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Abstract

Background: Genotyping by sequencing, a new low-cost, high-throughput sequencing technology was used to

genotype 2,815 maize inbred accessions, preserved mostly at the National Plant Germplasm System in the USA.

The collection includes inbred lines from breeding programs all over the world.

Results: The method produced 681,257 single-nucleotide polymorphism (SNP) markers distributed across the

entire genome, with the ability to detect rare alleles at high confidence levels. More than half of the SNPs in the

collection are rare. Although most rare alleles have been incorporated into public temperate breeding programs,

only a modest amount of the available diversity is present in the commercial germplasm. Analysis of genetic

distances shows population stratification, including a small number of large clusters centered on key lines.

Nevertheless, an average fixation index of 0.06 indicates moderate differentiation between the three major maize

subpopulations. Linkage disequilibrium (LD) decays very rapidly, but the extent of LD is highly dependent on the

particular group of germplasm and region of the genome. The utility of these data for performing genome-wide

association studies was tested with two simply inherited traits and one complex trait. We identified trait

associations at SNPs very close to known candidate genes for kernel color, sweet corn, and flowering time;

however, results suggest that more SNPs are needed to better explore the genetic architecture of complex traits.

Conclusions: The genotypic information described here allows this publicly available panel to be exploited by

researchers facing the challenges of sustainable agriculture through better knowledge of the nature of genetic

diversity.
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Background
Maize (Zea mays L.) is one of the most important crops

in the world, being one of the main sources of human

food, animal feed, and raw material for some industrial

processes [1].Furthermore, maize is a significant model

plant for the scientific community to study phenomena

such as hybrid vigor, genome evolution, and many other

important biological processes. The maize genome is

complex, and has a very high level of genetic diversity

compared with other crops and model plant species [2].

The Zea genome is in constant flux, with transposable

elements changing the genome and affecting genetic

diversity [3]. Structural variations between any two

maize plants are prevalent and are enriched relative to

single-nucleotide polymorphism (SNP) markers as sig-

nificant loci associated with important phenotypic traits

[4]. The availability of new sequencing technologies at

increasingly affordable prices has provided the opportu-

nity to investigate more deeply the maize genome and

its diversity, enabling genome-wide association studies

(GWAS) and genomic selection (GS) strategies.

Since the beginning of the 20th Century, when Shull

[5] and East [6] first investigated inbreeding and hetero-

sis in maize, breeding programs around the world have

developed maize inbred lines using diverse strategies.
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The USDA-ARS North Central Regional Plant Introduc-

tion Station (NCRPIS) in Ames, Iowa, an element of the

National Plant Germplasm System, along with germ-

plasm banks around the world, has conserved distinct

inbred lines that represent nearly a century of maize

breeding efforts. Researchers have genotypically charac-

terized subsets of these maize inbred lines to assist with

curatorial management of germplasm collections, to

evaluate diversity within breeding programs, and for use

in association mapping [7-10]. Some association panels

have been used successfully to characterize many differ-

ent traits, frequently through a candidate gene strategy

[11]. However, the sample sizes used in these studies

may not have been large enough to detect all of the key

quantitative trait loci (QTL) for the complex traits.

Furthermore, the nature of population structure in

maize may have resulted in further dilution of statistical

power and high rates of false discovery [12]. In addition,

candidate gene strategies require an understanding of

the biochemical or regulatory pathways controlling the

traits.

Recently, Elshire et al. [13] developed a simple new

sequencing procedure that provides a large number of

markers across the genome at low cost per sample. The

approach, called genotyping by sequencing (GBS), can

be applied to species with high diversity and large gen-

omes such as maize. It does not rely on previous knowl-

edge of SNPs; however, the high-quality reference

genome for the maize inbred B73 [14] is used at this

point to anchor the position of the SNPs. The method

enables characterization of germplasm collections on a

genome-wide scale, and greatly expands the number of

individuals and markers under study, which then

increases the chances of discovering more uncommon

or rare variants [15]. In maize, there are examples of

important rare alleles unique to some groups of germ-

plasm, such as alleles at crtRB1 that increase b-carotene

concentrations in kernels [16]. Several studies have also

suggested that rare alleles could explain the ‘missing

heritability’ problem. This is the phenomenon by which

a large portion of the inferred genetic variance for a

trait is often not fully accounted for by the loci detected

by GWAS [17]. Moreover, the increased number of

samples and markers allow a deeper study of haplotype

structures and linkage disequilibrium (LD). Regions with

strong LD and large haplotype blocks as a result of

reduced recombination make it more difficult to sepa-

rate genes that can have different effects, affecting both

mapping and/or selection of the positive alleles for a

trait. This linkage between favorable and negative alleles

also contributes to heterosis [18].

In the current study, we used GBS to analyze a total

of 4,351 maize samples from 2,815 maize accessions

with 681,257 SNP markers distributed across the entire

genome. These data allowed us to 1) compare this new

sequencing technology with other available options, 2)

explore the potential of this new technology to help

with curation and use of germplasm, 3) evaluate genetic

diversity and population structure both across the gen-

ome and between groups of germplasm, 4) investigate

the history of recombination and LD through the differ-

ent breeding groups, and 5) explore the potential of the

collection as a resource to study the genetic architecture

of quantitative traits.

Results
Marker coverage and missing data

The germplasm set examined in this experiment com-

prised 2,711 available maize inbred accessions preserved

in the USDA-ARS NCRPIS collection (some of them

with more than one source), another 417 candidates to

be incorporated into the USDA collection as new sources

of diversity, and the 281 maize inbred lines from the

Goodman maize association panel [8]. Most of the acces-

sions were sequenced once, with one representative plant

chosen for the DNA extraction, resulting in a single GBS

sample. However, for 558 accessions, more than one

plant was sequenced so different sources could be com-

pared, and therefore more than one GBS sample was

available. Moreover, 326 DNA samples were sequenced

multiple times as technical replicates. Thus, the total

number of GBS samples analyzed in this study was 4,351

(see Additional file 1). From the complete set of 681,257

SNP markers across all maize lines analyzed to date, we

selected 620,279 SNPs that are polymorphic among our

samples. These SNPs are distributed along the 10 maize

chromosomes, and more highly concentrated in sub-telo-

meric than pericentromeric regions (Figure 1).

The average base-call error rate based on repeated sam-

ples was 0.18%. An additional level of quality control

was provided by approximately 7,000 SNPs that over-

lapped with those obtained with a large genotyping

array [19] for the 281 maize inbreds from the Goodman

association panel. The mean discrepancy rate between

the GBS and array SNP genotypes for all calls was 1.8%.

When heterozygote calls are excluded from the compar-

ison, the discrepancy rate decreased to 0.58%.

The average coverage (SNP call rate) by sample was

35%, with values ranging from 2 to 75%. However, when

samples were sequenced more than once, coverage

improved substantially. For example, the Goodman asso-

ciation panel was evaluated twice, and reduced the average

missing data from 63% based on a single run to 35% for

the merged data. The nested association mapping (NAM)

parents [18], covered by seven replicate sequencing runs,

was found to have only 23% missing data. The inbred line

SA24, used as a check, was analyzed more than 25 times

and had only 16% missing data. In addition, coverage was
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highly dependent on the genotype. A substantial number

of the total reads could not be aligned to the reference

genome, some because of limited sensitivity of the Bur-

rows-Wheeler Alignment (BWA) software, but most

because of presence/absence variation (PAV). Use of the

B73 reference genome resulted in inbreds more closely

related to B73 achieving values of less than 20% missing

data with only two samples, whereas more distant inbreds

maintained values of around 30% missing data even after

several replicate sequencing runs.

Imputation of missing data was performed using an

algorithm that searched for the closest neighbor in small

SNP windows across our entire maize database (approxi-

mately 22,000 Zea samples), allowing for a 5% mismatch.

If the requirements were not met, the SNP was not

imputed, leaving only about 10% of the data unimputed.

When comparing the imputed GBS data with the results

from the genotyping array [19] for the 281 maize inbreds

from the Goodman association panel, the median discre-

pancy rate for all calls was 4%. Excluding heterozygote

calls, the median error rate was 1.83%. Imputed data

were used only to perform GWAS analysis.

Integrity and pedigree relationships of the germplasm

collection

Curatorial management of such an enormous collection

of an annual plant is challenging, and various steps of the

process may contribute to problems such as errors or

material duplications. However, when we calculated the

proportion of markers identical by state (IBS) for all pairs

of lines (Figure 2A), GBS data showed that more than

98% of the approximately 2,200 samples that shared an

accession name were more than 0.99 IBS even when

derived from different inventory samples (Figure 2B).

Most of the mismatches were traced back to problems

during the DNA manipulation step. This showed that

misclassification or contamination problems are not

common in the bank. When more than one sample per

accession was available, intra-accession variability was

detected (Figure 2B). For those accessions, the IBS value

was lower than expected, owing to residual heterozygos-

ity. However, for most of the accessions in this study,

only one plant was analyzed, and thus intra-accession

variability could not be assayed. Based on our average

error rates, we selected 0.99 as a conservative value to

assume that two different samples with the same name

but different origins are actually the same accession.

When more than two samples per accession were avail-

able, if IBS values were consistent between all compari-

sons we considered the differences to be the result of

residual heterozygosity. We merged the information from

replicated samples that met those criteria to obtain a final

list of 2,815 unique maize inbred lines.

Maize inbred development through the world has been

accomplished in many different ways, but some of the

most common procedures consist of intermating existing

elite materials or incorporating a desirable trait from a

donor into an elite inbred line through backcross breed-

ing [20]. Thus, we expected that a high number of the

inbred lines in our collection would be closely related.

Using IBS, we examined the distribution of the IBS rela-

tionships (Figure 2A) and the 10 closest neighbors for

each unique inbred line (see Additional file 2). The data

reflect the continuous exchange and refinement of germ-

plasm that has occurred over the breeding history of

maize and the efforts by breeders to introduce new diver-

sity into their programs. We calculated identity by des-

cent (IBD) for all possible pairwise combinations of the

Figure 1 distribution of single-nucleotide polymorphisms (SNPs) across the genome. Distribution of the number of SNPs found in 1 Mb

windows across the 10 maize chromosomes. Centromere positions are shown in black.
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inbreds, and found that 603 lines (21% of the collection)

had at least one other accession that was 97% identical

(equal to the relationship expected between a parental

inbred and a progeny derived by four backcrosses to that

parent). For some of the more historically important

inbred lines, the number of relationships exceeded 10.

For example, B73 shares more than 97% of its genome

with more than 50 inbreds (Figure 3), congruent with its

contribution to the pedigrees of many important com-

mercial lines [21].

Figure 2 Identical by state (IBS) distribution across GBS samples. Distribution of IBS values across (A) the 2,815 accessions and (B) for

accessions with multiple samples.
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The network of relationships obtained using GBS data (see

Additional file 3), combined with pedigree information,

provides a tool to identify anomalies and potential errors

in the identity of accessions. These data, in hands of

experts on maize germplasm (for example, the USDA

maize curator), can be used to identify accessions that

may have been misclassified, select best sources for multi-

plication/distribution, eliminate duplications, select core

collections, add or recommend new experimental entries,

and in theory, to assess genetic profile changes over suc-

cessive regenerations, another quality-assurance measure.

Population structure

Maize lines from breeding programs with different objec-

tives and environments were included in our final set of

lines (see Additional file 1). It is expected that different

groups of germplasm will result in population stratification

[7,8]. An analysis of the similarity matrix using principal

coordinate analysis (PCoA) with a multidimensional scal-

ing (MDS) plot showed that GBS data could describe the

genetic variation among our breeding lines in accordance

with their known ancestral history (Figure 4A). For exam-

ple, the inbreds grouped into different subpopulations

along the PCo1 axis, with tropical materials on one side,

and sweet corn, derived from Northern Flint materials, on

the other.

When the inbreds were classified according to breeding

program of origin (Figure 4B), the different breeding pro-

grams also tended to group together, with most of the

USA programs in the two major germplasm groups recog-

nized by temperate maize breeders (referred to as stiff

stalk and non-stiff stalk [21]). However, some USA inbred

lines (for example, the temperate-adapted all-tropical lines

developed at North Carolina State University) were found

to be interspersed with tropical lines from CIMMYT (the

International Maize and Wheat Improvement Center),

while others (for example, the semi-exotic inbreds from

the Germplasm Enhancement of Maize (GEM) program,

derived from crossing USA and tropical lines) were

located between the stiff stalk/non-stiff stalk and the tropi-

cal clusters. Finally, other materials from international

programs (for example, Spain, France, China, Argentina,

or Australia) seem to represent germplasm pools different

from those commonly used in North American programs.

As expected, these usually did not form clusters with any

of the other groups.

Figure 3 B73 network diagram. Network relationships of maize inbred lines with values of IBS greater than 0.97 for B73.
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Figure 4 Multidimensional scanning for 2,815 maize inbred lines. Genetic relationships between the maize inbred lines preserved at the

NCRPIS germplasm bank visualized using a principal coordinate analysis of the distances matrix. The × and Y axes represent PCo1 and PCo2

respectively. Colors are assigned based on (A) population structure or (B) breeding program. Inbred lines obtained directly from landraces

without selection are highlighted in red to serve as reference.
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Distribution of alleles and allele frequencies

The site frequency spectrum (SFS) for the entire collec-

tion showed that most of the SNPs in the Ames inbred

panel (68%) had a minor allele frequencies (MAF) less

than 0.1, with more than half of all SNPs being rare

(MAF < 0.05) (Figure 5). This result suggests that some

alleles might be unique to different subgroups of germ-

plasm. To compare levels of diversity between different

germplasm groups, we analyzed the percentage of alleles

present in those groups. The inbreds of tropical origin

were found to contain 77% of the total allelic diversity

of the collection, whereas the non-stiff stalk and stiff

stalk groups were found to present a substantial bottle-

neck, with only 48% and 42% of the total allelic diver-

sity, respectively, being present. Of the total number of

polymorphic SNPs, only about 35% were shared between

all three of the groups (Figure 5). Another difference

between stiff stalk/non-stiff stalk and the remainder of

the collection was a shift in the MAF distribution, with

more than half of their SNPs (68% and 59%, respec-

tively) having a MAF greater than 0.1. By contrast, the

Goodman association panel captured 75% of the total

allelic diversity and was highly representative of the

entire collection, with an SFS similar to that obtained

using all the samples. The diverse panel formed by the

27 maize inbred founders of NAM and IBM contained

57% of the overall allelic diversity, showing that, even

with a very small number of samples, NAM captured

more than half the total allelic diversity present in the

inbred line collection.

Both Canadian and USA public breeding efforts have

successfully incorporated genetic diversity. Collectively,

those inbred lines contained 83% of the total allelic

diversity of the collection. However, only a modest

amount of this diversity has been commercially

exploited, and proprietary germplasm with Expired

Plant Variety Protection (ExPVP) contains only 45% of

the total number of polymorphic SNPs. Moreover, pri-

vate breeding efforts have favored the divergence

between three main heterotic pools (stiff stalk, non-stiff

stalk, and iodent). In analyzing the network relationships

for the ExPVP inbreds, only 2% of the pairwise IBS rela-

tionships with greater than 90% IBS were found to be

between inbreds from different heterotic pools (Figure

6A), and only 30% of the total SNPs segregating in the

ExPVP materials were shared between all three groups

of germplasm (Figure 6B).

We also analyzed pairwise fixation indexes (Fst)

between different groups of accessions. The small Fst

estimates, averaging only 0.06, indicated that there is

moderate differentiation [22] between tropical, stiff

stalk, and non-stiff stalk maize populations. Analysis of

pairwise Fst and average nucleotide divergence between

different USA breeding programs (Table 1) confirmed

the picture obtained by analyzing genetic distances.

Most of those programs used similar sources of diver-

sity, with an average pairwise Fst of 0.04. Although the

maximum values for nucleotide divergence between pro-

grams differed, the average values for all the compari-

sons were around 0.14 (Table 1). The main commercial

Figure 5 Minor allele frequency (MAF) distribution and percentage of single-nucleotide polymorphisms (SNPs) shared between maize

subpopulations. Histogram of MAF distribution over all groups, and cumulative percentage of SNPs shared between different groups of

germplasm for each class of MAF. Columns represent the percentage of SNPs in each MAF category; lines represent the percentage of alleles

shared between the groups of germplasm at equal or lesser MAF value.
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companies, responsible for most of the maize cultivated

in the USA, have had very similar strategies when decid-

ing which sources of germplasm will benefit their breed-

ing programs and, based on the data obtained from

their ExPVP, their populations differ genetically by only

3%. They also had the smallest value for average nucleo-

tide divergence (0.13).

Within chromosomes, all groups consistently displayed

smaller values of Fst and lower MAF in the pericentro-

meric regions versus the remainder of the genome.

Genetic diversity

To evaluate the levels of diversity and divergence in

the entire collection and within different groups of

germplasm, we calculated LD, haplotype length, and popu-

lation differentiation (Fst) across the entire maize genome.

We also calculated the correlation between those mea-

surements and previous recombination rates across the

genome estimated with NAM [23] (Figure 7).

LD decayed very rapidly within the entire collection,

and reached an average r2 of 0.2 within about 1 Kb

(Figure 8), but the variance is large because the level of

LD is dependent on the particular group of germplasm

and region of the genome, as can be seen with the dif-

ferences for the median value for r2 within diverse

groups of germplasm (see Additional file 4). LD decay

was slower within the stiff stalk, non-stiff stalk, and

ExPVP groups, for which an average r2 of 0.2 was not

Figure 6 Expired Plant Variety Protection (ExPVP) network diagram and distribution of segregating single-nucleotide polymorphism

(SNPs). (A) Network of relationships for the ExPVP inbreds constructed using identical by state (IBS) values greater than 0.9. Each dot (inbred

line) has a different color assigned based on the company where it was developed. (B) Distribution of the segregating SNPs between the three

heterotic groups that form the three main clusters in the network graph.

Table 1 Pairwise differences between maize breeding programs in the USA.a

IL IN IA MI MN MO NE NC ND W Mon Pion

Illinois (IL) 0.14 0.96 0.14 0.99 0.14 0.98 0.14 0.97 0.15 0.98 0.14 0.98 0.14 0.98 0.15 0.93 0.15 0.98 0.14 0.98 0.14 0.95

Indiana (IN) 0.01 0.14 0.99 0.14 0.95 0.14 0.98 0.15 0.99 0.14 0.96 0.14 0.96 0.15 0.92 0.15 0.96 0.14 0.96 0.14 0.96

Iowa (IA) 0.01 0.01 0.14 0.93 0.14 0.99 0.15 0.99 0.13 0.99 0.14 1.00 0.15 0.99 0.14 0.98 0.13 0.99 0.14 0.96

Michigan (MI) 0.01 0.02 0.03 0.14 0.97 0.15 0.93 0.14 0.91 0.15 0.91 0.15 0.93 0.15 0.97 0.14 0.95 0.14 0.92

Minnesota (MN) 0.02 0.02 0.02 0.02 0.15 0.96 0.14 0.98 0.15 0.99 0.15 0.94 0.14 0.99 0.14 0.98 0.14 0.95

Missouri (MO) 0.02 0.02 0.03 0.03 0.03 0.14 0.97 0.15 0.95 0.15 0.92 0.15 0.99 0.14 0.99 0.14 0.96

Nebraska (NE) 0.04 0.04 0.03 0.06 0.05 0.05 0.14 0.99 0.15 0.89 0.14 0.97 0.13 0.98 0.13 0.95

North Carolina (NC) 0.05 0.05 0.04 0.06 0.05 0.04 0.06 0.15 0.90 0.15 0.93 0.14 0.98 0.14 0.95

North Dakota (ND) 0.03 0.03 0.04 0.03 0.02 0.03 0.08 0.06 0.15 0.94 0.15 0.94 0.15 0.88

Wisconsin (WI) 0.02 0.03 0.03 0.03 0.02 0.04 0.07 0.07 0.03 0.14 0.98 0.15 0.94

Monsanto (Mon) 0.04 0.03 0.02 0.05 0.03 0.05 0.05 0.04 0.07 0.06 0.13 0.99

Pioneer (Pion) 0.04 0.04 0.03 0.05 0.04 0.04 0.06 0.06 0.07 0.06 0.03

aLower diagonal shows pairwise Fst estimates between USA breeding programs, whereas upper diagonal shows average nucleotide divergence and maximum

nucleotide similarity.
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reached until a distance of approximately 10 Kb. Tropi-

cal materials displayed the fastest decay of LD with

values similar to the overall sample.

The average GBS marker haplotype length, estimated

around each SNP as the number of contiguous SNPs that

two random lines from a group share, extending from a

focal point forward in both directions, was 52 SNPs

(around 1.4 Mb) for the entire collection, with a smaller

length within the tropical materials (44 SNPs) and a

much larger length in the non-stiff stalk (152 SNPs) and

stiff stalk (495 SNPs) groups. The ExPVP group also dis-

played a large average haplotype length of 200 SNPs

(around 5.1 Mb), with mean haplotype lengths greater

for lines developed by breeding programs now owned by

Monsanto than for Pioneer lines. Core collections such

as the Goodman association panel or NAM parents,

which were selected to maximize diversity, had the smal-

lest haplotype lengths (81 and 48 SNPs, respectively)

(Table 2). Haplotype lengths for the overall sample

showed high correlation with the estimates of the recom-

bination rates in NAM (Spearman correlation r2 =0.74)

(see Additional file 5, Figure 7).

None of the other correlations tested was strong,

probably because of the large diversity of the sample

and large physical size of the NAM genetic map bins

(average of 2.4 Mb). However, the fixation indexes

between both temperate groups and tropical materials

showed an r2 of 0.26, indicating common allele fre-

quency differences between groups, probably related to

the adaptation bottleneck.

In addition, when analyzing the entire chromosome

with all samples, chromosome 4 was found to have a

larger haplotype length (sites) compared with the rest of

the chromosomes (Table 2). When looking at physical

distance (in Mb), this increase was consistent in all

groups. One region on chromosome 4 that seemed to

increase the average haplotype length is located between

40 and 65 Mb, a region with important genes related to

the domestication and improvement processes [24,25].

This region also showed lower diversity and MAF. The

stiff stalk, non-stiff stalk, and ExPVP groups also exhibit

a longer than average haplotype length for chromosome

10, where one of the major photoperiod response genes

is located [26].

Genome-wide association studies

The germplasm set conserved in the USDA collection is

extensive and publicly available, and contains a high

amount of allelic diversity and rapid LD decay. For

these reasons, we wanted to explore its possible use as a

panel to study quantitative traits, combined with a strat-

egy of low-coverage data in multiple samples. We used

a simple Mendelian trait, namely, kernel color, with an

Figure 7 Genome-wide pairwise relationships between different

genetic diversity measurements. Relationships between nested

association mapping (NAM) recombination rate (log10 cM/Mb),

average haplotype length (bp), average LD (r2), and fixation indexes

(Fst) between stiff stalk, non-stiff stalk, and tropical lines at the NAM

genetic map bin scale. The numbers indicate the coefficient of

determination (r2) calculated using Spearman’s rank correlation. LD,

linkage disequilibrium.

Figure 8 Decline of genome-wide linkage disequilibrium (LD) across all maize inbreds. Mean LD decay measured as pairwise r2 between

all single-nucleotide polymorphisms in the collection. The red line represents the average value while the darker gray area represents the 50%

range of values and light gray 90%.
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approximate frequency of 20% for white kernels in our

population, to perform GWAS using GBS markers. The

SNP with strongest association (P = 10-86) with kernel

color was found within the Y1 gene that reduces the

presence of carotenoid pigments in the endosperm [27]

(see Additional file 6, Figure 9).

Because the power to detect alleles at lower frequencies

is expected to be less, we decided to test another Men-

delian trait, sweet corn versus starchy corn, where the

sweet phenotype is present at a much lower frequency

(5%) than the white kernel type. This trait has been

affected by strong selection pressure, both during

domestication and the breeding process [28], resulting

in an extensive block of elevated LD surrounding the

targeted area, especially when the inbred is a dent line

that has been converted into a sweet line. The two

SNPs with strongest association (P values between 10-61

and 10-52) defined a 14 Mb interval containing Su1, a

gene that participates in kernel starch biosynthesis [29]

(see Additional file 7, Figure 10).

Finally, we tested the power of this association panel with

a complex trait, the number of growing degree days from

planting to the day that 50% of the plants show silk (see

Additional file 8, Figure 11). The best association, with P =

10-23, lies about 2 Kb from ZmCCT, an important gene

related to photoperiod response and flowering time in

maize [26]. The second strongest associations (P values

between 10-18 and 10-14) are located on chromosome 8,

surrounding the region where Vgt1, one of the major flow-

ering time QTL for maize is located [30]. The next best hit

on chromosome 3 (P = 10-14) does not have any identified

candidate gene association, but overlaps with one of the

flowering time QTL detected using NAM [31]. A chromo-

some 7 hit (P = 10-12) also overlaps with one of the NAM

Table 2 Average haplotype length for different groups of germplasm.a

Type Chromosome number Mean

1 3 4 5 6 7 8 9 10

All maize 49.8 49.7 53.0 58.9 49.8 51.0 52.3 51.6 48.7 57.8 52.3

Tropical 51.9 43.0 43.9 46.5 43.5 38.1 43.0 43.5 42.6 43.3 43.9

Stiff stalk 494.4 493.3 546.6 523.5 432.9 527.8 410.5 488.9 388.4 647.0 495.3

Non-stiff stalk 170.5 135.7 149.0 154.1 164.2 123.6 156.5 132.6 144.9 190.7 152.2

ExPVPb 200.8 203.0 170.8 216.1 192.5 186.0 179.4 209.3 168.8 277.4 200.4

Monsanto 268.4 384.9 246.0 327.4 318.0 253.6 221.7 277.1 232.2 333.8 286.3

Pioneer 223.6 139.6 167.8 226.5 170.5 198.9 206.7 175.6 188.3 267.2 196.5

Association panel 79.6 79.8 90.1 87.4 76.3 81.7 75.3 81.9 76.2 86.4 81.5

NAMc 45.0 45.4 53.6 57.0 47.9 43.3 43.3 52.3 43.4 52.1 48.3

aNumber of sites defining a haplotype by chromosome calculated using genotyping by sequencing; markers for different groups of germplasm.
b Expired Plant Variety Protection
c Nested association mapping

Figure 9 Genome-wide association study (GWAS) for yellow versus white kernels. GWAS for kernel color on 1,595 maize inbred lines with

yellow or white kernels.
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flowering time QTL [31] and is close to the maize flower-

ing time gene DLF1-DelayedFlowering1 [32] and the

GRMZM2G017016 gene, a putative orthologue of the

Arabidopsis FRI-Frigida gene [33]. The fifth best hit, on

chromosome 1, is located near a very interesting suite of

genes spread across a 3 Mb interval, where teosinte-

branched1 and dwarf8 flank one side, while Phytochro-

meA1 flanks the other side [34]. A gene, GRMZM2G1

44346, containing a CCT domain is also located in the

region, only 0.2 Mb away from our hit. Recent work has

suggested that dwarf8 has been a target of selection in

early flowering lines [35,36], but it is unlikely to directly

contribute much to flowering time [37]. These regions cer-

tainly warrant further study.

Discussion
The challenges currently facing agriculture, that is, rapid

human population growth, climate change, and the need

to balance increasing production with reduced environ-

mental effects, make it necessary to optimize the use of

available resources. Genomic data can be used to address

these challenges by helping breeders to compare individual

plant genomes and optimize the characterization, discov-

ery, and use of functional genetic variation [38]. Germ-

plasm banks around the world curate thousands of maize

accessions that, in combination with genomic data, can be

explored through GWAS or GS, and could potentially be

used for improving agriculturally significant quantitative

traits. Inexpensive methods to obtain dense genetic

Figure 10 Genome-wide association study (GWAS) for sweet versus starchy corn. GWAS for kernel color on 2,145 maize inbred lines with

sweet or starchy kernels. SNP, single-nucleotide polymorphism.

Figure 11 Genome-wide association study (GWAS) for growing degree days to silking. GWAS for growing degree days to 50% silking on

2,279 maize inbred lines. NAM, nested association mapping; QTL, quantitative trait loci.
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marker information on large samples of germplasm are

needed to take full advantage of this tremendous resource

[39].

The enormous progress in sequencing technologies

that has occurred over the past few years has allowed

better understanding of the maize genome. High-density

genome sequencing has been used to study maize diver-

sity [4,23-25]. In addition, several studies [39-42] have

taken advantage of recently developed SNP genotyping

arrays for maize, which have evolved quickly from only

a few thousand SNPs to more than 50,000. Although

high-density genome sequencing can provide a larger

number of markers and a more accurate vision of the

genome, its expense has restricted it to only a few hun-

dred samples per study. SNP arrays are cheaper and can

analyze larger samples of germplasm; however diversity

studies can be confounded by the fact that SNPs are

developed using reference sources of diversity, which

may cause an important ascertainment bias (Ganal et al

[19] describes an example with B73 and Mo17 in the

maizeSNP50 chip). GBS has been shown to be a less

expensive method for genotyping large numbers of sam-

ples, and provides many more SNPs than do SNP arrays.

Although the use of a reference genome for calling

SNPs from GBS data might cause bias and underesti-

mate the amount of diversity from the groups more dis-

tant from the reference, the diversity picture obtained

when analyzing the distance matrix seems to be closer

to the expectations from simple sequence repeats stu-

dies [8], whole-genome sequencing, and maize domesti-

cation data [23] than that obtained with SNP arrays.

The percentage of missing data from GBS with enzymes

such as ApeKI and the levels of coverage obtained here

may be a problem for some applications, especially GWAS

and GS. Although better coverage can be achieved with

more repetitions of the samples, this will increase cost,

and quickly reaches a point where there is little reduction

in missing data with increased investment in repeated

sequencing runs. Given the importance of PAV in maize

[2,3,24,43] some of the missing data are very probably due

to the absence of some regions of the B73 genome in

other inbred lines. As shown here, simple imputation pro-

cedures based on identifying the most similar haplotype

can be used to supply some of those missing data, and this

imputation may be sufficiently accurate provided that

similar haplotypes are present in the sample of genotypes.

This kind of procedure may work better as the total num-

ber of maize samples in the GBS database increases, but it

may also cause over imputation of data that are actually

biologically missing as a result of a PAV. Alternative meth-

ods for handling missing SNP data in GBS datasets include

an approach that avoids using a reference genome, such as

the one recently used for switchgrass [44], or one that

genetically maps individual GBS sequence tags as domi-

nant markers [13].

Another important difference between the results

obtained with GBS and the results from SNP array

methods seems to be the MAF distribution. Whereas

array assays seem to oversample SNPs with intermediate

frequencies [45] even when analyzing diverse maize col-

lections [9,41], more than half of GBS SNPs within our

collection are rare (this is especially true within some of

the more diverse germplasm groups). As sequencing

technologies improve, the number of rare alleles

detected is increasing. In humans, recent studies have

found that the majority of variable genomic sites are

rare, and exhibit little sharing between diverged popula-

tions [46]. The importance of rare alleles is not yet com-

pletely clear, and further studies to understand the

magnitude of their role causing observable phenotypic

variation are underway [38]. There are strong arguments

both in favor and against the rare allele model, which

hypothesizes that quantitative traits are largely con-

trolled by rare alleles of large effect [15,17].

GWAS studies have shown that variation in some

traits is related to rare alleles, and that those rare var-

iants could explain an additional fraction of the missing

heritability [15]. However, identifying rare variants

through GWAS is challenging, and requires large sam-

ple sizes [38]. With the present work, we present an

extensive genetic characterization of the maize inbred

lines preserved by one of the largest crop germplasm

banks in the world, using a method that detects rare

alleles with high confidence levels. Moreover, our data

show that when there are not enough resources to

extensively evaluate the entire collection, a smaller num-

ber of samples (such as the maize association panel or

even the NAM parents), can, if chosen based on appro-

priate criteria to maximize haplotype diversity, capture a

high portion of the rare alleles, allowing detection of

rare allele effects that may be desirable to incorporate

into breeding programs.

A complication of using the entire USDA-ARS maize

inbred collection for breeding or GWAS is the close rela-

tionships between some of the lines. When the seed yield

of a few inbreds derived from the Iowa Stiff Stalk Synthetic

and their derivatives facilitated the transition to single-

cross hybrids, these inbreds became the female parents of

choice for many breeding programs [47]. For example

B73, the main founder of the stiff stalk group, is closely

related to more than 50 other inbred lines from different

programs in the collection. Several germplasm sources

were used to generate the male pool (non-stiff stalk).

However, the visualization of the genetic relationships

through the MDS shows that even if the non-stiff stalk

group forms a larger cluster (revealing a higher amount of
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diversity), an overlap between the stiff stalk and non-stiff

stalk group still exists.

As shown by the MDS plot and Fst values, most of the

germplasm from classic breeding programs of the Corn

Belt region is closely related. The bottleneck is even nar-

rower when ExPVPs are examined. Using a much smaller

sample of SNP markers, Nelson et al. [48] reported that

most of the ExPVPs released in the past three decades

could be clustered into six primary groups represented

by six prominent public inbred lines. More recently,

Mikel [49] studied the pedigree records of several inbreds

registered until 2008, and found that the genetic contri-

bution of the inbred Mo17 decreased, whereas that of

Oh43 increased. Our analysis shows that the ExPVP

inbreds tend to cluster into three main groups, with B73,

Mo17/Oh43, and PH207 being the principal connectors

within each cluster. Although all of the major private

seed companies are represented within each group (con-

sistent with the small value of divergence between com-

panies), Pioneer germplasm is represented more in the

iodent group (including PH207) and more of its germ-

plasm falls outside the three main clusters (B73, PH207/

Oh43, and PH207). This result is in concordance with the

observed smaller average haplotype length of Pioneer

germplasm.

Although the recycling of elite lines as breeding parents

has markedly reduced the amount of diversity used by

maize breeders over the past few decades, breeders have

also been aware of the importance of maintaining and

introducing diversity into their programs [50]. The deter-

mination of breeders to search for new sources of promis-

ing, exotic germplasm is reflected in the Ames inbred

collection. For instance, the GEM program aims to

broaden the germplasm base of corn hybrids grown by

farmers in the USA [51]. Combining the efforts of public

and private cooperators, this project has introduced tropi-

cal alleles into elite USA germplasm. Our molecular char-

acterization of these materials shows that the GEM

program has been effective, as most of its inbreds lie some-

where between the ExPVPs and tropical materials on the

MDS plot. According to our results, other public programs

that have succeeded in incorporating tropical diversity into

their materials are North Carolina State University and the

University of Missouri. On the other side of the graph,

adaptation to colder climates has been accomplished using

different heterotic pools within the Northern USA and

Canadian programs. Overall, although inbred lines from

breeding programs from other parts of the globe might

have different haplotype combinations (related to the use

of different breeding pools), the USA and Canadian public

inbred lines preserved at NCRPIS capture most of the total

allelic diversity uncovered in this study.

GBS has yielded the greatest number of SNPs ever

obtained from a large maize association panel to date.

As seen with our GWAS analysis, the data can provide

accurate mapping of simple and complex traits for the

most important genes. Van Inghelandt et al. [52] sug-

gested that with an association panel of 1,537 elite

maize inbred lines, 65,000 SNPs should be sufficient to

detect associations with the genes with biggest effects.

Lu et al. [41] used a panel containing tropical and tem-

perate materials, and suggested that 230,000 to 460,000

markers would be needed. However when comparing

the results for the two locations with the best flowering

time associations in our study, we observed that the

most important flowering time gene, ZmCCT, was tar-

geted with only one SNP, meaning that it could easily

have been missed. By contrast, the Vgt1 peak showed

more than 80 SNPs associated with the trait (Figure 11).

The main difference between these two important QTL

is that the ZmCCT polymorphism is very rare in tempe-

rate materials with very low levels of LD, whereas the

Vgt1 variation is common in temperate inbred lines that

have higher LD. When GBS data are used to perform

GWAS, the probability of finding the causative SNPs in

the dataset is highly dependent on the trait itself and

the germplasm in which it is expressed. The length and

number of the haplotypes detected vary enormously,

depending on the region of the genome and the germ-

plasm group. Some germplasm groups are currently

under-represented in our maize dataset. As a result,

population bottlenecks can cause a polymorphism that

is not present at an appreciable frequency to pass the

GBS pipeline quality filters. Therefore, it is unlikely that

a causative polymorphism is present in the GBS dataset

if it is unique to one of these germplasm groups. In

addition, if the region has high haplotype diversity, rapid

LD decay indicates that it is very likely that, even with

approximately 700,000 SNPs we might not find a mar-

ker in LD with a particular causative polymorphism of

interest. This situation is reflected in a large portion of

chromosome 10 where the ZmCCT gene is located, and

tropical inbreds have much greater haplotype diversity

than the rest of the collection. This means that,

although 700,000 SNP markers are likely to be sufficient

for analysis of temperate alleles, they are not sufficient

to perform accurate GWAS with tropical alleles.

However, numerous inbreds in the collection are IBD

for specific regions, allowing a strategy of accurate

imputation. Based on common local haplotypes defined

with GBS SNPs, high-density markers for a representa-

tive inbred obtained through whole-genome sequencing

can be imputed between GBS markers, thereby increas-

ing marker density.

In summary, our GWAS results for days to silking

showed that this association panel combined with the

GBS information can help to dissect the genetic archi-

tecture of important agronomic complex traits. Our best
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association signals corresponded to regions in which a

priori candidate genes or previously identified flowering

time QTL are located. Nevertheless, identifying the cau-

sal gene is complex. Excluding the ZmCCT gene hit on

chromosome 10, all other major associations contain

several SNPs. These hits cover regions that can extend

for more than 10 Mb, even though our average LD

decays very rapidly. For Arabidopsis [53] and rice [54],

the results suggest that the occurrence of these ‘moun-

tain landscapes’ could be related to the presence of sev-

eral linked genes across the region. In maize, the

dissection of a candidate region contributing to flower-

ing time variation on chromosome 6 suggests that a

cluster of tightly linked genes are responsible for the

phenotypic variation [55]. In our study, the linked asso-

ciations on chromosome 8 correspond with the position

of two known flowering time genes, ZmRap2.7 [30] and

ZCN8 [56]. A similar situation occurs for the hits on

chromosome 7 with candidates DLF1 and FRI. Lastly,

on our chromosome 1 region, extended haplotype

lengths for some subpopulations and a strong correla-

tion between the region and population structure have

been reported [37]. Within 3 Mb, there are genes that

have been under selection since the domestication of

maize including tb1 and d8 [25,36] and two strong can-

didate genes for flowering time (CCT and PhyA1). All

these results for our candidate regions support the

hypothesis of the presence of some multigene complexes

that may have evolved together during the process of

maize domestication and adaptation. Further studies to

unravel these regions and better understand the genetic

architecture of flowering time are needed. Flowering

time and adaptation to temperate climates are complex

traits that seem to be controlled by several genes with

small effects, organized in clusters across the genome.

Conclusions
As previous studies have suggested [7,8,39], the genetic

diversity preserved at germplasm banks can be a useful

resource for breeders and geneticists. Development of

new germplasm will benefit from the knowledge of

alleles from diverse materials associated with targeted

traits [57], and from the methods and tools used to

mine and translate this knowledge into products. How-

ever, collections may remain a hidden treasure if the

amount and distribution of genetic diversity preserved is

not understood, preventing users from making the right

choices with the available material. With this study, we

have provided the maize research community with a

new tool that can be used to better understand and

manipulate the genetic architecture of complex traits. It

will permit more efficient and targeted use of the bree-

ders’ work and of the vast amount of diversity available

in the USDA-ARS maize germplasm bank. Experimental

designs based on particular haplotypes or maximizing

the diversity for a determined number of entries may be

possible, optimizing the resources available to each

researcher.

Materials and methods
Sample collection and genetic characterization

Leaf samples from the entire available collection of

maize inbred lines conserved at the USDA Plant Intro-

ductory extension in Ames (IA), including several

sources for the same accession, and from other colla-

borators, were collected from an experiment planted

near Columbia-Missouri (MO) in 2010. Several checks

across the experimental design were planted in order to

collect accurate phenotypic data. Leaf samples from

those checks were also collected to serve as controls

during the DNA manipulation process. DNA extractions

were performed on leaf punches from a single plant

using a commercial kit (DNeasy 96 Plant Kit, Qiagen

Inc., Valencia, CA, USA). DNA from the Goodman

association panel was provided by the Institute for

Genomic Diversity (Cornell University, Ithaca, NY,

USA) This panel was sequenced twice to serve as tech-

nical replicates for quality control. Another 95 addi-

tional samples from the entire collection were selected

to maximize diversity, and sequenced several times with

the same purpose and as sources of data for imputation.

Genotype data was generated following the GBS pro-

tocol [13], using ApeKI as restriction enzyme and multi-

plexing 96 samples on each Illumina flow cell lane. Raw

reads from the machine for the samples reported here

were analyzed in conjunction with approximately 18,000

additional maize samples, including NAM and other

linkage populations. The GBS sequencing data has been

submitted to NCBI SRA (study accession number

SRP021921). The GBS discovery pipeline for species

with a reference genome, available in TASSEL (version

3.0) [58], was used. The pipeline parameters used to fil-

ter the SNPs were a minimum SNP call rate of 10%,

minimum inbreeding coefficient (coefficient of panmixia,

1-HO/HE, where HO = observed heterozygosity and HE

= expected heterozygosity) of 0.8, and MAF of 0.2%. For

the ‘biparental error correction’ step that uses the infor-

mation of biparental populations present in the overall

sample, we used a maximum error rate (apparent MAF

in biparental families where the SNP is not actually seg-

regating) of 0.01, and a minimum median r2 for LD

with markers in the local genome region across biparen-

tal families of 0.5. For the latter parameter, the r2 for

each individual biparental family in which a SNP was

segregating (minimum MAF of 0.15) was calculated as

the median r2 in a window centered on the SNP in

question and consisting of one-twentieth of the SNPs

on the corresponding chromosome. SNPs within 100 Kb
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of the SNP in question were excluded from the calcula-

tion, as they could alter the result because of possible

errors in the order of the sequenced bacterial artificial

chromosomes.

The imputed data used for the GWAS was generated

using a custom Java script that divided the entire SNP

dataset into 1,024 SNP windows and looked for the most

similar inbred line within each window to fill the missing

data. The algorithm takes advantage of small IBD regions

shared between pairs of inbred lines in the collection; if

the window from the closest neighbor has more than 5%

difference from the line being imputed, the data point is

left as missing. The entire GBS Zea database (approxi-

mately 22,000 samples) was used to search for the closest

sample.

Both GBS SNP datasets (raw and imputed) are pub-

licly available through Panzea [59]

Population structure and pedigree relationships

IBS and IBD were calculated for all possible pairwise

comparisons using PLINK (version 1.07) [60]. For each

individual, the values for the nearest neighbors, based on

how similar (IBS) they were, were summarized using the

‘–cluster –neighbour’ option in PLINK. To maintain the

assumption of independence between markers for the

IBD calculations, SNPs were pruned with a window of

100 adjacent SNPs and a step size of 25 SNPs. The r2

threshold was 0.2. The resulting number of remaining

SNPs was approximately 200,000.

Network diagrams were generated using the open-

source network visualization platform Gephi (version

0.8) [61].

MDS through principal coordinates analysis for two

dimensions was performed on the IBS matrix using the

isoMDS option of the package MASS from R [62].

Accessions were assigned to a specific group or breeding

program according to the information available in the

Germplasm Resources Information Network (GRIN)

database.

Distribution of alleles and allele frequencies

MAF were calculated using the ‘Geno Summary by Site’

analysis tool in TASSEL (version 4.0) [58]. Taxa and site

filter tools from that program were also used. To remove

possible sequencing errors, only alleles detected in at

least two individuals in a particular group were consid-

ered to be present for the allelic diversity calculations.

Genetic diversity

To analyze genetic diversity, each inbred was considered

a random sample of a single maize haplotype from the

populations being examined. Hence, heterozygous SNP

genotypes were set to ‘missing’. With the resulting data-

set, pairwise IBS for all pairs of individuals from each

set of populations being compared was calculated for

each 1 Mb window. Average nucleotide difference was

defined as 1 minus average IBS. To estimate average

haplotype length, we followed the procedure proposed

by Hufford et al.[25]. Choosing one random starting

data point across the genome and two random inbred

lines, we compared the genotypes of the two lines at the

focal point, extending outward in both directions until

we found different genotypes, then we sorted the results

according to the median site to calculate the average

distribution per interval. Filtering for allele frequency

was not applied before this calculation. Consequently, in

order to allow for possible sequencing errors, a one-

SNP mismatch was permitted on each side of the initial

counting site before assigning the end of the haplotype.

Pairwise Fst between each group of maize lines were

calculated for all the SNPs as described by Weir and

Cockerham [63], and an average Fst by Mb window was

presented. All genetic diversity calculations were per-

formed using custom Java and R scripts.

For the LD analysis, SNPs with more than 25% miss-

ing data and with a MAF less than 0.05 were filtered

before the analysis, resulting in a total set of 21,806

SNPs. To avoid the bias that differences in sample sizes

of the different populations could cause, one random set

of 180 inbreds from each of the tropical, ExPVP, and

overall populations was selected. LD was calculated

using TASSEL [58], and output report tables from that

program were summarized using R.

Genome-wide association analysis

The GRIN database contains public information for differ-

ent descriptors for each of its entries. When these analyses

were performed, kernel color phenotypes were available

for 1,595 accessions (1,281 yellow versus 314 white). We

first performed a GWAS for kernel color, with white ker-

nels coded as 0 and yellow as 1. In addition, information

about kernel type was used to analyze starchy corn (0) ver-

sus sweet corn (1), with 2,520 entries in the first category

and 140 into the second. Data on flowering time were col-

lected from plants grown in randomized augmented

designs in three environments (Ames, IA; Clayton, NC;

and Aurora, NY) during summer 2010. Growing degree

days were calculated using climate data from weather sta-

tions located near the farms. Best linear unbiased predic-

tors for each line across environments were constructed

with ASREML software (version 3.0) [64]. Blocking factors

included environment, field nested in environment, and

block nested in field. Each field environment error was

assumed to be independent and heterogeneous in var-

iance. A first-order autoregressive error term for range

and row error structures in each field were also included.

GWAS analyses were performed on the imputed data-

set using the GAPIT package for R [65]. For the 10%
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unimputed (missing) genotypes, the GWAS model

assigned an intermediate value before the analysis. For

all traits, we used a compressed mixed model [66],

where the kinship was calculated as described by Van-

Raden [67], with a random subset of 10% of the SNPs.

The first five principal components calculated with

those same SNPs were included as covariates.

Additional material

Additional file 1: Table S1. Details for the 2,815 accessions (accession

number, number of samples, number of plants, average identical by state

(IBS) value for all the samples, percentage of missing data, breeding

program, and pedigree group).

Additional file 2: Table S2. The 10 closest neighbors for each unique

entry in our maize list based on identical by state (IBS) values. IBS value

for each neighbor is presented between brackets.

Additional file 3: Figure S1. Network diagram showing the

relationships of maize inbred lines with identical by state (IBS) values

greater than 0.96.

Additional file 4: Figure S2. Median linkage disequilibrium (LD) decay

measured as pairwise r2 between all single-nucleotide polymorphisms

(SNPs) in the collection. Each line represents a different group of

germplasm.

Additional file 5: Figure S3. Relationships between nested association

mapping (NAM) recombination rate (log10 cM/Mb), average haplotype

length (bp), average linkage disequilibrium (LD) (r2), and fixation index

(Fst) between stiff stalk, non-stiff stalk, and tropical lines at the NAM

genetic map bin scale for each chromosome. The numbers indicate the

coefficient of determination (r2) calculated using Spearman’s rank

correlation.

Additional file 6: Figure S4 Quantile-quantile (QQ) plot for kernel color

genome-wide association study (GWAS) analysis.

Additional file 7: Figure S5 Quantile-quantile (QQ) plot for sweet corn

genome-wide association study (GWAS) analysis.

Additional file 8: Figure S6 Quantile-quantile (QQ) plot for flowering-

time genome-wide association study (GWAS) analysis.
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