3) posture,
and 4) physiological.

1) Vehicular Index: As drowsiness deepens, driving accuracy
declines, resulting in abrupt movements such as sudden course
corrections due to loss of concentration and brain processing
power. These changes related to driving operation, such as
frequency in speed changes from acceleration to decelera-
tion or vice versa and steering wheel movement—which is the
sum total of the absolute values of angle changes and steering
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TABLE II

MULTI-MODAL INDEX

wheel reversal frequency—are defined as the vehicular index
and evaluated in each three-minute time window.

2) Blink Index: This study used conventional blink measures,
including: PERCLOS [16], which indicates the proportion of
time that the driver closes his/her eyes per unit time; blink
frequency, which is the total number of blinks within the three-
minute time window divided by three; and blink duration,
which is the average time required to blink once within the
three-minute time window. To calculate these blink indices,
upper and lower eyelid positions were first identified from the
face video, and blinks were detected from brief changes of the
eyelid positions.

3) Posture Index: To capture changes in sitting posture,
the average shift of the driver’s center of gravity on the seating
surface from the initial position, the lateral displacement of
the position of the center of gravity, and the average head
position coordinates on the facial image were selected as
posture measures, and all evaluated per three-minute time
window.

4) Physiological Index: Physiological features reflect nervous
system activity [37]. Heart rate-related and respiration-related
features, which can be captured without disturbing driving
operation, were used as the physiological index, including:
the low frequency/high frequency (LF/HF) ratio which is the
ratio of the low frequency power to the high frequency power
of heart rate variability; heart rate per minute, which is the
total number of beats within the three-minute time window
divided by three; and average breathing intervals within the
three-minute time window.

B. Predicted Characteristics of the Indices

Each category of index has different characteristics in
relation to drowsiness level, as shown in Fig. 4. Of the
conventional indices, vehicular measures change little with
slight drowsiness but rapidly with severe drowsiness, as indi-
cated in previous studies [12], [34]. This means vehicular
measures are sensitive to very deep drowsiness, but not to
weak drowsiness. Blink measures change in a relatively wide
range of drowsiness level compared to vehicular measures,
but still reflect moderate or deep drowsiness, as indicated
in [34]. Physiological measures show very wide individual
differences [38] and were therefore regarded as ineffective for
the proposed method, which did not train on individual drivers.

In contrast to the above indices, the posture index likely
changes with weak drowsiness, as described above. In the case
of severe drowsiness, posture changes are considered to stop
as drivers lose most of their body power and fully lean on

Fig. 4. General characteristics of drowsiness indices. The posture
index’s curve is a presumpti.

the backrest. As such, the posture index is sensitive to weak
drowsiness and not to severe drowsiness.

C. Model Selection

An appropriate drowsiness detection model was established
based on the index characteristics described in the previous
subsection. Each index was treated as an output obtained when
a function f was applied to the driver’s drowsiness level,
as follows:

[

Index1i Index2i . . . Index N i

]T
= f (level) (1)

Therefore, the model for obtaining the drowsiness level
from the indices was regarded as the inverse function f −1,
as follows:

level = f −1
(

[

Index1i Index2i . . . Index N i

]T
)

(2)

Since the indices were nonlinear with respect to drowsiness
level, as shown in Fig. 4, f and f −1 are both nonlinear
functions. Furthermore, the drowsiness levels were defined
as equidistant, and therefore a nonlinear regression model
was used as f −1 to identify the drowsiness level distance
for each measure. For the drowsiness detection models used
conventionally, neural networks and support vector machines
can be used as nonlinear regression models. However, neural
networks need a large dataset to train. Therefore, Radial Basis
Function (RBF)-kernel based-support vector regression [39],
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[40], which is a modified support vector machine for nonlinear
regression, was used in this study.

The estimated formula is defined as follows:

xi =
[

Index1i Index2i . . . Index N i

]T (3)

f −1 (xi ) =

n
∑

j=1

(

a j − a∗
j

)

· K
(

xi , x j

)

+ b (4)

where xi is the i-th example, x j is a support vector, and
K

(

xi , x j

)

is the RBF kernel defined as

K
(

xi , x j

)

= exp
(

−γ
∥

∥xi − x j

∥

∥

2
)

, (5)

and a j , b and support vectors are calculated using hyperpara-
meters C, ε, and γ , as described in [39]. The optimization of
the hyperparameters is referred to in Section III-D.

The indices used in the drowsiness detection model were
combined to cover the entire drowsiness scale. As mentioned
in Section III-B, blink index is sensitive to most drowsi-
ness stages but not to weak drowsiness. The posture index,
which is expected to be sensitive to weak drowsiness, can
compensate for this shortcoming. Therefore, we propose a
comprehensive drowsiness detection model combining blink
and posture indices, which enables more accurate detection of
all drowsiness levels. Adding other indices, such as vehicular
index, might improve the accuracy for more severe drowsiness
detection. Therefore, the accuracy of drowsiness detection
based on the other index combinations is also provided for
comparison.

D. Model Training and Evaluation

When evaluating the various models, the data for each
drowsiness level was down-sampled to be equal in number
to avoid the effect of drowsiness level imbalance, and thus
1000 data points were used to evaluate each model. Further-
more, to drop irrelevant and redundant measures, the indices
used in each combination model were selected using L1 regu-
larization before each model training. The accuracy of drowsi-
ness detection models with different index combinations were
compared using these data.

To train and evaluate a drowsiness detection model adapt-
able to drivers for general purposes without personalization,
we used nested subject-wise cross-validation, which divides
training and evaluation data subject by subject. The subjects
were first divided into ten groups, and the data from only
nine groups were further divided to select hyper-parameters
of the model through cross-validation. The model was trained
again with all the data from the nine groups using the selected
parameters, and the data from the remaining one group was
estimated using the trained model. This process was repeated,
and the results estimated for each of the ten groups were
designated as the final estimation results. As such, 1000 test
samples were used.

The F1 score and root-mean-square error (RMSE) were used
to evaluate estimation accuracy. Since this study focused on
the estimation accuracy for each drowsiness level, the F1 score
was calculated for each level. The precision for level i was the
proportion of correctly predicted level i out of all predicted

level i, and the recall for level i was the proportion of correctly
predicted level i out of actual level i. Thus F1 for level i was
calculated as

F1 (leveli) =
2 ∗ precision (leveli) ∗ recall(leveli)

precision (leveli) + recall(leveli)
(6)

The average F1 score for the drowsiness levels was desig-
nated as the estimation accuracy of the entire model. In addi-
tion, to compare with the existing method [11] which uses
RMSE as the evaluation metric, the estimated results for the
drowsiness rating values of each subject were also evaluated
using RMSE as the accuracy evaluation of the entire model.

IV. RESULTS

In this section, we first show the characteristics of acquired
indices, on which our proposed model is based. We next
present model performance.

Fig. 5 shows the index value distribution of typical measures
from each of the index categories, and Table III shows the
significant differences among the averages of index values
by drowsiness level (Steel-Dwass test). The blue dashed
lines in Fig. 5 represent the characteristics of each index
and correspond to the general characteristics in Fig. 4. For
example, the speed change frequency (VH1) has no significant
differences in the range of drowsiness levels 1 through 3.
On the other hand, the index increased rapidly from drowsiness
level 4 to 5 as shown in Fig. 5, indicating correspondence with
the general characteristics of the vehicular index, as shown
in Fig. 4. The blink duration (BL1) showed statistically
significant changes over the entire range of drowsiness levels,
as shown in Table III—in particular, increasing rapidly at
drowsiness level 5 in terms of the 25-75% range, as shown
in Fig. 5. As predicted in Section III-A, the shift of center
of gravity in the posture index (PS1) changed over almost
all drowsiness levels, and was particularly sensitive at low
drowsiness levels, showing its complementary relation with the
blink index. Finally, the breathing interval of the physiological
index changed over the entire drowsiness range only mildly,
resulting in only minor differences in the index range among
drowsiness levels.

Table IV shows the F1 scores and the average of RMSE by
subject for each combination of indices. Among estimations
based on one category of indices, the blink index resulted in
the highest F1 score (0.429) and the smallest average subject
RMSE (0.775). This error was smaller than the error of a
previous published drowsiness detection method (0.91) that
similarly used the driver’s facial information [11], indicating
that our method, which uses a regression model, achieved more
accurate drowsiness detection than conventional methods that
use non-regression models.

Fig. 6 shows the F1 score for each drowsiness level when
only the blink index was used and when the blink index was
combined with other indices. The detection accuracy of the
blink only model is low in the range of drowsiness levels
1 through 3, compared with the range of levels 4 through 5.
This result is consistent with the sensitivity of the blink index,
which changes more in the higher drowsiness levels than the
lower levels. Combining the blink index with the posture index
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Fig. 5. Plots showing typical index values of categories by drowsiness level. Blue dashed lines and dots show the averaged values by drowsiness
level. Diamonds in boxplots show outliers, and boxes show 25-75% value ranges. (VH: Vehicular, BL: Blink, PS: Posture, PH: Physiological.)

TABLE III

STATISTICAL SIGNIFICANCE OF THE TYPICAL INDICES

Fig. 6. F1 score by drowsiness level (when other modalities were combined with the blink index, the posture index was particularly effective at
improving the score in drowsiness levels 3 and below). The best performance for each level is highlighted in bold.

improved the F1 score over the range of drowsiness levels
1 through 3. When all the indices were combined, the overall
F1 score and RMSE improved slightly, as shown in the bottom
line of Table IV.

V. DISCUSSION

In this study, posture measures were used in addition to
conventionally used blink measures to detect not only deep
drowsiness but also slight drowsiness before degradation of

driving performance. By combining these indices, the detec-
tion accuracy improved in the lower range of drowsiness
(levels 1 through 3), indicating that the proposed method of
combining the blink and posture indices is effective to cover
all drowsiness levels.

As the position of the center of gravity showed significant
differences in the range of slight drowsiness, i.e., drowsiness
levels 1 through 3, this information improved the estima-
tion accuracy of drowsiness levels 3 and below. One of the
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TABLE IV

RMSE AND F1 SCORE OF ALL MODALITY COMBINATIONS

possible reasons why posture information showed different
characteristics from blink information is the difference in the
aspect of restraint. There is no restrictive equipment on the
drivers’ face, but their body position is softly restricted by the
position of equipment such as the steering wheel, pedals, and
seat. Because the most comfortable seated position is largely
determined by the seat shape, the seating position is almost
the same between individuals and is therefore independent of
individual differences. In particular, during long-term driving
which is most likely to cause drowsiness, drivers rarely sit on
unstable edges, thereby limiting the range of variation in the
position of the center of gravity. These restrictions stabilize the
measure, making the position of the center of gravity a useful
index. However, as there is concern that the change of posture
would be induced by relaxing as well as drowsiness, the cause
of posture changes requires further investigation. Nevertheless,
because the drivers practiced before the main trial and could
be considered adequately relaxed, the posture change during
driving in our study was likely the effect of drowsiness.

Conversely, the vehicular index, which showed similar
characteristics to the blink index and may have little addi-
tional information, improved the estimation accuracy only
marginally. Moreover, the physiological index, which did not
show significance in higher drowsiness levels, reduced the
accuracy in drowsiness level 5. This reduction may have been
caused by overfitting to training dataset subjects because the
physiological index has a large variation between subjects.

Combining all indices improved the accuracy over the blink
and posture indices model, especially in drowsiness levels
4 and 5, which might be a contribution of the vehicular
index. However, the overall improvement was small and the
worst F1 score by drowsiness levels (0.489) was not improved
compared with the blink and posture combination (0.497).
Therefore, for practical use, in which fewer sensors and

non-intrusive measures are desirable to reduce cost, the blink
and posture indices model is the most feasible and effective
way to detect all levels of drowsiness.

VI. CONCLUSION

In this paper, we proposed a drowsiness detection model
designed to cover all drowsiness levels, from slight to severe.
The posture information was particularly useful in conjunction
with blink information because the posture index showed
higher sensitivity to weak drowsiness than conventional infor-
mation and was able to compensate for the shortcomings of
the blink information. Since blink and posture information can
be obtained even while not driving, this knowledge has the
potential to contribute to drowsiness detection for occupants
during automated driving in addition to manual driving.

Future studies will focus on the development of arousing
and arousal-maintenance technologies after drowsiness detec-
tion. Of note, people in a state of slight drowsiness are likely
to be aroused by a relatively weak stimulus. Our achievement
of drowsiness detection over a wide range of levels, including
slight drowsiness, will enable the provision of interfaces that
allow the selection of appropriate stimuli optimized to match
the driver’s degree of drowsiness and driving conditions.
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