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RESEARCH ARTICLE SUMMARY
◥

PSYCHIATRIC GENOMICS

Comprehensive functional genomic
resource and integrative model for
the human brain
Daifeng Wang*, Shuang Liu*, JonathanWarrell*, HyejungWon*, Xu Shi*,

Fabio C. P. Navarro*, Declan Clarke*, Mengting Gu*, Prashant Emani*, Yucheng T. Yang,

Min Xu, Michael J. Gandal, Shaoke Lou, Jing Zhang, Jonathan J. Park, Chengfei Yan,

Suhn Kyong Rhie, Kasidet Manakongtreecheep, Holly Zhou, Aparna Nathan, Mette Peters,

Eugenio Mattei, Dominic Fitzgerald, Tonya Brunetti, Jill Moore, Yan Jiang, Kiran Girdhar,

Gabriel E. Hoffman, Selim Kalayci, Zeynep H. Gümüş, Gregory E. Crawford,

PsychENCODE Consortium†, Panos Roussos, Schahram Akbarian, Andrew E. Jaffe,

Kevin P. White, Zhiping Weng, Nenad Sestan, Daniel H. Geschwind‡,

James A. Knowles‡, Mark B. Gerstein‡

INTRODUCTION: Strong genetic associations

have been found for a number of psychiatric dis-

orders. However, understanding the underlying

molecular mechanisms remains challenging.

RATIONALE: To address this challenge, the

PsychENCODEConsortiumhasdevelopedacom-

prehensiveonlineresourceand integrativemodels

for the functional genomics of the human brain.

RESULTS: The base of the pyramidal resource

is the datasets generated by PsychENCODE,

including bulk transcriptome, chromatin, geno-

type, and Hi-C datasets and single-cell tran-

scriptomic data from ~32,000 cells for major

brain regions. We have merged these with

data fromGenotype-Tissue Expression (GTEx),

ENCODE, Roadmap Epigenomics, and single-

cell analyses. Viauniformprocessing,we created

a harmonized resource, allowing us to survey

functional genomics data on the brain over a

sample size of 1866 individuals.

From this uniformly processed dataset, we

createdderiveddata products. These include lists

of brain-expressed genes, coexpressionmodules,

and single-cell expression profiles for many

brain cell types; ~79,000 brain-active enhancers

with associated Hi-C loops and topologically

associating domains; and ~2.5million expres-

sion quantitative-trait loci (QTLs) comprising

~238,000 linkage-disequilibrium–independent

single-nucleotide polymorphisms and of other

types of QTLs associated with splice isoforms,

cell fractions, and chromatin activity. By

using these, we found that >88% of the cross-

population variation in brain gene expression

can be accounted for by cell fraction changes.

Furthermore, a number of disorders and aging

areassociatedwithchanges

in cell-type proportions.

The derived data also en-

able comparison between

the brain and other tis-

sues. Inparticular, byusing

spectral analyses,we found

that the brain has distinct expression and epi-

genetic patterns, including a greater extent of

noncoding transcription than other tissues.

The top level of the resource consists of in-

tegrative networks for regulation andmachine-

learning models for disease prediction. The

networks include a full gene regulatory net-

work (GRN) for the brain, linking transcription

factors, enhancers, and target genes frommerg-

ing of the QTLs, generalized element-activity

correlations, and Hi-C data. By using this net-

work, we link disease genes to genome-wide

association study (GWAS) variants for psychi-

atric disorders. For schizophrenia, we linked

321 genes to the 142 reported GWAS loci. We

then embedded the regulatory network into

a deep-learning model to predict psychiatric

phenotypes fromgenotype and expression. Our

model gives a ~6-fold improvement in predic-

tion over additive polygenic risk scores. More-

over, it achieves a ~3-fold improvement over

additivemodels, evenwhen the gene expression

data are imputed, highlighting the value of

having just a small amount of transcriptome

data for disease prediction. Lastly, it highlights

key genes andpathways associatedwithdisorder

prediction, including immunological, synaptic,

andmetabolic pathways, recapitulatingdenovo

results from more targeted analyses.

CONCLUSION: Our resource and integrative

analyses have uncovered genomic elements and

networks in the brain, which in turn have pro-

vided insight into the molecular mechanisms

underlying psychiatric disorders. Our deep-

learningmodel improves disease risk predic-

tion over traditional approaches and can be

extended with additional data types (e.g.,

microRNA and neuroimaging).▪
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RESEARCH ARTICLE
◥

PSYCHIATRIC GENOMICS

Comprehensive functional genomic
resource and integrative model
for the human brain
Daifeng Wang1,2,3*, Shuang Liu1,2*, JonathanWarrell1,2*, HyejungWon4,5*, Xu Shi1,2*,

Fabio C. P. Navarro1,2*, Declan Clarke1,2*, Mengting Gu1*, Prashant Emani1,2*,

Yucheng T. Yang1,2, Min Xu1,2, Michael J. Gandal6, Shaoke Lou1,2, Jing Zhang1,2,

Jonathan J. Park1,2, Chengfei Yan1,2, Suhn Kyong Rhie7, Kasidet Manakongtreecheep1,2,

Holly Zhou1,2, Aparna Nathan1,2, Mette Peters8, Eugenio Mattei9, Dominic Fitzgerald10,

Tonya Brunetti10, Jill Moore9, Yan Jiang11, Kiran Girdhar12, Gabriel E. Hoffman12,

Selim Kalayci12, Zeynep H. Gümüş12, Gregory E. Crawford13, PsychENCODE Consortium†,

Panos Roussos11,12, Schahram Akbarian11,14, Andrew E. Jaffe15, Kevin P. White10,16,

Zhiping Weng9, Nenad Sestan17, Daniel H. Geschwind18,19,20‡,

James A. Knowles21‡, Mark B. Gerstein1,2,22,23‡

Despite progress in defining genetic risk for psychiatric disorders, their molecular mechanisms

remain elusive. Addressing this, the PsychENCODE Consortium has generated a

comprehensive online resource for the adult brain across 1866 individuals. The

PsychENCODE resource contains ~79,000 brain-active enhancers, sets of Hi-C linkages, and

topologically associating domains; single-cell expression profiles for many cell types;

expression quantitative-trait loci (QTLs); and further QTLs associated with chromatin,

splicing, and cell-type proportions. Integration shows that varying cell-type proportions

largely account for the cross-population variation in expression (with >88% reconstruction

accuracy). It also allows building of a gene regulatory network, linking genome-wide

association study variants to genes (e.g., 321 for schizophrenia).We embed this network into

an interpretable deep-learning model, which improves disease prediction by ~6-fold

versus polygenic risk scores and identifies key genes and pathways in psychiatric disorders.

D
isorders of the brain affect nearly one-fifth

of the world’s population (1). Decades of

research have led to little progress in our

understanding of the molecular causes of

psychiatric disorders. This contrasts with

cardiac disease, for which lifestyle and pharma-

cological modification of environmental risk fac-

tors has had profound effects on morbidity, or

cancer, which is now understood to be a direct

disorder of the genome (2–5). Although genome-

wide association studies (GWAS) have identified

many genomic variants strongly associated with

neuropsychiatric disease risk—for instance, the

Psychiatric Genomics Consortium (PGC) has iden-

tified 142GWAS loci associatedwith schizophrenia

(SCZ) (6)—for most of these variants, we have

little understanding of themolecularmechanisms

affecting the brain (7).

Many of these variants lie in noncoding regions,

and large-scale studies have begun to elucidate

the changes in genetic and epigenetic activity

associated with these genomic alterations, sug-

gesting potential molecular mechanisms. In par-

ticular, the Genotype-Tissue Expression (GTEx)

project has associated many noncoding variants

with expression quantitative-trait loci (eQTLs),

and the ENCODE and Roadmap Epigenomics

(Roadmap) projects have identified noncoding

regions acting as enhancers and promoters (8–10).

However, none of these projects have focused their

efforts on the human brain. Initial work focusing

on brain-specific functional genomics has provided

greater insight but could be enhanced with larger

sample sizes (11, 12).Moreover, newmethodologies,

such asHi-C and single-cell sequencing, have yet to

be fully integrated at scale with brain genomics

data (13–16).

Hence, the PsychENCODE Consortium has

generated large-scale data to provide insight into

the brain and psychiatric disorders, including

data derived through genotyping, bulk and single-

cell RNA sequencing (RNA-seq), chromatin im-

munoprecipitation with sequencing (ChIP-seq),

assay for transposase-accessible chromatin using

sequencing (ATAC-seq), and Hi-C (17). All data

have been placed into a central, publicly available

resource that also integrates relevant reprocessed

data from related projects, including ENCODE,

the CommonMind Consortium (CMC), GTEx, and

Roadmap. By using this resource, we identified

functional elements, quantitative-trait loci (QTLs),

and regulatory-network linkages specific to the

adult brain. Moreover, we combined these ele-

ments and networks to build an integrated deep-

learning model that predicts high-level traits

from genotype via intermediate molecular phe-

notypes. By “intermediate phenotypes,”wemean

the readouts of functional genomic information

on genomic elements (e.g., gene expression and

chromatin activity). In some contexts, these are

also referred to as “molecular endophenotypes”

(18). However, we include additional low-level

“phenotypes,” such as cell fractions, so we use

the more general term “intermediate phenotype.”

We also refer to the high-level traits as “observed

phenotypes,” which include both classical clini-

cal variables and characteristics of healthy indi-

viduals, such as gender and age.

Resource construction

The PsychENCODE resource (19) is the central

website for this paper. It organizes data hierarchi-

cally, with a base of raw data files, a middle layer

of uniformly processed and easily shareable re-

sults (such as open chromatin regions and gene

expression quantifications), and a top-level “cap”

of an integrative, deep-learning model, based on

regulatory networks and QTLs. To build the base

layer, we included all adult brain data from

PsychENCODE and merged these with relevant

data from ENCODE, CMC, GTEx, Roadmap, and
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recent single-cell studies (table S1 and Fig. 1). In

total, the resource contains 3810 genotype, tran-

scriptome, chromatin, and Hi-C datasets from

PsychENCODE and 1662 datasets obtained by

using similar bulk assays merged from outside

the consortium. Overall, the datasets from the

prefrontal cortex (PFC) involve sampling from

1866 individuals. The resource also has single-cell

RNA-seq data for 18,025 cells from PsychENCODE

and 14,012 cells from outside sources (20). These

data represent a range of psychiatric disorders,

including SCZ, bipolar disorder (BPD), and autism

spectrum disorder (ASD). The individual geno-

typing and raw next-generation sequencing of

transcriptomics and epigenomics are restricted

for privacy protection, but access can be obtained

uponapproval. Theprotocols for all associateddata

are readily available (fig. S1). Finally, PsychENCODE

has developed a reference brain project on the

PFC by using matched assays on the same set

of brain tissues, which we used to develop an

anchoring annotation (21).

Transcriptome analysis: Bulk and
single cell

To identify the genomic elements exhibiting tran-

scriptional activities specific to the brain, we took

a conservative approach and used the standard-

ized and established ENCODE pipeline to uni-

formly process RNA-seq data fromPsychENCODE,

GTEx, and Roadmap (figs. S2 and S3). This con-

sistency makes our expression data and subse-

quent results (including eQTLs and single-cell

analyses) comparable with previous work. Using

these data, we identified noncoding regions of

transcription and sets of differentially expressed

and coexpressed genes (21, 22).

Brain tissue is composed of a variety of basic

cell types. Gene expression changes observed at

the tissue level may be due to changes in the

proportions of basic cell types (23–28). However,

it is unclear how these changes in cell propor-

tions can contribute to the variation in tissue-

level gene expression observed across a population

of individuals. To address this question, we used

two complementary strategies across our cohort

of 1866 individuals.

First, we used standard pipelines to uni-

formly process single-cell RNA-seq data from

PsychENCODE, in conjunction with other single-

cell studies on the brain (14, 16, 20). Then we

assembled profiles of brain cell types, including

both excitatory and inhibitory neurons (denoted

as Ex1 to Ex9 and In1 to In8, respectively, ac-

cording to previous conventions), major nonneu-

ronal types (e.g., microglia and astrocytes), and

additional cell types associated with development

(21). Depending on the underlying sequencing

and quantification, our profiles were of two

fundamentally different formats, transcripts per

Wang et al., Science 362, eaat8464 (2018) 14 December 2018 2 of 13

Fig. 1. Comprehensive data resource for functional genomics of

the human brain.The functional genomics data generated by the

PsychENCODE Consortium (PEC) constitute a multidimensional explo-

ration across tissue, developmental stage, disorder, species, assay, and

sex. The central data cube represents the results of our data integration

for the three dimensions of disorder, assay, and tissue, where the

numbers of datasets in the analysis are depicted. Projections of the data

onto each of these three parameters are shown as graphs for assay and

disorder and as a schematic for the primary brain regions of interest.

Assay: Dataset numbers for a subset of assays are shown, including

RNA-seq (2040 PsychENCODE samples and 1632 GTEx samples, used

in multiple downstream analyses), genotypes (1362 PsychENCODE

and 25 GTEx individuals for a total of 1387 individuals matched to

RNA-seq samples for QTL analysis after quality control filtering), and

H3K27ac ChIP-seq (408 PsychENCODE and 5 Roadmap samples).

The number of cells assayed by small conditional RNA sequencing

(scRNA-seq) (right-hand y axis) is 18,025 for PsychENCODE and

14,012 for external (ext.) datasets. Disorder: Across all assays, there

are 113 GTEx and 926 PsychENCODE control individuals and 558 SCZ,

217 BPD, 44 ASD, and 8 affective disorder (AFF) individuals from

PsychENCODE, resulting in 1866 individuals. Tissue: Three brain regions

are considered—the PFC (n = 26,769 samples), TC (n = 2153 samples),

and CB (n = 348 samples). See table S11 and (19) for more details.

HBCC, Human Brain Collection Core.
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kilobase million (TPM) and unique molecular

identifier (UMI) counts. The former (TPM profiles)

includes the uniformly processed PsychENCODE

developmental single-cell data merged with pub-

lished adult and developmental data (fig. S4 and

table S2) (14, 16). By contrast, the UMI profiles

are built by merging PsychENCODE adult single-

cell profiles with other recently published data-

sets (14). Both formats share common neuronal

and major nonneuronal cell types and are used

interchangeably in various analyses in this study

(fig. S5 and tables S3 and S4). Moreover, the ex-

pression values of biomarker genes for the same

cell type were correlated between two formats

(figs. S6 and S7). However, our TPM profiles have

additional development-specific cell types, such

as quiescent and replicating.

From both sets of profiles, we can generate a

matrix C of expression signatures, comprising

marker genes and their expression levels across

various cells (fig. S8). In this matrix, a number

of genes (e.g., the gene for dopamine receptor

DRD3) had expression levels that varied more

across cell types than they did in bulk tissue

measurements across individuals in a population

(Fig. 2A). This suggests that cell-type changes

across individuals could contribute substantially

to variation in individual bulk expression levels.

Second, we used an unsupervised analysis

to identify the primary components of bulk ex-

pression variation. We decomposed the bulk gene

expression matrix by using nonnegative matrix

factorization (NMF) (B ≈VH, whereB,V, andH

represent matrices) and determined whether the

top components (NMF-TCs), capturing themajor-

ity of covariance (columns of V ) (Fig. 2B), were

consistently associated with the single-cell sig-

natures (Fig. 2C) (21). A number of NMF-TCs

were, in fact, highly correlated with cell types

frommatrixC for both TPM and UMI data—e.g.,

component NMF-17 is correlated with the Ex2

cell type (correlation coefficient r = 0.63) (Fig. 2C

and fig. S9). This demonstrates that an unsup-

ervised analysis derived solely from bulk data

can roughly recapitulate the single-cell signa-

tures, partially corroborating them.

We then examined how variation in the pro-

portions of basic cell types contributes to varia-

tion in bulk expression. To this end, we estimated

the relative proportions of various cell types (“cell

fractions”) for each tissue sample. In particular,

we deconvolved the bulk tissue-level expression

matrix by using the single-cell signatures to esti-

mate cell fractions across individuals (matrixW),

solvingB ≈CW (Fig. 2B) (21). As a validation, our

estimated fractions of NEU
+/−

cells matched the

experimentally determined fractions from refer-

ence brain samples (median difference = 0.04)

(fig. S10). Overall, our analyses demonstrated

that variation in cell types contributed substan-

tially to bulk variation. That is, weighted combi-

nations of single-cell signatures could account

formost of the population-level expression varia-

tion, with an accuracy of >88% (Fig. 2D) (1 − ||B −

CW||
2
/||B||2 > 88%), and when calculated on a

per-person basis, this quantity varies ±4%over the

1866 individuals in our cohort (figs. S11 and S12).

Also, our results explained more variation than

previous deconvolution approaches (fig. S13) (21).

Wang et al., Science 362, eaat8464 (2018) 14 December 2018 3 of 13

Fig. 2. Deconvolution analysis of bulk and single-cell transcriptomics

reveals cell fraction changes across the population. (A) Genes

had significantly higher expression variability across single cells

sampled from different types of brain cells than across equivalent tissue

samples taken from a population of individuals. (Left) Dopamine gene

DRD3. (B) The heatmap shows the Pearson correlation coefficients of

gene expression between the NMF-TCs and single-cell signatures (for

n = 457 biomarker genes) (15). Micro, microglia; OPC, oligodendrocyte

progenitor cells; endo, endothelial cells; astro, astrocytes; oligo,

oligodendrocytes; peri, pericytes; quies, quiescent cells; repl, replicating

cells. (C) (Top) The bulk tissue gene expression matrix (B, genes by

individuals) can be decomposed by NMF (see fig. S52). (Bottom)

The bulk tissue gene expression matrix B can be also deconvolved by

the single-cell gene expression matrix (C, genes by cell types) to estimate

the cell fractions across individuals (the matrix W); i.e., B ≈ CW. The

three major cell types analyzed are depicted with neuronal cells in

red, nonneuronal cells in blue, and developmental cells in green, as

highlighted by column groups in matrix C (also row groups in W).

frac, fraction. (D) The estimated cell fractions can account for >88% of

the bulk tissue expression variation across the population. (E) Cell

fraction changes across genders and brain disorders. **Differences from

control samples are significant (via a Kolmogorov-Smirnov test)

after accounting for age distributions. See table S12 for more detail.

CTL, control. (F) Changing cell fractions (for Ex3), gene expression

(for SST), and promoter methylation level (median level, for SST)

across age groups are shown.With increasing age, the fractions of Ex3 and

Ex4 significantly increase, and some nonneuronal types decrease (Ex3

trend analysis, P < 6.3 × 10−10).
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We identified cell fraction changes associated

with different traits (Fig. 2E and figs. S14 to S17).

For example, particular types of excitatory and

inhibitory neurons (such as In6) are present in

different fractions in male and female samples

(Fig. 2E). Also, in individuals with ASD, the frac-

tion of Ex5 was higher and that of oligodendro-

cytes, lower, with some commensurate increase

for microglia and astrocytes (Fig. 2E and fig. S18)

(24, 29).

Lastly, we observed an association with age. In

particular, with increasing age, the fractions of

Ex3 and Ex4 significantly increased and the frac-

tions of some nonneuronal types decreased (Fig.

2F and fig. S19). These changesmay be associated

with differential expression of specific genes, e.g.,

the gene for somatostatin (SST), known to be as-

sociated with aging and neurotransmission (Fig.

2F) (30). Also, SST exhibits increasing promoter

methylation with age, perhaps explaining its de-

creasing expression. Other genes known to be as-

sociated with brain aging, such as those for EGR1

(early growth response) and CP (ceruloplasmin),

exhibit different trends (Fig. 2F and figs. S20 and

S21) (21, 31).

Enhancers

To annotate brain-active enhancers, we used

chromatin modification data from the reference

brain, supplementedbydeoxyribonuclease sequenc-

ing (DNase-seq) and ChIP-seq data from Roadmap

PFC samples. All data were processed by standard

ENCODE ChIP-seq pipelines to ensure maximal

compatibility of our results (fig. S22). Consistent

with ENCODE, we define active enhancers as open

chromatin regions enriched inH3K27ac (histoneH3

acetylation at lysine 27) and depleted in H3K4me3

(histone H3 trimethylation at lysine 4) (Fig. 3A

and fig. S23) (21). Overall, we annotated a refer-

ence set of 79,056 enhancers in the PFC. [We also

provide a filtered subset (21).]

Assessing the variability across individuals

and tissues is more difficult for enhancers than

for gene expression (32). Not only is the varia-

bility in chromatin-mark level at enhancers across

different individuals and tissues high, but the

boundaries of enhancers can grow and shrink,

sometimes disappearing altogether (e.g., for

H3K27ac) (Fig. 3A). To investigate this in more

detail, we uniformly processed the H3K27ac data

from the PFC, temporal cortex (TC), and cerebel-

lum (CB) on a cohort of 50 individuals, primarily

of European descent and sequenced to similar

depths (21) (fig. S24). Aggregating data across the

cohort resulted in a total of 37,761 H3K27ac

“peaks” (enriched regions) in the PFC, 42,683 in

the TC, and 26,631 in the CB—where each peak is

Wang et al., Science 362, eaat8464 (2018) 14 December 2018 4 of 13

Fig. 3. Comparative analysis of transcriptomics and epigenomics

between the brain and other tissues. (A) Epigenetics signals of the

reference brain (purple) were used to identify active enhancers with

the ENCODE enhancer pipeline. The H3K27ac signal tracks at the

corresponding enhancer region from each individual in the cohort are

shown in green, with the gradient showing the normalized signal value

for each H3K27ac peak. (B) The overlap of the H3K27ac peaks from an

individual in the population with the reference brain enhancers is shown

as a Venn diagram. The histogram shows the varying percentages of

overlapped H3K27ac peaks across individuals. (C) The tissue clusters of

RCA coefficients [principal component 1 (PC1) versus PC2] for chromatin

data of any potential regulatory elements are shown. Clusters of

PsychENCODE samples (dark green ellipses), external brain samples (light

green ellipses), and other non-brain tissues (magenta ellipses) are plotted.

(D) The extent of transcription for coding (arrowhead) and noncoding

(diamond) regions. The average transcription extent (x axis) is shown

compared with the cumulative extent of transcription across a cohort

of individuals (y axis) for select tissue types, including the CB, cortex, lung,

skin, and testis, by using polyadenylate RNA-seq data. (E and F) Similar

to (C), but now for transcription rather than epigenetics. (E) RCA

coefficients for gene expression data from PsychENCODE, GTEx brains,

and other tissue samples are shown in dark green, light green, and

magenta, respectively. (F) The center (cross) and ranges of different tissue

clusters (dashed ellipses) are shown on an RCA scatterplot of (E).
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present in more than half of the individuals sur-

veyed. In a comparison of aggregated sets for

these three brain regions, the PFC was more

similar to the TC than the CB (~90% versus 34%

overlap in peaks). This difference is consistent

with previous reports and suggests potentially

different cell-type composition in the CB and the

cortex (33, 34).

We also examined howmany of the enhancers

in the reference brain are active (i.e., have en-

richedH3K27ac) in each of the individuals in our

cohort. As expected, not every reference enhancer

was active in each individual. On average, only

~70% ± 15% (~54,000) of the enhancers in the

reference brain were active in an individual in the

cohort, and a similar fraction of the reference

enhancerswas active inmore than half the cohort

(68%) (Fig. 3B). To estimate the total number of

enhancers in the PFC, we calculated the cumu-

lative number of active regions across the cohort

(fig. S25). This increased for the first 20 individ-

uals sampled but saturated at the 30th. Thus, we

hypothesize that pooling PFC enhancers from

~30 individuals is sufficient to cover nearly all
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Fig. 4. QTLs in the adult brain. (A) The frequency of genes with at least

one eQTL (eGenes) is shown across different studies.The number of eGenes

increased as the sample size increased. PsychENCODE eGenes are close

to saturation for protein-coding genes. The estimated replication p1 values

for GTEx and CMC eQTLs versus PsychENCODE are shown (36). (B) The

similarity between PsychENCODE brain dorsolateral PFC (DLPFC) eQTLs

and GTEx eQTLs of other tissues are evaluated by p1 values and SNP-eGene

overlap rates. Both p1 values and SNP-eGene overlap rates are higher for

brain DLPFC than for the other tissues. (C) An example of an H3K27ac

signal across individuals in a representative genomic region, showing largely

congruent identification of regions of open chromatin.The region within the

dashed rectangle represents a cQTL; the signal magnitudes for individuals

with a G/G or G/Tgenotype were lower than those for individuals with a

T/Tgenotype. chr1, chromosome 1; rs, reference SNP. (D) An example of the

mechanism by which an fQTL may affect phenotype.This fQTL overlaps with

an eQTL for FZD9, a gene located in the 7q11.23 region that is deleted in

Williams syndrome.The fQTLmay affect the fraction of Ex3 by regulating FZD9

expression. Only Ex3 constitutes a statistically significant fQTLwith this SNP

(as designated by the asterisk). ref, reference; alt, alternate. (E) The

enrichment of QTLs in different genomic annotations is shown. Pink circles

indicate highly significant enrichment (P < 1 × 10−25 and OR > 2.5). OR,

odds ratio; TFBS,TF binding site; UTR, untranslated region. (F) Numbers

of identified QTL-associated elements (eGenes, enhancers, and cell types) and

QTL SNPs are shown in the bottom left table. Asterisks indicate that, for

cQTLs, we show only the number of top SNPs for each enhancer. Overlaps of

all QTL SNPs are shown in heatmaps (square rows).The linked circles show

the overlap of QTL types.The intersections of other QTLs with eQTLs are

evaluated by using p1 values in the orange bar plot.The greatest intersection

is between cQTLs and eQTLs. An example is displayed on the right: the

intersection of eQTL SNPs (for the MTOR gene) and cQTL SNPs (for the

H3K27ac signal on an enhancer ~50 kbupstreamof the gene). Hi-C interactions

(bottom) indicate that the enhancer interacts with the promoter of MTOR,

suggesting that the cQTLSNPs potentially mediate the expression modulation

manifest by the eQTL SNPs.
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possible PFC enhancer regions, estimated at

~120,000.

Consistent comparison: Transcriptome
and epigenome

As we uniformly processed the transcriptomic

and epigenomic data across the PsychENCODE,

ENCODE,GTEx, andRoadmapdatasets, we could

compare the brain with other organs in a con-

sistent fashion and also compare transcriptome

variation with that of the epigenome (Fig. 3, C to

F). Several approaches, including principal com-

ponents anaylsis (PCA), t-distributed stochastic

neighbor embedding (t-SNE), and reference com-

ponent analysis (RCA), were tested to determine

the best method for comparison. We found that,

although popular and interpretable, PCA de-

emphasizes local structure and is overly influ-

enced by outliers; by contrast, t-SNE preserves

local relationships but “shatters” global struc-

ture. RCA is a compromise (21): It captures local

structurewhilemaintainingmeaningful distances

globally.We used RCA to project gene expression

from PsychENCODE samples against a reference

panel of gene expression for different tissues de-

rived from GTEx and then reduced the dimen-

sionality of the projections with PCA. RCA thus

allowed us to represent high-dimensional expres-

sion data in a simple two-coordinate diagram.

For gene expression, RCA revealed that the

brain separates from the other tissues in the first

component (Fig. 3E and fig. S26). In particular,

for the brain, intertissue comparisons exhibitmore

differences than intratissue ones (figs. S27 to S30).

A different picture emerged for chromatin. The

H3K27ac chromatin levels at all regulatory posi-

tions were, overall, less distinguishable between

the brain and other tissues (Fig. 3C) (21). At first

glance, this is surprising, as one expects great dif-

ferences in enhancer usage between tissues. How-

ever, our analysis compares chromatin signals

over all regulatory elements from ENCODE (in-

cluding enhancers and promoters), which is logic-

ally consistent with our expression comparison

across all protein-coding genes (Fig. 3, F versus

C, and tables S5 to S7). As the total number of

human regulatory elements is much larger than

thenumber of brain-active enhancers (~1.3million

versus ~79,000), our results likely reflect the fact

that there are proportionately fewer brain-active

regulatory elements than protein-coding genes

(6% versus 60%).

Up to this point, our analysis has focused

on annotated regions (genes, promoters, and

enhancers). However, in addition to the canon-

ical expression differences in protein-coding

genes, we also found differences in unannotated

Wang et al., Science 362, eaat8464 (2018) 14 December 2018 6 of 13

Fig. 5. Building a gene regulatory network (GRN) from Hi-C and data

integration. (A) A full Hi-C dataset from adult brain reveals the higher-

order structure of the genome, ranging from contact maps (top) to TADs and

promoter-based interactions. (Bottom) A schematic of how we leveraged

gene regulatory linkages involving TADs,TFs, enhancers (Enh), and target

genes (TG) to build a full GRN (fig. S42) and a high-confidence subnetwork

consisting of 43,181 TF–to–target gene promoter and 42,681 enhancer–to–

target gene promoter linkages (21). (B) We compared the number of genes

(left y axis, dotted line) and the normalized gene expression levels (right y axis,

boxes) with the number of enhancers that interact with the gene promoters.

Boxes show means and SDs. (C) QTLs that were supported by Hi-C evidence

(174,719) showedmore significant P values than those that were not (promoter

or exonic QTLs, 130,155; nonsupported QTLs, 1,065,311). (D) Cross-tissue

comparison of chromatin architecture indicates that adult brains in PsychEN-

CODE and Roadmap (e.g., DLPFC and hippocampus tissues) share chromatin

architecture more than nonrelated tissue types. Fetal brain shows chromatin

architecture distinct from that in adult brain, indicating extensive rewiring of

chromatin structures during brain development. ES, embryonic stem cell.

(E) Genes assigned to fetal active elements are prenatally enriched,

whereas genes assigned to adult active elements are postnatally enriched.

(F) Genes assigned to fetal active elements are relatively more enriched

in neurons in the adult brain and fetal (developmental) brain, whereas

genes assigned to adult active elements are relatively more enriched in glia

(adult astrocytes, endothelial cells, and oligodendrocytes). Ex. N, excitatory

neuron; Int. N, inhibitory neuron; IPC, intermediate progenitor cells; NEP,

neuroepithelial cells; trans, transient cell type. (G) The circos plots show the

linkages from the full regulatory network targeting the cell-type–specific

biomarker genes.The biomarker genes for excitatory or inhibitory neuronal

type are the biomarker genes shared by at least five excitatory or inhibitory

subtypes (20). Selected TFs for particular cell types are highlighted.
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noncoding and intergenic regions (fig. S30). In

particular, testes and lung have the largest extent

of transcription overall (the most genes tran-

scribed) for protein-coding genes (Fig. 3D). How-

ever, when we shift to unannotated regions, the

ordering changes: Brain tissues, such as the cortex

andCB, nowhave a greater extent of transcription

than any other tissue.

QTL analysis

Weused the data in the brain resource to identify

QTLs affecting gene expression and chromatin

activity.We calculated expression, splicing-isoform,

chromatin, and cell fractionQTLs (eQTLs, isoQTLs,

cQTLs, and fQTLs, respectively). For eQTLs, we

adopted a standard approach, closely adhering to

the GTEx pipeline formaximal compatibility (figs.

S31 to S33) (35). (However, for maximal utility of

the resource, we also provide alternate lists, fil-

tered more conservatively.) In the PFC, we iden-

tified ~2.5 million cis-eQTLs involving ~33,000

eGenes (expressed genes) [~17,000 noncoding

and ~16,000 coding, with a false discovery rate of

<0.05] (Fig. 4A).We found 1,341,182 eQTL single-

nucleotide polymorphisms (SNPs) from ~5.3mil-

lion total SNPs tested in 1-Mb windows around

genes, constituting 238,194 independent SNPs

after linkage-disequilibrium (LD) pruning. This

estimate identified substantially more eQTLs and

associated eGenes than previous studies, reflect-

ing our large sample size (8, 11, 21). The number of

eGenes, in fact, approaches the total number of

genes estimated to be expressed in the brain. That

said, a very large fraction of the smaller GTEx and

CMC brain eQTL sets was contained within our

set (as evident from overlap testing with the

p1 statistic) (Fig. 4A) (36). Moreover, as expected,

our brain eQTL set showed higher p1 similarity to

and SNP-eGene overlap with GTEx brain eQTLs

than with those from other tissues (Fig. 4B and

fig. S31). Lastly, we applied the QTL pipeline to

isoform levels to calculate a set of isoQTLs. We

Wang et al., Science 362, eaat8464 (2018) 14 December 2018 7 of 13

Fig. 6. GRNs assign genes to GWAS loci for psychiatric disorders.

(A) A schematic depicting how SCZ GWAS loci were assigned to putative

genes.The number of SCZ GWAS loci and their putative target genes (SCZ

genes) annotated by each assignment strategy is indicated (top).The overlap

betweenSCZ genes defined byQTLassociations (QTL), chromatin interactions

(Hi-C), and activity relationships (activity) is depicted in a Venn diagram

(bottom). SCZ genes with more than two evidence sources were defined as

high-confidence (high conf.) genes. (B) AGRN of TFs, enhancers, and 321 SCZ

high-confidence genes, on the basis of TFactivity linkages. A subnetwork for

CACNA1C is highlighted on the right. (C) An example of the evidence indicating

that GWAS SNPs that overlap with CHRNA2 eQTLs also have chromatin

interactions and activity correlations with the same gene. Orange dots refer

to SNPs that overlap between eQTLs and GWAS plots. (D) TFs that are

significantly enriched in enhancers (left) and promoters (right) of SCZ genes.

FDR, false discovery rate. (E) SCZ genes show higher expression levels in

neurons (particularly excitatory neurons) than in other cell types. (F) Brain

disorder GWAS show stronger heritability enrichment in brain regulatory

variants (eQTLs) and elements (enhancers) than non–brain disorder GWAS.

ADHD, attention-deficit/hyperactivity disorder; T2D, type 2 diabetes; CAD,

coronary artery disease; IBD, inflammatory bowel disease.
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performed filtering in a variety of different ways,

generating a number of different lists (21).

For cQTLs, no established methods exist for

large-scale data, although there have been pre-

vious efforts (37, 38). To identify cQTLs, we fo-

cused on our reference set of enhancers and

examined howH3K27ac activity varied at these

loci across 292 individuals (Fig. 4C) (21). Overall,

we identified ~2000 cQTLs in addition to 6200

identified from individuals within the CMC co-

hort (39).

We next identified SNPs associatedwith changes

in the relative abundances of specific cell types.

We refer to such relationships with the term

fQTLs. In total, we identified 1672 distinct SNPs

constituting 4199 fQTLs (fig. S34). The excitatory

neurons Ex4 and Ex5 were associated with the

most fQTLs (1060 and 896, respectively). The

biological mechanism governing an fQTL may

involve other QTL types, such as eQTLs. An il-

lustrative example is the FZD9 gene (Fig. 4D):

We found that the expression levels of this gene

were associated with a neighboring noncoding

SNP via an eQTL, and this same SNP was asso-

ciated with the proportion of Ex3 cells via an

fQTL. Perhaps connected to this, deletion var-

iants upstream of FZD9 had previously been

associated with cell fraction changes related to

Williams syndrome (40).

Next, we attempted to recalibrate the observed

gene expression variation by considering fQTLs.

In particular, our scheme described above for ap-

proximately deconvolving gene expression from

heterogeneous bulk tissue (matrix B) into single-

cell signatures (matrix C) and estimated cell

fractions (matrixW) enables us to calculate the

residual gene expression (D) remaining after ac-

counting for cell fraction changes (Fig. 2). Speci-

fically, it is the component of the bulk tissue

expression variation that cannot be explained by

the changing cell fractions alone: D = B − CW.

We can subsequently use this quantity to deter-

mine “residual QTLs” by directly correlating it

with genotype. In total, this results in 202,940

SNPs involved in residual eQTLs. Potentially,

one can elaborate on this further by allowing the

correlations to be done in a cell-type–specific

fashion (fig. S35).

To further dissect the associations between

genomic elements and QTLs, we compared all

of the different types of QTLs with one another

and with genomic annotations (Fig. 4E). As ex-

pected, eQTLs tended to be enriched at promoters,

and cQTLs, at enhancers and transcription factor

(TF)–binding sites; fQTLs were spread over many

different elements. Also, an appreciable number

of eQTLs were enriched on the promoter of a

different gene from the one regulated, suggesting

the activity of an Epromoter, a regulatory element

with dual promoter and enhancer functions (41).

For the overlap among different QTLs, we ex-

pected that most cQTLs and fQTLs would be a

subset of the much larger number of eQTLs;

somewhat surprisingly, an appreciable number

of these did not overlap (Fig. 4F). To evaluate this

precisely, we calculated p1 statistics and found

that the cQTL overlap was larger than the fQTL

overlap (0.89 versus 0.11). Moreover, eQTL-cQTL

overlaps often suggested that the expression-

modulating function of an eQTL derived from

chromatin changes (e.g., for MTOR) (Fig. 4F).

Overall, the total number of overlapping QTLs

was 2477 (which we dub multi-QTLs) (Fig. 4F).

Regulatory networks

We next integrated the genomic elements de-

scribed above into a regulatory network. We first

processed a Hi-C dataset for adult brain in the

same reference samples used for enhancer iden-

tification, providing a physical basis for interac-

tions between enhancers and promoters (Fig. 5A

and table S8) (13, 21). In total, we identified 2735

topologically associating domains (TADs) and

~90,000 enhancer-promoter interactions (fig.

S36). As expected, ~75% of enhancer-promoter

interactions occurred within the same TAD, and

genes with more enhancers tended to have high-

er expression (Fig. 5B and fig. S36). We inte-

grated the Hi-C data with QTLs; surprisingly,

QTLs involving SNPs distal to eGenes but linked

by Hi-C interactions showed significantly stron-

ger associations (as indicated by theQTL P value)

than those with SNPs directly in the eGene pro-

moter or exons (Fig. 5C and fig. S37).

To gain insights into the brain chromatin,

we compared the adult PsychENCODE Hi-C

dataset with those from other tissues in a similar

fashion to the transcriptomic and epigenomic

comparisons described above. In particular, we

selected a set of tissues and cell types from

ENCODE and Roadmap, consistently processed

their associated Hi-C data at a low resolution,

and compared themwith our reference-brain Hi-C

data. As expected, we found that all the samples

for adult brain regions tend to separatemarkedly

from the other tissues in terms of A-B compart-

ment similarity and other metrics (Fig. 5D and

fig. S38).

In addition to data for the adult brain, we also

added PsychENCODE Hi-C data for the fetal

brain into the comparison, assessing the degree

to which the chromatin differences between de-

velopmental stages relate to those between tis-

sues (Fig. 5D). We found that whereas Hi-C

datasets for the adult brain clustered together,

the Hi-C dataset for the fetal brain was distinct

(Fig. 5D and fig. S39). Only ~31% of the inter-

actions in our adult Hi-C data were detected in

the fetal dataset (figs. S39 and S40) (13). Though

hard to exactly quantify, this difference appears

to be larger than that seen from cross-tissue

transcriptome comparison, with fetal samples

included (fig. S41). We did a number of other

comparisons between fetal and adult brain Hi-C

datasets, analyzing the regulatory elements and

genes linked by each. As expected, we found

fetus-linked genes to be more highly expressed

prenatally and adult-linked ones postnatally

(Fig. 5E). In addition, the fetus-linked geneswere

preferentially expressed in developmental cell types

(Fig. 5F). They were also highly expressed in adult

neurons, whereas the adult-linked ones were

preferentially expressed in glia, reflecting known

cell-type composition (Fig. 5, D and F) (42).

In addition to Hi-C linkages, we tried to find

further regulatory connections by relating the

activity of TFs to target genes (Fig. 5A). In par-

ticular, for each potential target of a TF, we

created a linkage if it had a “good binding site”

(matching the TF’s motif) in gene-proximal open

chromatin regions (either promoters or brain-

active enhancers) and if it had a high coefficient

in a regularized, elastic net regression, relating

TF activity to target expression (fig. S42) (21).

Elastic net regression assumes that target gene

expression is determined by a linear combina-

tion of the expression levels of its regulating TFs,

via regression coefficients (using sparsified L1
and L2 regularization). Overall, we found that a

subset of regulatory connections could predict

the expression of 8930 genes with amean square

error (MSE) of <0.05 (fig. S43). For example, we

could predict the expression of the ASD-associated

gene CHD8 with MSE = 0.034 (equivalent to co-

efficient of determination R
2
= 0.77 over the pop-

ulation) (21). Lastly, the enhancer-binding TFs

with high regression coefficients—implying a high

chance for TF regulation of the target genes via

particular bound enhancers—provide a third set

of putative enhancer-to-gene links.

Collectively, we generated a full regulatory

network, linking enhancers, TFs, and target genes

(fig. S42). This includes 43,181 proximal and

42,681 distal linkages involving 11,573 protein-

encoding target genes (TF–to–target gene via pro-

moter for proximal versus via enhancer–target

gene connection for distal) (Fig. 5A) (15, 21). As

functioning regulatory connections reflect cell type,

we also generated potential cell-type–specific

regulatory networks (Fig. 5, F and G, and fig.

S44). In these, we found a number of well-known

TFs associated with brain development—e.g.,

NEUROG1, DLGAP2, and MEF2A for excitatory

neurons and GAD1, GAD2, and LHX6 for inhib-

itory neurons (Fig. 5G) (43–46). Lastly, for broad

utility on the resource website, we also provide

an expanded regulatory network with slightly

different parameterization (fig. S42).

Linking GWAS variants to genes

We used our regulatory network based on Hi-C,

QTLs, and activity relationships to connect non-

coding GWAS loci to potential disease genes. In

particular, for the 142 SCZ GWAS loci, we iden-

tified a set of 1111 putative SCZ-associated genes,

covering 119 loci (the SCZ genes) (Fig. 6A) (47). Of

these, 321 constitute a “high-confidence” set sup-

ported by more than two evidence sources (e.g.,

QTLs and Hi-C) (Fig. 6, A and B, and fig. S45);

examples include the CHRNA2 and CACNA1C

genes (Fig. 6, B and C). Overall, the SCZ genes

represent an increase from the 22 genes reported

in an earlier QTL study and a larger number than

can be linked simply by genomic proximity (176)

(Fig. 6A) (11, 47). The majority of SCZ genes were

not even in LDwith the index SNPs (~67%, or 748

of 1111 genes with r
2
< 0.6) (fig. S45), consistent

with the fact that regulatory relationships often

do not follow linear genome organization (13).

We then looked at the characteristics of the

1111 SCZ genes (and the high-confidence subset

Wang et al., Science 362, eaat8464 (2018) 14 December 2018 8 of 13
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of 321). As expected, they sharedmany character-

istics with known SCZ-associated genes, being

enriched in translational regulators, cholinergic

receptors, calcium channels, synaptic genes, SCZ

differentially expressed genes, and loss-of-function–

intolerant genes (fig. S45) (47). Next, we identified

the TFs regulating the SCZ genes (on the basis of

our regulatory network, either directly or via an

enhancer) (Fig. 6D). These include LHX9 and

SOX7, TFs critical for early cortical specification

and neuronal apoptosis, respectively (48, 49).

Lastly, we integrated the SCZ genes with single-

cell profiles and found that they are highly ex-

pressed in neurons, particularly excitatory ones,

consistent with the recent findings (Fig. 6E) (47).

In addition to SCZ, we also looked at other

diseases linked by our regulatory network. In

particular, we found aggregate associations be-

tween our brain eQTLs and enhancers and many

brain disorder GWAS variants, much more so

than for GWAS variants for non-brain diseases

(Fig. 6F and table S9).

Integrative deep-learning model

The full interaction between genotype and

phenotype involves many levels, beyond those

encapsulated by the regulatory network. We

Wang et al., Science 362, eaat8464 (2018) 14 December 2018 9 of 13

Fig. 7. DSPN deep-learning model links genetic variation to psychiat-

ric disorders and other traits. (A) The schematic outlines the structure

of the following models: logistic regression (LR), conditional Restricted

Boltzmann Machine (cRBM), conditional Deep Boltzmann Machine

(cDBM), and DSPN. Nodes are partitioned into four layers (L0 to L3) and

colored according to their status as visible, visible or imputed (depending

on whether nodes were observed or not at test time), or hidden. (B) DSPN

structure is shown in further detail, with the biological interpretation of

layers L0, L1, and L3 highlighted. The GRN structure learned previously

(Fig. 5A) is embedded in layers L0 and L1, with different types of regulatory

linkages and functional elements shown. Co-expr. mods., coexpression

modules. (C) The performance of different models is summarized, with

comparisons of performance across models of different complexity and of

transcriptome versus genome predictors, corresponding to being with or

without imputation for the DSPN (colors highlight relevant models for each

comparison). Performance accuracy is shown first, with variance explained

on the liability scale in brackets. All models were tested on identical data

splits, which were balanced for predicted trait and covariates (including

gender, ethnicity, age, and assay). RNA-seq, cell fraction, and H3K27ac

data were binarized by thresholding at median values (per gene, cell type,

and enhancer, respectively), as was age (median, 51 years) when

predicted. LR-gene and LR-trans are logistic models using genetic and

transcriptomic predictors, respectively; DSPN-impute and DSPN-full are

models with imputed intermediate phenotypes (genotype predictors only)

and fully observed intermediate phenotypes (transcriptome predictors),

respectively. Differential performance is shown in terms of improvement

above chance, with liability variance score increases in brackets. GEN,

gender; ETH, ethnicity; AOD, age of individual at death.
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addressed this by embedding our regulatory

network into a larger multilevel model. In partic-

ular, we developed an interpretable deep-learning

framework, the Deep Structured Phenotype

Network (DSPN) (21). This model combines a

Deep Boltzmann Machine architecture with con-

ditional and lateral connections derived from the

regulatory network (50). Traditional classifica-

tion methods such as logistic regression predict

phenotype directly from genotype, without using

intermediates such as the transcriptome (Fig. 7A).

In contrast, the DSPN is constructed via a series

of intermediate models that add layers of struc-

ture. We included layers for intermediate molec-

ular phenotypes associated with specific genes

(i.e., their gene expression and chromatin state)

and predefined gene groupings (cell-type marker

genes and coexpression modules), multiple higher

layers for inferred groupings (hidden nodes), and

a top layer for observed traits (psychiatric dis-

orders and other brain phenotypes). Finally, we

used sparse inter- and intralevel connectivity

to integrate our knowledge of QTLs, regulatory

networks, and coexpression modules from the

sections above (Fig. 7B). By using a generative

architecture, we ensure that the model is able

to impute intermediate phenotypes, as well as

provide forward predictions from genotypes

to traits.

Using the full model with the genome and

transcriptome data provided, we demonstrated

that the extra layers of structure in the DSPN

allowed us to achieve substantially better trait

prediction than traditional additive models (Fig.

7C). For instance, a logistic predictor was able to

gain a 2.4-fold improvement when including the

transcriptome versus using the genome alone

(+9.3% for the transcriptome versus +3.8% for

the genome, above a 50% random baseline).

By contrast, the DSPN was able to gain a larger,

6-fold improvement (+22.9%versus +3.8%),which

may reflect its ability to incorporate nonlinear

interactions. This result clearly manifests that

the transcriptome carries additional information,

which the DSPN is able to extract. Moreover, the

DSPN allows us to perform joint inference and

imputation of intermediate phenotypes (i.e., tran-

scriptome and epigenome) and observed traits

from just the genotype alone, achieving a ~3.1-

fold improvement over a logistic predictor in

this context (Fig. 7C and fig. S46). Overall, these

results demonstrate the usefulness of even a

limited amount of functional genomic informa-

tion for unraveling gene-disease relationships

and show that the structure learned from such

data can be used to make more accurate predic-

tions of observed traits, even on samples for

which intermediate phenotypes are imputed.

We transformed our results to the liability

scale for comparison with narrow-sense herita-

bility estimates (Fig. 7C) (21). Prior studies have

estimated that common SNPs explain 25.6, 20.5,

and 19% of the genetic variance for SCZ, BPD,

andASD, respectively (51). Thesemay be taken as

theoretical upper bounds for additive models,

given unlimited common-variant data. By con-

trast, nonlinear predictors can exceed these lim-

its. Our best liability scores (from just the

genotype at QTL-associated variants) are subs-

tantially below these bounds, implying that ad-

ditional data would be beneficial. By contrast,

the variance explained by the full DSPN model

exceeds that explained by common SNPs in SCZ

and BPD, possibly reflecting the influence of rare

variants and epistatic interactions (32.8 and

37.4% respectively—the variance of 11.3% for

ASD is slightly lower). However, these estimates

may be confounded by trait-associated variation

that is environmental in origin (fig. S47).

A key aspect of the DSPN is its interpret-

ability. In particular, we examined the specific

connections learned by the DSPN between inter-

mediate and high-level phenotypes. Here, we

included coexpression modules in the model,

referring to this modification as “DSPN-mod”

(fig. S48). Using it, we determinedwhichmodules

were prioritized, as well as the sets of genes

associated with latent nodes that were found at

each hidden layer (Fig. 8A and table S10) (15, 21).

Broadly, we take an unbiased view of all 5024

modules and higher-order groupings constructed

from these and then prioritize a subset of ~180

modules and groupings for each psychiatric dis-

order, showing these to be enriched in specific

functional categories and to intersect substantial-

ly with the modules from more disease-focused

analyses (Fig. 8, B and C, and fig. S49) (22). [For

completeness, we provide a full table showing

the prioritization and functional categories for

all possible modules associated with various traits

(fig. S50).] In particular, we found that cross-

disorder prioritized modules are associated with

functional categories such as “immune processes,”

“synaptic activity,” and “splicing,” consistent with

the findings from more disease-focused analyses

(Fig. 8C) (22). Also, we showed that prioritized

SCZ and BPD modules are enriched for known

GWAS SNPs (fig. S51) (for ASD, the lack of GWAS

SNPs precludes similar analyses). For SCZ, which

is the best characterized of the three disorders,

we find enrichments for pathways and genes

known to be associated with the disease, in-

cluding glutamatergic-synapse pathway genes,

such as GRIN1; calcium-signaling pathway and

astrocyte-marker genes; and complement cas-

cade pathway genes such as C4A, C4B, and CLU

(Fig. 8D) (22). Other prioritized modules include

well-characterized genes such asMIAT, RBFOX1,

and ANK2 (SCZ); RELA, NFkB2, and NIPBL

(ASD); and HOMER1 (BPD), consistent with the

results of (22). Finally, we identify modules as-

sociated with aging, finding that they are en-

riched in Ex4 neuronal cell-type genes, synaptic

and longevity functions, and the geneNRGN—all

consistent with differential expression analysis

(Fig. 8D and fig. S20).

Conclusions

We have developed a comprehensive resource

for functional genomics of the adult brain by

integrating PsychENCODE data with a broad

range of publicly available datasets. In closing,

we review our main findings and ways that they

can be improved in the future.

First, in terms of QTLs, we identified a set of

eQTLs several times as large as those in previ-

ous studies, targeting a saturating proportion

of protein-coding genes. Moreover, we were

able to identify a substantial number of cQTLs.

PsychENCODE was, in fact, among the first

efforts to generate ChIP-seq data across a large

cohort of brain samples, with experiments fo-

cused primarily on H3K27ac. In the future,

further increasing cohort size and performing

additional chromatin assays, such as STARR-

seq (self-transcribing active regulatory region

sequencing) and ChIP-seq for other histone

modifications, will improve the identification of

enhancers and cQTLs (52). More fundamentally,

one-dimensional fluctuations in the chromatin

signal reflect changes in three-dimensional chro-

matin architecture, and new metrics beyond

cQTLs may be needed.

Second, in terms of single-cell analysis, we

found that varying proportions of basic cell types

(with different expression signatures) accounted

for a large fraction of the expression variation

across a population of individuals. However,

this assumes that the expression levels character-

izing a signature are fairly constant over a popu-

lation of cells of a given cell type. In the future,

larger-scale single-cell studies will allow us to

examine this question in detail, perhaps quanti-

fying and bounding environment-associated

transcriptional variability. In addition, current

single-cell techniques suffer from low sensitiv-

ity and dropouts; thus, it remains challenging

to reliably quantify low-abundance transcripts

(15, 53). This is particularly the case for spe-

cific brain cell substructures, such as axons and

dendrites (15).

Third, we developed a comprehensive deep-

learning model, the DSPN, and used it to il-

lustrate how functional genomics data could

improve the link between genotype and pheno-

type. In particular, by integrating regulatory-

network connectivity and latent factors, theDSPN

improves trait prediction over traditional additive

models. Moreover, it takes into account depen-

dencies between gene expression levels not mod-

eled by univariate eQTL methods. In this study,

we kept our eQTL methods very standard, closely

following the GTEx paradigm. This separation we

make between univariate eQTL detection and

multivariate integrative modeling allows us to

compare our eQTLs directly with those from

previous analyses, such as the CMC study. How-

ever, multivariate-based methods for QTLs have

been used elsewhere and, in the future, may be

combined with our approach (54, 55).

Further, in the future, we can envision how

our DSPN approach can be extended to model-

ing additional intermediate phenotypes. In par-

ticular, we can naturally embed in the middle

levels of the model additional types of QTLs and

phenotype-phenotype interactions—e.g., QTLs as-

sociated withmicroRNAs, neuroimaging, human-

and primate-specific genes, and developmental

brain enhancers (56–59).

We expect that the DSPN will improve ac-

curacy mainly for complex traits with a highly
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polygenic architecture, but not necessarily for

traits that are strongly determined by only a few

variants, such as Mendelian disorders, or are

closely correlated with population structure,

such as ethnicity. However, even when the DSPN

performance is low, it may still provide insights

about intermediate phenotypes; for instance, in

our analysis, the PFC transcriptome appears sub-

stantially less predictive with respect to gender

(after removing the sex chromosome genes) than

age, but this very fact highlights the similarity of

the transcriptome between sexes (60). Finally,

although our focus has been on common SNPs,

the DSPN may be able to capture the effects

of rare variants, such as those known to be

Wang et al., Science 362, eaat8464 (2018) 14 December 2018 11 of 13

Fig. 8. Interpretation of

the DSPN model high-

lights functional associa-

tions and shared disease

mechanisms. (A) The sche-

matic illustrates the module

(MOD) and higher-order

grouping (HOG) prioritiza-

tion schemes. Red and blue

lines represent positive and

negative weights, respec-

tively, and full and dotted

lines represent first and sec-

ond ranks by absolute value

[creating a directed acyclic

graph (DAG) with branching

factor 4, rooted at L3]. High-

lighted nodes (gray) in L1d

show positive prioritized

MODs, for which a positive

path (containing an even

number of negative links)

exists connecting the

module to the SCZ node.

a1/a2 and b1/b2 highlight

“best positive paths” from a

and b, respectively, to SCZ in

terms of absolute rank score.

Associated HOGs are

defined for a1/a2, containing

all nodes in L1d having a path

in the DAG to a1 (respectively

a2), which is identically

signed to the best path from

a to a1 (respectively a2) (21).

Positive prioritized HOGs are

associated with nodes on

best paths from all positive

prioritized MODs; negative

prioritized MODs and HOGs

are calculated similarly.

(B) Summary of the func-

tional annotation scheme.

(i) A total of 5024 weighted

gene coexpression network

analysis (WGCNA) MODs

(modules and submodules)

are derived from multiple

data splits. (ii) MODs are

prioritized as in (A) for each

disorder, and (iii) associated

HOGs are calculated. (iv)

Gene set enrichment analysis associates functional terms with all MODs

and HOGs. (v) Terms are ranked per disorder by counting the number of

prioritizedMODs orHOGs they associatewith, and broad functional categories

are defined; (vi) prioritized MODs and HOGs are linked to potentially

interesting genes, enhancers, and SNPs by using GRN connectivity. proc.,

processing. (C) Upper segment of cross-disorder ranking of Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional

terms, where cross-disorder ranks are assigned by using the average

per-disorder rank ordering. Ranking score levels and functional categories

are as in the key in (B). Highlighted ranks and terms correspond to examples

shown in (D). See fig. S49 for extended ranking. sig., signaling; staph.,

staphylococcus; inf., infection; dop., dopamine; cGMP-PKG, guanosine

3′,5′-monophosphate–cGMP-dependent protein kinase; int., interaction.

(D) Examples of associations between prioritized MODs or HOGs and genes,

enhancers, and SNPs for each disorder and age model. Associated

functional terms and categories are as in (B). A table providing coordinates

of eQTLs and cQTLs for all examples shown is provided in table S13.

Chem. syn. trans., chemical synaptic transmission.
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implicated in ASD (51), through their influence

on intermediate phenotypes.

In summary, our integrative analyses demon-

strate the usefulness of functional genomics for

unraveling molecular mechanisms in the brain

(21, 61), and the results of these analyses suggest

directions for further research into the etiology

of brain disorders.

Materials and methods summary

The materials and methods for each section of

the main text are available in the section with

same heading in the supplementary materials

(21); i.e., supplementary content for a givenmain

text section within the supplementary materials

is named in a parallel fashion. Detailed data pro-

tocols are available in the supplementary mate-

rials. Moreover, associated and derived data files

are available at the PsychENCODE resource site

(19). Often we provide multiple versions of the

derived summary files with different parame-

terizations (e.g., for the single-cell profiles and

for eQTLs).
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