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Abstract

Background: Clustering-based methods on gene-expression analysis have been shown to be useful in biomedical

applications such as cancer subtype discovery. Among them, Matrix factorization (MF) is advantageous for

clustering gene expression patterns from DNA microarray experiments, as it efficiently reduces the dimension of

gene expression data. Although several MF methods have been proposed for clustering gene expression patterns,

a systematic evaluation has not been reported yet.

Results: Here we evaluated the clustering performance of orthogonal and non-orthogonal MFs by a total of nine

measurements for performance in four gene expression datasets and one well-known dataset for clustering.

Specifically, we employed a non-orthogonal MF algorithm, BSNMF (Bi-directional Sparse Non-negative Matrix

Factorization), that applies bi-directional sparseness constraints superimposed on non-negative constraints,

comprising a few dominantly co-expressed genes and samples together. Non-orthogonal MFs tended to show

better clustering-quality and prediction-accuracy indices than orthogonal MFs as well as a traditional method, K-

means. Moreover, BSNMF showed improved performance in these measurements. Non-orthogonal MFs including

BSNMF showed also good performance in the functional enrichment test using Gene Ontology terms and

biological pathways.

Conclusions: In conclusion, the clustering performance of orthogonal and non-orthogonal MFs was appropriately

evaluated for clustering microarray data by comprehensive measurements. This study showed that non-orthogonal

MFs have better performance than orthogonal MFs and K-means for clustering microarray data.

Background
DNA microarray can simultaneously measure the

expression levels of thousands of genes. Increasingly, the

challenge is to interpret such data to reveal molecular

biological processes and the mechanism of human dis-

eases. One of the main goals of expression data analysis

is to identify the changing and unchanging genes and to

correlate these changes with similar expression profiles.

One of the major challenges for gene expression analysis

is the reduction of dimension. Gene expression data

typically have high dimensionality, with tens of thou-

sands of genes whereas the number of observations or

experiments is usually under a hundred. Because the

number of variables easily exceeds that of experiments,

dimension reduction is obviously required for gene

expression analysis. This task can be considered as a

matrix factorization problem.

Matrix factorization (MF) methods on microarray data

can extract distinct patterns from the data [1-5]. Princi-

pal Component Analysis (PCA) and Singular Value
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Decomposition (SVD) are popular analysis methods, and

they have been applied to classification problems with

satisfactory results [1,5]. However, because of the holis-

tic nature of PCA or SVD, it is difficult to provide the

biologically instinctive interpretation of data from the

obtained components. In order to overcome this limita-

tion, Paatero and Tapper [6] and Lee and Seung [7] pro-

posed that non-negative matrix factorization (NMF) can

learn part-based representations that can provide the

obvious interpretation. The non-negativity constraints

make the representation purely additive (allowing no

subtractions), in comparison with many other linear

representations such as PCA and Independent Compo-

nent Analysis (ICA) [8]. Their work was applied to sig-

nal processing and text mining. Brunet et al. [9] applied

NMF to describe the gene expression profiles of all

genes in terms of a few number of metagenes in order

to derive meaningful biological information from cancer

expression datasets. They clustered the samples into dis-

tinct subtypes by metagene expression patterns.

The gene expression patterns can be sparsely encoded

by metagenes, implying a few significantly co-expressed

genes. Several groups have proposed NMF formulation

that enforces the sparseness of the decomposition. Li et

al. [10] proposed local NMF (LNMF) that has additional

constraints to enforce the sparseness in the NMF. Hoyer

[11,12] also proposed NMF formulation that can find

parts-based representations by explicitly incorporating

the concept of sparseness. Wang et al. [13] demon-

strated Fisher non-negative matrix factorization (FNMF)

that learns localized features by imposing Fisher con-

straints. Gao and Church [14] attempted to control

sparseness by penalizing the number of non-zero entries

unlike other methods.

Sample-based clustering, however, is not the only con-

cern in microarray data analysis. Gene-based clustering

provides informative sets of tightly co-regulated genes.

While sample-based clustering relies on metagenes,

gene-based clustering relies on meta-samples. The two

processes can be viewed as bi-directionally constrained

with each other. Good metagene may support good

sample-based clusters and vice versa. Optimizing sam-

ple- dimension only, sparseness of gene-dimension is

relatively decreased when sparseness of sample-dimen-

sion is increased. In result, the minimization problem is

convex that was subsequently described by others

[11,12,14,15] and resulting matrix cannot support gene-

based clusters well. Therefore, optimizing both sample

and gene dimension together may be appropriated for

clustering of microarray data. Here, we employed a

novel non-orthogonal MF algorithm, Bi-directional

Non-negative Matrix Factorization (BSNMF), with bi-

directional sparseness constraints superimposed on non-

negative constraints, comprising a few dominantly co-

expressed genes and samples together. The bi-direc-

tional optimization process may provide quality cluster-

ing with improved biological relevance that may not be

achieved by applying MFs for each dimension separately.

Many clustering-based methods are developed to

transform a large matrix of gene expression levels into a

more informative set of which genes are highly possible

to share biological properties. Although clustering-based

algorithms for microarray data analysis have been exten-

sively studies, most works have not focused on the sys-

tematic comparison and validation of clustering results.

Different algorithms tend to lead to different cluster-

ing solutions on the same data, while the same algo-

rithm often leads to different results for different

parameter settings. Since there is no consensus on

choosing among them, the applicable measures should

be applied for assessing the quality of a clustering solu-

tion in different situations. For example, when the true

solution is known and we can compare it to another

solution, Minkowski measure [16] or the Jaccard coeffi-

cient [17] is applicable. Whereas, when the true solution

is not known, there is no agreed-upon method for vali-

dating the quality of a suggested solution. Several meth-

ods evaluate clustering solutions based on intra-cluster

homogeneity or inter-cluster separation [18,19]. Mean-

while, the prediction of the correct number of clusters is

a basic problem in unsupervised classification problems.

To solve this problem, a number of cluster validity

indices, assessing the quality of a clustering partition

have been proposed.

In the present paper, we would like to systematically

evaluate various MFs applied to gene-expression data

analysis. We compare six MFs, including two orthogonal

MFs (i.e. PCA and SVD) and four non-orthogonal MFs

(i.e. ICA, NMF and NMF with sparseness constraints

(SNMF) and BSNMF) and a well-known unsupervised

clustering method, K-means algorithm. All were evalu-

ated by seven cluster-evaluation indices. We evaluated

them in view of basic three categories: (1) traditional

clustering, (2) orthogonal MFs and (3) non-orthogonal

MFs. Predictive power and consistency of the methods

are evaluated by using adjusted Rand Index and accu-

racy index when the class labels of data were available.

To evaluate the biological relevance of the resulting

clusters from different algorithms, we evaluated the sig-

nificance of the biological enrichment for the clusters by

using Gene Ontology (GO) and biological pathway

annotations.

Results
Evaluation of each clustering-based method

In our study, we applied K-means algorithm and six

MFs, which are two orthogonal (i.e. SVD and PCA) and

four non-orthogonal (i.e. ICA, NMF, SNMF and
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BSNMF) algorithms to the five benchmarking datasets.

We evaluated the seven methods using nine measures,

including seven cluster evaluation indices and two pre-

diction power measures. Fig. 1 exhibits results from the

seven cluster-quality measures. We repeatedly applied

the clustering (or MFs) algorithms 20 times for each

dataset for each number of clusters, i.e. K = 2 to 4 (for

the Iris dataset) or 2 to 5 (for the rest). The values in

Fig.1 represent the averages.

Among measures, the GAP statistic is optimized when

it decreases (Fig. 1(g)), while others are optimized when

they increase (Fig. 1(a) – (f)). The homogeneity, separa-

tion, Dunn Index, average silhouette width and Hubert

correlation (i.e. Hubert’s gamma) tend to be higher for

non-orthogonal MFs than results from orthogonal MFs

and K-means algorithm. The GAP statistic is lower for

non-orthogonal MFs than orthogonal MFs and K-

means. But, Pearson correlation of cophenetic distance

Figure 1 Illustration of various measures. Illustration of various measures. Here, we evaluated seven methods by six measures. Each illustration

shows results from various measures such as (a) Homogeneity, (b) separation, (c) Dunn Index, (d) average silhouette width, (e) Pearson

correlation of cophenetic distance, (f) Hubert gamma and (g) GAP statistic. GAP statistic is optimized when it has lower value. But other

measures which have higher value are optimized.
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has the highest value for SVD (Fig. 1(e)). Overall, non-

orthogonal MFs represented best clustering quality.

We compared homogeneity with separation at the

same time (Additional File 1). Results from measures for

each dataset were clustered. Results from NMF, SNMF

and BSNMF showed higher slope, that is, their homoge-

neity and separation are more optimized than others.

When we compare one of the measures, Hubert correla-

tion of cophenetic distance between MFs, at each num-

ber of clusters (Additional File 2), NMF, SNMF and

BSNMF showed better performance than others in four

datasets except for the Leukemia dataset. ICA has the

highest value for the Leukemia dataset. Overall, non-

negative MFs have best clustering quality.

The three datasets, Leukemia, Medulloblastoma and

Iris datasets have known class labels as ‘gold standards’.

For the three datasets, we measured accuracy or predic-

tive power using the adjusted Rand Index and prediction

accuracy. Fig. 2 shows the adjusted Rand Index for the

correct classification for the three datasets with the

seven methods (i.e. six MFs and K-means method). The

Leukemia dataset was evaluated at both two-class (i.e.

AML vs. ALL, Fig. 2(a)) and three-class (i.e. AML vs. T

cell type vs. B cell type, Fig. 2(b)) levels. Fig. 2 demon-

strates that BSNMF, SNMF and NMF have the highest

Adjusted Rand Index for most of the evaluations.

Fig. 3 shows the results from prediction accuracy.

SNMF and BSNMF tend to show the best accuracy

measures. We also included a voting scheme that simply

combines all the results from the various algorithms and

returns the best consensus. Voting showed comparable

results to SNMF and BSNMF.

Detailed class prediction results for the Leukemia

dataset are shown in Table 1. Class assignment is opti-

mized for each dataset when accuracy has the highest

value. All methods were tested both at K=2 and K=3.

At K=2 level, one AML sample (AML_12) was incor-

rectly assigned to ALL by SNMF and BSNMF. The

result is the same as that of Gao et al. [14]. The error

count for NMF was two (ALL_7092_B cell and

ALL_14749_B cell). Overall, non-orthogonal MFs like

BSNMF, SNMF, NMF and ICA showed higher predic-

tion accuracy than orthogonal MFs and K-means algo-

rithm. At K=3 level, BSNMF showed the best results

with only one mistake that AML_13 was incorrectly

assigned to ALL, while SNMF made two mistakes

(AML_13 and ALL_21302_B cell). Table 2 shows the

results for the Medulloblastoma dataset K=2. BSNMF

showed the best result with 11 mistakes, while SNMF

and NMF have 13 and ICA has 14.

Evaluation of biological relevance

To evaluate the biological relevance of the clustering

results, we created clusters of genes and assigned them

to the corresponding sample-wise clusters. For MFs, we

clustered genes by using coefficient matrix of genes. For

instance, in the Leukemia dataset factorized by NMF at

K=2, we clustered genes into two groups by using the

coefficient matrix of genes, W, from NMF. Given such a

factorization, the matrix W is able to be used to deter-

mine the gene cluster membership, that is, a gene i is

placed in a cluster j if the wij is the largest entry in row

i. Applying K-means algorithm, we clustered genes

using original gene expression data matrix. Then, we

labelled gene-cluster corresponding to the labels of sam-

ple-cluster.

Gene-wise clusters are annotated by GO terms and

biological pathways. We measured the significance of

GO term (or pathway) assignment by using hyper-geo-

metric distribution. Here we briefly regard each GO

term and biological pathway as a term. Table 3 shows

the numbers of significantly enriched terms for the cor-

responding clusters at p < 0.05. For the Leukemia data-

set, BSNMF (N=535) and NMF (N=532) have the

highest numbers of significantly enriched terms in ALL.

BSNMF has the highest numbers in AML (N=280) and

in total (N=815) (Table 3(a)). Table 3(b) shows the

results from Medulloblastoma dataset. In cluster 1,

BSNMF (N=599) and K-means (N=517) have the most

significantly enriched terms. In cluster 2, SVD (N=361)

and NMF (N=335) have the most terms. The total num-

ber of significant terms is the biggest with BSNMF

(N=805). Table 3(c) demonstrates that the fibroblast

dataset has the biggest total number of significant terms

for BSNMF (N=504). Table 3(d) exhibits the result from

the mouse dataset. In cluster 1, BSNMF (N=690) and

SNMF (N=686) have the most significantly enriched

terms. In cluster 2, ICA (N=114) has the most terms.

The total number of significant terms is the biggest with

BSNMF (N=746). Overall, the numbers of significantly

enriched terms resulting from non-orthogonal MFs,

BSNMF, SNMF, NMF and ICA, are bigger than those of

orthogonal MFs and K-means algorithm.

Dueck et al. [20] summarized GO terms with signifi-

cance to the resulting clusters from various clustering

algorithms using two representations: the proportion of

factors that are significantly enriched for at least one

functional category at a=0.05 and the mean log10 (p-

value). We combined two representations. We calcu-

lated the weighted p-values, the proportion of significant

GO terms multiplies the negative log10 (p-value). Fig. 4

shows the weighted p-values of the GO terms signifi-

cantly annotated to the corresponding clusters for the

Leukemia and Medulloblastoma datasets. The weighted

p-values are more significant when they have higher

value. For simplicity, we plotted the top 50 terms. Plots

for other dataset can be found in the supplement web

site (http://www.snubi.org/software/BSNMF/). For the
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Leukemia dataset, BSNMF and K-means were shown to

have annotated terms with the highest significance in

AML and BSNMF and SNMF in ALL (Fig. 4(a), (b)).

Overall, BSNMF and SNMF showed the highest signifi-

cance for the whole Leukemia dataset (Fig. 4(c)). In the

medullobalstoma dataset, BSNMF and K-means for the

first cluster and BSNMF and SVD for the second cluster

had the higher weighted p-value than other methods.

Overall, BSNMF showed the best results (Fig. 4(d) - (f)).

Therefore, genes in the clusters created by BSNMF

seemed to be more biologically associated in terms of

GO term annotations than those created by other

methods.

The p-values are calculated for each GO category and

for each pathway resource (Fig. 5). The GO term (or

pathway) annotation having lower p-values represents

Figure 2 Illustration of the Adjusted Rand index. Illustration of the Adjusted Rand index. (a) Result from leukemia dataset which has known

class labels with two groups, ALL and AML, We tested various methods at rank k=2. (b) From leukemia dataset with three groups, ALL-B, ALL-T

and AML. We applied the adjusted Rand index at rank k=3. (c) From medulloblastoma dataset which has known class labels with two groups,

classic and desmoplastic. (d) From iris dataset that has known class labels with three groups of flower species.
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that corresponding cluster in terms of sharing GO terms

(or pathways) is more relevant biologically. The result

for K-means and BSNMF in the AML cluster is only

shown. Other results are found in the supplement web

site. Overall, non-orthogonal MFs tend to create more

enriched clusters.

The top- ranked genes with the largest coefficient in

W matrix of BSNMF may be most explanatory for each

cluster (Additional File 3). The top ranked 20 genes for

the ALL cluster are enriched in significant GO terms

like response to external stimulus, immune response

and cell growth. Genes for the AML cluster had are

enriched in response to external stimulus, immune

response and membrane genes. The gene functions in

PubMed indicated that the two sets of 20 genes are

enriched in chemokines and tumor suppressor genes.

Genes for the first cluster of meduloblastoma were

related to cytoplasm, cell motility and cell growth and/

or maintenance and those for the second cluster to

cytoplasm, biosynthesis and protein metabolism genes.

Gene sets for other datasets can be found in the supple-

ment web site.

The mean expression profiles of the gene-wise clusters

from the fibroblast dataset were extracted (Additional

File 4). We clustered genes by using coefficient matrix

of genes when we applied MFs. Coefficient matrix of

genes (W matrix) can be used to determine cluster

membership of genes, that is, gene i belongs to cluster j

if the wij is the largest entry in row i. Applying K-means

algorithm, we clustered genes using original gene

expression data matrix. Then, we labelled gene-cluster

corresponding to the labels of sample-cluster. According

to method mentioned above, gene-wise clusters were

created by the seven methods. Number of gene-wise

clusters is five because Xu et al. [21] and Sharan et al.

[18] suggested that optimal number of clusters is five

from the fibroblast dataset. While K-means, SVD and

PCA tend to result a few clusters with dominant profiles

with the remaining clusters with relatively flat profiles,

non-orthogonal MFs tend to create clusters with even

dominance. For example, SVD result shows one major

peak and BSNMF result shows much more peaks. Non-

orthogonal MFs seem to be more effective in discover-

ing significant patterns.

Discussion
There are various clustering-based methods which are

proposed by many researchers. These methods have

become a major tool for gene expression data analysis.

Different clustering-based methods usually produce dif-

ferent solutions and one or a few preferred solutions

among them should be selected. However, a systematic

Figure 3 Illustrations of accuracy. Illustrations of accuracy. It measures prediction power of clustering. Bar plot of accuracy from three dataset,

Leukemia dataset, Medulloblastoma dataset and Iris dataset which have known labels of sample-class.
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evaluation study for the methods has not been reported.

Therefore, we evaluated orthogonal (i.e. PCA, SVD),

non-orthogonal (i.e. ICA, NMF and SNMF) MFs and a

traditional clustering algorithm (i.e. K-means) using

seven clustering-quality (i.e. homogeneity, separation,

Dunn index, average silhouette width, Pearson correla-

tion of cophenetic distance, Hubert correlation of

cophenetic distance and the GAP statistic) and two pre-

diction-accuracy measures (i.e. the adjusted Rand index

and prediction accuracy) applying to five published data-

sets. We also included an improving non-orthogonal

MFs, BSNMF in the evaluation study.

As a result, we observed that clustering quality and

prediction-accuracy indices applying non-orthogonal

MFs are better than those of orthogonal MFs and K-

means. In respect to results from Homogeneity, separa-

tion, Dunn index, average silhouette width and Hubert

correlation of cophenetic distance, non-orthogonal MFs

had higher value than those of orthogonal MFs and K-

means. The GAP statistic was lower for non-orthogonal

MFs than for orthogonal MFs and K-means. When we

tested predictive accuracy for the three datasets with

known class labels, we also observed better performance

for non-orthogonal MFs than for the rest. We also

investigated the biological significance of clustering

genes because it is important to discover biological rele-

vant patterns and interpret biologically for analysis of

DNA microarray gene expression data. When we used

Table 1 Class Assignment of Acute Myelogenous Leukemia (AML) and Acute Lymphoblastic Leukemia (ALL)

Kmeans *SVD *PCA *ICA *NMF *SNMF *BSNMF *Voting

(K=2) (K=3) (K=2) (K=3) (K=2) (K=3) (K=2) (K=3) (K=2) (K=3) (K=2) (K=3) (K=2) (K=3) (K=2) (K=3)

ALL_19769_B.cell
ALL_23953_B.cell
ALL_28373_B.cell
ALL_9335_B.cell
ALL_9692_B.cell
ALL_14749_B.cell
ALL_17281_B.cell
ALL_19183_B.cell
ALL_20414_B.cell
ALL_21302_B.cell
ALL_549_B.cell
ALL_17929_B.cell
ALL_20185_B.cell
ALL_11103_B.cell
ALL_18239_B.cell
ALL_5982_B.cell
ALL_7092_B.cell
ALL_R11_B.cell
ALL_R23_B.cell
ALL_16415_T.cell
ALL_19881_T.cell
ALL_9186_T.cell
ALL_9723_T.cell
ALL_17269_T.cell
ALL_14402_T.cell
ALL_17638_T.cell
ALL_22474_T.cell
AML_12
AML_13
AML_14
AML_16
AML_20
AML_1
AML_2
AML_3
AML_5
AML_6
AML_7

**L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

**M
M
L
L
L
M
L
L
M

**B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
**T
T
T
T
T
T
T
T
B
B
M
M
B
B
B
M
B
B
M

M
L
M
M
M
M
L
L
M
L
M
M
L
M
L
L
L
L
M
L
L
L
L
L
L
L
L
L
L
L
L
M
M
L
L
M
L
L

B
T
M
B
B
B
M
T
M
T
B
M
M
B
M
T
M
M
B
T
T
T
T
M
T
T
M
M
M
M
T
B
B
M
T
B
M
T

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
M
M
M
L
M
L
M
L
L
L
L
L
L
L
L
L
L
L

M
B
M
B
M
M
M
M
B
B
M
M
M
B
M
B
M
M
B
B
B
T
T
T
B
B
B
M
B
M
M
M
M
M
M
M
M
M

L
L
L
L
L
M
L
L
L
L
L
L
L
L
L
L
M
L
L
L
L
L
L
L
L
L
L
M
L
M
M
M
M
M
M
M
M
M

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
T
T
T
B
B
T
M
B
M
M
M
M
M
M
M
M
M

L
L
L
L
L
M
L
L
L
L
L
L
L
L
L
L
M
L
L
L
L
L
L
L
L
L
L
M
M
M
M
M
M
M
M
M
M
M

B
B
B
B
B
M
B
B
B
T
B
B
B
B
B
B
M
B
B
T
T
T
T
T
T
T
T
M
M
M
M
M
M
M
M
M
M
M

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
M
L
M
M
M
M
M
M
M
M
M

B
B
B
B
B
B
B
B
B
T
B
B
B
B
B
B
B
B
B
T
T
T
T
T
T
T
T
M
B
M
M
M
M
M
M
M
M
M

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
M
L
M
M
M
M
M
M
M
M
M

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
T
T
T
T
T
T
T
T
M
B
M
M
M
M
M
M
M
M
M

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
M
L
M
M
M
M
M
M
M
M
M

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
T
T
T
T
T
T
T
T
M
B
M
M
M
M
M
M
M
M
M

Error Count 7 7 18 20 16 18 3 5 2 3 1 2 1 1 1 1

Class Assignment of Acute Myelogenous Leukemia (AML) and Acute Lymphoblastic Leukemia (ALL) at K=2 and K=3.

* SVD: singular value decomposition, PCA: principal component analysis, ICA: independent component analysis, NMF: non-negative matrix factorization, SNMF:

sparse non-negative matrix factorization,

BSNMF: bi-directional non-negative matrix factorization, Voting: Voting class

** L: ALL, M: AML, B: ALL_B cell, T: ALL_T cell

Bold-faced: misclassified samples
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enrichment analysis with GO terms and biological path-

ways, we obtained more significant enriched GO terms

or pathways for non-orthogonal MFs than for orthogo-

nal MFs and K-means. We also identified genes that

may be dominantly involved in each subtype. It was

demonstrated that BSNMF showed improved perfor-

mance in prediction-accuracy and biological-enrichment

measures, outperforming other non-orthogonal MFs as

well as orthogonal MFs and K-means algorithm.

There are various clustering evaluation indices we

mentioned. Because they have various results upon data-

sets, they have limitations to suggest which clustering-

based method is the best. Therefore, improving cluster

validation indices is needed to overcome it. We simply

suggested a voting scheme that simply combines all the

results from the various algorithms and returns the best

consensus. Improving evaluation indices can be achieved

through the integration of results from various evalua-

tion indices using unifying rules.

Conclusions
In conclusion, the clustering performance of orthogonal

and non-orthogonal MFs was appropriately compared

for clustering microarray data using various measure-

ments. We clearly showed that non-orthogonal MFs

have better performance than orthogonal MFs and K-

means for clustering microarray data. The characteristic

difference among non-orthogonal MFs, orthogonal MFs

and K-means algorithm implies that non-orthogonal

MFs divided whole data into distinct patterns more

evenly than orthogonal MFs and K-means. This study

would help for suitably evaluating diverse clustering

methods in other genome-wide data as well as microar-

ray data.

Table 2 Class assignment for Medulloblastoma dataset

☐ Sample Subgroup Kmeans *SVD *PCA *ICA *NMF *SNMF *BSNMF *Voting

Brain_MD_7
Brain_MD_59
Brain_MD_20
Brain_MD_21
Brain_MD_50
Brain_MD_49
Brain_MD_45
Brain_MD_43
Brain_MD_8
Brain_MD_42
Brain_MD_1
Brain_MD_4
Brain_MD_55
Brain_MD_41
Brain_MD_37
Brain_MD_3
Brain_MD_34
Brain_MD_29
Brain_MD_13
Brain_MD_24
Brain_MD_65
Brain_MD_5
Brain_MD_66
Brain_MD_67
Brain_MD_58
Brain_MD_53
Brain_MD_56
Brain_MD_16
Brain_MD_40
Brain_MD_35
Brain_MD_30
Brain_MD_23
Brain_MD_28
Brain_MD_60

classic
classic
classic
classic
classic
classic
classic
classic
classic
classic
classic
classic
classic
classic
classic
classic
classic
classic
classic
classic
classic
classic
classic
classic
classic

desmoplastic
desmoplastic
desmoplastic
desmoplastic
desmoplastic
desmoplastic
desmoplastic
desmoplastic
desmoplastic

**2
**1
1
1
1
2
1
1
1
2
2
2
2
1
1
2
2
1
2
2
1
1
1
1
2
2
2
2
1
2
2
2
1
1

2
1
1
2
1
2
2
2
1
1
1
1
1
1
2
2
2
2
1
2
1
1
2
1
2
1
2
1
1
2
2
2
1
2

2
1
1
2
2
2
2
2
2
2
2
2
2
1
1
2
2
1
2
2
1
1
1
1
2
2
2
2
2
2
2
2
2
2

2
1
1
1
2
2
1
1
1
2
2
2
2
1
1
2
2
1
2
2
1
1
1
1
2
2
2
2
1
2
2
2
2
1

2
1
1
1
1
2
1
1
1
2
2
2
2
1
1
2
2
1
2
2
1
1
1
1
2
2
2
2
1
2
2
2
2
1

2
1
1
1
1
2
1
1
1
2
2
2
2
1
1
2
2
1
2
2
1
1
1
1
2
2
2
2
2
2
2
2
1
1

2
1
1
1
1
2
1
1
1
2
2
2
2
1
1
2
2
1
2
2
1
1
1
1
2
2
2
2
2
2
2
2
2
2

2
1
1
1
1
2
1
1
1
2
2
2
2
1
1
2
2
1
2
2
1
1
1
1
2
2
2
2
1
2
2
2
2
2

Error Count 14 16 16 14 13 13 11 12

Class assignment for Medulloblastoma dataset at K=2

* SVD: singular value decomposition, PCA: principal component analysis,

ICA: independent component analysis, NMF: non-negative matrix factorization,

SNMF: sparse non-negative matrix factorization,

BSNMF: bi-directional non-negative matrix factorization, Voting: Voting class

** 1: classic type, 2: desmoplastic type

Bold-faced: misclassified samples

Kim et al. BMC Bioinformatics 2011, 12(Suppl 13):S8
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Methods
Dataset

For the evaluation study, we used five published data-

sets. The Leukemia data set [22] has 38 bone marrow

samples and 5000 genes after filtering process applied

by Brunet et al.[9]. Acute myelogenous Leukemia

(AML) and acute lymphoblastic leukemia (ALL) are dis-

tinguished as well as ALL can be divided into T and B

cell subtypes. The second is Medulloblastoma dataset

that is a gene expression profiles from the childhood

brain tumors. Although the pathogenesis of the tumor is

not well understood, it can be categorized into two

known histological subclasses: classic and desmoplastic.

Pomeroy et al.[23] demonstrated the correlation of gene

expression profiles and the two histological classes. The

dataset has 34 samples and over 5800 genes. The third

is the gene expression dataset from Zhang et al. (2004,

http://hugheslab.med.utoronto.ca/Zhang). This dataset

contains gene expression profiles of over 40000 known

as well as predicted genes in 55 mouse tissues, organs

and cell types. We used over 8200 genes after filtering

with low variance. The forth is the human fibroblast

gene-expression dataset from Iyer et al.[24] with 18 sam-

ples and 517 genes. The last is the well-known Iris data-

set [25]. This famous dataset gives the measurements in

centimetres of the length and width of sepal and petal,

respectively, for 50 flowers from each of the three spe-

cies of Iris (i.e. Iris setosa, versicolor and virginica).

Among datasets, Leukemia, Medulloblastoma and Iris

dataset have known class labels for samples, while the

rest have not.

Non-orthogonal matrix factorization for gene expression

analysis

The gene-expression data is typically represented as an

N-by-M matrix A. In the matrix, each row represents

the expression values of a gene across all samples. Each

column represents the expression values of all genes in

a sample. NMF can decompose gene expression data

and derive parts-based representation of the whole data.

It factorizes a matrix A into the product of two

matrices, including non-negative entries, formulated as

A = WH. W and H are N-by-K and K-by-M matrices,

respectively, and K is much smaller than M. The col-

umn of W can be regarded as a metagene, consisting of

elements wi. Each element represents the coefficient of

gene i in metagene j. The columns of matrix H repre-

sent the metagene expression pattern of the correspond-

ing sample. Each element hij indicates the expression

value of metagene i in sample j. The cluster membership

can be determined based on such a factorization of the

matrix H. Sample j belongs to cluster i if the hij is the

largest entry in column j.

Brunet et al. [9] represented parts corresponding to

metagenes which represent genes tend to be co-

expressed in samples. Here parts mean sets of elements,

indicating the building blocks for the whole. These

metagenes can overlap, indicating that a single gene

may be involved in a number of pathways or biological

processes. Therefore, sparseness constraints are needed.

NMF with sparseness constraints has been proposed by

a few groups. Gao and Church [14] proposed a method

to enforce sparseness of H matrix by penalizing the

number of non-zero entries. This method enforces spar-

seness by combining the goal of minimizing reconstruc-

tion error with that of sparseness [14]. Specifically, they

adopt the point-count regularization approach that

enforces sparseness of H by penalizing the number of

non-zero entries rather than the sum of entries ∑hij in

H [11,12,15]. The sparseness is controlled by the para-

meter and larger parameter makes the H matrix become

more and more sparse. Here, the optimization leads the

resulting H matrix to contain as many zero entries as

possible. Gao’s method enforces sparseness to H matrix

only. We applied the sparseness constraints bi-direction-

ally to both W and H. Because microarray gene expres-

sion data analysis involves clustering by genes as well as

by samples. In microarray data analysis, sample-based

clustering can be used to classify samples with similar

Table 3 Number of significantly enriched GO terms (or

pathways)

(a) Leukemia dataset

☐ Kmeans SVD PCA ICA NMF SNMF BSNMF

ALL 480 389 441 453 532 425 535

AML 85 262 223 222 167 266 280

Total 565 651 664 675 699 691 815

(b) Medulloblastoma dataset

☐ Kmeans SVD PCA ICA NMF SNMF BSNMF

classic 517 373 467 479 388 456 599

desmoplastic 58 361 226 213 335 208 206

Total 575 734 693 692 723 664 805

(c) Fibroblast dataset

☐ kmeans SVD PCA ICA NMF SNMF BSNMF

cluster1 52 45 71 47 57 41 128

cluster2 32 35 68 27 54 48 69

cluster3 48 24 63 61 37 75 50

cluster4 126 38 37 96 108 60 155

cluster5 54 63 60 33 65 68 102

Total 312 205 299 264 321 292 504

(d) Mouse dataset

☐ kmeans SVD PCA ICA NMF SNMF BSNMF

cluster1 593 520 294 258 637 686 690

cluster2 27 61 107 114 38 28 56

Total 620 581 401 372 675 714 746

Number of significantly enriched terms at a=0.05

Kim et al. BMC Bioinformatics 2011, 12(Suppl 13):S8
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appearance while gene-based clustering can provide

informative sets of tightly co-regulated genes and infor-

mation about activity of genes. While sample-based

clustering relies on metagenes, gene-based clustering

relies on meta-samples. The two processes can be

viewed as bi-directionally constrained with each other.

Good metagene may support good sample-based clus-

ters and vice versa. Optimizing sample-dimension only,

sparseness of gene-dimension is relatively decreased

when sparseness of sample-dimension is increased. In

result, the minimization problem is convex that was

subsequently described by others [11,12,14,15] and the

resulting matrix cannot support gene-based clusters

well. Therefore, optimizing both sample and gene

dimension together may be appropriated for clustering

of microarray data. This method can optimize both sam-

ple and gene clustering. In this paper, we especially

focus on BSNMF (Bi-directional Sparseness Non-nega-

tive matrix factorization). The definition and algorithm

is described below.

Definition: Bi-directional Sparseness Non-negative

matrix factorization (BSNMF)

Given a non-negative gene expression data V of size

N-by-M, find the non-negative matrices W and H of

size N-by-C and C-by-M (respectively) such that

E(W, H) = ||V-WH||2

is minimized, under optional constraints:

Sparseness (wi) = l1

Sparseness (hi) = l2,

where wi is the ith column of W and hi is the ith row

of H. Here, C denotes the number of components

(metagenes), l1 and l2 are the desired sparseness of W

and H, respectively. These three parameters are set by

the experimenters.

Algorithm: Bi-directional Sparseness Non-negative

matrix factorization (BSNMF)

1. Initialize W and H to random positive matrices of

dimension N-by-C and C-by-M, respectively.

2. Rescale the column of W and the row of H to unit

norm.

Figure 4 Weighted p-value of significantly enriched GO terms. Weighted p-value of significantly enriched GO terms. (a) and (b) represent

result of ALL and AML cluster in leukemia dataset. (d) and (e) show result of cluster 1 (assigned to classic type) and cluster 2 (assigned to

desmoplastic type) in medulloblastoma dataset. Among the entire significantly enriched factors, top 50 factors are represented. (c) and (f)

represent result of top 50 factors in each entire dataset. Results from other dataset are shown in supplementary site.

Kim et al. BMC Bioinformatics 2011, 12(Suppl 13):S8
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3. Iterate until convergence or reach maximum num-

ber of allowed iteration.

(1) If sparseness constraints on H apply

a. solve W(ia+1) = Wia(VH
T)ia/(WHHT)ia

b. Rescale the column of W to unit norm

c. Solve for each j

min {1/2||Vj-WHj||
2 + 1/2l1||Hj||

2}

d. if (Hij<0) then Hij =0

(2) If sparseness constraints on W apply,

a. solve H(ia+1) = Hia(W
TV)ia/(W

TWH)ia
b. Rescale the column of H to unit norm

c. Solve for each j

min {1/2||Vj-WHj||
2 + 1/2l2||Wj||

2}

d. if (Wij<0) then Wij =0

Figure 5 Log scaled p-values for significantly enriched factors. Log scaled p-values for significantly enriched factors. Each plot represents

significantly enriched terms (at a=0.05) at AML cluster in leukemia dataset using (a) K-means and (b) BSNMF. x-axis represents log10 (p-value).

Entire factors were divided into five categories, GO term of biological process (BP), GO term of cellular component (CC), GO term of molecular

function (MF), BIOCARTA, and pathway of KEGG.

Kim et al. BMC Bioinformatics 2011, 12(Suppl 13):S8
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Measures of clustering evaluation

In this study, we attempt to evaluate various MFs using

cluster evaluation indices. Here, we briefly introduce

cluster evaluation indices we used.

Compactness The first measures estimate cluster com-

pactness or homogeneity with intra cluster variance. Many

variants of between-cluster homogeneity measure are able

to estimate average or maximum pair wise between-cluster

distances, average or maximum centroid-based similarities

or the use of graph-based approaches [26]. For this pur-

pose, we used the homogeneity index by Sharan and Sha-

mir. Homogeneity index is defined as:

H
N

Corr C x C Mavg

x C

=
∈
∑1

( ( ), ( )).

In this equation, C is a cluster. C(M) is the cluster

centroid and C(x) is each data item. Corr(C(x), C(M)) is

the correlation coefficient between each data item and

the centroid. N is the number of data items.

Separation The second index quantifies the degree of

separation between individual clusters. For example, the

average weighted within-cluster distances define an

overall rating for a partitioning, where the distance

between individual clusters can be calculated as the dis-

tance between cluster centroids, or as the minimum dis-

tance between data items belonging to different clusters.

Alternatively, we used cluster separation in a partition-

ing which may be estimated as the minimum separation

observed between individual clusters in the partitioning.

Separation is defined as:

Separation dist C C
C C C C

k l

k l

=
∈ ∈

min (min( ( , ))).

Where dist(Ck, Cl) is the minimum distance between a

pair of data items, i and j, with i Î Ck and j Î Cl.

Combinations There are a number of enhanced

approaches combining measures of the different types of

cluster evaluation indices. Several methods therefore esti-

mate both between-cluster homogeneity and within-cluster

separation. They compute a resulting score by combining

linearly or non-linearly the two measures. A well-known

linear combination is the SD-validity Index [27] and non-

linear combinations include the Dunn Index [28], Dunn-

like-Indices [26], the Davies-Bouldin Index [29] and the sil-

houette width [30]. We used Dunn Index and average sil-

houette width. The Dunn Index measures the ratio

between the smallest cluster distance and the largest

between-cluster distance in a partitioning. It is defined as:

D(C)
dist C C

diam CC C C C

k l

Cm C
mk l

 = min min
( , )

max ( )
,

∈ ∈
∈

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

where diam(Cm) is the maximum intra-cluster dis-

tance within cluster Cm and dist(Ck,Cl) is the minimum

distance between pairs of data items, i and j, with i Î

Ck and j Î Cl. The interval of Dunn Index is [0, +∞]

and it should be maximized.

The silhouette width for a partitioning is computed as

the average silhouette value over all data items [30]. For

each observation i, the silhouette width s(i) is defined

as

s(i) 
b i a i

a i b i
= 

( ) ( )

max( ( ), ( ))
.

−

where a(i) is the average dissimilarity between i and

all other points of the cluster to which i belongs. b(i) is

the average dissimilarity of i between all observations in

its neighbour cluster. A large s(i) means that data items

are “well clustered”.

Compliance between partitioning and distance

information An alternative way of estimating cluster

validity is to directly assess the degree to which distance

information in the original data is consistent with a par-

titioning. For that purpose, a partitioning can be repre-

sented by means of its cophenetic matrix [31], of which

each entry C(i, j) indicates whether the two elements, i

and j are assigned to the same cluster or not. In hier-

archical clustering, the cophenetic distance between two

observations is defined as the inter-group dissimilarity

at which two observations are first joined in the same

cluster. The cophenetic matrix can be compared with

the original dissimilarity matrix using Hubert’s correla-

tion, the normalized gamma statistic, or a measure of

correlation such as the Pearson [32] or Spearman’s rank

correlation [33]. We used Hubert’s and Pearson corre-

lations. The definition of the Huber’s correlation is

given by the equation:

Γ =
1

11

1

M
P i j Q i j

j i

N

i

N

( , ) ( , ),⋅
= +=

−

∑∑
where M = N(N-1)/2, P is the proximity matrix of the

data set and Q is an N-by-N matrix of which (i, j) ele-

ment represents the distance between the representative

points v vc ci j
,( ) of the clusters where the objects xi

and xj belong.

Number of clusters Most of the internal measures

discussed above can be used to assess the number of

clusters. If both clustering algorithms employed and the

internal measures are satisfactory for the dataset under

consideration, the best number of clusters can be

obtained by a knee in the resulting performance curve.

To measure whether the ‘optimal’ number of clusters is

found, we used Gap Statistic[34]:

Kim et al. BMC Bioinformatics 2011, 12(Suppl 13):S8
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Gap (k) =
B

W Wkb k
b

1 * log( ).−∑
K is the total number of clusters giving within disper-

sion measures Wk, k = 1,2,…, K. The Gap statistic

should be minimized to find the ‘optimal’ number of

clusters.

Predictive power and accuracy A number of indices

can assess agreement between a partitioning and the

gold standard by observing the contingency table of the

pair wise assignment of the data items. The well-known

index is the Rand Index [35], which determines the

similarity between two partitions by penalizing false

positive and false negative. There are a number of varia-

tions in Rand Index. In particular, the adjusted Rand

Index [36] introduces a statistically induced normaliza-

tion to yield values close to zero for random partitions.

Another related indices are the Jaccard coefficient [37]

and the Minkowski Score [38]. We used the adjusted

Rand Index to estimate the similarity between clustering

results and the known class labels. The Adjusted Rand

Index is defined as:

R(U,V)=  
n n n n

lk

n n

lk l k

l k

C C C C

C C

2 2 2 2

2 2
1

2

− ⎡
⎣⎢

⎤
⎦⎥

+

∑∑∑
∑

( ) ( ) /

( ) ( )∑∑ ∑∑⎡
⎣⎢

⎤
⎦⎥

− ⎡
⎣⎢

⎤
⎦⎥

( ) ( ) /

,

n n n
l k
C C C2 2 2

where nlk denotes the number of data items assigned

to both cluster l and cluster k. The Adjusted Rand

Index has a value in the interval [0, 1] and is to be

maximized.

The accuracy of clustering is measured by the fol-

lowing formula [39]:

AC =

I j

n

i

i

n

( )

=
∑

1

where I (ji) is 1 if the cluster assignment is correct for

sample ji, otherwise 0 if the cluster assignment is

incorrect.

Biological enrichment analysis

We applied biological enrichment analysis to clustering

results in order to assess whether functionally related

genes are grouped. The resulting genes from clustering

are then subdivided into functional categories for biolo-

gical interpretation. Such functional categorization was

accomplished using GO terms and biological pathways.

We used DAVID 2.1 (http://david.abcc.ncifcrf.gov/) for

GO term enrichment analysis and ArrayXPath [40,41]

for pathway annotation. A modified Fisher’s exact test is

performed to determine whether the proportions of

members falling into each category differ by group,

when those in two independent groups fell into one of

the two mutually exclusive categories. Therefore, lower

p-value indicates a better association of cluster

members.

Additional material

Additional file 1: Illustration of separation vs. homogeneity

Illustration of separation vs. homogeneity. Results from each dataset are

gathered. Each color means each method. Results from NMF, SNMF and

BSNMF have higher slope. That is, homogeneity and separation are more

optimized.

Additional file 2: Illustration of Hubert gamma Illustration of Hubert

gamma. It is a measure of compliance between partitioning and distance

information. Each plot shows result from each datasets at rank K=2, 3, 4

(for Iris dataset) or K=2, 3, 4 and 5 (for the rest). (a) Leukemia dataset (b)

medulloblastoma dataset (c) Iris dataset (d) fibroblast dataset (e) Mouse

dataset.

Additional file 3: The twenty common genes in each leukemia

subtype The twenty common genes in each leukemia subtype

Additional file 4: Patterns of mean expression level for each cluster

for fibroblast dataset Patterns of mean expression level for each cluster

for fibroblast dataset. (a) K-means, (b) SVD, (c) PCA, (d) ICA, (e) NMF, (f)

SNMF and (g) BSNMF. Each lines represent for each cluster.
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