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phenotype and was highest for patients with a positive fam-

ily history of hearing loss or when the loss was congenital 

and symmetric. The spectrum of implicated genes showed 

wide ethnic variability. These findings support the more 

efficient utilization of medical resources through the devel-

opment of evidence-based algorithms for the diagnosis of 

hearing loss.

Introduction

Hearing loss is the most common sensory deficit in 

humans. It is diagnosed in 1 in 500 newborns and affects 

half of all octogenarians (Fortnum et al. 2001; Morton and 

Nance 2006). Although causality is multifactorial, in devel-

oped countries, a large fraction of hearing loss is genetic 

and non-syndromic, i.e., not associated with other pheno-

types (Marazita et al. 1993). Non-syndromic hearing loss 

(NSHL) mimics are syndromic forms of hearing loss that 

present as NSHL early in life with syndromic features 

developing later. Type 1 Usher syndrome, for example, is 

an NSHL mimic presenting as congenital profound hearing 

loss with delayed motor milestones. The associated pro-

gressive vision loss begins in late childhood (Smith et al. 

1994).

Genetic diagnosis of NSHL and NSHL mimics is valua-

ble. It provides prognostic information on possible progres-

sion of hearing loss, permits meaningful genetic counseling, 

and impacts treatment decisions (Kimberling et al. 2010). 

A positive diagnosis also saves healthcare dollars by direct-

ing the clinical evaluation and obviating unnecessary testing 

such as the routine use of imaging. The challenge, however, 

is in providing comprehensive genetic testing. Hearing loss 

is extremely heterogeneous, with over 90 genes causally 

implicated in NSHL (Van Camp and Smith 2015). Although 
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historically this heterogeneity restricted genetic testing to 

just a few genes (Hilgert et al. 2009), the advent of targeted 

genomic enrichment and massively parallel sequencing 

(TGE + MPS) has revolutionized the clinical care of the 

patient with hearing loss by making comprehensive genetic 

testing possible (Shearer and Smith 2015).

TGE + MPS have been used in several small cohorts 

with positive diagnostic rates that range from 10 to 83 % 

[reviewed in (Shearer and Smith 2015)]. This variability 

reflects selection bias (i.e., including only a select ethnicity 

or only patients with a positive family history for hearing 

loss), platform bias (i.e., including only a limited number of 

genes), and analytic bias (i.e., neglecting to consider copy 

number variations in the analysis) (Hoppman et al. 2013; Ji 

et al. 2014; Shearer et al. 2013, 2014b). Herein, we report 

the analysis of the largest patient cohort to date that has 

undergone comprehensive clinical genetic testing for hear-

ing loss. Of the 1119 patients presenting for testing in our 

clinical diagnostic laboratory, we were able to diagnose a 

genetic cause of deafness in 440 persons (39 %). We show 

that the diagnostic rate reflects ethnicity and clinical pheno-

type, and ranges from 1 % in patients with unilateral hearing 

loss to 72 % in patients of Middle Eastern ethnicity. These 

results provide a foundation from which to make appropri-

ate recommendations for the use of comprehensive genetic 

testing in the evaluation of patients with hearing loss.

Materials and methods

Patients

Patients included in this study were sequentially referred to 

the Molecular Otolaryngology and Renal Research Labo-

ratories (MORL) for clinical genetic testing from Janu-

ary 2012 to September 2014. All genetic screenings were 

done on a custom-designed TGE + MPS panel called Oto-

SCOPE® (Shearer et al. 2010). Relatives of patients were 

not included in this analysis (each nuclear and/or extended 

family was represented by only the proband), but no exclu-

sions were otherwise made based upon age, age of onset, 

phenotype or previous testing. All available phenotype, 

family history, and ethnicity data were recorded. Abnor-

mal physical exam features were classified as described in 

Table S1. The Institutional Review Board of the University 

of Iowa approved this study, and the described research was 

performed in accordance with the Declaration of Helsinki.

Library preparation, sequencing and bioinformatics

TGE + MPS were completed on DNA prepared from 

whole blood using a Sciclone NGS workstation (Perki-

nElmer, Waltham, MA) for sample preparation. The testing 

platform was either OtoSCOPE® v4 (408 individuals) or v5 

(711 individuals) which targets 66 or 89 deafness-associ-

ated genes, respectively (Table S2) using custom-designed 

SureDesign capture technology (Agilent Technologies, 

Santa Clara, CA). Each platform included all known NSHL 

and NSHL mimic genes at the time of design (May 2011 

and November 2012, respectively). Samples were analyzed 

in pools of 48 samples sequenced on an Illumina HiSeq 

(Illumina, Inc., San Diego, CA, USA) flow cell using 100-

bp paired-end reads. If pre-determined quality control 

values were not met, the sample was rerun, as previously 

described (Shearer et al. 2014b).

Data were analyzed using a local installation of the 

open-source Galaxy software (Blankenberg et al. 2010; 

Goecks et al. 2010) and a combination of several other 

open-source tools, including read mapping with Burrows–

Wheeler Alignment (BWA) (Li and Durbin 2009), dupli-

cate removal with Picard, local re-alignment and variant 

calling with GATK Unified Genotyper (McKenna et al. 

2010), enrichment statistics with NGSRich (Frommolt 

et al. 2012), and variant reporting and annotation with cus-

tom-produced software. Copy number variant analysis was 

performed as described (Nord et al. 2011; Shearer et al. 

2014b).

Variant interpretation

On a patient-by-patient basis, all variants were discussed 

in the context of phenotypic data at a weekly interdiscipli-

nary Hearing Group Meeting that included clinicians, sci-

entists, geneticists, genetic counselors, and bioinformati-

cians. Each variant’s interpretation included consideration 

of quality/coverage depth (QD ≥ 5), minor allele frequency 

(MAF) from 1000 Genomes Project Database and the 

National Heart, Lung, and Blood Institute (NHLBI) Exome 

Sequencing Project Exome Variant Server [thresholds for 

recessive and dominant NSHL were <0.005 (excluding 

GJB2 variants) and <0.0005, respectively] (Shearer et al. 

2014a) conservation (GERP and PhyloP) and pathogenic-

ity prediction annotation (including PolyPhen2, SIFT, 

MutationTaster and LRT), and annotation within the Deaf-

ness Variation Database (deafnessvariationdatabase.org), 

an in-house curated, open-access database. Based upon the 

decision reached at Hearing Group Meeting, result letters 

were generated for all patients, reporting all variants with 

MAF <1 % to the ordering physician. In the case of posi-

tive results [variant(s) reported as ‘pathogenic’ or ‘likely 

pathogenic’ based on criteria defined by the American 

College of Medical Genetics and Genomics (ACMG) and 

further refined by the MORL for NSHL] (Richards et al. 

2015; Shearer et al. 2014a), clinical correlation and segre-

gation analysis were recommended. Positive results were 

confirmed via Sanger sequencing prior to reporting. The 
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majority of rare variants deemed unlikely to cause hearing 

loss and not previously reported to be pathogenic were cat-

egorized as Variants of Unknown Significance (VUSs).

Statistical analysis

All provided clinical and phenotypic data were recorded. Diag-

nostic rates were compared using the Fisher exact test (com-

paring a specified group to all other members of the cohort) or 

Chi-square test (comparing more than 2 groups), with p < 0.05 

considered significant. Data were compiled using Microsoft 

Excel and analyzed using Prism 6 (GraphPad).

Results

Patients

1119 unrelated patients were sequentially accrued during 

the study period. Relations were not included; otherwise, 

there were no exclusionary criteria. Patient demographics 

were binned into broad key categories: inheritance, onset, 

severity, laterality, physical exam and previous genetic test-

ing (Fig. 1; Table 1). No clinical information was provided 
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Fig. 1  Diagnostic rates are dependent on patient-specific clinical and 

phenotypic characteristics and are shown as the percentage of patients 

with the noted characteristic. Background shading separates catego-

ries. N for each characteristic is listed after the label. Dashed line 

indicates the overall diagnostic rate for this study (39.3 %). Fisher 

exact test used to determine statistical significance with *p < 0.05 and 

**p < 0.005

Table 1  Reported ethnic and phenotypic characteristics of patients 

evaluated in this study

Characteristic Number %

Sex

 Male 561 50.1

 Female 550 49.2

 NP 8 0.7

Age when ordered (years)

 Age ≤2 415 37.1

 Age 3–17 607 54.2

 Age ≥18 82 7.3

Ethnicity

 Caucasian 549 49.1

 Hispanic 128 11.4

 African American 51 4.6

 Asian 40 3.6

 Mixed ethnicity 57 5.1

 Middle Eastern 25 2.2

 Ashkenazi Jewish 8 0.7

 Other 7 0.6

 NP 254 22.7

Family history

 Autosomal recessive 226 20.2

 Autosomal dominant 141 12.6

 X-linked 1 0.1

 Ambiguous 8 0.7

 No family history 604 54.0

 NP 139 12.4

Onset

 Congenital 629 56.2

 Childhood 325 29.0

 Adult 18 1.6

 NP 147 13.1

Severity

 Normal 1 0.1

 Mild-moderate 306 27.3

 Severe-profound 399 35.7

 NP 413 36.9

Laterality

 Bilaterally symmetric 532 47.5

 Unilateral 69 6.2

 Asymmetric 92 8.2

 NP 426 38.1

Not SNHL

 Conductive 6 0.5

 Mixed 24 2.1

Physical exam

 Normal 683 61.0

 Any abnormality 233 20.8

 NP 203 18.1
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on 72 patients. For all other individuals, the available clini-

cal information was considered during Hearing Group 

Meeting and discussed in the context of the genetic data. 

The most common characteristics included: Caucasian eth-

nicity (49 %); young age (93 % were <18 years of age); 

congenital hearing loss (56 %); severe-to-profound hearing 

loss (36 %); and symmetric impairment (48 %). Patients 

most commonly had no family history of hearing loss 

(54 %) and a normal physical exam (61 %).

Genetic diagnoses

We identified a genetic cause of hearing loss in 440 patients 

(39 %) (Table S3). Of these patients, 101 (23 %) received a 

genetic diagnosis implicating an NSHL mimic, which included 

Usher syndrome (59 patients), Pendred syndrome (29 patients), 

Deafness-infertility syndrome (6 males and 1 female with 

NSHL), Alström syndrome (1 patient), autosomal dominant 

non-ocular Stickler syndrome (1 patient), branchiootorenal 

syndrome (BOR) (2 patients), MYH9-associated disease (1 

patient), and Wolfram syndrome (1 patient) (Table S4).

Panel versioning

During the course of this study, the TGE + MPS platform 

was updated from v4 to v5 as part of our standard operating 

procedure, increasing the number of genes screened from 

66 to 89. Of the 711 patients analyzed on v5, 11 patients 

carried causative variants in genes not included in v4, 

thus increasing the diagnostic rate by 2 % in all patients 

screened with V5 and accounting for 4 % of all positive 

diagnoses (11 of 263 positive diagnoses). Read metrics 

for V4 and V5 are shown in Table S5. Although patients 

sequenced with v5 had a lower average number of reads 

and lower average target coverage, the percentage of reads 

overlapping target was higher, as was the coverage at 1, 20, 

and 30×.

Variant identification

Our analysis of 1119 patients identified 5900 variants, 

which we reported to healthcare providers. 14 % of variants 

were considered causally related to the hearing loss pheno-

type and reported as pathogenic or likely pathogenic; 4 % 

were previously reported pathogenic variants for recessive 

hearing loss, with a second variant not identified (carrier 

status); and 82 % of variants were reported as VUSs. The 

median number of reported variants was 4 (range = 0–14) 

and 5 (0–19) for v4 and v5, respectively (Fig. S1).

Diagnostic rate and phenotype

There was considerable phenotypic diversity that impacted 

the overall diagnostic rate of 39 % (Fig. 1). In patients with 

a family history of dominant hearing loss, for example, the 

diagnostic rate was 50 % (p < 0.05), while in patients with 

a family history of recessive hearing loss it was only 41 % 

(not significant—n.s.). In patients with no family history of 

hearing loss, the diagnostic rate was 37 % (p < 0.05).

When age of onset is considered, patients with congeni-

tal hearing loss had a diagnostic rate of 44 %, which was 

significantly greater than the diagnostic rate in patients 

with childhood (29 %)- or adult (28 %)-onset hearing loss 

(p < 0.005 in both cases). Patients with bilateral hearing 

loss were significantly more likely to receive a diagnosis 

than patients with asymmetric or unilateral hearing loss 

(44, 22 and 1 %, respectively; p < 0.005). Patients with 

conductive or mixed hearing loss had a decreased likeli-

hood of receiving a genetic diagnosis (17 and 21 %, respec-

tively), but the difference was not significant.

Any kind of abnormality on physical exam decreased 

the likelihood of a genetic diagnosis using this panel (27 %, 

p < 0.005), as compared to patients with NSHL (42 %, n.s.). 

In patients with a clinical diagnosis of Usher or BOR syn-

dromes, the diagnostic rate was 31 and 37 %, respectively. In 

none of the 15 patients with neurological findings (seizures 

or severe mental retardation) and hearing loss was a non-

syndromic genetic cause for deafness identified (Table S6).

Combining demographic characteristics provided a 

more realistic assessment of the diagnostic rate (Figs. 1, 

2). Patients with dominant, recessive or no family history 

of hearing loss had diagnostic rates of 50, 41, and 37 %, 

respectively. If the hearing loss was also congenital, the 

diagnostic rate increased to 55, 43, and 44 %. Additional 

phenotypic characteristics further improved the diagnostic 

rate (Fig. S2). For example, a patient with a negative family 

history for hearing loss had a lower-than-average diagnostic 

rate (37 %); however, if the hearing loss was congenital, the 

diagnostic rate increased to 44 % (p < 0.005 as compared 

to patients with non-congenital hearing loss and a nega-

tive family history for hearing loss). With congenital onset 

and symmetric hearing loss, the rate increased to 48 % 

(p < 0.005), and if the physical examination was normal, 

it increased further to 51 % (p < 0.005). The same trend 

was true for patients with family histories of dominant and 

Table 1  continued

Characteristic Number %

Previous testing

 Any 147 13.1

 DFNB1 99 8.8

 DFNB1 and other genes 19 1.7

 Other genes 24 2.1

NP not provided, SNHL sensorineural hearing loss
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recessive hearing loss—their diagnostic rates jumped to 67 

and 55 %, respectively, when the hearing loss was congeni-

tal and symmetric and the physical examination was other-

wise normal.

For adult-onset hearing loss, the diagnostic rate was 28 %, 

however, if the family history was positive, the diagnostic 

rate climbed to 50 %, and if the patient also had symmetric 

hearing loss, the diagnostic rate jumped again to 67 %.

Only when the hearing loss was unilateral was there 

a marked negative impact on diagnostic rate (1 % of 

patients). This finding, when combined with any other 

characteristic, decreased diagnostic success (Fig. 2).

Diagnostic rate by ethnicity

Ethnic differences impacted the diagnostic rate (p < 0.005). 

In the cohort self-identified as Caucasian (549, 49 %), the 

diagnostic rate was 38 %. However, in cohorts self-identi-

fied as Asian (40, 4 %) and Middle Eastern (25, 2 %), the 

diagnostic rate was 63 and 72 %, respectively (p < 0.005). 

The diagnostic rate was lowest in African Americans (51, 

5 %), at 26 %, p < 0.05 (Fig. 3).

Genetic spectrum

In total, 49 genes were causally implicated in hearing loss 

(Table 2). However, nearly three-fourths of all diagnoses 

(317 of 440, 72 %) were attributable to 10 genes. The four 

genes most frequently implicated were GJB2 (22 %), STRC 

(16 %), SLC26A4, (7 %) and TECTA (5 %), although this 

list varied based on degree of hearing loss. For example, 

while variants in GJB2 were the most common cause of 

severe-to-profound hearing loss (20 %), STRC accounted 

for 30 % of diagnoses in persons with mild-to-moderate 

hearing loss, followed closely by GJB2 (25 %) and then 

TECTA (7 %). SLC26A4 pathogenic variants were identi-

fied in 7 % of patients with positive diagnoses; however, all 

of these patients had severe-to-profound hearing loss (10 % 

of severe-to-profound hearing loss).

Frequency of causative genes also varied by ethnicity 

(Fig. 3, S4). For example, amongst self-identified Cau-

casian and Hispanics, STRC-related deafness was just as 

likely to be diagnosed as GJB2-related deafness (21 vs. 

20 % and 16 vs. 14 %, respectively), but in Middle East-

ern or Asian patients, GJB2 diagnoses were more common 

than STRC diagnoses (17 vs. 6 % and 36 vs. 4 %, respec-

tively). No African American patients were diagnosed with 

GJB2-related hearing loss (Fig. 3, S4).

Causal variants

The profile of causal variant type differed with inherit-

ance pattern. Amongst all 440 diagnoses, 49 % were due to 

missense variants (Table S7); however, if the hearing loss 

was dominantly inherited, missense variants were diag-

nosed 85 % of the time, as compared to 46 % with reces-

sive inheritance. Variants predicting null alleles were much 

more common with recessive diagnoses—CNVs, indels, 

nonsense variants, and splice variants made up 20, 19, 9, 

and 6 % of recessive and 2, 3, 5, and 5 % of dominant diag-

noses. 146 CNV alleles in 9 different genes were identified 

as causative in 88 patients (GJB2, MYH9, OTOA, PCDH15, 

SLC26A4, STRC, TMC1, TMPRSS3, USH2A). These genes 

contributed to 20 % of all 440 diagnoses, including one 

dominant diagnosis.

Discussion

Amongst studies of genetic hearing loss, this report is 

unique as no restrictive criteria were imposed on patient 

selection. Comprehensive genetic testing was completed on 

1119 sequentially accrued and unrelated patients. Follow-

ing a collaborative diagnostic meeting (Hearing Group) at 

which identified genetic variants in each patient were dis-

cussed in the context of the patient-specific phenotype, a 

genetic cause of hearing loss was identified in 440 patients 

(39 %) (Table S3). Several smaller studies have reported 

similar diagnostic rates (Shearer and Smith 2015).

Our data show that a focused history and physical exam-

ination can guide the expected outcome when genetic test-

ing is ordered. The phenotypic correlations that improve or 

decrease the diagnostic utility of genetic testing are intui-

tive and logical. For example, we found that a family his-

tory positive for hearing loss improved diagnosis (44 % for 

dominant or recessive family history compared to 37 % for 

no family history).

Symmetry of hearing loss also impacted diagnosis. In 

patients with an otherwise normal physical exam, if the 

hearing loss was symmetric, the diagnostic rate was 48 %. 

However, a genetic cause was never identified in patients 

with ‘presumed’ unilateral NSHL suggesting that this con-

dition does not exist (Figs. 1, 2). In fact, the only instance 

of a positive genetic diagnosis associated with unilateral 

hearing loss was in a patient with a family history of BOR 

syndrome caused by a truncating variant in EYA1, a well-

recognized phenotype–genotype association (Chang et al. 

2004; Chen et al. 1995).

Ethnicity impacted diagnostic rate. Nearly half (49 %) 

of the patients in this study self-identified as Caucasian 

and had a diagnostic rate of 38 %. In patients of Middle 

Eastern ethnicity, the diagnostic rate was higher (72 %), 

an increase that reflects the higher coefficient of inbreed-

ing in this population (Najmabadi and Kahrizi 2014). Coef-

ficient of inbreeding is known to vary across populations, 

ranging from 0.0365 in Bedouins to 0.0026 in Japanese and 
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5.96E−8 in an Afro-European admixed population of Chi-

cago (Pemberton and Rosenberg 2014).

That the diagnostic rate was lowest in African Ameri-

cans and the ‘Other’ group (which included patients of 

African, Bahaman or Native American heritage) suggests 

that there is a ‘discovery gap’ to fill in these ethnic groups 

(Gasmelseed et al. 2004; Shan et al. 2010). Nevertheless, 

in all ethnic groups, a relatively large number of less fre-

quently implicated genes accounted for 10–15 % of diag-

noses (Fig. 3), implying that across populations a similar 

proportion of hearing loss is due to multiple, rare, ethnic-

specific variants that arise randomly and independently.

In many of the world’s populations, variants in GJB2 

are the predominant cause of congenital severe-to-pro-

found ARNSHL (Kenneson et al. 2002). In this study, 

they accounted for 22 % of all diagnoses and 26 % of 

diagnoses in the congenital severe-to-profound ARNSHL 

cohort. The ethnic-specific breakdown of GJB2-related 

hearing loss in Caucasian, Hispanic, African American, 

Asian, and Middle Eastern patients was 20, 14, 0, 36 and 

17 %, respectively (Fig. 3, S2). When corrected for GJB2 

pre-screening, the percentages increased slightly (22, 16, 

0, 45, and 17 %, respectively), which is in agreement with 

other reports (Bazazzadegan et al. 2012; Dai et al. 2009; 

Du et al. 2014; Pandya et al. 2003; Usami et al. 2012).

STRC causative variants accounted for 30 % of diagno-

ses in patients with mild-moderate hearing loss, providing 

the most common diagnosis among those with this degree 

of hearing loss. In aggregate, 16 % of diagnoses impli-

cated STRC. It is noteworthy that the majority of causative 

mutations in STRC involved large CNVs (99 %), under-

scoring the requirement that all comprehensive genetic 

testing panels for hearing loss include CNV detection.

Of variants with a MAF of <0.01, the largest majority 

were of unknown significance (VUSs, Fig. S1). In addition, 

however, we identified several known or likely pathogenic 

variants associated with ARNSHL in genes without a sec-

ond causal variant. For example, 151 of the 679 patients, in 

whom a genetic diagnosis was not made, carried reported 

ARNSHL-causal variants without having a second vari-

ant in the coding sequence of that gene. This carrier rate of 

22 % is roughly 8 times higher than that reported in hear-

ing control populations and suggests that many of these 

patients have yet-to-be-identified non-coding mutations 

(Green et al. 1999).

Variant annotation is a dynamic process. Interpreta-

tion of variants as pathogenic, likely pathogenic, VUS, 

likely benign and benign is continuously refined based on 

increasingly robust data. The Deafness Variation Data-

base (deafnessvariationdatabase.org) captures this area 

of active study in an open-source, continuously updated, 

interpretational database that we maintain on all variant 

positions interrogated on the OtoSCOPE platform.

In summary, we believe that comprehensive genetic 

testing is a foundational diagnostic test that allows 

healthcare providers to make evidence-based decisions 

in the evaluation of hearing loss thereby providing bet-

ter and more cost-effective patient care (Fig. 4, Table S8). 

While only 10 genes accounted for 72 % of diagnoses, 

49 genes were identified as causative and 20 % of diag-

noses involved at least one CNV (Table 2 and Shearer 

et al. (2014b)), mandating comprehensive TGE + MPS 

and thorough data analysis. While whole exome sequenc-

ing (WES) is becoming cheaper and for many indications 

more practical, a focused deafness-specific panel contin-

ues to offer the advantages of better coverage of targeted 

regions, greater facility to detect multiple variant types 

(including CNVs and complicated genomic rearrange-

ments), substantially lower costs, higher throughput, sim-

pler bioinformatics analysis, and focused testing, obviat-

ing the need to deal with secondary/incidental findings that 

otherwise inevitably arise with WES.
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Fig. 3  Solve rate and implicated genes across ethnicities. The 10 

genes with ≥10 diagnosis for the entire cohort are plotted individu-
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differences are readily apparent

Fig. 2  Diagnostic rate is influenced by ethnic, clinical and pheno-

typic characteristics. a N for each combination of two reported char-

acteristics for all combinations. Color/shading reflects the number 

of patients with the paired criteria, up to the maximum of n = 683. 

b Diagnostic success for each corresponding category in a. Color-

ing/shading indicative of diagnosis: light orange indicates below 

average diagnostic rate, yellow indicates close to average diagnos-

tic rate (39.3 %), and dark green indicates above average diagnostic 

rate. Empty squares had fewer than 10 individuals. AD autosomal 

dominant, AR autosomal recessive, PE physical exam, DFNB1 prior 

genetic DFNB1 (GJB2) testing, DFNB1 & other prior genetic testing 

including DFNB1 and other tests, other testing prior genetic testing 

excluding DFNB1 testing
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Table 2  Diagnoses and 

inheritance patterns in 440 

patients with genetic hearing 

loss

Gene Total diagnoses Autosomal dominant Autosomal recessive Mitochondrial or 

X-linked

Diagnoses % Diagnoses % Diagnoses % Diagnoses %

GJB2 95 21.6 1 1.6 94 25.3

STRC 71 16.1 71 19.1

SLC26A4 29 6.6 29 7.8

TECTA 23 5.2 15 23.8 8 2.2

MYO15A 21 4.8 21 5.6

MYO7A 20 4.5 1 1.6 19 5.1

USH2A 19 4.3 19 5.1

CDH23 18 4.1 18 4.8

ADCRV1 12 2.7 12 3.2

TMC1 10 2.3 2 3.2 8 2.2

PCDH15 9 2.0 9 2.4

OTOF 9 2.4

TMPRSS3 9 2.4

LOXHD1 8 1.8 8 2.2

OTOA 8 2.2

WFS1 7 1.6 5 7.9 2 0.5

COL11A2 6 1.4 5 7.9 1 0.3

KCNQ4 6 9.5

MYH14 5 1.1 5 7.9

MYO6 4 6.3 1 0.3

ACTG1 4 0.9 4 6.3

PTPRQ 4 1.1

MYH9 3 0.7 3 4.8

OTOGL 3 0.8

TRIOBP 3 0.8

CLDN14 2 0.5 2 0.5

COCH 2 3.2

ESPN 2 3.2

EYA4 2 3.2

LRTOMT 2 0.5

POU3F4 2 40.0

SMPX 2 40.0

TPRN 1 1.6 1 0.3

WHRN 2 0.5

ALMS1 1 0.2 1 0.3

DFNB59 1 0.3

DIABLO 1 1.6

DIAPH1 1 1.6

EYA1 1 1.6

GRXCR1 1 0.3

ILDR1 1 0.3

LHFPL5 1 0.3

MTRNR1 1 20.0

MYO1A 1 1.6

SLC17A8 1 1.6

SLC26A5 1 0.3

TSPEAR 1 0.3

USH1C 1 0.3

USH1G 1 0.3
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